Uncertainty and Economic Activity: A Global Perspective

Ambrogio Cesa-Bianchi ¹ M. Hashem Pesaran ² Alessandro Rebucci ³

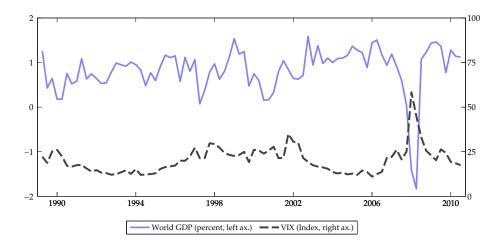
IV International Conference in memory of Carlo Giannini 26 March 2014

¹Bank of England. The views expressed in this paper are solely those of the authors and should not be taken to represent those of the Bank of England.

²University of Southern California and Trinity College, Cambridge

³Johns Hopkins University Carey Business School

The relation between uncertainty and economic activity



- During the recent global financial crisis the world economy experienced a sharp and synchronized contraction in economic activity...
- ... and an exceptional increase in macroeconomic and financial uncertainty/volatility

What we do in this paper

- Main question: what is the impact of uncertainty on economic activity?
 - We model the interrelation between uncertainty and macroeconomic dynamics as a *two-way process*
 - We adopt a *global perspective*

What we do in this paper

- Main question: what is the impact of uncertainty on economic activity?
 - We model the interrelation between uncertainty and macroeconomic dynamics as a *two-way process*
 - We adopt a *global perspective*
- Identifying assumptions
 - Both uncertainty and the business cycle are driven (with a different timing) by a similar set of global common factors
 - Conditional on these global factors, country-specific macro dynamics are cross-sectionally weakly correlated

Methodology – A global model of volatility and the business cycle

- Global Vector Autoregressive (GVAR) methodology (Pesaran, Schuermann, and Weiner, 2004)
 - Model the business cycle component of the global economy

Methodology – A global model of volatility and the business cycle

- Global Vector Autoregressive (GVAR) methodology (Pesaran, Schuermann, and Weiner, 2004)
 - Model the business cycle component of the global economy
- Combine the GVAR with a volatility module consistent with our assumptions
 - Model (global) volatility
 - Identify volatility innovations that are orthogonal to global factors

Methodology – A global model of volatility and the business cycle

- Global Vector Autoregressive (GVAR) methodology (Pesaran, Schuermann, and Weiner, 2004)
 - Model the business cycle component of the global economy
- Combine the GVAR with a volatility module consistent with our assumptions
 - Model (global) volatility
 - Identify volatility innovations that are orthogonal to global factors
- Investigate the explanatory power of identified volatility innovations for economic activity

Contribution

- Main contribution to the literature
 - Novel identifying assumptions to investigate the interaction between volatility and the business cycle

Contribution

- Main contribution to the literature
 - Novel identifying assumptions to investigate the interaction between volatility and the business cycle
- Other contributions
 - Data set of quarterly measures of realized volatilities (as a proxy for uncertainty) using daily returns across 109 asset prices from 4 asset classes worldwide
 - Empirical model of volatility and the business cycle for 33 countries representing over 90 percent of the world economy

Main findings

Theoretical

 In a bivariate VAR with output growth and volatility (akin to what is typically done in the literature), the output growth equation is mis-specified as associated least squares estimates are inconsistent

Main findings

Theoretical

 In a bivariate VAR with output growth and volatility (akin to what is typically done in the literature), the output growth equation is mis-specified as associated least squares estimates are inconsistent

Empirical

- Realized volatilities strongly co-move within asset classes, but are not as highly correlated across asset classes
- Strong negative statistical association between future output growth and current volatility
- Exogenous changes to volatility have no statistically significant impact on economic activity over and above that of its common component

How has the literature approached this question?

- ▶ "Wait and see" assumption
 - Bloom (2009): uncertainty ordered before activity in a VAR

How has the literature approached this question?

- "Wait and see" assumption
 - Bloom (2009): uncertainty ordered before activity in a VAR
- Challenging the wait and see assumption: the "by product" assumption
 - Bachmann et al (2013): confidence ordered before uncertainty
 - Gilchrist et al (2013): credit spreads ordered before uncertainty

How has the literature approached this question?

- "Wait and see" assumption
 - Bloom (2009): uncertainty ordered before activity in a VAR
- Challenging the wait and see assumption: the "by product" assumption
 - Bachmann et al (2013): confidence ordered before uncertainty
 - Gilchrist et al (2013): credit spreads ordered before uncertainty
- Recent attempts to determine causality
 - Baker and Bloom (2013) instrumental variable approach
 - Caldara et al (2013) two-steps penalty function approach

Outline

- 1. A simple factor model
- 2. The GVAR-VOL model
- 3. Data: realized volatility measures
- 4. Empirical results
- 5. Conclusions

A factor model of volatility and macro dynamics

• We consider the following dynamic specification for \mathbf{v}_t and Δy_{it}

 $\mathbf{v}_t = \mathbf{\Phi}_{1v} \mathbf{v}_{t-1} + \mathbf{\Lambda} \mathbf{n}_t + \mathbf{\xi}_t,$ (volatility equation) $\Delta \mathbf{y}_{it} = \mathbf{\Phi}_{1i} \Delta \mathbf{y}_{i,t-1} + \mathbf{\Gamma}_i \mathbf{n}_{t-1} + \mathbf{\zeta}_{it}$ (macro equation)

for i = 0, 1, ..., N

A factor model of volatility and macro dynamics

- We consider the following dynamic specification for \mathbf{v}_t and Δy_{it}

 $\mathbf{v}_t = \mathbf{\Phi}_{1v} \mathbf{v}_{t-1} + \mathbf{\Lambda} \mathbf{n}_t + \mathbf{\xi}_t,$ (volatility equation) $\Delta y_{it} = \mathbf{\Phi}_{1i} \Delta y_{i,t-1} + \mathbf{\Gamma}_i \mathbf{n}_{t-1} + \mathbf{\zeta}_{it}$ (macro equation) for i = 0, 1, ..., N

 Unobserved global factors (n_t) capture the dynamics of the world economy, political events, wars, natural disasters, or noisy information

A factor model of volatility and macro dynamics

- We consider the following dynamic specification for \mathbf{v}_t and Δy_{it}

 $oldsymbol{v}_t = oldsymbol{\Phi}_{1v}oldsymbol{v}_{t-1} + oldsymbol{\Lambda}oldsymbol{n}_t + oldsymbol{\xi}_t, \qquad (ext{volatility equation}) \ \Delta oldsymbol{y}_{it} = oldsymbol{\Phi}_{1i}\Delta oldsymbol{y}_{i,t-1} + oldsymbol{\Gamma}_ioldsymbol{n}_{t-1} + oldsymbol{\zeta}_{it} \quad (ext{macro equation})$

for i = 0, 1, ..., N

- Unobserved global factors (n_t) capture the dynamics of the world economy, political events, wars, natural disasters, or noisy information
- Main assumption: financial markets and their volatility are more immediately affected by such global factors n_t as compared to the real economy
 - Habits, adjustment costs, government regulation,...

Solving the factor model for the volatility equation

 Since n_t is unobserved, a direct relationship between Δy_{it} and v_t can be established if n_t is eliminated from the above system of equations

Solving the factor model for the volatility equation

- Since n_t is unobserved, a direct relationship between Δy_{it} and v_t can be established if n_t is eliminated from the above system of equations
- > Taking averages across countries, the macro equation can be written as

$$\Delta ar{m{y}}_t = m{\Phi}_1 \Delta ar{m{y}}_{t-1} + ar{m{\Gamma}} \mathfrak{n}_{t-1} + ar{m{\zeta}}_t,$$

Solving the factor model for the volatility equation

- Since n_t is unobserved, a direct relationship between Δy_{it} and v_t can be established if n_t is eliminated from the above system of equations
- ► Taking averages across countries, the macro equation can be written as

$$\Delta ar{m{y}}_t = m{\Phi}_1 \Delta ar{m{y}}_{t-1} + ar{m{\Gamma}} \mathfrak{n}_{t-1} + ar{m{\zeta}}_t,$$

• Solve for n_{t-1} and substitute into the volatility equation

$$\mathbf{v}_t = \mathbf{\Phi}_{1v} \mathbf{v}_{t-1} + \mathbf{\Psi}_{1,v} \Delta \bar{\mathbf{y}}_{t+1} + \mathbf{\Psi}_{0,v} \Delta \bar{\mathbf{y}}_t - \mathbf{\Psi}_{1,v} \bar{\boldsymbol{\zeta}}_{t+1} + \boldsymbol{\xi}_t$$

Volatility responds to expected changes in economic activity

Analyzing the volatility equation

- Estimation issue: there is an endogeneity problem since $\Delta \bar{y}_{t+1}$ and $\bar{\zeta}_{t+1}$ are correlated

$$\mathbf{v}_t = \mathbf{\Phi}_{1v} \mathbf{v}_{t-1} + \mathbf{\Psi}_{1,v} \Delta \bar{\mathbf{y}}_{t+1} + \mathbf{\Psi}_{0,v} \Delta \bar{\mathbf{y}}_t - \mathbf{\Psi}_{1,v} \overline{\boldsymbol{\zeta}_{t+1}} + \boldsymbol{\xi}_t$$

Analyzing the volatility equation

• Estimation issue: there is an endogeneity problem since $\Delta \bar{y}_{t+1}$ and $\bar{\zeta}_{t+1}$ are correlated

$$\mathbf{v}_t = \mathbf{\Phi}_{1v} \mathbf{v}_{t-1} + \mathbf{\Psi}_{1,v} \Delta \bar{\mathbf{y}}_{t+1} + \mathbf{\Psi}_{0,v} \Delta \bar{\mathbf{y}}_t - \mathbf{\Psi}_{1,v} \overline{\boldsymbol{\zeta}_{t+1}} + \boldsymbol{\xi}_t$$

- OLS estimates are inconsistent!
 - This result does not depend on the timing assumption
 - However, for N sufficiently large we have that $ar{m{\zeta}}_{t+1} o_p 0$ as $N o \infty$

Analyzing the volatility equation

• Estimation issue: there is an endogeneity problem since $\Delta \bar{y}_{t+1}$ and $\bar{\zeta}_{t+1}$ are correlated

$$\mathbf{v}_t = \mathbf{\Phi}_{1v} \mathbf{v}_{t-1} + \mathbf{\Psi}_{1,v} \Delta \bar{\boldsymbol{y}}_{t+1} + \mathbf{\Psi}_{0,v} \Delta \bar{\boldsymbol{y}}_t - \mathbf{\Psi}_{1,v} \overline{\boldsymbol{\zeta}_{t+1}} + \boldsymbol{\xi}_t$$

- OLS estimates are inconsistent!
 - This result does not depend on the timing assumption
 - However, for N sufficiently large we have that $ar{m{\zeta}}_{t+1} o_p 0$ as $N o \infty$
- By using a small open economy assumption and the law of large numbers applied to cross-sectionally weakly correlated processes, we can address the endogeneity problem and *achieve identification*!

Solving the factor model for the macro equation

 Solve for n_t in the volatility equation and substitute in the macro equation

$$\Delta \boldsymbol{y}_{it} = \boldsymbol{\Phi}_{1i} \Delta \boldsymbol{y}_{i,t-1} + \boldsymbol{\Xi}_{i1} \mathbf{v}_{t-1} - \boldsymbol{\Xi}_{i2} \mathbf{v}_{t-2} + \underbrace{\boldsymbol{\zeta}_{it} - \boldsymbol{\Xi}_{i1} \boldsymbol{\xi}_{t-1}}_{\mathbf{u}_{it}}$$

• The above expression has the familiar appearance of the reduced form equation of Δy_{it} in a bivariate VAR for Δy_{it} and \mathbf{v}_t as typically considered by the literature

Solving the factor model for the macro equation

 Solve for n_t in the volatility equation and substitute in the macro equation

$$\Delta \boldsymbol{y}_{it} = \boldsymbol{\Phi}_{1i} \Delta \boldsymbol{y}_{i,t-1} + \boldsymbol{\Xi}_{i1} \mathbf{v}_{t-1} - \boldsymbol{\Xi}_{i2} \mathbf{v}_{t-2} + \underbrace{\boldsymbol{\zeta}_{it} - \boldsymbol{\Xi}_{i1} \boldsymbol{\xi}_{t-1}}_{\mathbf{u}_{it}}$$

- The above expression has the familiar appearance of the reduced form equation of Δy_{it} in a bivariate VAR for Δy_{it} and \mathbf{v}_t as typically considered by the literature
- ► But due to the dependence of v_{t-1} on ξ_{t-1} OLS estimates are inconsistent!

Solving the factor model for the macro equation

 Solve for n_t in the volatility equation and substitute in the macro equation

$$\Delta \boldsymbol{y}_{it} = \boldsymbol{\Phi}_{1i} \Delta \boldsymbol{y}_{i,t-1} + \boldsymbol{\Xi}_{i1} \mathbf{v}_{t-1} - \boldsymbol{\Xi}_{i2} \mathbf{v}_{t-2} + \underbrace{\boldsymbol{\zeta}_{it} - \boldsymbol{\Xi}_{i1} \boldsymbol{\xi}_{t-1}}_{\mathbf{u}_{it}}$$

- The above expression has the familiar appearance of the reduced form equation of Δy_{it} in a bivariate VAR for Δy_{it} and \mathbf{v}_t as typically considered by the literature
- ► But due to the dependence of v_{t-1} on ξ_{t-1} OLS estimates are inconsistent!
 - Again, this result does not depend on the timing assumption...
 - ... and it holds even if we adopt a "global perspective"

A more general framework – The GVAR-VOL model

- While the bivariate representation above is appealing for its simplicity, in practice there are many sources of volatility and many countries in the world economy
- High dimensional nature of the problem $\implies N$ must be sufficiently large

A more general framework – The GVAR-VOL model

- While the bivariate representation above is appealing for its simplicity, in practice there are many sources of volatility and many countries in the world economy
- High dimensional nature of the problem $\implies N$ must be sufficiently large
- ► The GVAR-VOL
 - A GVAR model for **y**_{it} (where i = 0, 1, ..., N) is developed by estimating separate country-specific models conditional on the global and country-specific factors...
 - ... and is then combined with a volatility module

GVAR – First step

Consider a vector of country-specific macro-financial variables

 $\mathbf{x}_{it} = (\mathbf{y}'_{it}, \mathbf{\chi}'_{it})$

GVAR – First step

- Consider a vector of country-specific macro-financial variables $\mathbf{x}_{it} = (m{y}_{it}',m{\chi}_{it}')$

• VARX*(1,1) model for country i

$$\mathbf{x}_{i,t} = \mathbf{\Phi}_i \mathbf{x}_{i,t-1} + \mathbf{\Lambda}_{0i} \mathbf{x}_{it}^* + \mathbf{\Lambda}_{1i} \mathbf{x}_{i,t-1}^* + \varepsilon_{it}$$

GVAR – First step

- Consider a vector of country-specific macro-financial variables $\mathbf{x}_{it} = (\mathbf{y}'_{it}, \mathbf{\chi}'_{it})$
- VARX*(1,1) model for country i

$$\mathbf{x}_{i,t} = \mathbf{\Phi}_i \mathbf{x}_{i,t-1} + \mathbf{\Lambda}_{0i} \mathbf{x}_{it}^* + \mathbf{\Lambda}_{1i} \mathbf{x}_{i,t-1}^* + \varepsilon_{it}$$

• Country-specific foreign variables \mathbf{x}_{it}^* are

$$\mathbf{x}_{it}^* = \sum_{j=0}^N w_{ij} \mathbf{x}_{jt} = \mathbf{W}_i \mathbf{x}_t$$

- $\mathbf{x}_t = (\mathbf{x}'_{0t}, \mathbf{x}'_{1t}, ..., \mathbf{x}'_{Nt})'$ is the vector of all endogenous variables
- W_i is a matrix of fixed trade weights

• Define a selection matrix \mathbf{S}_i such that $\mathbf{x}_{it} = \mathbf{S}_i \mathbf{x}_t$

 $\mathbf{S}_{i}\mathbf{x}_{t} = \mathbf{\Phi}_{i}\mathbf{S}_{i}\mathbf{x}_{t-1} + \mathbf{\Lambda}_{0i}\mathbf{W}_{i}\mathbf{x}_{t} + \mathbf{\Lambda}_{1i}\mathbf{W}_{i}\mathbf{x}_{t-1} + \boldsymbol{\varepsilon}_{it}$

• Define a selection matrix \mathbf{S}_i such that $\mathbf{x}_{it} = \mathbf{S}_i \mathbf{x}_t$

 $\mathbf{S}_{i}\mathbf{x}_{t} = \mathbf{\Phi}_{i}\mathbf{S}_{i}\mathbf{x}_{t-1} + \mathbf{\Lambda}_{0i}\mathbf{W}_{i}\mathbf{x}_{t} + \mathbf{\Lambda}_{1i}\mathbf{W}_{i}\mathbf{x}_{t-1} + \boldsymbol{\varepsilon}_{it}$

► Re arrange

 $\mathbf{G}_i \mathbf{x}_t = \mathbf{H}_i \mathbf{x}_{t-1} + \boldsymbol{\varepsilon}_{it}$

• Define a selection matrix \mathbf{S}_i such that $\mathbf{x}_{it} = \mathbf{S}_i \mathbf{x}_t$

 $\mathbf{S}_{i}\mathbf{x}_{t} = \mathbf{\Phi}_{i}\mathbf{S}_{i}\mathbf{x}_{t-1} + \mathbf{\Lambda}_{0i}\mathbf{W}_{i}\mathbf{x}_{t} + \mathbf{\Lambda}_{1i}\mathbf{W}_{i}\mathbf{x}_{t-1} + \boldsymbol{\varepsilon}_{it}$

► Re arrange

$$\mathbf{G}_i \mathbf{x}_t = \mathbf{H}_i \mathbf{x}_{t-1} + \boldsymbol{\varepsilon}_{it}$$

• Stack each country-specific model for i = 0, 1, ..., N

 $\mathbf{G}\mathbf{x}_t = \mathbf{H}\mathbf{x}_{t-1} + \boldsymbol{\varepsilon}_t,$

• Define a selection matrix \mathbf{S}_i such that $\mathbf{x}_{it} = \mathbf{S}_i \mathbf{x}_t$

 $\mathbf{S}_{i}\mathbf{x}_{t} = \mathbf{\Phi}_{i}\mathbf{S}_{i}\mathbf{x}_{t-1} + \mathbf{\Lambda}_{0i}\mathbf{W}_{i}\mathbf{x}_{t} + \mathbf{\Lambda}_{1i}\mathbf{W}_{i}\mathbf{x}_{t-1} + \boldsymbol{\varepsilon}_{it}$

► Re arrange

$$\mathbf{G}_i \mathbf{x}_t = \mathbf{H}_i \mathbf{x}_{t-1} + \boldsymbol{\varepsilon}_{it}$$

• Stack each country-specific model for i = 0, 1, ..., N

 $\mathbf{G}\mathbf{x}_t = \mathbf{H}\mathbf{x}_{t-1} + \boldsymbol{\varepsilon}_t,$

Get the reduced form GVAR model

$$\mathbf{x}_t = \mathbf{F}\mathbf{x}_{t-1} + \mathbf{u}_t,$$

Volatility module

ARDL model as the one sketched above

$$\mathbf{v}_t = \mathbf{\Phi}_v \mathbf{v}_{t-1} + \mathbf{\Psi}_{1,v} \Delta y^*_{t+1} + \mathbf{\Psi}_{0,v} \Delta y^*_t + \mathbf{\Psi}_{-1,v} \Delta y^*_{t-1} + oldsymbol{\xi}_t,$$

Volatility module

ARDL model as the one sketched above

 $\mathbf{v}_t = \mathbf{\Phi}_v \mathbf{v}_{t-1} + \mathbf{\Psi}_{1,v} \Delta y_{t+1}^* + \mathbf{\Psi}_{0,v} \Delta y_t^* + \mathbf{\Psi}_{-1,v} \Delta y_{t-1}^* + \boldsymbol{\xi}_t,$

Re-write as

 $\mathbf{v}_{t} = \mathbf{\Phi}_{v}\mathbf{v}_{t-1} + \mathbf{\Psi}_{1,v}\mathbf{P}\Delta\mathbf{x}_{t+1} + \mathbf{\Psi}_{0,v}\mathbf{P}\Delta\mathbf{x}_{t} + \mathbf{\Psi}_{-1,v}\mathbf{P}\Delta\mathbf{x}_{t-1} + \boldsymbol{\xi}_{t}$

- P is a weighting and selection matrix made up of zeros and PPP-GDP weights
 - Only the macroeconomic variables (y_{it}) and not the financial variables (χ_{it}) are selected from \mathbf{x}_t

The GVAR-VOL model

▶ The combined GVAR-VOL can be written as

$$\boldsymbol{\Xi}_0 \left[\begin{array}{c} \mathbf{v}_t \\ \mathbf{x}_{t+1} \end{array} \right] = \boldsymbol{\Xi}_1 \left[\begin{array}{c} \mathbf{v}_{t-1} \\ \mathbf{x}_t \end{array} \right] + \ldots + \left[\begin{array}{c} \boldsymbol{\xi}_t \\ \mathbf{u}_{t+1} \end{array} \right]$$

The GVAR-VOL model

► The combined GVAR-VOL can be written as

$$\mathbf{\Xi}_0 \left[egin{array}{c} \mathbf{v}_t \ \mathbf{x}_{t+1} \end{array}
ight] = \mathbf{\Xi}_1 \left[egin{array}{c} \mathbf{v}_{t-1} \ \mathbf{x}_t \end{array}
ight] + ... + \left[egin{array}{c} \boldsymbol{\xi}_t \ \mathbf{u}_{t+1} \end{array}
ight]$$

- The only way a volatility innovation (ξ_t) can have an impact on activity is *via* its correlation with the reduced-form residuals of the GVAR (**u**_{t+1})
- Two important implications of our assumptions
 - A causal interpretation is valid only for macro variables (less so for financial variables)
 - The volatility innovations can affect the GVAR residuals only with a lag

Data for the construction of realized volatility measures

Country-specific asset markets

- Daily prices for 33 advanced and emerging economies
 - stock market equity indices
 - exchange rates
 - long-term government bonds

Data for the construction of realized volatility measures

Country-specific asset markets

- Daily prices for 33 advanced and emerging economies
 - stock market equity indices
 - exchange rates
 - long-term government bonds

International commodity markets

► Daily prices for 17 internationally traded commodities

Data for the construction of realized volatility measures

Country-specific asset markets

- Daily prices for 33 advanced and emerging economies
 - stock market equity indices
 - exchange rates
 - long-term government bonds

International commodity markets

► Daily prices for 17 internationally traded commodities

Final data set

The data set spans 109 asset prices and, for each asset price, up to 8479 daily observations from 1979 to 2011

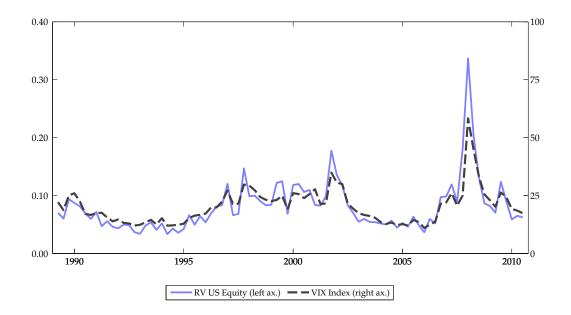
Market-specific realized volatility measures

• Realized volatility for asset of type κ , in country i, at quarter t

$$\mathcal{RV}_{\kappa it} = \sqrt{D_t^{-1} \sum_{\tau=1}^{D_t} (r_{\kappa it}(\tau) - \bar{r}_{\kappa it})^2}$$

- $r_{\kappa it}(\tau) = \Delta \ln P_{\kappa it}(\tau)$ is the daily return asset of type κ , in country *i*, measured on close of day τ in quarter *t*
- $\bar{r}_{\kappa it} = D_t^{-1} \sum_{\tau=1}^{D_t} r_{\kappa it}(\tau)$ is the average daily price changes over the quarter t
- D_t is the number of trading days in quarter t

U.S. equity realized volatility and the VIX Index



Aggregated measures of realized volatility

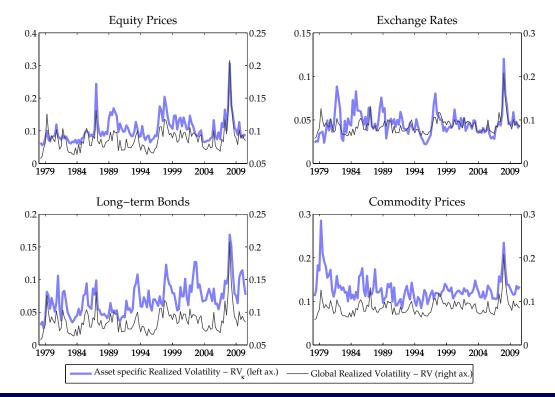
Asset-specific realized volatility

$$\mathcal{RV}_{\kappa t} = \sum_{i=1}^{N_t} w_{it} \mathcal{RV}_{\kappa it}$$

Global volatility

$$\mathcal{RV}_t = rac{1}{M}\sum_{\kappa=1}^M\sum_{i=1}^{N_t}w_{it}\mathcal{RV}_{\kappa it}$$

Global & Asset-specific volatility measures



Empirical results

- Stylized facts
 - Time series properties of realized volatility
 - Unconditional correlation with economic activity
- ► GVAR-VOL
 - GVAR
 - Volatility module
 - Relation between volatility innovations and GVAR residuals

Empirical results

- Stylized facts
 - Time series properties of realized volatility
 - Unconditional correlation with economic activity
- ► GVAR-VOL
 - GVAR
 - Volatility module
 - Relation between volatility innovations and GVAR residuals

Volatility module estimation

- Realized volatility measures for four asset classes
 - Equity prices, exchange rates, long-term government bonds, and commodity prices

Volatility module estimation

- Realized volatility measures for four asset classes
 - Equity prices, exchange rates, long-term government bonds, and commodity prices
- We model the (4×1) vector \mathbf{v}_t as a VAR model

$$\begin{bmatrix} v_{EQ,t} \\ v_{FX,t} \\ v_{LB,t} \\ v_{COM,t} \end{bmatrix} = \mathbf{\Phi}_{v} \begin{bmatrix} v_{EQ,t-1} \\ v_{FX,t-1} \\ v_{LB,t-1} \\ v_{COM,t-1} \end{bmatrix} + \mathbf{\Psi}_{1,v} \begin{bmatrix} \Delta y_{t+1}^{*} \\ \pi_{t+1}^{*} \end{bmatrix} + \dots$$
$$\dots + \mathbf{\Psi}_{0,v} \begin{bmatrix} \Delta y_{t}^{*} \\ \pi_{t}^{*} \end{bmatrix} + \mathbf{\Psi}_{-1,v} \begin{bmatrix} \Delta y_{t-1}^{*} \\ \pi_{t-1}^{*} \end{bmatrix} + \begin{bmatrix} \xi_{EQ,t} \\ \xi_{FX,t} \\ \xi_{LB,t} \\ \xi_{COM,t} \end{bmatrix}$$

Volatility module estimation

- Realized volatility measures for four asset classes
 - Equity prices, exchange rates, long-term government bonds, and commodity prices
- \blacktriangleright We model the (4 imes 1) vector \mathbf{v}_t as a VAR model

$$\begin{bmatrix} v_{EQ,t} \\ v_{FX,t} \\ v_{LB,t} \\ v_{COM,t} \end{bmatrix} = \mathbf{\Phi}_{v} \begin{bmatrix} v_{EQ,t-1} \\ v_{FX,t-1} \\ v_{LB,t-1} \\ v_{COM,t-1} \end{bmatrix} + \mathbf{\Psi}_{1,v} \begin{bmatrix} \Delta y_{t+1}^{*} \\ \pi_{t+1}^{*} \end{bmatrix} + \dots$$
$$\dots + \mathbf{\Psi}_{0,v} \begin{bmatrix} \Delta y_{t}^{*} \\ \pi_{t}^{*} \end{bmatrix} + \mathbf{\Psi}_{-1,v} \begin{bmatrix} \Delta y_{t-1}^{*} \\ \pi_{t-1}^{*} \end{bmatrix} + \begin{bmatrix} \boldsymbol{\xi}_{EQ,t} \\ \boldsymbol{\xi}_{FX,t} \\ \boldsymbol{\xi}_{LB,t} \\ \boldsymbol{\xi}_{COM,t} \end{bmatrix}$$

Volatility module estimation (cont'd)

	$v_{EQ,t}$	$v_{FX,t}$	$v_{LB,t}$	v _{COM,t}
с	0.09	0.05	0.04	0.08
	[3.91]	[5.25]	[2.97]	[5.50]
$v_{EQ,t-1}$	0.53	-0.08	-0.03	-0.09
~	[5.86]	[-2.16]	[-0.55]	[-1.52]
$v_{FX,t-1}$	0.08	0.55	0.00	0.00
	[0.36]	[6.54]	[-0.01]	[0.02]
$v_{LB,t-1}$	-0.01	-0.03	0.71	0.11
,	[-0.06]	[-0.64]	[9.37]	[1.37]
$v_{COM,t-1}$	-0.14	-0.01	-0.03	0.48
	[-1.12]	[-0.19]	[-0.37]	[6.02]
Δy_{t+1}^*	-3.37	-0.98	-1.21	-0.99
J_{l+1}	[-5.41]	[-4.04]	[-3.17]	[-2.50]
$\Delta \pi^*_{t+1}$	0.60	0.17	0.07	-0.50
1 1	[1.57]	[1.14]	[0.28]	[-2.03]
Δy_t^*	0.63	-0.50	-0.21	-0.71
	[0.85]	[-1.73]	[-0.46]	[-1.52]
$\Delta \pi_t^*$	-0.07	0.23	0.11	0.23
•	[-0.17]	[1.50]	[0.44]	[0.94]
Δy_{t-1}^*	-0.01	-0.08	-0.11	0.11
-51-1	[-0.02]	[-0.32]	[-0.27]	[0.27]
$\Delta \pi^*_{t-1}$	-0.23	-0.07	0.11	-0.06
1-1	[-0.61]	[-0.48]	[0.48]	[-0.25]

Volatility module estimation (cont'd)

	$v_{EQ,t}$	$v_{FX,t}$	$v_{LB,t}$	v _{COM,t}
с	0.09	0.05	0.04	0.08
	[3.91]	[5.25]	[2.97]	[5.50]
$v_{EQ,t-1}$	0.53	-0.08	-0.03	-0.09
~~	[5.86]	[-2.16]	[-0.55]	[-1.52]
$v_{FX,t-1}$	0.08	0.55	0.00	0.00
	[0.36]	[6.54]	[-0.01]	[0.02]
$v_{LB,t-1}$	-0.01	-0.03	0.71	0.11
,	[-0.06]	[-0.64]	[9.37]	[1.37]
$v_{COM,t-1}$	-0.14	-0.01	-0.03	0.48
,	[-1.12]	[-0.19]	[-0.37]	[6.02]
Δy_{t+1}^*	-3.37	-0.98	-1.21	-0.99
	[-5.41]	[-4.04]	[-3.17]	[-2.50]
$\Delta \pi^*_{t+1}$	0.60	0.17	0.07	-0.50
	[1.57]	[1.14]	[0.28]	[-2.03]
Δy_t^*	0.63	-0.50	-0.21	-0.71
0.1	[0.85]	[-1.73]	[-0.46]	[-1.52]
$\Delta \pi_t^*$	-0.07	0.23	0.11	0.23
r.	[-0.17]	[1.50]	[0.44]	[0.94]
Δy_{t-1}^*	-0.01	-0.08	-0.11	0.11
-5t-1	[-0.02]	[-0.32]	[-0.27]	[0.27]
$\Delta \pi^*_{t-1}$	-0.23	-0.07	0.11	-0.06
1-1	[-0.61]	[-0.48]	[0.48]	[-0.25]

Volatility module estimation (cont'd)

	$v_{EQ,t}$	$v_{FX,t}$	$v_{LB,t}$	v _{COM,t}
с	0.09	0.05	0.04	0.08
	[3.91]	[5.25]	[2.97]	[5.50]
$v_{EQ,t-1}$	0.53	-0.08	-0.03	-0.09
~	[5.86]	[-2.16]	[-0.55]	[-1.52]
$v_{FX,t-1}$	0.08	0.55	0.00	0.00
	[0.36]	[6.54]	[-0.01]	[0.02]
$v_{LB,t-1}$	-0.01	-0.03	0.71	0.11
,	[-0.06]	[-0.64]	[9.37]	[1.37]
$v_{COM,t-1}$	-0.14	-0.01	-0.03	0.48
,	[-1.12]	[-0.19]	[-0.37]	[6.02]
Δy_{t+1}^*	-3.37	-0.98	-1.21	-0.99
	[-5.41]	[-4.04]	[-3.17]	[-2.50]
$\Delta \pi^*_{t+1}$	0.60	0.17	0.07	-0.50
	[1.57]	[1.14]	[0.28]	[-2.03]
Δy_t^*	0.63	-0.50	-0.21	-0.71
51	[0.85]	[-1.73]	[-0.46]	[-1.52]
$\Delta \pi_t^*$	-0.07	0.23	0.11	0.23
r.	[-0.17]	[1.50]	[0.44]	[0.94]
Δy_{t-1}^*	-0.01	-0.08	-0.11	0.11
$-y_{t-1}$	[-0.02]	[-0.32]	[-0.27]	[0.27]
$\Delta \pi^*_{t-1}$	-0.23	-0.07	0.11	-0.06
1-1	[-0.61]	[-0.48]	[0.48]	[-0.25]

The macroeconomic impact of volatility innovations

Estimate the following country-specific, variable-specific equations

$$\hat{u}_{i\ell t} = \alpha_{i\ell} \bar{\xi}_{t-1} + \zeta_{i\ell t},$$

The macroeconomic impact of volatility innovations

Estimate the following country-specific, variable-specific equations

$$\hat{u}_{i\ell t} = \alpha_{i\ell} \bar{\xi}_{t-1} + \zeta_{i\ell t},$$

• $\hat{u}_{i\ell t}$ picks up the GVAR residuals of variable ℓ in country i

The macroeconomic impact of volatility innovations

Estimate the following country-specific, variable-specific equations

$$\hat{u}_{i\ell t} = \alpha_{i\ell} \bar{\xi}_{t-1} + \zeta_{i\ell t},$$

- $\hat{u}_{i\ell t}$ picks up the GVAR residuals of variable ℓ in country i
- $\bar{\xi}_t$ is the average of the volatility module residuals constructed as

$$\bar{\xi}_t = \frac{1}{M} \sum_{\kappa=1}^M \hat{\xi}_{\kappa t}$$

• We define $\overline{\xi}_t$ a global volatility shock

Global volatility innovations and GVAR residuals

		GDP	
	α_i^y	t-Stat	R^2
ARGENTINA	0.10	0.88	0.01
AUSTRALIA	0.04	0.71	0.00
BRAZIL	0.04	0.34	0.00
CANADA	0.03	0.96	0.01
CHINA	0.07	0.89	0.01
CHILE	0.07	0.69	0.00
EURO	0.04	1.35	0.01
INDIA	0.09	1.27	0.01
INDONESIA	0.04	0.36	0.00
JAPAN	0.00	0.03	0.00
KOREA	0.24	2.90	0.07
MALAYSIA	-0.04	-0.39	0.00
MEXICO	0.05	0.63	0.00
NORWAY	-0.07	-0.98	0.01
NEW ZEALAND	0.00	-0.02	0.00
PERU	-0.06	-0.33	0.00
PHILIPPINES	0.09	0.93	0.01
SOUTH AFRICA	0.05	1.09	0.01
SAUDI ARABIA	0.38	3.05	0.07
SINGAPORE	-0.06	-0.49	0.00
SWEDEN	0.14	1.88	0.03
SWITZERLAND	0.13	3.53	0.09
THAILAND	0.07	0.75	0.00
TURKEY	0.03	0.19	0.00
UNITED KINGDOM	0.05	1.25	0.01
USA	0.10	2.32	0.04

Global volatility innovations and GVAR residuals

	GDP		
	α_i^y	t-Stat	R^2
ARGENTINA	0.10	0.88	0.01
AUSTRALIA	0.04	0.71	0.00
BRAZIL	0.04	0.34	0.00
CANADA	0.03	0.96	0.01
CHINA	0.07	0.89	0.01
CHILE	0.07	0.69	0.00
EURO	0.04	1.35	0.01
INDIA	0.09	1.27	0.01
INDONESIA	0.04	0.36	0.00
JAPAN	0.00	0.03	0.00
KOREA	0.24	2.90	0.07
MALAYSIA	-0.04	-0.39	0.00
MEXICO	0.05	0.63	0.00
NORWAY	-0.07	-0.98	0.01
NEW ZEALAND	0.00	-0.02	0.00
PERU	-0.06	-0.33	0.00
PHILIPPINES	0.09	0.93	0.01
SOUTH AFRICA	0.05	1.09	0.01
SAUDI ARABIA	0.38	3.05	0.07
SINGAPORE	-0.06	-0.49	0.00
SWEDEN	0.14	1.88	0.03
SWITZERLAND	0.13	3.53	0.09
THAILAND	0.07	0.75	0.00
TURKEY	0.03	0.19	0.00
UNITED KINGDOM	0.05	1.25	0.01
USA	0.10	2.32	0.04

Reconciling our findings with the literature

 In the literature identification is typically achieved through a recursive ordering of variables in a VAR framework

Reconciling our findings with the literature

- In the literature identification is typically achieved through a recursive ordering of variables in a VAR framework
- In our factor model, these identification assumptions are equivalent to assuming that
 - the factors \mathbf{n}_t affect both volatility and macroeconomic variables contemporaneously
 - the macroeconomic variables $(\Delta \mathbf{y}_{it})$ are not allowed to affect volatility (\mathbf{v}_t) contemporaneously

Reconciling our findings with the literature

- In the literature identification is typically achieved through a recursive ordering of variables in a VAR framework
- In our factor model, these identification assumptions are equivalent to assuming that
 - the factors \mathbf{n}_t affect both volatility and macroeconomic variables contemporaneously
 - the macroeconomic variables $(\Delta \mathbf{y}_{it})$ are not allowed to affect volatility (\mathbf{v}_t) contemporaneously
- Modified volatility module

$$\mathbf{v}_{t} = \mathbf{\Phi}_{1v}\mathbf{v}_{t-1} + \underbrace{\mathbf{\Psi}_{0v}\Delta\bar{\mathbf{y}}_{t}}_{=0} + \mathbf{\Psi}_{1v}\Delta\bar{\mathbf{y}}_{t-1} - \underbrace{\mathbf{\Psi}_{0v}\bar{\boldsymbol{\zeta}}^{0}}_{O_{p}\left((N+1)^{-1/2}\right)} + \boldsymbol{\xi}_{t}^{0}$$

Modified global volatility innovations and GVAR residuals

		GDP	
	β_i^y	t-Stat	<i>R</i> ²
ARGENTINA	-0.21	-2.23	0.04
AUSTRALIA	-0.03	-0.82	0.01
BRAZIL	-0.29	-3.41	0.09
CANADA	-0.03	-1.09	0.01
CHINA	0.02	0.23	0.00
CHILE	-0.17	-1.89	0.03
EURO	-0.04	-1.88	0.03
INDIA	0.06	0.90	0.01
INDONESIA	-0.16	-1.60	0.02
JAPAN	-0.14	-2.83	0.06
KOREA	-0.21	-3.00	0.07
MALAYSIA	-0.24	-2.67	0.06
MEXICO	-0.01	-0.15	0.00
NORWAY	0.00	-0.06	0.00
NEW ZEALAND	-0.05	-0.88	0.01
PERU	0.06	0.38	0.00
PHILIPPINES	-0.06	-0.69	0.00
SOUTH AFRICA	-0.04	-1.02	0.01
SAUDI ARABIA	0.04	0.33	0.00
SINGAPORE	-0.10	-0.93	0.01
SWEDEN	-0.14	-2.14	0.04
SWITZERLAND	-0.03	-1.03	0.01
THAILAND	-0.22	-2.93	0.07
TURKEY	-0.20	-1.42	0.02
UNITED KINGDOM	-0.07	-1.93	0.03
UNITED STATES	-0.10	-2.97	0.07

Modified global volatility innovations and GVAR residuals

	GDP				E	quity Pric	:e
	β_i^y	t-Stat	R^2		β_i^{eq}	t-Stat	_
RGENTINA	-0.21	-2.23	0.04	ARGENTIN	IA -4.10	-2.74	
RALIA	-0.03	-0.82	0.01	AUSTRALI	A -2.05	-4.65	
ZIL	-0.29	-3.41	0.09	BRAZIL	-	-	
ADA	-0.03	-1.09	0.01	CANADA	-2.21	-5.83	
JA	0.02	0.23	0.00	CHINA	-	-	
LE	-0.17	-1.89	0.03	CHILE	-1.58	-2.94	
RO	-0.04	-1.88	0.03	EURO	-2.42	-5.94	
AIA	0.06	0.90	0.01	INDIA	-2.54	-3.25	
DONESIA	-0.16	-1.60	0.02	INDONESI	- ۴	-	
PAN	-0.14	-2.83	0.06	JAPAN	-2.23	-4.89	
REA	-0.21	-3.00	0.07	KOREA	-1.38	-1.82	
AYSIA	-0.24	-2.67	0.06	MALAYSIA	-2.73	-3.00	
ICO	-0.01	-0.15	0.00	MEXICO	-	-	
WAY	0.00	-0.06	0.00	NORWAY	-4.07	-6.00	
W ZEALAND	-0.05	-0.88	0.01	NEW ZEAI	AND -1.89	-4.59	
ERU	0.06	0.38	0.00	PERU	-	-	
HILIPPINES	-0.06	-0.69	0.00	PHILIPPIN	ES -1.17	-1.23	
OUTH AFRICA	-0.04	-1.02	0.01	SOUTH AF		-3.53	
UDI ARABIA	0.04	0.33	0.00	SAUDI AR	ABIA –	-	
NGAPORE	-0.10	-0.93	0.01	SINGAPOF	E -3.68	-5.42	
/EDEN	-0.14	-2.14	0.04	SWEDEN	-2.20	-3.38	
ITZERLAND	-0.03	-1.03	0.01	SWITZERL	AND -2.19	-5.70	
AILAND	-0.22	-2.93	0.07	THAILAND	-2.15	-2.51	
JRKEY	-0.20	-1.42	0.02	TURKEY	-	-	
NITED KINGDOM	-0.07	-1.93	0.03	UNITED K		-5.65	
NITED STATES	-0.10	-2.97	0.07	UNITED S	TATES -2.01	-5.70	

 R^2

0.06

0.15

0.22

0.07

0.23

0.08

0.16

0.03

0.07

0.23

0.15

0.01

0.09

0.20

0.09

0.21

0.05

0.21

0.21

_

_

_

_

_

-

Conclusions

What we do

 A novel approach to study the interrelation between volatility and macroeconomic dynamics

Results and implications

- Volatility shocks have no statistically significant impact on economic activity
- Most of the effect often found in the literature could stem from the fact that volatility is driven by the same common factors that affect the business cycle
- ► Volatility may be a symptom rather than a cause of economic instability