Gimme a Break! Identification and Estimation of the Macroeconomic Effects of Monetary Policy Shocks in the U.S.

Emanuele Bacchiocchi
University of Milan

Efrem Castelnuovo
University of Melbourne

Luca Fanelli
University of Padova

4th International Conference in memory of Carlo Giannini
Università degli Studi, Pavia – March 25-26, 2014
Monetary policy shocks and VARs

- SVARs: Employed to establish stylized facts, perform model selection
- A lot of attention devoted to the effects of monetary policy shocks
- Benchmark: *Recursive identification scheme, fixed coefficients* (Christiano et al. 1999, 2005)
- Pros: No need to identify other shocks
- Cons: *Zero restrictions at odds with most DSGE models* (e.g. Smets and Wouters 2007), *evidence against such restrictions* (Faust et al. 2004, Del Negro et al. 2007)
- Non-recursive schemes: Unfeasible
This paper's approach

- This paper: **Novel identification scheme to identify shocks in VARs – "SVAR-WB"**
- How: Information coming from **break in the reduced-form VCV matrix, contemporaneous coefficients**
- Application: 7-VAR, post-WWII U.S. data
- Empirical exercises:
 i) **IRFs in pre-mid 1980s, Great Moderation**
 ii) **estimation of DSGE model with the cost-channel via IRF matching**
This paper’s results

- Evidence of **instability in the U.S. post-WWII IRFs to a monetary policy shock**

- **Post-WWII fixed coefficient-VAR evidence de facto driven by the Great Inflation phase** (e.g., price puzzle)

- Evidence robust to alternative assumptions underlying the processes at hand (stationary, non-stationary and cointegrated)

- **Recursive- vs. non-recursive SVAR-WB imply quite similar dynamics pre-1984**, not quite so during the Great Moderation (entity of the response, size, sign)

- **IRF matching approach** with non-recursive SVAR-WB suggests **instabilities in the structural parameters, in particular as for the cost-channel**
Plan of the presentation

- Literature review
- SVAR-WB: Theory
- SVAR-WB vs. alternatives: Evidence
- DSGE estimation with IRF matching
- Conclusions
State of the art

Consider the following VAR model:

\[
\begin{align*}
 z_t &= \Pi w_t + u_t, \quad u_t = C e_t \\
 e_t &\sim WN(0_n, I_n) \\
 \Sigma_u &= E(u_t u'_t)
\end{align*}
\]

- Fixed-coefficient model: Not enough information to identify the \(n^2\) elements of the \(C\) matrix
- Break(s) in the covariance-structure of the data are of help for the econometrician!
The role of the break

- Assume a break at time $t = T_B$ occurs, and consider the following VAR structure:

$$z_t = \Pi(t)w_t + u_t, \quad u_t = C(t)e_t$$

$$e_t \sim WN(0_n, I_n)$$

$$\Pi(t) = \Pi_1 \times 1(t < T_B) + \Pi_2 \times 1(t \geq T_B)$$

$$\Sigma_u(t) = \Sigma_{u,1} \times 1(t < T_B) + \Sigma_{u,2} \times 1(t \geq T_B)$$

- Key assumption: $\Sigma_{u,1} \neq \Sigma_{u,2}$, i.e. that there are two volatility regimes in the data
The role of the break (cont’d)

- Crucial assumption in the literature: Changes in Σ_u not associated with a change in C, which is fixed
- Identification of C: $\Sigma_{u,1} = CC'$, $\Sigma_{u,2} = CVC'$
- Our kick: We do allow for a time-dependent C

 $$C(t) = C + Q \times 1 (t \geq T_B)$$
Changes in C: Identification

- Identifying restrictions:

\[\Sigma_{u,1} = CC' \]
\[\Sigma_{u,2} = (C + Q)(C + Q)' \]

- Additional restrictions (needed):

\[
\begin{pmatrix}
\text{vec}(C) \\
\text{vec}(Q)
\end{pmatrix} =
\begin{pmatrix}
S_C & S_I \\
0_{n^2 \times a_C} & S_Q
\end{pmatrix}
\begin{pmatrix}
\varphi \\
q
\end{pmatrix} +
\begin{pmatrix}
s_C \\
s_Q
\end{pmatrix}
\]

- Under these restrictions, NS rank condition + N order condition (see proof in the paper)
The very general model

- The previous model can be seen as a particular case of the more general model:
 \[
 \Sigma_{u,1} = CC' \\
 \Sigma_{u,2} = (C + Q)\Lambda(C + Q)'
 \]

 that nests the Rigobon (2003) and Lanne and Lütkepohl (2008) specifications

- Additional restrictions (needed):
 \[
 \begin{pmatrix}
 \text{vec}(C) \\
 \text{vec}(Q) \\
 \omega(\Lambda)
 \end{pmatrix}
 =
 \begin{pmatrix}
 S_C & S_I & 0 \\
 0 & S_Q & 0 \\
 0 & 0 & S_\Lambda
 \end{pmatrix}
 \begin{pmatrix}
 \varphi \\
 q \\
 \lambda
 \end{pmatrix}
 +
 \begin{pmatrix}
 s_C \\
 s_Q \\
 s_\Lambda
 \end{pmatrix}
 \]

- Under these restrictions, NS rank condition + N order condition (see Bacchiocchi and Fanelli, 2013)
Empirical application: SVAR-WB

- Estimation of a seven variable VAR, U.S. quarterly data, 1954Q3-2008Q2
- Sample edges: Data availability, no ZLB
- \(z_t = (NDCONS_t, DCONS_t, INVEST_t, GDP_t, INFL_t, FFR_t, 10YR_t)' \), constants, four lags
- Break \(T_B = 1984Q1 \), LR Chow-type test rejects the null of stability
 - 1954Q3-1983Q4 = 'Great inflation' period
 - 1984Q1-2008Q2 = 'Great Moderation' period
- Recursive- vs. non-recursive SVAR-WB
Recursive- vs. non-recursive SVAR-WB

- Mapping structural shocks e_t – reduced-form residuals u_t:

 $$u_t = C(t)e_t$$
 $$= C + Q \times 1(t \geq T_B)e_t$$

- Recursive SVAR-WB: C lower triangular, Q lower triangular

- Non-recursive SVAR-WB: C full, Q diagonal
Recursive SVAR-WB: Pre- vs. post-1984

Gimme a Break!
Identification and Estimation of the Macroeconomic Effects of Monetary Policy Shocks in the U.S.

Bacchiocchi, Castelnuovo, Fanelli

Intro
Literature review
SVAR-WB: Theory
SVAR-WB: Evidence
DSGE, IRF-matching approach
Conclusions
Recursive SVAR-WB vs. fixed-coeff. SVAR
Recursive SVAR-WB vs. fixed-coeff. SVAR (cont’d)
Recursive models

- Clear recessionary effects in the Great inflation sample, price puzzle
- Much larger uncertainty in the post-1984 period, no price puzzle
- Fixed-coefficient VARs estimated with post-WWII data: Dynamics fully driven by pre-1984 period
- What if data analyzed with non-recursive SVAR-WB?
Recursive- vs. non-recursive SVAR-WB

Gimme a Break!
Identification and Estimation of the Macroeconomic Effects of Monetary Policy Shocks in the U.S.

Bacchiocchi, Castelnuovo, Fanelli

Intro
Literature review
SVAR-WB: Theory
SVAR-WB: Evidence
DSGE, IRF-matching approach
Conclusions
Recursive- vs. non-recursive SVAR-WB (cont’d)
Recursive- vs- non-recursive SVAR-WB

- Pre-break period: Quite similar dynamics, contemporaneous zero-restrictions not so problematic
- Post-break sample: Non-recursive SVAR-WB predicts significantly negative responses of real variables and the long-term policy rate, deflation
- Can we discriminate between the two frameworks? No, if we stick to the unconstrained formulations (just-identified models)
- Coefficients of C and Q not all significant! Constrained formulations, best fitting model (LR tests, likelihood)
 - constrained recursive VAR-WB: Log-lik = 1540.12, $\chi^2(23)=33.36$, p-value=0.08
 - constrained non-recursive VAR-WB: Log-lik = 1550.25, $\chi^2(22)=13.10$, p-value=0.94
- Non-recursive SVAR-WB favored by the data
SVAR-WB for IRF matching estimates

- IRFs to a monetary policy shock often used to estimate DSGE models via IRF matching procedure (Rotemberg and Woodford 1997, Boivin and Giannoni 2006, Christiano et al. 2005, Altig et al. 2011)

- Approach based on fixed-coefficient recursive VAR, recursive DSGE models

- Most microfounded DSGE models not-recursive, though

- SVAR-WB can be employed to estimate non-recursive DSGE models, detect structural parameter instabilities

- Application: Small-scale cost-channel model à la Ravenna and Walsh (2006), Surico (2008)
DSGE model with the cost-channel

\[
\pi_t = \beta[\xi_\pi E_t \pi_{t+1} + (1 - \xi_\pi) \pi_{t-1}] + \kappa x_t + \kappa \alpha R_t + \epsilon^\pi_t
\]

\[
x_t = \xi_x E_t x_{t+1} + (1 - \xi_x) x_{t-1} - \tau(R_t - E_t \pi_{t+1}) + \epsilon^x_t
\]

\[
R_t = (1 - \phi_i)(\phi_\pi \pi_t + \phi_x x_t) + \phi_i R_{t-1} + \epsilon^i_t
\]
DSGE model: IRF matching estimates

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ζ_x</td>
<td>0.50 (0.01)</td>
<td>0.42 (0.02)</td>
<td>0.09 (0.16)</td>
</tr>
<tr>
<td>τ</td>
<td>0.03 (0.001)</td>
<td>0.09 (0.01)</td>
<td>0.73 (0.22)</td>
</tr>
<tr>
<td>ξ_π</td>
<td>0.53 (0.02)</td>
<td>0.27 (0.05)</td>
<td>1.00 (0.18)</td>
</tr>
<tr>
<td>κ</td>
<td>0.01 (0.01)</td>
<td>0.01 (0.01)</td>
<td>0.11 (0.02)</td>
</tr>
<tr>
<td>α</td>
<td>3.08 (2.07)</td>
<td>0*</td>
<td>0.00 (1.80)</td>
</tr>
</tbody>
</table>

Distance: 133.39, 137.82, 20.09
Time-varying role of the cost-channel

- **Cost-channel: Time-dependence detected**
- Result which comes from time-dependence of the price puzzle
- Interpretation: Financial liberalization in the early 1980s.
Conclusions

- Evidence of **instability in the U.S. post-WWII IRFs to a monetary policy shock**
- Post-WWII fixed coefficient-VAR evidence de facto driven by the Great Inflation phase (e.g., price puzzle)
- Recursive- vs. non-recursive SVAR-WB imply quite similar dynamics pre-1984, not quite so during the Great Moderation (entity of the response, size, sign)
- **IRF matching approach** with non-recursive SVAR-WB suggests instabilities in the structural parameters, in particular as for the cost-channel
Thank you!