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Overview



» Gaussianity is at the heart of everything we do today, be it a
VAR model or a DSGE model.

» The assumption of Gaussianity makes life easier and even
enjoyable:
» Straightforward to form the likelihood with the standard

Kalman filter.
» Available and powerful computing packages such as Dynare.

» Macroeconomists have strong views, such as hours worked in
response to technology shocks, and the magnitude of fiscal
multipliers, and the underlying economic and financial
stability.

» Many of these views are based on inferences derived from
Gaussian structural models.



» This assumption is not good as we see that model innovations
often contain fat tails and sometimes considerable skewness.

» Shock variances change abruptly over time (Christiano,
Eichenbaum, and Evans 1999, Stock and Watson 1997, 2003,
and Sims and Zha 2006).

» Structural breaks do occur, such as financial crisis.

» Markov-switching would be a flexible short-cut to handle
abrupt and discontinuous changes in economic structures.

» How challenging is it to estimate Markov-switching structural
models?



» The good news is that technological advances in recent
liteture make it computationally feasible to estimate
Markov-switching structural models.

» One can form the likelihood by approximating it arbitrarily
well.

» We are working closely with Dynare to make estimation of
Markov-switching structural models available to users.



» With the new technology, it is urgent to know, more than
ever, whether accounting for Markov switching features
changes economic inferences.

» Answer to this question is important as it leads to many
research questions.



Example 1: Fiscal multipliers



» The Ramey-Romer-Romer (RRR) VAR model with 5 variables:
Ve = [dg,h dt ¢, 8t, tt,xt]/, where d; ; represents exogenous
changes in government spending, d; ; represents exogenous
changes in government taxes, g; is the logarithm of total
government spending, t; is the logarithm of total government
taxes, and x; is the logarithm of GDP. The variables d, ; and
d;,+ are measured as a percent of GDP and the remaining
three variables are measured in real and per capita terms.

> The lag length is 4.

» Following RRR, the identification assumption is of Choleski
ordering.



» The Mountford and Uhlig (2009) model with 3 variables:
Yt = [gty ttyxt]/-

> The lag length is 4.

» The identification follows the sign-restriction approach of
Mountford and Uhlig (2009), where a spending shock is
identified as generating positive responses of g; for at least 4
quarters and a tax-cut shock as generating negative responses
of t; for at least 4 quarters.



> Let for j and x,p¢ j be the impulse responses of a fiscal
variable (e.g., government spending) and GDP at period j to
a shock to the fiscal variable, where the subscript “r2f" stands
for “response to fiscal variable.”

» Following Blanchard and Perotti (Section V, 2002) and
Mountford and Uhlig (2009), we define the fiscal multiplier at
period k =1,2,... as

Y, Zle ﬂj_lxr%,j f
f.k = . e
S B ary | X

f

where 3 is a quarterly discount factor and | is an average
share of the fiscal variable in GDP.
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Innovations of one equation in the block of [g, t, y]
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Innovationsof of another equation in the block of [g, t, y]
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» Wrong (overoptimistic) inferences about how uncertain we are
about the fiscal multiplier.

» Can seriously bias the estimate.



Example 2: A DSGE model



» The aggregate technologies are:

1 1 Hwt 1 1 Hpt
Lt = |:/ Lt(l)“WtdI:| s Yt = |:/ Yt(]) Kpt d_j:| s
0 0

» Firms face perfectly competitive markets, taking prices as
given. The demand functions for labor skill i and for good j:

L) = [WME/(:)}‘% L vel) - {P;D(tj)] ot 1 v,

» Perfectly competition =

1 1—puwt _ 1 1—pp
W, = [ / Wt(i)l/“—"wﬂdi} P = [ / Pt(j)l/“—ﬂpr)dj]
0 0



» The utility function for each household:

EZﬁtAt {In(Ct = bCi1) - nLt(h)Hn} ;
t=0

» Each household’s budget constraint

- P
P:Ct + *t[lt + a(ug)Ke—1] + Et Dy ¢11Big1 <
t
Wt(h)L?(h) + PtrktUthf]_ + I_It + Bt + Tt.

» Following ACEL (2004) and CEE (2005), the cost of capital
utilization a(u;) is increasing and convex.

> Biased technology (Q; grows at a rate of \q.



» Following Greenwood, Hercowitz, and Krusell (1997) and
ACEL (2004), the investment-specific technological change Q;
has a deterministic trend with a rate of Aq and a stochastic
component (allowing for non-stationarity).

» The importance of including such an investment-specific
technology is further documented by Krusell, Ohanian, Rios
-Rull, and Violante (2000).

» The law of motion for capital accumulation is
Ke=(1-6:)Ke1 4+ [1 = S(le/le—1)] I,

» S(-) represents the adjustment cost in capital accumulation.



» The decisions are staggered across households.

» In each period, a fraction &, of households cannot re-optimize
their wage decisions and, among those who cannot
re-optimize, a fraction (v, ) of them index their nominal
wages to the price inflation realized in the past period:

> If £, = 0, the optimal wage decision implies that the nominal
wage is a markup over the MRS between leisure and
consumption.



» The production function for the type j good:
Ye(j) = KL ()M [ZeLE()]*2,

where the neutral technology Z; has a deterministic trend
with the growth rate )\, and a stochastic component.

> Real rigidity: following Chari, Kehoe, and McGrattan (2000),
we assume a; + ap < 1 (some firm-specific factors).

» The pricing decisions are staggered across firms. The
probability that a firm does not adjust its price is {p, and a
fraction (7p) of those firms index their prices:

Pe(j) = mPym TP Pe1()),

> If £, = 0 for all t, the optimal price is a markup over the
marginal cost at time t.



The Taylor rule:

7T*

’ﬂ't ¢‘rr ~ 1_pr
R: = kR, [(—) Yf’y] eor(se)ere,



» Data. 8 observables: y; = [Alog YD, Alog CP2t2,
Alog IP* ) Allog wP?t, Alog QPata log w033, log LData,

FFRPat2 .,
400

» Measurement equations:

yt:a+Hzt7

» The state vector z; contalns 27 variables plus the six lagged
variables y+_1, ¢t—1, ’t 1, We—1, Ge—1, and Z;_1.

» State equations with Markov normal mixture:

Zy = C+ FZt_]_ + C(St)ﬁt,
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Example 3: Structural breaks



» Peso problem.
» Model innovations are highly skewed.
» Financial crisis.

» Shifts in fiscal and monetary policy.



Consider a general class of Markov-switching forward-looking

models:
A(st) B(st) W(st) N(st)
a1 (st) by (st) @Dl (st) 72 (St)
(n—£)xn X — (n—£€)xn Xp_1+ (n—£€)x k £, + (n—2)xt
a(se) |1 | ba(se) |mxi | W2(se) |1 | ma(se) |ext
£xn Ixn Ix k xl

(1)
where x; is an n x 1 set of endogenous variables, a1, az, b1, ba, ¥,
and 7 are conformable parameter matrices, €; is a k x 1 vector of
i.i.d. random variables and 7; is an £ x 1 vector of expectational
errors (endogenous shocks), defined by the second block of ¢ rows
of this system. The matrix 1 (s;) is assumed to have full rank, and
thus without loss of generality we take 71 (s¢) = 0, m2 (s¢) = Iy,

Y1 (st) =1 (st), and 12 (st) = 0, where Iy is the ¢ x ¢ identity

matrix.



e /
» The vector x; can be partitioned as x; = [yz, z¢, E¢yey1] |
where y; is of dimension ¢ and the second block of Equation
(1) is of the form y; = Er_1ys + n:.

» The transition matrix is

Pij=pij=Pr(st =Jj|st1=1).



The FP algorithm applies to an expanded state vector X; and
constant parameter matrices A, B, WV and I1 such that system (1)
can be written as

AXt = BXt_l + WUt -+ I_I77t (2)



The algorithm begins with a family of matrices {qb,-}?:l where h is
the number of Markov states or regimes and each ¢; has dimension
¢ x n with full row rank. Define e; as a column vector equal to 1 in
the jt" element and zero everywhere else and the matrix ® as

e, ® ¢2
= : . (3)

(t—1)hxnh :
e}, ® dn



Let the matrices A, B, and 1 be given by the expressions

diag (a1 (1), -+ ,a1(h))
nhénh: % ¢ %2 ’ (4)
[ diag (b1 (1), -+, by (h)) (P®1,) ]
5 - by -+ by : (5)
nhxnh 0
I :[Oaﬂ?o]l' (6)

nhx?



The goal of the algorithm is to find {¢1, ¢2, ... }: the fixed point

of a system of nonlinear equations.
h
Beginning with a set of matrices {gﬁ,(.o)}. N define ®©) using

1=

Equation (3) and generate the associated matrix A(®), Next,

() by computing the QZ decomposition of {A©), B}

and set ¢§1) = z,-(l). This leads to a new matrix A1) and a new set

calculate z;
of values for QSEI). Repeat this procedure and, if it converges,

Equation (2) will generate sequences {x,7:};-; that are
consistent with Equation (1).



The qualification “if it converges” is important because, as we
will show later, it may not converge even in the simplest rational
expectations model.



If {x¢,n¢}seq is an MSV solution of Equation (1), then

Vsthtxt 1+ Ve, Gley, (7)
Nt (F Xt—1 + Gst ) ’ (8)

where Vj is n x (n—¢), Fj1 is (n—¥¢) x n, Fj2 is £ x n, Gjl is
(n—¢) x k, and Gj2 is £ x k. Furthermore, [A(_])VJ I_I] is
invertible and

1
A0, ]| &] = (10)

(Z pl,jF2) Ofn £- (11)



The key is to find matrices V;. Since " = [0 ,_¢ I¢], and V; is
only defined up to right multiplication by an invertible matrix, it
follows that

f _ In—e
agv; = (12)
for some ¢ x (n — ¢) matrix Xj. Since

F? = [0 1] [AG)V; M) B())
= [X; I]B()),

Equation (11) becomes

h
> b 180D o @



Define f; as a function from R"("—4) 1o RU"—4) given by
In—é
f;'(Xla"' ’ ZPI,J J)A( ) |:_)<J:| (14)

and f as a function from RM("—0) to RPU"=0) given by
f(Xl7' o 7Xh) - (fl (Xla"' 7Xh)7"' 7fh(X17' o 7Xh))' (15)

Finding an MSV equilibrium is equivalent to finding the roots of
f( Xy, -, Xn).



s, Tt = Etme1 + 05,1 + Bs, 1t (16)
It = PsMe—1 + €. (17)



We set 05, =0,0s, = 8 =1, and ps, = p = 0.9 for all values of s,
¢1 = 0.5,@52 = 0.8, P171 = 0.8, and P272 =0.9. The FWZ
algorithm converged quickly to the following MSV equilibrium for
all initial conditions:

my = —10.2892r;_1 — 11.43243¢,, fors; =1,
my = —7.85675r:_1 — 8.27027¢¢, fors; = 2.



For tractability, let us simplify the model even further by assuming
that ¢1 = ¢» = ¢ = 0.85. It follows from the FP algorithm or
other iterative algorithms that

(0 (gl("l;Jr 9) 3

Since the MSV solution gy is great than 1 in absolute value and
p/d>1, gl(") will go to either plus infinity or minus infinity
(depending on the initial guess) as n — co. Thus these algorithms
fail to find the MSV equilibrium.



The parameter configuration:

01 =02,00=04,610=—-07,00=-02,61=0=1,
pr=p2=0,P1=09,P»=0.38.
One can show that there are three stationary MSV equilibria given
by
Ty = 81,5 Tt—1 + 82,5t

where

g1,1 = —0.765149, g1 » = —0.262196, first MSV equilibrium
g1,1 = 0.960307, g1,2 = 0.646576, second MSV equilibrium
g11 = —0.826316, g1 2 = 0.96551, third MSV equilibrium



» The FP and other iterative algorithms, no matter what the
initial guess (unless it is set at an MSV solution), converge to
only one MSV equilibrium (the first one reported above).

» The FWZ algorithm converges rapidly to all the MSV
solutions when we vary the initial guess randomly.



» Measurement equations:

yi = as, + Hs, zz + u:.

ny,x1 ny,x1 ny X nzNy Xnz nyx1
» State equations:

Zt - bst + Fst Zt*l + gt Y

nzx1 nyx1  nyxnznyxn; nzx1

where

E (i) = Vi, E(uet) = Rs, , E(eru}) = G

nzXng nyxny nzxny



» Fromt=1,..., T,

> U =yt — as, — Hs,zee—1;

» Dy = HstPt|t—1H;t + Rs;;

> Kiy1r = (Fst+1Pt|t—1Hét + Gst) Dt_l;

> Ziy1t = bsyy + Fspa Zeje—1 + Keg1,e O

> Piy1je = Fs Pt‘t_lFs’t+1 — Kt+1,tDtK{+17t + Ve



» The filter at time t depends on the entire history of regimes
{s1,...,st}.

» Thus, infeasible to obtain the conditional likelihood
p(ye | Yi-1,0) exactly.

» But we can approximate the conditional likelihood arbitrarily
well computationally.



» General case where the transition probability from s;_1 = j to
st =i is qjj(Ye—1,w). Given p(so | Yo, 60, w), one can show
the following propositions are true.

» Proposition 1: For t > 0,

p(st | Yt—17 97 W) - Z qst,st_1 (Yt—17 W) p(st—l | Yt—17 97 W) .
st_1€H

» Proposition 2: For t > 0,

P()/t | Yi-1,0, WaSt)P(St ’ Yi-1,0, W)
EStEH P (yt | Yt717 ‘97 w, St) P (St | thla 97 W)

» Proposition 3: For0<t< T,

p(st | Yt’97 W) =

plst | Ye,0,w,s041) = p (st | Yr.0,w, ST, ).



vV v v Yy

v

Starting with zo(s1) and Pyjg(s1) and fromt =1,..., T,
Oe(st) =yt — as, — Hstztlt—l(st);

Di(st) = HstPt|t—1(5t)H;t + Rs,;

Ker1,e(str1,5e) = (Fopy Peje—1(st)HS, + Gs,) De(se) ™
Zt+1|t(5t+1) = Egzl P(st| Ye,0,w,se41) |:bst+1 +
Fsey1Zeje—1(5t) + Keta,e(se41, st)ﬁt(st)] ;

Pey1je(se+1) =

thzl P(sf ’ thea W75t+1) |:F5t+1 Pt|t—1(5t)Fslt+1 -

Kit1,e(Se41, 5t) De(se) Ket,e(Se41, 5¢) + Vsm] '



» Assumption: u; and €; are of joint Markov normal mixture.
> p(ye|Ye1,0,w,s) = N [(asf + HStzt|t—1(St)) ) Dt(st)]'
> p(ye|Yeo1,0,w,5) =

(27) ™% |De(st)| 7% exp (—3 () De(se) ~ane(st)).

» Form the likelihood at time t by integrating out all regimes s;:

h
p(yt7 | Yt—1797 W) = Z P(}/t|yt—170a W7St) P(St | Yt—1707 W)

St:].

> logLH = log p(Y7|Y0,0, w) = 3_ L, log p(ye| Ye-1,6, w).



Conclusion



» The whole Bayesian enterprise for structural modeling, with
the help of Dynare, currently depends on the assumption of
Gaussianity.

» The fact that shock variances often switch regime and
structural breaks do occur raises serious questions about the
validity of the likelihood based on Gaussianity.

» Confidence can be restored if we specify the correct likelihood
with Markov-switching features.

» Geweke and Amisano (2009) show the robustness of
incorporating Markov normal mixture in the improvement of
the model’s fit.

» The results | presented show the economic importance of
accounting for (1) Markov normal mixture for model
innovations and (2) Markov switching for structural breaks.



» Structural models with Markov-switching features (especially
with Markov normal mixture for shock processes) are not only
a state of art but also necessary for accurate economic
inferences (a lot is at stake here).

» Recent advances in technology have resolved most analytical
and numerical difficulties associated with Markov-switching
models, including forward-looking rational expectations
models.

» We are working closely with Dynare to make estimation of
Markov-switching structural models available to users.

» It is my hope that we'll soon be able to estimate this kind of
models with ease and to address some urgent research
questions, such as financial crisis and a shift to
unconventional monetary policy.
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