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Outline of the talk

• Identification problems.

• Singularity problems.

• External information problems.

• Data mismatch problems.

• Model evaluation problems.



References

Canova, F. (2009) How much structure in empirical models, in Mills and Patterson, (eds.) Palgrave

Handbook of Econometrics II, Palgrave.

Canova, F. (2007) Methods for Applied Macroeconomic Research, Princeton University Press.

Canova, F. (2012) Bridging DSGE models and raw data, manuscript.

Canova, F. and Ferroni, F. (2011) Multiple filtering devices for estimating cyclical DSGE models, Quanti-

tative Economics.

Canova, F. and Paustian, M. (2011) Measurement with some theory: using sign restrictions to evaluate

business cycles models, Journal of Monetary Economics.

Canova, F. and Sala, L. (2009) Back to square one: identification issues in DSGE models, Journal of

Monetary Economics.

Canova, F., Ferroni, C. Matthes (2014) Choosing the variables to estimate DSGE models, Journal of Applied

Econometrics.

All available at http://www.eui.eu/Personal/Canova/



What are DSGE models?

[+1 + + −1 ++1 + ] = 0 (1)

+1 − −  = 0 (2)

Their stationary (log-linearized) rational expectation solution is:

 =  +−1 + −1 + (3)

 = −1 +  (4)

where   are functions of    and  are the

structural parameters.



Benchmark in academics for:

- Understanding generation and propagation of business cycles.

- Conduct policy analyses.

Popular in central banks/policy circles because:

- Give a coherent story with all general equilibrium interactions.

- Give sharp and easy to communicate optimal policy actions.

- Can use them to forecast (OK when compared to time series models).

- Same language and same tools of academics - no misunderstandings.



Big drive to use Bayesian methods. Why?

- Existence of specialized software (Dynare) makes estimation easy.

- Can incorporate external information in the form of a prior - sophisticated

interval calibration.

- Classical estimates make sense only if the model is (asymptotically) the

DGP of the data up to a set of serially correlated errors. Posterior estimates

valid even when the model is not the DGP; and in small samples.

- Estimates make (economic) sense (not always the case with classical

methods).



General problems

- The likelihood of a DSGE is generally ill-behaved.



- Severe population identification difficulties.

- Misspecification.

- Fundamental mismatch about the nature of the models and the data.

- General singularity issues.



1. Identification issues

• Crucial DSGE parameters face identification problems.

• Problems are compounded in large scale models.

• Standard fixup are problematic.

• Bayesian methods are a mixed blessing.



Where could identification problems be?

• The solution mapping, linking the  to the (reduced form) coefficients of
the decision rule (, etc.) Additional problem: numerical solution.

• The objective function mapping, linking the solution to the population
objective function (likelihood or posterior) - multiple peaks, flat areas.

• The data mapping, linking the population to the sample objective func-
tions - small samples, error in variables, omitted variables.



Example 1: Observational equivalence, under-identification

and weak identification

 = 1 + 1+1 + 2( −+1) + 1 (5)

 = 2 + 3+1 + 4 + 2 (6)

 = 3 + 5+1 + 3 (7)

where  is the output gap,  the inflation rate,  the nominal interest rate, 1 2 3
iid contemporaneously uncorrelated shocks and 1 2 3 are constants. The solution is:⎡⎣ 




⎤⎦ =
⎡⎣ 1

2
3

⎤⎦+
⎡⎣ 1 0 2

4 1 24
0 0 1

⎤⎦⎡⎣ 1
2
3

⎤⎦ ≡  +  (8)

where () function of  .



• 1 3 5 disappear from the dynamics.

• Observational equivalence: can’t study determinate vs. indeterminate
solutions; Sticky vs. non-sticky information.

• Different shocks identify different parameters.

• ML and distance function (based on impulse responses) have different
identification properties. Steady state information matters!



Example 2: RBC model: Distortions
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• Identification is local (depends on true parameter values, if they exist).

• Calibrating difficult parameters may lead to gross mistakes.

• Prior can cover up identification problems (convexify the likelihood).



Example 3: Standard NK model with frictions: wrong inference

   
Case 1 0.887 0.862 0.620 0.221
max 0.979 0.910 0.884 0.980
median 0.845 0.515 0.641 0.657
min 0.034 0.015 0.028 0.009
Case 5 0.887 0.862 0.620 0.221
max 0.989 0.989 0.986 0.987
median 0.873 0.406 0.906 0.563
min 0.046 0.001 0.122 0.008

Population intervals producing objective functions in the 0.01 contour.

- Wrong inference (confuse price and wage indexation).

- Wrong policy advise.



What can one do to solve problems?

- Always use all possible information (add steady states or the covariance

matrix of the shocks information). Limited information procedures likely

to have worse identification properties.

- Partial identification problems (ridges) difficult to deal with. Need to

reparametrize the model.

- Add sufficient internal dynamics (see Sargent 1978).



2. Singularity issues

- DSGE models typically singular. Does it matter which variables are used

to estimate the parameters? Yes.

i) Omitting relevant variables may lead to distortions in parameter esti-

mates.

ii) Adding variables may improve the fit, but also increase standard errors

if added variables are irrelevant.

iii) Different variables may identify different parameters (e.g. with aggre-

gate consumption data and no data on who own financial assets may be

very difficult to get estimate the share of rule-of-thumb consumers).



Recall solution of example 1:⎡⎢⎣ 



⎤⎥⎦ =
⎡⎢⎣ 1 0 2
4 1 24
0 0 1

⎤⎥⎦
⎡⎢⎣ 1
2
3

⎤⎥⎦+ 

iv) Likelihood function may change shape depending on the variables used.

Multimodality may be present if important variables are omitted (e.g. if

 is excluded in above example).

- Levin et al. (2005, NBER macro annual): habit in consumption is 0.30;

Fernandez Villaverde and Rubio Ramirez (2008, NBER macro annual):

habit in consumption is 0.88. Same model and same sample. But use

different data to estimate the model!



Guerron Quintana (2010); use Smets and Wouters model and different

combinations of observable variables.

Parameter Wage stickiness Price Stickiness Slope Phillips
Data Median (90%) Median (90%) Median (90%)
Basic 0.62 (0.54,0.69)0.82 (0.80, 0.85)0.94 (0.64,1.44)

Without C 0.80 (0.73,0.85)0.97 (0.96, 0.98)2.70 (1.93,3.78)
Without Y 0.34 (0.28,0.53)0.85 (0.84, 0.87)6.22 (5.05,7.44)
Without C,W0.57 (0.46,0.68)0.71 (0.63, 0.78)2.91 (1.73,4.49)
Without R 0.73 (0.67,0.78)0.81 (0.77, 0.84)0.74 (0.53,1.03)





Solutions:

• Solve out variables from the FOC before you compute the solution.

Which variables do we solve out? Problem: solution is a restricted VARMA

- not a VAR.

• Add measurement errors to complete probability space. How many?

Where? Need to restrict time series properties of measurement error (see

Altug,1989, Ireland, 2004).

• Invent structural shocks. Nuisance parameter problem!



Canova, Ferroni and Matthes (2013):

• Use formal criteria to select variables to be used in estimation

1) Choose vector that maximize the identifiability of relevant parameters.

Use Komunjer and Ng (2011) tools. Compare the curvature of the convo-

luted likelihood in the singular and the non-singular systems in the dimen-

sions of interest to eliminate ties and explore weak identification issues

2) Choose vector that minimize the information loss going from the larger

scale to the smaller scale system. Information loss is measured by



( 

−1 ) =
L(| −1 )
L(| −1 )

(9)



where L(| 1) is the likelihood of  which are defined by

 =  +  (10)

 =  +  (11)

 is an iid convolution error,  the original set of variables and  the

j-th subset of the variables producing a non-singular system.

• Apply procedures to SW model driven with 4 shocks and 7 potential

observables.



Unrest SW RestrSW Restr and
Vector Rank(∆) Rank(∆) Sixth Restr

    186 188 
    185 188 
    185 188 
    185 188 
    185 188   
    185 188 
    185 188   
    185 187
...

    183 187
    183 187
    183 187
    183 187
    183 186
Ideal 189 189

Rank conditions for all combinations of variables in the unrestricted SW model (columns 2) and in the

restricted SW model (column 3), where  = 0025,  =  = 10,  = 15 and  = 018. The fourth

columns reports the extra parameter restriction needed to achieve identification; a blank space means that

there are no parameters able to guarantee identification.
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Basic T=1500 Σ = 001 ∗ 
Order Vector Relative Info Vector Relative info Vector Relative Info

1 (   ) 1 (   ) 1 (   ) 1
2 (   ) 0.89 (   ) 0.87 (   ) 0.86
3 (   ) 0.52 (   ) 0.51 (   ) 0.51
4 (   ) 0.5 (   ) 0.5 (   ) 0.5

Ranking based on the information statistic. The first two column present the results

for the basic setup, the next six columns the results obtained altering some nuisance

parameters. Relative information is the ratio of the () statistic relative to the best

combination.



• How different are good and bad combinations?

- Simulate 200 data points from the model with four shocks and estimate
structural parameters using

(1) Model A: 4 shocks and (   ) as observables (best rank analysis).

(2) Model B: 4 shocks and (   ) as observables (best information analysis).

(3) Model Z: 4 shocks and (   ) as observables(worst rank analysis).

(4) Model C: 4 structural shocks, three measurement errors and (      ) as

observables.

(5) Model D: 7 structural shocks (add price and wage markup and preference shocks)

and (      ) as observables.



True Model A Model B Model Z Model C Model D
 0.95 ( 0.920 , 0.975 ) ( 0.905 , 0.966 ) ( 0.946 , 0.958) ( 0.951 , 0.952 ) ( 0.939 , 0.943)*
 0.97 ( 0.930 , 0.969 ) ( 0.930 , 0.972 ) ( 0.601 , 0.856)* ( 0.970 , 0.971 ) ( 0.970 , 0.972 )
 0.71 ( 0.621 , 0.743 ) ( 0.616 , 0.788 ) ( 0.733 , 0.844)* ( 0.681 , 0.684)* ( 0.655 , 0.669)*
 0.51 ( 0.303 , 0.668 ) ( 0.323 , 0.684 ) ( 0.010 ,0.237 )* ( 0.453 , 0.780 ) ( 0.114 , 0.885)*
 1.92 ( 1.750 , 2.209 ) ( 1.040 , 2.738 ) ( 0.942 , 2.133) ( 1.913 , 1.934 ) ( 1.793 , 1.864)*
 1.39 ( 1.152 , 1.546 ) ( 1.071 , 1.581 ) ( 1.367 , 1.563) ( 1.468 , 1.496)* ( 1.417 , 1.444)*
 0.71 ( 0.593 , 0.720 ) ( 0.591 , 0.780 ) ( 0.716 , 0.743 ) (0.699 , 0.701)* ( 0.732 , 0.746)*
 0.73 ( 0.402 , 0.756 ) (0.242, 0.721)* ( 0.211 ,0.656 )* ( 0.806 , 0.839)*
 0.65 ( 0.313 , 0.617)* ( 0.251 , 0.713 ) ( 0.512 , 0.616 )* ( 0.317 , 0.322)* ( 0.509 , 0.514)*
 0.59 ( 0.694 , 0.745 ) ( 0.663 , 0.892)* ( 0.532 ,0.732 ) ( 0.728 , 0.729)* ( 0.683 , 0.690)*
 0.47 ( 0.571 , 0.680)* ( 0.564 , 0.847)* ( 0.613 , 0.768 )* ( 0.625 , 0.628)* ( 0.606 , 0.611)*
 1.61 ( 1.523 , 1.810 ) ( 1.495 , 1.850 ) ( 1.371 , 1.894 ) ( 1.624 , 1.631)* ( 1.654 , 1.661)*
 0.26 ( 0.145 , 0.301 ) ( 0.153 , 0.343 ) ( 0.255 , 0.373 ) ( 0.279 , 0.295)* ( 0.281 , 0.306)*
 5.48 ( 3.289 , 7.955 ) ( 3.253 , 7.623 ) ( 2.932 , 7.530 ) ( 11.376 , 13.897)* ( 4.332 , 5.371)*
 0.2 ( 0.189 , 0.331 ) ( 0.167 , 0.314 ) ( 0.136 , 0.266 ) ( 0.177 , 0.198)* ( 0.174 , 0.199)*
 2.03 ( 1.309 , 2.547 ) ( 1.277 , 2.642 ) ( 1.718 , 2.573 ) ( 1.868 , 1.980)* ( 2.119 , 2.188)*
 0.08 (0.001 , 0.143 ) ( 0.001 , 0.169 ) ( 0.012 , 0.173) ( 0.124 , 0.162)*
 0.87 ( 0.776 , 0.928 ) ( 0.813 , 0.963 ) ( 0.868 , 0.916 ) ( 0.881 , 0.886)*
∆ 0.22 ( 0.001 , 0.167)* (0.010, 0.192)* ( 0.130 ,0.215 )* (0.235 , 0.244)*
 0.46 ( 0.261 , 0.575 ) ( 0.382 , 0.460 ) ( 0.420 ,0.677 ) ( 0.357 , 0.422)* ( 0.386 , 0.455)*
 0.61 ( 0.551 , 0.655 ) ( 0.551 , 0.657 ) ( 0.071 ,0.113 ) ( 0.536 , 0.629 ) ( 0.585 , 0.688)*
 0.6 ( 0.569 , 0.771 ) ( 0.532 , 0.756 ) ( 0.503 ,0.663 ) ( 0.561 , 0.660 ) ( 0.693 , 0.819)*
 0.25 ( 0.100 , 0.259 ) ( 0.078 , 0.286 ) ( 0.225 ,0.267 ) ( 0.226 , 0.265 ) ( 0.222 , 0.261 )
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3. Practical issues

• How do you estimate DSGE models when:

a) the variables are mismeasured relative to the model quantities?

b) there are multiple observables that correspond to model quantities?

c) have information about variables not included in the model.



For a): add measurement errors to model variables

Observables 1. Model based quantities 

 () = ,  is a selection

matrix.

1 =  () +  (12)

where  is iid measurement error.

- Estimate  2 jointly.

- Use properties of 2 to assess misspecification.



- How do you measure hours? Use establishment survey series? Household
survey series? Employment?



• For b) Let 2 be a ×1 vector of observables and  () be of dimension
 × 1 where dim(N) dim(k). Then:

2 = Λ1()
 + 1 (13)

where the first row of Λ1 is normalized to 1 and  is iid measurement

error.

- Estimate  2Λ1 jointly. Λ1  = 2  measures the relative infor-

mational content of various indicators.

- Can reduce the noise (var[()
] will be asymptotically of the order 1

time the variance obtained when only one indicator is used (see Stock and

Watson (2002)).

- Estimates of  more precise, see Justiniano et al. (2012).



Many cases fit in c):

- Proxy measures for the unobservable states: commodity prices used as
proxies for future inflation shocks, stock market shocks used as proxies for
future technology shocks, see Beaudry and Portier (2006).

- Sometimes we have survey data, conjunctoral information providing in-
formation for unobserved states (e.g. business cycles).

- Mixed frequency data

Specification:

3 = Λ2 + 2 (14)

where Λ2 is unrestricted and  a ×1 vector of states and 3 are measures
of future states (inflation, output) at different horizons, financial informa-
tion (oil prices, stock prices, term structure, etc.) or quarterly sampling of
e.g. monthly observation (see Foroni and Marcellino (2013)).



A. Tryphonides: How external information can contribute to structural

analysis?





4. Data mismatch issues

- Most of models available for policy are stationary and cyclical.

- Data is close to non-stationary; it has trends and displays breaks.

- How to we match models to the data?

a) Detrend actual data: the model is a representation for detrended data.

Problem: which detrended data is the model representing?
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b) Take ratios in the data and in the model - will get rid of trends if

variables in the ratio are cointegrated. Problem: data does not seem to

satisfy balanced growth.
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c) Build-in a trend into the model. Detrend the data with model-based

trend. Problems: Specification of the trend is arbitrary (deterministic?

stochastic?); where you put the trend (TFP? preference?) matters for

estimation and inference.

• General problem: statistical definition of a cycle is different from the

economic definition. All statistical approaches are biased, even in large

samples.
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General case

- In developing countries most of cyclical fluctuations driven by trends
(permanent shocks), see Aguiar and Gopinath (2007).



Example 4: The log linearized equilibrium conditions of basic NK model are:

 =  −


1− 
( − −1) (15)

 =  + (1− ) (16)

 = − +  (17)

 = −1 + (1− )( + ) +  (18)

 = (+1 +  − +1) (19)

 = ( +  −  + ) + +1 (20)

 = −1 +  (21)

where  =
(1−)(1−)



1−
1−+,  is the Lagrangian on the consumer budget constraint,

 is a technology shock,  a preference shock,  is an iid monetary policy shock and 

an iid markup shock.

Estimate this model with different detrending transformations. Do we get

different estimates?
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Two approaches to deal with mismatch problem:

1) Data-rich environment: Canova and Ferroni (2011). Let  be the

actual data filtered with method  and  = [
1
  

2
    ]. Assume:

 = 0 + 01() +  (22)

where   = 0 1 are matrices of parameters, measuring the bias and

correlation between the filter data  and model based quantities (); 
are measurement errors and  the structural parameters.

- Same setup as before: model based quantities are non-observable.

- Jointly estimate  2 and ’s. Can obtain a more precise estimates of

the unobserved () if measurement error is uncorrelated across filtering

methods.



2) Bridge cyclical model and the data (Canova, 2012)).

 = +  +  () +  (23)

where  ≡ ̃ − (̃ ) the log demeaned vector of observables,  =

̄ − (̃ ), 

 is the non-model component,  () ≡ [ ]

0,  is

a selection matrix, is the model based component,  is a iid (0Σ)

(measurement) noise,   

 () and  are mutually orthogonal.

- Model (linearized) solution:

 = ()−1 + () (24)

 =  ()−1 +() (25)

+1 = () + +1 (26)

 () () () () functions of the structural parameters  =

(1     ),  = ̃ − ̄;  = ̃ − ̄; and  are the disturbances, ̄ ̄

are the steady states of ̃ and ̃.



-Non model-based component:

 = 1

−1 + ̄−1 +   ∼  (0Σ2) (27)

̄ = 2̄−1 +   ∼  (0Σ2) (28)

Σ2  0 and Σ2 = 0, 

 is a vector of I(2) processes. 1 = 2 = Σ2 = 0,

and Σ2  0,  is a vector of I(1) processes. 1 = 2 = Σ2 = Σ2 = 0,

 is deterministic. 1 = 2 = Σ2  0 and Σ2  0 and
2
2
is large,  is

smooth ( as in HP). 1 6=  2 6=  or both, non-model based component

has power at particular frequencies

- Jointly estimate structural  and non-structural parameters (1 2ΣΣ).



Advantages of suggested approach:

• No need to take a stand on the properties of the non-cyclical component
and on the choice of filter to tone down its importance - specification errors

and biases limited.

• Estimated cyclical component not localized at particular frequencies of
the spectrum.

• Account for trend uncertainty in estimates of .

• Provides a measure of model misspecification.



DGP1: Trend is important
True value LT HP FOD BP Ratio1Flexible

 0.50 0.04 0.08 0.00 0.11 0.05 0.04
 0.70 0.00 0.00 0.00 0.01 0.07 0.10
 0.30 0.00 0.04 0.00 0.06 0.04 0.06
 0.70 0.05 0.05 0.01 0.06 0.13 0.01
 1.50 0.00 0.00 0.00 0.01 0.02 0.00
 0.40 0.17 0.20 0.17 0.19 0.15 0.00
 0.75 0.03 0.04 0.03 0.03 0.02 0.03
 0.50 0.00 0.04 0.00 0.00 0.00 0.07
 0.80 0.03 0.05 0.00 0.05 0.00 0.05
 1.12 1.60 0.45 3.89 0.64 8.79 1.00
 0.50 1.47 0.01 3.18 0.03 0.02 0.16
 0.10 1.37 0.03 3.75 0.03 0.00 0.00
 1.60 13.1418.8117.6838.52 38.36 1.94

Total1 0.30 0.40 0.21 0.48 0.49 0.24
Total2 17.9119.7928.7139.75 47.66 3.45

MSE. In DPG1 there is a unit root component to the preference shock and






= [11 19].



DGP2: Trend unimportant
True value LT HP FOD BP Ratio1Flexible

 0.50 0.04 0.11 0.17 0.12 0.12 0.06
 0.70 0.01 0.00 0.00 0.03 0.08 0.17
 0.30 0.00 0.05 0.00 0.06 0.02 0.07
 0.70 0.05 0.05 0.04 0.05 0.13 0.02
 1.50 0.00 0.00 0.00 0.00 0.01 0.00
 0.40 0.16 0.21 0.08 0.19 0.15 0.00
 0.75 0.03 0.04 0.02 0.05 0.04 0.03
 0.50 0.00 0.04 0.00 0.00 0.01 0.08
 0.80 0.04 0.05 0.03 0.03 0.00 0.06
 1.12 10.41 0.87 2.80 0.69 9.43 0.97
 0.50 9.15 0.06 1.91 0.06 0.01 0.17
 0.10 9.35 0.00 1.05 0.03 0.00 0.00
 1.60 10.4120.7220.3357.03 40.17 1.90

Total1 0.29 0.46 0.32 0.51 0.55 0.35
Total2 39.6522.2026.4458.34 50.17 3.54

MSE. In DGP2 all shocks are stationary but there is measurement error and 




=

[009 011] The MSE is computed using 50 replications.



- The true and estimated log spectrum and ACF close.

- Both true and estimate cyclical components have power at all frequencies.
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Sample 1964−1979 Sample 1984−2005

Posterior distributions of the policy activism parameter, samples 1964:1-1979:4 and

1984:1-2007:4. LT= linearly detrended, HP=Hodrick and Prescott filtered data and

Flexible to the approach of the paper



LT FOD Flexible
Output InflationOutput InflationOutput Inflation

TFP shocks 0.01 0.04 0.00 0.01 0.01 0.19
Gov. expenditure shocks 0.00 0.00 0.00 0.00 0.00 0.02
Investment shocks 0.08 0.00 0.00 0.00 0.00 0.05

Monetary policy shocks 0.01 0.00 0.00 0.00 0.00 0.01
Price markup shocks 0.75(*) 0.88(*) 0.91(*) 0.90(*) 0.00 0.21
Wage markup shocks 0.00 0.01 0.08 0.08 0.03 0.49(*)
Preference shocks 0.11 0.04 0.00 0.00 0.94(*) 0.00

Variance decomposition at the 5 years horizon, SW model. Estimates are obtained using

the median of the posterior of the parameters. A (*) indicates that the 68 percent highest

credible set is entirely above 0.10. The model and the data set are the same as in Smets

Wouters (2007). LT refers to linearly detrended data, FOD to growth rates and Flexible

to the approach this paper suggests.



5. Evaluation problems

- Validation problematic when the model is not the DGP of the data.

Standard econometric procedures inapplicable.

- Bridging procedure (Canova, 2012) can be used to measure how much

the model leaves unexplained without requiring the model to be the DGP.

Del Negro and Schorfheide (2004), (2006), Del Negro, et. al. (2006)

• Model can be used as a prior for the data.

• Can verify the quality of model’s restrictions by checking how much

simulated data must be added to a VAR to improve its fit.



Problems:

1) Condition on a single model. What if the model is wrong?

2) Look at the model as a whole: can’t measure discrepancy in one equa-

tion.

3) Not much to say about cyclical properties of the model.

Canova and Paustian (2011): address problems 1) and 2).



Basic idea:

- Find a set of robust dynamic implications in the model.

- Impose some of them on the data to identify shocks.

- Compare other dynamics implications of model and data in response to

robustly identified shocks.

- Use qualitative rather than quantitative evaluation. Can make the eval-

uation probabilistic.



Results with experimental data

- Can recognize qualitative features of the DGP with high probability.

- Can separate models which are close to each other with high probability.

- Can get a good handle of quantitative features of DGP if:

a) Restrictions are abundant (can’t be too agnostic).

b) Identified shocks have ”relative” large variance.

- Good even in small samples; median response tracks true one well.



Measuring the effects of government spending on consumption

- Models predict that consumption falls after increased government spend-

ing: negative wealth effect.

- VAR evidence generally the opposite: Blanchard and Perotti (2002),

Fatas and Mihov (2001), Perotti (2007), Pappa (2008).

- Gali et al. (2007): sticky prices and non-Ricardian consumers can produce

a rise in consumption following a government spending shock.

- Derive robust restrictions from this class of models. Check if conditioning

on the class of models, consumption increases or falls. (Test of sticky price

setup plus presence of rules of thumb consumers).



Robust restrictions: Gali et al (2007)

markupmonetaryspendingtechnology
 ? ? + -
 - - ? ?
 ? - + -
 - - + +
 - - + -
 ? ? - +
 - - ? +

Signs of impact response (105 draws, 95 % bands).



Question: Can the procedure recover the truth?
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U.S. data: 1954:1-2007:1.

- Estimate a 5 variable VAR, (    ).

- Data is in log differences (except inflation in log levels).

- Identify spending shock (  0   0   0   0) and generic

technology shock (  0   0   0   0)
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Response to a government spending shock in U.S. data, 1954-2007



Future challanges

- Dealing with time variations in the structure.

- Dealing with generic misspecification.

- Dealing with non-linear frameworks

Large Thanks for your attention and patience!


