Discussion of "A New Identification of Fiscal Shocks Based On The Information Flow"

by G. Ricco

Alessandro Notarpietro

Banca d’Italia

IV International Conference in memory of Carlo Giannini
Pavia
25-26 March 2014

1Usual disclaimers apply
Overview

- Very nice and rich paper, lots of interesting work
Very nice and rich paper, lots of interesting work

Question: what does a fiscal shock (government spending) do? What is a fiscal shock? How to measure it in the data?
Overview

- Very nice and rich paper, lots of interesting work
- Question: what does a fiscal shock (government spending) do? What is a fiscal shock? How to measure it in the data?
- Main contribution: separate study of *news* and *nowcast* errors and use of *individual* forecasters data
Overview

- Very nice and rich paper, lots of interesting work
- Question: what does a fiscal shock (government spending) do? What is a fiscal shock? How to measure it in the data?
- Main contribution: separate study of *news* and *nowcast* errors and use of *individual* forecasters data
- Estimate a Large Information Bayesian VAR (similar to Ellahie and Ricco 2012)
Very nice and rich paper, lots of interesting work

Question: what does a fiscal shock (government spending) do? What is a fiscal shock? How to measure it in the data?

Main contribution: separate study of news and nowcast errors and use of individual forecasters data

Estimate a Large Information Bayesian VAR (similar to Ellahie and Ricco 2012)

Results: misexpected shocks have contractionary effects, unexpected and expected fiscal shocks have expansionary effects
Road map

- Fiscal shocks, fiscal foresight and measurement of news: this paper and the literature
Road map

- Fiscal shocks, fiscal foresight and measurement of news: this paper and the literature
- Large Information Fiscal Expectational VAR (LIFE-VAR) estimation: identification, results
Road map

- Fiscal shocks, fiscal foresight and measurement of news: this paper and the literature
- Large Information Fiscal Expectational VAR (LIFE-VAR) estimation: identification, results
- Interpreting estimation results in the light of theory: some caveats
Fiscal shocks, news and fiscal foresight

- Ramey (2011): fiscal policy shocks estimated in VARs (Blanchard and Perotti 2002, etc.) are predicted by government spending forecasts made by SPF respondents, because of implementation lags in fiscal plans
Fiscal shocks, news and fiscal foresight

- Ramey (2011): fiscal policy shocks estimated in VARs (Blanchard and Perotti 2002, etc.) are predicted by government spending forecasts made by SPF respondents, because of implementation lags in fiscal plans.

- Gambetti (2012) use revision in SPF forecasts about government spending:

\[
\Delta n_t(1, 3) = \sum_{j=1}^{3} (g_{t+j|t} - g_{t+j|t-1})
\]
Ramey (2011): fiscal policy shocks estimated in VARs (Blanchard and Perotti 2002, etc.) are predicted by government spending forecasts made by SPF respondents, because of implementation lags in fiscal plans.

Gambetti (2012) use revision in SPF forecasts about government spending:

\[
\Delta n_t(1, 3) = \sum_{j=1}^{3} (g_{t+j|t} - g_{t+j|t-1})
\]

\(n_t(1, 3) \) provides useful info about fiscal policy actions: forecasters’ revisions can reveal the ”true” shock.
News, SPF forecasts revisions and fiscal shocks: this paper

- Exploit limited information of SPF respondents (2-period lag):

\[\Delta g_t^u = \Delta g_t - \Delta g_t^{e|t-2} \]

\[= (\Delta g_t - \Delta g_t^{e|t}) + (\Delta g_t^{e|t} - \Delta g_t^{e|t-1}) + (\Delta g_t^{e|t-1} - \Delta g_t^{e|t-2}) \]
News, SPF forecasts revisions and fiscal shocks: this paper

- Exploit limited information of SPF respondents (2-period lag):

\[
\Delta g_t^u = \Delta g_t - \Delta g_{t|t-2} \\
= (\Delta g_t - \Delta g_{t|t}) + (\Delta g_{t|t} - \Delta g_{t|t-1}) + (\Delta g_{t|t-1} - \Delta g_{t|t-2})
\]

- \((\Delta g_t - \Delta g_{t|t-1})\): nowcast error, (surprise), \(\notin I_t\). Agents will learn about their possible mistake (misexpectation shock) only 2 periods down the road. No reaction at \(t, t+1\)
News, SPF forecasts revisions and fiscal shocks: this paper

- Exploit limited information of SPF respondents (2-period lag):

\[\Delta g_t^u = \Delta g_t - \Delta g_t^e_{t-2} \]

\[= (\Delta g_t - \Delta g_t^e_t) + (\Delta g_t^e_t - \Delta g_t^e_{t-1}) + (\Delta g_t^e_{t-1} - \Delta g_t^e_{t-2}) \]

- \((\Delta g_t - \Delta g_t^e_{t-1})\): nowcast error, (surprise), \(\notin l_t\). Agents will learn about their possible mistake (misexpectation shock) only 2 periods down the road. No reaction at \(t, t+1\)

- \((\Delta g_t^e_t - \Delta g_t^e_{t-1})\): nowcast revision or news at \(t\), \(\in l_t\). Agents’ expectations can adjust, e.g. neoclassical wealth effect can arise
News, SPF forecasts revisions and fiscal shocks: this paper

- Exploit limited information of SPF respondents (2-period lag):
 \[\Delta g_t^u = \Delta g_t - \Delta g_t^{e_{t-2}} \]

 \[= (\Delta g_t - \Delta g_t^{e_t}) + (\Delta g_t^{e_t} - \Delta g_t^{e_{t-1}}) + (\Delta g_t^{e_{t-1}} - \Delta g_t^{e_{t-2}}) \]

- \((\Delta g_t - \Delta g_t^{e_{t-1}}) \): nowcast error, (surprise), \(\notin I_t \). Agents will learn about their possible mistake (misexpectation shock) only 2 periods down the road. No reaction at \(t, t+1 \)

- \((\Delta g_t^{e_t} - \Delta g_t^{e_{t-1}}) \): nowcast revision or news at \(t, \in I_t \). Agents’ expectations can adjust, e.g. neoclassical wealth effect can arise

- \((\Delta g_t^{e_{t-1}} - \Delta g_t^{e_{t-2}}) \) forecast revision \(\in I_{t-1} \). Expectations adjust, possible wealth effect
News, SPF forecasts revisions and fiscal shocks: this paper

- Exploit limited information of SPF respondents (2-period lag):

\[
\Delta g_t^u = \Delta g_t - \Delta g_{t|t-2}^e \\
= (\Delta g_t - \Delta g_{t|t}^e) + (\Delta g_{t|t}^e - \Delta g_{t|t-1}^e) + (\Delta g_{t|t-1}^e - \Delta g_{t|t-2}^e)
\]

- \((\Delta g_t - \Delta g_{t|t-1}^e)\): nowcast error, (surprise), \(\notin I_t\). Agents will learn about their possible mistake (misexpectation shock) only 2 periods down the road. No reaction at \(t, t+1\)

- \((\Delta g_{t|t}^e - \Delta g_{t|t-1}^e)\): nowcast revision or news at \(t\), \(\in I_t\). Agents’ expectations can adjust, e.g. neoclassical wealth effect can arise

- \((\Delta g_{t|t-1}^e - \Delta g_{t|t-2}^e)\) forecast revision \(\in I_{t-1}\). Expectations adjust, possible wealth effect

- Just semantics or more?
News, SPF forecasts revisions and fiscal shocks: this paper

- Exploit limited information of SPF respondents (2-period lag):

\[\Delta g_t^u = \Delta g_t - \Delta g_{t|t-2} \]

\[= (\Delta g_t - \Delta g_{t|t}) + (\Delta g_{t|t} - \Delta g_{t|t-1}) + (\Delta g_{t|t-1} - \Delta g_{t|t-2}) \]

- \((\Delta g_t - \Delta g_{t|t-1}) \): nowcast error, (surprise), \(\notin I_t \). Agents will learn about their possible mistake (misexpectation shock) only 2 periods down the road. No reaction at \(t, t+1 \)

- \((\Delta g_{t|t} - \Delta g_{t|t-1}) \): nowcast revision or news at \(t, \in I_t \). Agents’ expectations can adjust, e.g. neoclassical wealth effect can arise

- \((\Delta g_{t|t-1} - \Delta g_{t|t-2}) \) forecast revision \(\in I_{t-1} \). Expectations adjust, possible wealth effect

- Just semantics or more?

- **Systematic comparison of** \((\Delta g_{t|t} - \Delta g_{t|t-1}) \) and \((\Delta g_{t|t-1} - \Delta g_{t|t-2}) \)? Is there a systematic difference in the informational content of the two objects?
Expectations and news: measurement issues

- Use individual SPF data to avoid aggregation bias
Expectations and news: measurement issues

- Use individual SPF data to avoid aggregation bias
- Stylized facts:
Expectations and news: measurement issues

- Use individual SPF data to avoid aggregation bias
- Stylized facts:
 - 1. Nowcast errors have large variance; not related to fiscal events
Expectations and news: measurement issues

- Use individual SPF data to avoid aggregation bias
- Stylized facts:
 - 1. Nowcast errors have large variance; not related to fiscal events
 - 2. Movements in news clearly related to fiscal events (people change expectations when "something happens")
Expectations and news: measurement issues

- Use individual SPF data to avoid aggregation bias
- Stylized facts:
 1. Nowcast errors have large variance; not related to fiscal events
 2. Movements in news clearly related to fiscal events (people change expectations when "something happens")
- Apparently, no systematic difference btw "unexpected" and "expected" shocks, i.e. forecasts revisions at \(t \) or before. Does the last expectation revision encompass all previous ones? Empirical question, check data
Expectations and news: measurement issues

- Use individual SPF data to avoid aggregation bias
- Stylized facts:
 1. Nowcast errors have large variance; not related to fiscal events
 2. Movements in news clearly related to fiscal events (people change expectations when "something happens")
- **Apparently, no systematic difference btw "unexpected" and "expected" shocks**, i.e. forecasts revisions at \(t \) or before. Does the last expectation revision encompass all previous ones? **Empirical question, check data**
- News measure: Ricco (2014) vs Gambetti (2012): very high correlation (0.8), across different horizons \(n_t(0,1), n_t(1,3) \). So, results should not change much...
Expectations and news: measurement issues

- Use individual SPF data to avoid aggregation bias
- Stylized facts:
 1. Nowcast errors have large variance; not related to fiscal events
 2. Movements in news clearly related to fiscal events (people change expectations when "something happens")
- Apparently, no systematic difference btw "unexpected" and "expected" shocks, i.e. forecasts revisions at t or before. Does the last expectation revision encompass all previous ones? Empirical question, check data
- News measure: Ricco (2014) vs Gambetti (2012): very high correlation (0.8), across different horizons ($n_t(0, 1), n_t(1, 3)$). So, results should not change much...
- Bottom line: individual data seem to avoid aggregation bias, but how large is the improvement?
LIFE-VAR: specification and identification

- Estimate a Large Information Fiscal Expectational VAR (LIFE-VAR)
LIFE-VAR: specification and identification

- Estimate a Large Information Fiscal Expectational VAR (LIFE-VAR)

- Variables: proxy for misexpected shocks and news; forecasts of macro variables (to control for fiscal rules); large set of forward looking variables (sentiment, etc...)
LIFE-VAR: specification and identification

- Estimate a Large Information Fiscal Expectational VAR (LIFE-VAR)
- Variables: proxy for misexpected shocks and news; forecasts of macro variables (to control for fiscal rules); large set of forward looking variables (sentiment, etc...)
- Identification: Choleski. $N_t(1, 3)$: last but one (before macro variables). But, with fiscal rules, changes in expectations may reflect changes in forecast of e.g. macro variables. What does Y_t include? If expected future path of macro variables $\in Y_t$, then $N_t(1, 3)$ should enter last
LIFE-VAR: specification and identification

- Estimate a Large Information Fiscal Expectational VAR (LIFE-VAR)
- Variables: proxy for misexpected shocks and news; forecasts of macro variables (to control for fiscal rules); large set of forward looking variables (sentiment, etc...)
- Identification: Choleski. \(N_t(1, 3) \): last but one (before macro variables). But, with fiscal rules, changes in expectations may reflect changes in forecast of e.g. macro variables. What does \(Y_t \) include? If expected future path of macro variables \(\in Y_t \), then \(N_t(1, 3) \) should enter last
- Ordering of \(N_t(0) \) and \(M_t \): \(M_t \) does not respond to anything, as it \(\notin I_t \). So why second?
LIFE-VAR: specification and identification

- Estimate a Large Information Fiscal Expectational VAR (LIFE-VAR)
- Variables: proxy for misexpected shocks and news; forecasts of macro variables (to control for fiscal rules); large set of forward looking variables (sentiment, etc...)
- Identification: Choleski. $N_t(1, 3)$: last but one (before macro variables). **But, with fiscal rules, changes in expectations may reflect changes in forecast of e.g. macro variables.** What does Y_t include? If expected future path of macro variables $\in Y_t$, then $N_t(1, 3)$ should enter last
- Ordering of $N_t(0)$ and M_t: M_t does not respond to anything, as it $\notin I_t$. So why second?
- Question: what about shocks orthogonality? Test only says shocks are shocks, i.e. unpredictable (as opposed to news). But are they correlated to each other? Especially news and forecast revisions shocks?
LIFE-VAR: results

- Misexpected fiscal change: $Y \uparrow$ on impact, then \downarrow.
 Cumulative multiplier < 0
LIFE-VAR: results

- Misexpected fiscal change: $Y \uparrow$ on impact, then \downarrow.
 Cumulative multiplier < 0

- Contractionary, "neoclassical-like" effects. Although, since
 $(\Delta g_t - \Delta g^e_{t|t}) \notin I_t$, we should not expect any forward-looking
 behaviour...
LIFE-VAR: results

- Misexpected fiscal change: $Y \uparrow$ on impact, then \downarrow. Cumulative multiplier < 0
- Contractionary, "neoclassical-like" effects. Although, since $(\Delta g_t - \Delta g^e_t) \notin I_t$, we should not expect any forward-looking behaviour...
- Proposed explanation: higher variance of nowcast errors. Alternatives: misexpectation/nowcast error as a catch-all. Then, what is its structural interpretation? What is in misexpected shocks that is not in other fiscal shocks?
LIFE-VAR: results

- Misexpected fiscal change: $Y \uparrow$ on impact, then \downarrow. Cumulative multiplier < 0

- Contractionary, ”neoclassical-like” effects. Although, since $(\Delta g_t - \Delta g^e_{t|t}) \notin I_t$, we should not expect any forward-looking behaviour...

- Proposed explanation: higher variance of nowcast errors. Alternatives: misexpectation/nowcast error as a catch-all. Then, **what is its structural interpretation? What is in misexpected shocks that is not in other fiscal shocks?**

- Unexpected fiscal change: expansionary effects: $\uparrow G$ very persistent, $Y \uparrow$, $C \uparrow$, $I \uparrow$
LIFE-VAR: results

- Misexpected fiscal change: $Y \uparrow$ on impact, then \downarrow. Cumulative multiplier < 0

- Contractionary, "neoclassical-like" effects. Although, since $(\Delta g_t - \Delta g_t^e) \notin I_t$, we should not expect any forward-looking behaviour...

- Proposed explanation: higher variance of nowcast errors. Alternatives: misexpectation/nowcast error as a catch-all. Then, what is its structural interpretation? What is in misexpected shocks that is not in other fiscal shocks?

- Unexpected fiscal change: expansionary effects: $\uparrow G$ very persistent, $Y \uparrow$, $C \uparrow$, $I \uparrow$

- Expected fiscal change: expansionary effects. Similar to Gambetti (2012)
LIFE-VAR: results

- Misexpected fiscal change: $Y \uparrow$ on impact, then \downarrow. Cumulative multiplier < 0

- Contractionary, "neoclassical-like" effects. Although, since $(\Delta g_t - \Delta g^e_{t|t}) \notin I_t$, we should not expect any forward-looking behaviour...

- Proposed explanation: higher variance of nowcast errors. Alternatives: misexpectation/nowcast error as a catch-all. Then, **what is its structural interpretation? What is in misexpected shocks that is not in other fiscal shocks?**

- Unexpected fiscal change: expansionary effects: $\uparrow G$ very persistent, $Y \uparrow$, $C \uparrow$, $I \uparrow$

- Expected fiscal change: expansionary effects. Similar to Gambetti (2012)

- **Expected vs unexpected shocks: similar effects, different interpretation?**
Concluding remarks

- General comment: hard to use IRFs to ”discriminate among theoretical models” as proposed
Concluding remarks

- General comment: hard to use IRFs to "discriminate among theoretical models" as proposed
- 1. Nature of the shock: permanent vs transitory. No information about perceived duration of fiscal shocks: any hint from SPF data? Estimates show large differences in length of stimulus, conditional on different shocks
Concluding remarks

- General comment: hard to use IRFs to "discriminate among theoretical models" as proposed

- 1. Nature of the shock: permanent vs transitory. No information about perceived duration of fiscal shocks: any hint from SPF data? Estimates show large differences in length of stimulus, conditional on different shocks

- 2. No control for how $\uparrow G$ increase is financed, except that tax rates are included. Expectations do matter, also for tax changes. Combine this approach with e.g Mertens and Ravn (2011), construct empirical measure of what agents expect to be the fiscal "plan" rather than shock (see Alesina, Favero and Giavazzi 2013)
Concluding remarks

- General comment: hard to use IRFs to ”discriminate among theoretical models” as proposed

- 1. Nature of the shock: permanent vs transitory. No information about perceived duration of fiscal shocks: any hint from SPF data? Estimates show large differences in length of stimulus, conditional on different shocks

- 2. No control for how $\uparrow G$ increase is financed, except that tax rates are included. Expectations do matter, also for tax changes. Combine this approach with e.g Mertens and Ravn (2011), construct empirical measure of what agents expect to be the fiscal ”plan” rather than shock (see Alesina, Favero and Giavazzi 2013)

- Conclusion: hard to reconcile empirical evidence with theory. Wealth effect depends on how the shock is financed and whether it is perceived permanent or transitory. Paper finds neoclassical-like effects in the case in which expectations cannot really influence the responses. Puzzle?
Thanks