GMM with latent variables J

Raffaella Giacomini (UCL/Cemmap/CEPR)
Ron Gallant (Penn State) Giuseppe Ragusa (Luiss)

Giannini conference, 26/3/14

GGR () GMM with latent variables Giannini conference, 26/3/14 1/31



|
Contribution

@ Frequentist inference in models defined by nonlinear moment
conditions that depend on dynamic latent variables (time-varying
parameters, structural shocks, factors)

GGR () GMM with latent variables Giannini conference, 26/3/14 2/31



|
Contribution

@ Frequentist inference in models defined by nonlinear moment
conditions that depend on dynamic latent variables (time-varying
parameters, structural shocks, factors)

@ Uses MCMC methods — Bayesian inference is a trivial extension

GGR () GMM with latent variables Giannini conference, 26/3/14 2/31



|
Contribution

@ Frequentist inference in models defined by nonlinear moment
conditions that depend on dynamic latent variables (time-varying
parameters, structural shocks, factors)

@ Uses MCMC methods — Bayesian inference is a trivial extension
@ It's like Hansen and Singleton (1982) with latent variables

GGR () GMM with latent variables Giannini conference, 26/3/14 2/31



|
Contribution

@ Frequentist inference in models defined by nonlinear moment
conditions that depend on dynamic latent variables (time-varying
parameters, structural shocks, factors)

@ Uses MCMC methods — Bayesian inference is a trivial extension
@ It's like Hansen and Singleton (1982) with latent variables

@ Two main applications:

GGR () GMM with latent variables Giannini conference, 26/3/14 2/31



|
Contribution

@ Frequentist inference in models defined by nonlinear moment
conditions that depend on dynamic latent variables (time-varying
parameters, structural shocks, factors)

@ Uses MCMC methods — Bayesian inference is a trivial extension
@ It's like Hansen and Singleton (1982) with latent variables
@ Two main applications:

@ Moment condition models with time-varying parameters

GGR () GMM with latent variables Giannini conference, 26/3/14 2/31



|
Contribution

@ Frequentist inference in models defined by nonlinear moment
conditions that depend on dynamic latent variables (time-varying
parameters, structural shocks, factors)

@ Uses MCMC methods — Bayesian inference is a trivial extension
@ It's like Hansen and Singleton (1982) with latent variables
@ Two main applications:

@ Moment condition models with time-varying parameters
© Estimating Dynamic Stochastic General Equilibrium models
without solving the model
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Do we really need a new estimation method?

@ Dynamic latent variables typically handled with state-space
methods
@ Problem: they assume that the model defines a likelihood.
However:
@ Moment condition models with time-varying parameters
e Limited information so no likelihood without auxiliary

assumptions
e No estimation method currently exists
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Do we really need a new estimation method?

@ DSGE models

e In principle can write a likelihood by first solving the model
e In practice this involves approximation

@ Numerical approximation — only handle small models

o Linearization (majority of literature) or higher-order Taylor

expansions (small literature) — effect of approximation on
inference?

o Also need to deal with stochastic singularity and multiplicity of
solutions

o Desirable to have estimation methods that only use the
information in equilibrium conditions
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- |
Basic idea

@ Construct an approximate density based on the moment
condition

o It's like Chernozhukov and Hong (2003) with latent variables
@ Apply a nonlinear filtering method to handle the latent variables

@ Show that the use of an approximate density does not matter
asymptotically
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Assumption 1 - the model

@ There exists a dynamic structural model but we have incomplete
information in the form of m moment conditions

E[g (Xe+1, At+1,00) |[Ie] =0
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——
Assumption 1 - the model

@ There exists a dynamic structural model but we have incomplete
information in the form of m moment conditions

E[g (Xe+1, At+1,00) |[Ie] =0

@ We observe a sample X = (X, ..., XT)
@ The remaining variables are latent, A = (A1, ..., A1)
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Assumption 2 - the latent variables

@ Assume we can draw from the transition density of the dynamic
latent variables
A1 ~ P(Ars1]| A, b0)

where P is known and assumed to be ergodic
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Assumption 2 - the latent variables

@ Assume we can draw from the transition density of the dynamic
latent variables
A1 ~ P(Ars1]| A, b0)

where P is known and assumed to be ergodic

o Note that 8y includes structural parameters of the model and
parameters of the law of motion of latent variables (more on
this later)
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Assumption 2 - the latent variables

@ Assume we can draw from the transition density of the dynamic
latent variables
A1 ~ P(Ars1]| A, b0)
where P is known and assumed to be ergodic

o Note that 8y includes structural parameters of the model and
parameters of the law of motion of latent variables (more on
this later)

@ Different notion of latent variables than in microeconometrics
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Examples of latent variables

e Time-varying parameters, structural shocks, dynamic factors:
Ap,.]_ = CDAt + Et+1, Er41 IIdN(O, Z)

@ A1 could also contain endogenous latent variables (e.g.,
capital stock in RBC models, kyy1 = (1 — &) ke + i, i
observable), so that At11 ~ P(A¢y1|Ar, X, 00)

@ This is different from the usual distinction between state and
control variables when solving a DSGE model

GGR () GMM with latent variables Giannini conference, 26/3/14 8 /31



——
Assumption 3 - identification

@ Assume moment conditions would identify 8 if A; were
observable (standard conditions for identification in GMM)

GGR () GMM with latent variables Giannini conference, 26/3/14 9 /31



——
Assumption 3 - identification

@ Assume moment conditions would identify 8 if A; were
observable (standard conditions for identification in GMM)

@ Add moment conditions that identify parameters of latent
variables’ transition density to the model’s equilibrium conditions

GGR () GMM with latent variables Giannini conference, 26/3/14 9 /31



Assumption 3 - identification

@ Assume moment conditions would identify 8 if A; were
observable (standard conditions for identification in GMM)

@ Add moment conditions that identify parameters of latent
variables’ transition density to the model’s equilibrium conditions
@ ldentification problems in DSGE models even if likelihood known

— standard procedure calibrates some parameters and estimates
the rest (discuss later in example)

GGR () GMM with latent variables Giannini conference, 26/3/14 9 /31



Assumption 3 - identification

@ Assume moment conditions would identify 8 if A; were
observable (standard conditions for identification in GMM)

@ Add moment conditions that identify parameters of latent
variables’ transition density to the model’s equilibrium conditions

@ ldentification problems in DSGE models even if likelihood known
— standard procedure calibrates some parameters and estimates
the rest (discuss later in example)

e ldentification problems could be due to linearization — we
might be better off

GGR () GMM with latent variables Giannini conference, 26/3/14 9 /31



——
Assumption 3 - identification

@ Assume moment conditions would identify 8 if A; were
observable (standard conditions for identification in GMM)

@ Add moment conditions that identify parameters of latent
variables’ transition density to the model’s equilibrium conditions

@ ldentification problems in DSGE models even if likelihood known
— standard procedure calibrates some parameters and estimates
the rest (discuss later in example)

e ldentification problems could be due to linearization — we
might be better off

e lIdentification harder to discuss in nonlinear models + weak
identification due to latent variables — we might be worse off
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——
Assumption 4 - asymptotic normality of sample
moment

@ DSGE model implies conditional moments — transform into
unconditional moments

@ In practice: choice of moments matters (example later)

@ Primitive assumption: sample moment condition asymptotically
normal

Zr = [ (X, A 60)] 2 g7 (X, A, 6p) =9 N(O, 1)

1 T
gT(X,A,e) = —TZg(Xt,At,G)
t=1

X (X, A, 0) asymptotic variance (maybe HAC)
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o Consider the approximate density induced by GMM
p(X, A, 0) =
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@ If A were observable, the Chernozhukov and Hong (2003) result
would hold:
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I EEEEEEE——.
Assumption 5 - Chernozhukov and Hong (2003)

o Consider the approximate density induced by GMM
p(X, A, 0) =

exp {—%gr (X, A 0)Z (X, A,0) T gr (X, A, 9)}

[N

(27)

@ If A were observable, the Chernozhukov and Hong (2003) result
would hold:

o equivalent to estimate 6 by GMM or to draw from p(X, A, 0)
using MCMC methods
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The estimation method

. ~YR
@ Numerical method that samples {9(’),A(’)}._1 by combining

e Step 1. Modified particle filter — draw A given 6 and X and
previous draw of A

o Step 2. Metropolis — draw 6 given A and X and previous 6

o lterate

@ What's new here: at both steps, use GMM density p(X, A, 0)
instead of true density

@ Technical challenge: show that it doesn't matter asymptotically
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@ Note that the method uses p (X, A, 9), even though in principle
we need p (A|X, 0) for the particle filter and p (0| A, X) for the
Metropolis
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Theoretical properties

@ Note that the method uses p(X, A, 9), even though in principle
we need p (A|X, 0) for the particle filter and p (0| A, X) for the

Metropolis
@ This is because p (A|X,8),p (8]A, X) < p(X,A,0) and the
proportionality constant

e doesn't matter in Metropolis because it cancels out in the

_ . p(X,A,enew)T(eneerold)]
acceptance prob & = min [1’ (X ABo1d) T (Ooid Onew )

e is assumed to equal 1 in particle filter

o this is generally satisfied (primitive condition: g (+) unbounded
wrt X) but, if not, one could compute it
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Theoretical properties - key idea
@ We show that p (A|X, 6) assigns the same probability as

f (A|X,0) to the pairs of (X, A) that are made possible by the
moment condition
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Theoretical properties - key idea

@ We show that p (A|X, 6) assigns the same probability as
f (A|X,0) to the pairs of (X, A) that are made possible by the
moment condition

@ Intuition from Gallant and Hong (2007), using arguments from
fiducial probability (Fisher, 1930)

o Consider simple example where draw scalar A from N(0, 1) then
draw Xi, ..., X7 from N(A, 1)

@ The approximate density induced by the moment condition
E[X—A]=0is

1 1
X,A,9 - (S ——22}:
P )= xp{ 52T
where Zr = VT (X — A) = N(0,1)
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Theoretical properties - key idea

@ We show that p (A|X, 6) assigns the same probability as
f (A|X,0) to the pairs of (X, A) that are made possible by the
moment condition

@ Intuition from Gallant and Hong (2007), using arguments from
fiducial probability (Fisher, 1930)

o Consider simple example where draw scalar A from N(0, 1) then
draw Xi, ..., X7 from N(A, 1)

@ The approximate density induced by the moment condition
E[X—A]=0is

1 1
p(X,A,0) = mexp{—iz%} =

where Zr = /T (7— A) ~ N(0,1)
@ Suppose Z7 exactly normal
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Theoretical properties - key idea

e Exact density f (X, A, 6) assigns probability to rectangles
(X, A), whereas p (X, A, 6) assigns probability to sets of the
form

A = €(ab)}
b

{(x
= { +A<7<—+A)}
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@ By the change of measure formula, p (X, A, 0) also assigns
probability to sets AT = {(X1, .. XT.A):Z1 € (a,b)}
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Theoretical properties - key idea

@ By the change of measure formula, p (X, A, 0) also assigns

C(i/‘/\

probability to sets AT = {(X1, .. XT.A):Z1 € (a,b)}

e Similarly, p (X|A, 8) assigns probability to sets of the form C

GGR ()

GMM with latent variables
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——
Theoretical properties - key idea

@ Implications of the above:

e information is obviously lost relative to the true density but
o for sets of the form A, AT, C the probability assigned by p (-) is
the same as the probability assigned by the true density f (+)

@ Our main result uses this intuition + asymptotic normality of Z1
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——
The method in practice - particle filter

@ Goal: Draw A given 6 and X and previous draw of A

@ Use Andrieu, Douced and Holenstein (2010): "modified particle
filter"

@ STEP1: Use particle filter to obtain first "particle" Aglg-
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@ STEP2: Initialization
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——
The modified particle filter

@ STEP2: Initialization

e Set 1 < Ty < T to min sample required to compute sample
moment .

e For i =2,..., N sample particles (Ag'%) from transition
density p (A¢|A¢—1,0)

o Sett=Ty+1
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@ STEP 3: Importance sampling
e For i =2,..., N, sample next observation Agi) from

p (AtyAg’El, 9)
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The modified particle filter

@ STEP 3: Importance sampling
e For i =2,..., N, sample next observation Agi) from
p (At!/\gi_)l, 9)
e Fori=1,..., N, compute weights using the GMM density
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The modified particle filter

@ STEP 3: Importance sampling
e Fori=2,..., N, sample next observation Agi) from
p (At’Agl_)]_v 9)
e Fori=1,..., N, compute weights using the GMM density
ol = p (X AL )
NN
e Sample with replacement the particles from {Ag')t} .
=
according to the weights
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The modified particle filter

@ STEP 3: Importance sampling

e Fori=2,..., N, sample next observation Agi) from

p(ndnt0)

e Fori=1,..., N, compute weights using the GMM density
ol = p (X AL )

e Sample with replacement the particles from {Ag')t}N
according to the weights =

o Increase t and repeat until reaching T

GGR () GMM with latent variables Giannini conference, 26/3/14 20 / 31



——
The modified particle filter

@ STEP 3: Importance sampling
(i)

e Fori=2,..., N, sample next observation A;’ from
p(ndlal,.0)
e Fori=1,..., N, compute weights using the GMM density
ol = p (x15:2010)
NN
e Sample with replacement the particles from {Ag')t} .
=
according to the weights
o Increase t and repeat until reaching T

o At T, output the particle A:(LNT)
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Intuition

e For a fixed 6 and X, the algorithm generates sequence of latent
variables "most compatible" with the moment conditions
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@ Sample 01) from p(6|X,A(f—1)) knowing pli—1)
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@ Sample 01) from p(6|X,A(f—1)) knowing pli—1)
o Set Oy = 6U~Y
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——
Metropolis

@ Sample 01) from p(6|X,A(f—1)) knowing pli—1)

o Set 0y = 0U~Y
o Propose: draw 0,e, given 0,4 using a proposal density
T(0oid, Onew) (e.g., random walk)
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——
Metropolis

@ Sample 01) from p(6|X,A(f—1)) knowing pli—1)

o Set 0y = 0U~Y

o Propose: draw 0,e, given 8,4 using a proposal density
T (Bo1d, Onew) (e.g., random walk)

o Accept 6,4, with probability that depends on the GMM
density

o

<X. A(iil)y enew) T(GneW: Go/d)
p (X, AU, 601q) T(Oord, Onew)

® = min |1,

otherwise keep 8,4
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Metropolis

@ Sample 01) from p(6|X,A(f—1)) knowing pli—1)

Set 0,y = 01~V

Propose: draw 0,e, given 8,4 using a proposal density
T (Bo1d, Onew) (e.g., random walk)

Accept 6,e, with probability that depends on the GMM
density

p (X, A("*l),Hnew) T (Bnew, Boid)

a = min |1, .
p (X, AU, 601q) T(Oord, Onew)

otherwise keep 8,4
lterate K times and set 8) = last value of the chain

GGR () GMM with latent variables Giannini conference, 26/3/14
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EE——————————
Why this works

@ Theorem 1: The particle filter works because the method
generates draws from the true conditional density (for large T)

f(A|X,90)
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EE——————————
Why this works

@ Theorem 1: The particle filter works because the method
generates draws from the true conditional density (for large T)

f(A]X,60)

e BUT, only for pairs of A, X that are "allowed" by the structural
model

@ The Metropolis works because, once conditioning on A, it's
Chernozhukov and Hong (2003)
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EE——————————
Why this works

@ Theorem 1: The particle filter works because the method
generates draws from the true conditional density (for large T)

f(A]X,60)

e BUT, only for pairs of A, X that are "allowed" by the structural
model

@ The Metropolis works because, once conditioning on A, it's
Chernozhukov and Hong (2003)

@ That iterating the particle filter and Metropolis works follows
from Andrieu, Douced and Holenstein (2010)
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Does the method work in practice?

@ Two examples
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——
Does the method work in practice?

@ Two examples

e Stochastic volatility
o A simplified DSGE

@ In both cases we have a likelihood — see what we lose by using
GMM
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EE——————————
Stochastic volatility example

e Data-generating process

Xe = pXe—1+ exp(A¢)ue
ANy = oAt 1+ 06
er, ur ~ N(0,1) independent
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EE——————————
Stochastic volatility example

e Data-generating process

Xe = pXe—1+ exp(A¢)ue
ANy = oAt 1+ 06
er,ur ~ N(0,1) independent

@ Best existing method is Flury-Shepherd particle filter
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|
Choice of moment conditions

81 = (Xt - PXt—l) Xi—1
e = (At— QA1) At
g8 = (At - 4’At—1)2 —o?
2\ 2
g = Pe-pxal - (2) few(a0f

g = |X¢—pXe—1][Xe—1 — pXi—2]
2\ 2
— (%) exp (A¢) exp (A¢—1)

s+ = |Xt - PXt—1||Xt—L - PXt—L—1|
9 2
— (E) exp (A¢) exp (A¢—1)
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]
"Simulation" results

@ Estimates of 6 from our GMM method and the Flury-Shepherd
ML
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]
"Simulation" results

@ Estimates of 6 from our GMM method and the Flury-Shepherd
ML

@ Scatter plot of filtered latent variables against the true ones
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Table 1. Parameter Estimates for the SV Model
Moment Conditions (23) through (28) at
both the Metropolis and Gibbs Steps.

Parameter True Value Mean Mode  Standard Error

With Jacobian Term

p 0.25 0.30488 0.30961 0.074778
0] 0.8 0.09153 0.94851 0.660790
o 0.1 0.09023 0.06702 0.050229

Without Jacobian

P 0.25 0.30271  0.30939 0.076758

0] 0.8 0.15348 0.85765 0.643400

o 0.1 0.11400 0.08435 0.070081
Flury and Shephard Estimator

p 0.25 0.30278 0.28555 0.059320

10) 0.8 0.17599 0.89189 0.509780

o 0.1 0.09737 0.07839 0.064661

Data of length T' = 250 was generated by simulating the model of Subsection 6.1 at the
parameter values shown in the column labeled “True Value”. In the first two panels
the model was estimated by using the Metropolis within Gibbs methods described in
Section 2 with a one-lag HAC weighting matrix using N = 1000 particles for Gibbs
and K = 50 draws for Metropolis. In the third panel the estimator is the Bayesian
estimator proposed by Flury and Shepard (2010) with a flat prior. It is a standard
maximum likelihood particle filter estimator except that the seed changes every time
a new 6 is proposed with IV increased as necessary to control the rejection rate of the
MCMC chain. The columns labeled mean, mode, and standard deviation are the mean,
mode, and standard deviations of a Metropolis within Gibbs chain of length R = 9637
for the first two panels and the same from an MCMC chain of length R = 500000 with
a stride of 5 for the third.
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Figure 5. PF for A, without Jacobian, Scatter Plot, SV Model. As for
Figure 4 except that plotted is the mean of the particles vs. the simulated A.
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Figure 7. PF for A, Flurry-Shephard Method, Scatter Plot. As for Figure 6
except that plotted is the mean of the particles vs. the simulated A.
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——
DSGE example

e Simplified version of Del Negro and Schorfheide (2008). First
order conditions

1
Eilyev1+ o1+ 2zep1) —ye — o = 0

p
)\t+Wt =0

wi—(14+v)yr—¢, = 0
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——
DSGE example

e Simplified version of Del Negro and Schorfheide (2008). First
order conditions

1
Eilyev1+ o1+ 2zep1) —ye — o = 0

p
)\t""Wt =0

Wy — (1+ V)Yt_cpt

e Outputs: y; output, w; wages, 7T; inflation

I
o
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——
DSGE example

e Simplified version of Del Negro and Schorfheide (2008). First
order conditions

1
Ei [ye+1 + o1 + o] — e — Ent = 0
)\t + Wy — 0
wi—(1+v)yr—¢, = 0
e Outputs: y; output, w; wages, 7T; inflation
@ Shocks
zz = p,z+-1+ 0,€,; factor productivity
At = p,Zt—1+ 0p€p+ consumption/leisure preference

P, = PyZt—1 T Tpep,e price elasticity
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——
DSGE example

@ A; pinned down by model so we have

Observable variables X; = (y¢, we, 71¢)
Latent variables Ay = (z, ¢,)
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DSGE example

@ A; pinned down by model so we have

Observable variables X; = (y¢, we, 71¢)
Latent variables Ay = (z, ¢,)

@ lIdentification problems: likelihood reveals that only one of
02,04, V, B can be identified — calibrate o, Tp, v
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——
DSGE example

@ A; pinned down by model so we have

Observable variables X; = (y¢, we, 71¢)
Latent variables Ay = (z, ¢,)

@ lIdentification problems: likelihood reveals that only one of
02,04, V, B can be identified — calibrate o, Tp, v

@ In general, identification problems will cause the MCMC chain
not to mix
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|
Choice of moment conditions

81

82
83

84
85

86

87

88

GGR ()

(Wt PAWt— 1) W1
(we = pywe—1)* =03

[we—1 — (14 v)yr—1] -

[we = (14 v)yr = pg(we = (14 v)ye-1)]
[we — (1+ v)ye— 1](¢t P¢4)t—1)

[

we — (1+v)y)® — ‘7¢

we—1(ye—1 + ETft—l — Yt — Tt — Pzzt—l)
1
Vi—1(ye—1 + Bﬂt—l — Yt — Tt — PZZt—l)

1
i—1(ye—1+ 27Tt—1 — Yt — Tt —= 0,Zt—1)
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Table 2. Parameter Estimates for the DSGE Model
Using Moment Conditions (32) through (40) at
Both the Metropolis and Gibbs Steps.

Parameter True Value Mean Mode  Standard Error

With Jacobian

Pz 0.15 0.21596  0.15006 0.08632
P 0.68 0.60098 0.58945 0.04988
P 0.56 0.50134 0.46443 0.28818
o3 0.11 0.10827 0.08923 0.06494
I} 0.996 0.98429 0.99603 0.01476
Without Jacobian
P 0.15 0.21887 0.23069 0.09179
Lo 0.68 0.59967 0.60750 0.04988
P 0.56 0.50884 0.31473 0.28981
o5 0.11 0.10797 0.11613 0.06896
I} 0.996 0.98201 0.99634 0.01834
Maximum Likelihood
Pz 0.15 0.15165 0.15087 0.00583
Lo 0.68 0.59185 0.59419 0.05044
P 0.56 0.56207 0.56549 0.05229
o5 0.11 0.11225 0.11189 0.00508
I} 0.996 0.99640 0.99643 0.00186

Data of length T' = 250 was generated by simulating the model of Subsection 6.2 at the
parameter values shown in the column labeled “True Value”. In the first two panels
the model was estimated by using the Metropolis within Gibbs method described in
Section 2 with a two-lag HAC weighting matrix using N = 1000 particles for Gibbs and
K = 50 draws for Metropolis. In the third panel the model was estimated by maximum
likelihood. The columns labeled mean, mode, and standard deviation are the mean,
mode, and standard deviations of a Metropolis within Gibbs chain of length R = 9637
for the first two panels and the same from an MCMC chain of length R = 500000 with
a stride of 5 for the third.
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Figure 9. PF for A with Jacobian, Scatter Plot, DSGE Model. As for Figure 8
except that plotted is the mean of the particles vs. the simulated A for all 250 time

points.
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]
Conclusion

@ Estimation method for moment-condition models with dynamic
latent variables
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]
Conclusion

@ Estimation method for moment-condition models with dynamic
latent variables

@ Implemented by a Metropolis within a particle filter algorithm
@ Works in our limited experience

@ Must better investigate effect of choice of moment conditions
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