Forecast Accuracy and Economic Gains
from Bayesian Model Averaging
using Time Varying Weights *

Herman K. van Dijk

(Econometric Institute & Tinbergen Institute,
Erasmus University Rotterdam)

Joint work with: Lennart Hoogerheide (EUR)
Richard Kleijn (PGGM)

Francesco Ravazzolo (Norges Bank)
Marno Verbeek (EUR)

* Tl paper 2009-061 (www.tinbergen.nl), Journal of Forecasting 2009



Outline:

- Some literature

- Forecast combination schemes:
e scheme 1 BMA: Bayesian Model Averaging

e Combination schemes using estimated regression
coefficients as model weights:

scheme 2 LIN: Model weights from Ordinary Least
Squares in a linear model

scheme 3 TVW: Time-varying weights
scheme 4 RTVW: Robust time-varying weights

- Applications: e financial: S&P500 monthly returns
e macro: US quarterly real GDP growth



Literature on forecast combinations:

Since “Combination of Forecasts” by Bates & Granger (1969, Operational
Research Quarterly) a huge number of publications has appeared.

For a wide range of time series processes, forecast combinations have
appeared to perform better than forecasts based on single models.

Diebold and Pauly (1987, Journal of Forecasting) regression based approach
with time varying parameters.

Some of the recent publications:

Terui & Van Dijk (2002, International J of Forecasting), “Combined forecasts
from linear and nonlinear time series models”, generalize the least squares
model weights by reformulating the linear regression model as a state space
specification,where the weights are assumed to follow a random walk process.



Literature on forecast combinations: Some recent publications:

Stock & Watson (2004, J of Forecasting), “Combination Forecasts of Output
Growth in a Seven-country Data Set”.

Hendry & Clements (2004, Econometric Reviews), “Pooling of Forecasts”.

Timmermann (2006, Handbook of Economic Forecasting), "Forecast
Combinations".

Stock & Watson (2004) and Timmermann (2006) compute model weights
using the inverse mean square prediction error (MSPE) over a set of the
most recent observations.

Hendry & Clements (2004) and Timmermann (2006) show that simple
combinations (e.g. averages) often give better performance than more
sophisticated combination schemes (with weights depending on the full
covariance matrix of forecast errors).

Geweke & Whiteman (2006, Handbook of Economic Forecasting), “Bayesian
Forecasting”.



Guidolin & Timmermann (2009, J of Econometrics, forthcoming), “Forecasts of
US Short-term Interest Rates: A Flexible Forecast Combination Approach”

Strachan & Van Dijk (2008), “Bayesian Averaging over Many Dynamic Model
Structures with Evidence on the Great Ratios and Liquidity Trap Risk”,
Tinbergen Institute report 2008-096/4.

Geweke and Amisano, Optimal Prediction Pools, 2008.

Geweke & Whiteman (2006) apply BMA using predictive likelihoods instead of
marginal likelihoods.

Strachan & Van Dijk (2008) compute impulse response paths and effects of
policy measures using BMA in the context of a large set of VAR models.

Guidolin & Timmermann (2009) propose model weights having

regime switching dynamics.
Geweke and Amisano (2008), propose prediction pools evaluated using log
predictive scoring rule.



We propose: 3 forecast combination schemes that simultaneously allow for:

1] parameter uncertainty

2888l uncertainty

3] time varying model weights

These approaches can be considered Bayesian extensions of the combination
scheme of Terui & Van Dijk (2002).

We compare the performance of the proposed methods with Bayesian Model
Averaging (BMA).



Scheme 1 BMA: Bayesian Model Averaging:

Compute predictive density of y;_; (conditional upon Dy, data up to time T):

n
P(YT41 D7) =2 p(Yr41 | Dy, mj)Pr[m; | Dy ]
i1

with: n = number of individual models

p(yt.1| D7, m;) = conditional predictive density given model m;

Pr[m; | D] = posterior probability of model m;

The conditional predictive density given model m; is:

P(Y1411Dr, mi) =] p(y1411 D1, m;,6) p(6; | Dy, m;)d6,

with p(6; | Dy, m;) the posterior density of parameters 6; in model m;.



Scheme 1 BMA: Bayesian Model Averaging (continued)

The posterior probability of model m; is:

P(yyr | mi) Prim;]
> 5o p(yzr [mj)Prim;]

Prim; [ Dy 1=

with Pr[m; ] the prior probability for model m;, and p(y;1 |m;) the
marginal likelihood:

p(yet M) = | p(yrt [ mi, 6)p(6; | m;)dé,

with p(6; | m;) the prior density for parameters &; in model m;.

Chib (1995, JASA), “Marginal Likelihood from the Gibbs Output”

Ardia, Hoogerheide & Van Dijk (2009), “To Bridge, to Warp or to Wrap?
A comparative study of Monte Carlo methods for efficient evaluation of
marginal likelihoods.” Tinbergen institute report 09-017.



Scheme 1 BMA: Bayesian Model Averaging (continued)

We follow Geweke & Whiteman (2006), and use predictive likelihood rather
than marginal likelihood:

PCYk+n)T | M, Dy ) Prim;]
er]:l P(Y(k+)T [ mj, D) Prim;]

Pr[m; | Dy ] =

with ‘initial period’ of k=12 (months), and

;
P(Yk+n): M, D)= T1p(Yt [M;i, D)
t=k+1

The densities p(y; | mj,D;_;) are evaluated as follows:

(1) parameters 6; are simulated from the conditional distribution on D;_;.
(2) draws y; are simulated conditionally on the &; draws and D;_;.

(3) a kernel smoothing technique is used to estimate the density of y; in model
m; at its realized value. 9



Scheme 1 BMA: Bayesian Model Averaging (continued)

In all models, we specify uninformative proper priors for the parameters 6.

The use of predictive likelihoods rather than marginal likelihoods helps us to
avoid the inference problems due to the Bartlett paradox.

10



Forecast combination schemes using estimated regression
coefficients as model weights:

The three proposed forecast combination schemes estimate the weights w; of
the models m; (i=1,...,n) in regression form.
We assume that the data y; satisfy the linear equation:
d 2
Yi =Wg + 2 Wi Vi i +Uy uy ~ 11D(0,0°) t=12,....T
i=1

where Yy, ; has the predictive density p(y; | Dy_1,m;).

Differences with BMA: - a constant term wj is added
- no restriction that weights w; 20 or >, w; =1

= weights w; (i=1,...,n) can not be interpreted as model probabilities

Granger & Ramanathan (1984, J of Forecasting): constant term must be added
to avoid biased forecasts, often leading to more accurate forecasts. 11



Forecast combination schemes using estimated regression
coefficients as model weights (continued):

n
Ve =Wg + 2 Wi Yy i+ Uy u; ~ 11D(0,5%) t=12,...,T
=1
with ygi ~ p(Yt [ Deg.my).

We propose three novel sampling algorithms for simulating model weight
vectors w=(wy,W,...,W,) given data y;t and predictive densities

P(Y¢ | Di—1,m;):

scheme 2 LIN: Model weights from OLS in a linear model
scheme 3 TVW: Time-varying weights
scheme 4 RTVW: Robust time-varying weights

12



scheme 2 LIN: Model weights from OLS in a linear model

n
Ye =W + 2 W Yi,i +Ug uy ~ 11D(0,5°%) with yii ~ p(Yt | D1, m;).
i=1
[a] Generate a set of S model weights w® (s = 1,...,S) by:

(i) simulating independently S sets of T x n draws yﬁi from the
predictive densities p(y; | Di_y,m;) (t=1...,T;i=1...,n)

n
(i) estimating w® as OLS estimate in:  y; =wg + > W; V¢ +U;
i=1
[b] Use the model weights w® to combine draws y; 11 from predictive densities
p(yt.1|Dy,m;) into ‘combined draws’ V5 .1:
n
V£ 1 =Wo + W YT 41
i=1

The median of y7.4 (s=1...,S) is our point forecast 97.,; of yr.1.

13



scheme 2 LIN: Model weights from OLS (continued)

n
OLS estimate in:  y; =Wy + X w; y¢j +U¢
i=1

Note: - OLS is interpreted as posterior mean under flat prior.

- OLS estimator's frequentist property of consistency (for consistency
no requirement of normality, homoskedastiocity, absence of serial

correlation). In combination with taking median of y7 4, this implies
that the scheme is robust against the distribution of u;.

- Scheme 2 can be considered as an extension of
Granger & Ramanathan (1984) who combine point forecasts using
weights that minimize a square loss function, to making use of
Bayesian density forecasts.

(Simple geometric interpretation: Model weights minimize distance
between vector of observed values y;-1 and the space spanned by
the constant vector and vectors of ‘predicted’ values yf:T,i )

14



scheme 2 LIN: Model weights from OLS (continued),
Interpretation

The ‘combined draws’ V7,4
S S L S ,,S
VT+1=Wo + 2 W YT 41,i
i=1

are interpreted as draws from a ‘shrunk’ predictive density that aims at
describing the central part of the predictive density, taking into account the
parameter uncertainty and model uncertainty.

We compute the point forecast as the median of the ‘combined draws’ ¥7 .1,

where the median is preferred over the mean, because it is more robust to
extreme draws.

15



scheme 3 TVW: Time-varying weights

|ldea behind forecast combination: complementary roles of different models in
approximating the data generating process.

These complementary roles in approximating the data generating process may
differ over time = allow the model weights to change over time:

n

Yt =W + 2. Wi Yei + Ut Uy ~ 11D(0,0%) with ygi ~ p(Yt [ Di—g,my).
i=1
As Terui & Van Dijk (2002), we assume that the w; = (W; g, W 1.0, Wi )’
(t=1,...,n) evolve over time as:

Wi = Wi_1 + Gt &~ N(0,%)

We assume X to be diagonal, making the scheme computationally easier.
(This does not rule out that a posteriori there will be coinciding (large) changes
of model weights; merely that this is not imposed a priori.

Still, we intend to analyze the extension to non-diagonal X in future research.)

16



scheme 3 TVW: Time-varying weights (continued)

A Kalman filter algorithm is used to iteratively update the subsequent model
weights wg, (t=1,...,T+1) in the model

n
Ve =WEo + 2 WEi Yei +Uf uf ~ N(0,07)
i=1
We fix the values of o2 and the diagonal elements of X. A Bayesian can
interpret these assumptions as having priors on o and X with 0 variances.*

For each s the parameters o2 and ¥ could also be estimated by maximum

likelihood or MCMC methods, but we discard this to reduce computational time.

In the financial application (with n =4 models) we set o2 = OLS estimate,
diag(X) = (0.1, 0.01, ..., 0.01) to have (small) signal-to-noise ratios in [0.005,0.01].

For robustness we have tried different o2, £ with signal-to-noise ratios ranging from
0.0001 to 0.1, all resulting in qualitatively equal results.

17



scheme 3 TVW: Time-varying weights (continued)

The model weights w; incorporate a trade-off between minimizing the
differences between observed values y;+ and linear combinations of

‘predicted’ values yf:T,i (1=1,...,n), and constructing a ‘smooth’ path of weights

Wy over time.

As in scheme 2, we use the model weights w; ,; to combine draws y3 +1j from

predictive densities p(yr .4 | Dy,m;) into ‘combined draws’ V7 ,4:

n
S S S S
VT41 = Wri10t ZWLI'+1,i YT 410
i=1

The median of y7,; (s=1...,S) is our point forecast §1.; of yr.s.
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scheme 4 RTVW: Robust time-varying weights

Recently, a new specification has been developed that makes parameter
estimation in case of instability over time more robust to prior assumptions,
see e.g. Giordani & Villani (2008) and Groen, Paap & Ravazzolo (2009).

We extend scheme 3 of time-varying model weights following this reasoning:
W =W_q +ki O & & ~ N(0,%)

with ki = (ki o, ki 1., Kt n) where each element k; ; of the vector k; is an
unobserved 0/1 variable with Prlk; ; =1] = 7;.

The Hadamard product ( refers to element-by-element multiplication.
> Is again restricted to be a diagonal matrix.

Giordani & Villani (2008), “Forecasting macroeconomic time series with locally
adaptive signal extraction”. Working paper.

Groen, Paap & Ravazzolo (2009), “Real-time inflation forecasting in a

changing world.” Working paper. 19



scheme 4 RTVW: Robust time-varying weights (continued)

The model

n

S s .,S S S 2

Yt =Wio + ZWt,i Yii +Ug ug ~ N(0,07)
=1

wWe =W g +ki O & & ~N(0,%)

is estimated following Gerlach, Carter & Kohn (2000, JASA),
“Efficient Bayesian inference for dynamic mixture models” :

- deriving the posterior density of ki conditional on o2, = (but not on Wy )
- then applying the Kalman Filter to estimate the latent factors w;

We set o2 and T to the same fixed values as for scheme 3.

20



Financial application: forecasting monthly S&P 500 returns

Data: continuously compounded monthly return on S&P 500 index
in excess of 1-month T-Bill rate

Period: January 1966 - December 2008 (516 observations)
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Bear market periods:

burst of the internet bubble in 2001-2003
recent financial crisis in 2" part of 2007 & 2008
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Financial application: forecasting S&P 500 returns (continued)

We compare our 4 forecast combination schemes: - forecasting performance
- economic gains

We use n = 4 individual models:

Model 1 Leading Indicator (LI): linear model with lagged financial and
macroeconomic variables (taking into account the typical
publication lag of macroeconomic variables)

Model 2: Halloween Indicator (HI): linear regression model with a constant
and a dummy for November-April. (“Sell in May and go away”
of Bouman & Jacobsen (2002, AER))

Model 3: Stochastic Volatility (SV) with time-varying mean and volatility

Model 4: Robust Stochastic Volatility (RSV) with time-varying mean & vol.

22



Financial application: forecasting S&P 500 returns (continued)
Model 1 Leading Indicator (LI): explanatory variables (1-month lag):

- S&P 500 index dividend yield (ratio of dividends over previous 12 months
and current stock price)

- 3-month T-Bill rate, monthly change in 3-month T-bill rate

- term spread (difference between 10-year T-bond rate & 3-month T-bill rate)
- credit spread (difference between Moody's Baa and Aaa yields)

- yield spread (difference between Federal funds rate and 3-month T-bill rate)
- annual inflation rate (producer price index (PPI) for finished goods) **

- annual growth rate of industrial production **

- annual growth rate of monetary base measure M1 **

** 2- month lag (publication lag)

23



Financial application: forecasting S&P 500 returns (continued)

Model 3: Stochastic Volatility (SV)
with time-varying mean and vol.:

It =t + oy Uy ug ~ N(0,2)

2
My = 1+ 1t é1t ~ N(O,71)

Iog(atz) = |09(0t2—1) +Sots
&0~ N(0,73)

Model 4: Robust SV (RSV)
with time-varying mean & vol.:

It = 4 + Oy Ug ug ~ N(0,2)

2
pe=p1+Keg e S1e ~ N(O77)

log(a¢) = log(ot-1) + Ko &1,
&0~ N(0,73)
Kit, Koy (t=1..,T) are unobserved
variables with  Pr[K;; =1] = 7y rsy
PriKyt =11 =75 rsv

For Bayesian estimation of SV, RSV models: Giordani, Kohn & Van Dijk (2007, J of
Econometrics), “A unified approach to nonlinearity, outliers & structural breaks.”
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Financial application: forecasting S&P 500 returns (continued)

We compare 8 approaches: -models 1, 2, 3, 4
- forecast schemes 1, 2, 3, 4

We evaluate: - statistical accuracy:

- root mean square prediction error (RMSPE)
- correctly predicted percentage of sign (Sign Ratio)

- economic gains: returns for active short-term investment
exercise (investment horizon of 1 month), with
portfolio consisting of S&P500 and riskfree bonds only:

- ex post annualized mean portfolio return
- annualized standard deviation,

- annualized Sharpe ratio

- total utility.

25



Financial application: forecasting S&P 500 returns (continued)

Active short-term investment exercise (investment horizon of 1 month):

At start of each month T +1, investor decides upon fraction pwy,, of her

portfolio to be invested in stocks, based upon density forecast of excess stock
return rr,,. Wealth W, at end of month T+1 will be:

Wr 1 =Wr (L~ pwr 1) eXp(rs 7.1) + PWr g €XP(rs 741+ 1))
Investor chooses pwy . to maximize expected utility

max E[u(Wr 1) |Dr] = max JuWy_1)p(Fr g | Dr)drr;.

pWT +1 pWT +1

We assume power utility function with coefficient of relative risk aversion y:

26



Financial application: forecasting S&P 500 returns (continued)

Without loss of generality we set initial wealth equal to one, Wy =1.

We approximate expected utility E[u(Wr 1) | Dr] = [uWr 1)p(fr 41 | Dr)drp,q
(i) generating G draws rTgJrl (g =1,....,G) from predictive density p(rr.1|Dt)

(i)) computing: E[uWs ;)| D] =
1 =7

1 8 ‘
G 92_111—7/((1— PWr 1) eXp(re 7.1) + PWr g €XP(re 741 + rTg+1))

Then we find pwy,; maximizing E[u(Wr 1) | Dy ] using a numerical optimization
method.

Note: We do not allow for short-sales or leveraging, i.e. constraining pwy_ 4 to
be in the [0,1] interval (see Barberis (2000, J of Finance)).

27



Financial application: forecasting S&P 500 returns (continued)

Utility levels are used to compare the forecast approaches: realized utility
levels are computed by substituting the realized return of the portfolios.

Total utility is then the sum of u(Ws_,) across all T~ investment periods
T =Tg,..To+T -1, with first investment decision made at end of period T,.

In order to compare alternative strategies we compute the

multiplication factor of wealth that would equate their average utilities.

For example, suppose we compare two strategies A and B, providing wealth
WaT41, W 141 attime T +1. Then we determine A such that

To+T -1 To+T -1
2UWaTi)= 2 uWgr.i1/exp(a))
T:TO T:TO

Following Fleming, Kirby & Ostdiek (2001, J of Finance), we interpret A as the
maximum performance fee the investor would be willing to pay to switch from
strategy A to strategy B.

28



Financial application: forecasting S&P 500 returns (continued)
For A it holds that under a power utility specification:

AA versusB — AA versusC — AB versus C

That is, the performance fee an investor is willing to pay to switch from strategy
A to strategy B can also be computed as the difference between performance
fees of these strategies with respect to a benchmark strategy C.

We consider 3 static benchmark strategies:

[i] holding stocks only (Ay)
[ii] holding a portfolio consisting of 50% stocks, 50% bonds (A,,),
[iii] holding bonds only (Ap).

Finally, the portfolio weights change every month, so the portfolio must be
rebalanced accordingly. Hence, transaction costs play a non-trivial role.
Therefore, we also consider the results under transaction costs of 0.1%.

29



Financial application: forecasting S&P 500 returns (continued)

Empirical results

Active investment strategies are implemented for Jan 1987 - Dec 2008,
involving T* = 264 one month ahead forecasts of excess stock return.

Individual models are estimated recursively using an expanding window.
The initial 12 predictions for each individual model are used as training period
for combination schemes and making the first combined prediction.

Statistical accuracy:

model combination scheme
1 2 3 4 1 2 3 4
LI HI SV RSV | BMA LIN TVW RTVW
RMSPE [4.618 4.478 4509 4.470 | 4.500 4.514 4.484 4.485
Sign ratio | 0.527 0.549 0.614 0.598 | 0.587 0.610 0.602 0.598

— Conclusion: performance of models and combination schemes similar.
(RSV, SV models best at RMSPE, sign ratio; but differences small)

30



Financial application: forecasting S&P 500 returns (continued)

The investment strategies are implemented for a level of relative risk aversion
of y =6 (y =4 or y = 8 results in qualitatively similar results).

Economic gains: (without transaction costs)

model
1 2 3 4
LI Hi SV RSV

combination scheme
1 2 3 4
BMA LIN TVW RTVW

mean return 4708 4.741 4812 4.657
st dev return 0.794 0.769 1.139 0.614
Sharpe ratio 0.110 0.156 0.168 0.060
realized utility |-51.77 -51.76 -51.75 -51.79

Ag 285.5 288.7 2952 277.9
Anm -63.71 -60.49 -54.03 -71.29
Ay 11.46 14.68 21.14 3.876

4701 5177 5.021 5.785
0.739 4356 1.332 3.062
0.108 0.128 0.301 0.380
-51.77 -51.73 -51.70 -51.56
283.8 3043 3171 381.3

-65.42 -44.95 -32.09 32.10
9.748 30.22 43.07 107.3

= RTVW combination scheme best. highest mean return, Sharpe ratio, perfor-
mance fees; highest (least negative) utility.

In fact, only RTVW has A, > 0: only strategy beating 50% stock, 50% bond.




Financial application: forecasting S&P 500 returns (continued)

Empirical results

Economic gains: (transaction costs = 0.1%)

model combination scheme
1 2 3 4 1 2 3 4
LI Hi SV RSV BMA LIN TVW RTVW

mean return 4708 4.740 4.811 4.657 | 4./00 5.176 5.020 5.784
stdevreturn | 0.794 0.769 1.139 0.614 | 0.739 4355 1332 3.062
Sharpe ratio 0.110 0.156 0.167 0.060 | 0.108 0.128 0.300 0.380
realized utility |-51.77 -51.77 -51.77 -51.79| -51.78 -51.75 -51.71 -51.58

Ag 284.7 2879 284.5 2766 | 2791 2791 311.7 373.6
A -64.65 -61.42 -64.80 -72.72| -70.18 -52.18 -37.66 24.31
Ap 10.81 14.04 10.67 2.741 | 5289 23.29 37.81 99.77

= RTVW remains the best, keeping A, > 0, when transaction costs are taken into
account.
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Financial application: forecasting S&P 500 returns (continued)

Figure: portfolio weight pwy_ 1 on risky asset (S&P500) in out-of-sample period
for individual models (LI, HI, SV, RSV):
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= Individual models allocate too low weight pwy_; to risky asset,
resulting in low portfolio returns.



Financial application: forecasting S&P 500 returns (continued)

Figure: portfolio weight pwy_ 1 on risky asset (S&P500) in out-of-sample period
for forecast combination schemes (BMA, LIN, TVW, RTVW):
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Financial application: forecasting S&P 500 returns (continued)

Robust, flexible structure of RTVW pays off:

- RTVW reduces weight pwy_; in bear markets (compared with LIN, TVW)

- RTVW has higher weight pwy_ 4 in bull markets (compared with individual
models and BMA). Reason: ‘shrunk’ predictive density:

Figure: p
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The ‘shrunk’ excess return distribution is not so
much ‘compressed’ that pwy ., switches from

0% to 100% when its mean changes from
negative to positive values. (This behavior would
result if the ‘shrunk’ density’s st.dev would — 0.)

Rather, the parameter and model uncertainty
incorporated in the ‘shrunk’ predictive density
Imply an investment strategy with a

smooth, ‘moderate’, yet flexible evolvement
over time for pwy,;.
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Financial application: forecasting S&P 500 returns (continued)

Lettau & Van Nieuwerburgh (2008, Review of Financial Studies,
“Reconciling the return predictability evidence”):

The uncertainty on the size of steady-state shifts rather than their dates is
responsible for the difficulty of forecasting stock returns in real time.

The ‘shrunk’ predictive density of the RTVW scheme may be particularly
informative on the current and future evolvement of this steady-state,
the driving force of return predictability.

This may be the explanation for the RTVW scheme's good results.

We intend to analyze the RTVW scheme’s performance in other portfolio
management exercises in future research, to investigate the robustness
of our findings.
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Macro application: forecasting US real GDP growth

Data: quarterly US real GDP growth (in %)

Period: in-sample: 1960:Q1 - 1979:Q4
out-of-sample: 1980:Q1 — 2008:Q3 (115 obs.)
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198001 197001 19801 199001 2000Q1 _ 198001 197001 19801 199001 200001
Quarterly log levels of US real GDP Quarterly US GDP growth rate (in %)

(= 100 x log difference)
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Macro application: forecasting US real GDP growth (continued)
We use n = 6 individual models:

Model 1: Random Walk model (RW) *

Model 2: Random Walk model with drift (RWD) *

Model 3: AR(1) model. We follow Schotman & Van Dijk (1991, J of
Econometrics, “A Bayesian Analysis of the Unit Root in Real Exchange
Rates”), specifying a weakly informative ‘regularization’ prior that helps
to prevent problems that could be encountered during the estimation
using the Gibbs sampler, if a flat prior were used.

Model 4: Error Correction Model (ECM) *, from De Pooter, Ravazzolo,
Segers & Van Dijk (2008, Advances in Econometrics, “Bayesian Near-
Boundary Analysis in Basic Macroeconomic Time-Series Models™)

Models 5 & 6: the State-Space Model (SSM) and its robust extension
(RSSM), given by the SV and RSV models of the financial application.

* Models 1, 2, 4: for log US real GDP (instead of US real GDP growth) 38



Macro application: forecasting US real GDP growth (continued)
For the ECM
Ayy =0+ (pr+ pr DY — - 6(t-1)) — pa(Ay;_1 — 6) + &
that can be rewritten as
yi=0t=0-pr—p2) u+p1(Y1-1 =6t -1)+ pa(Yi_2 —6(t-2)) + &

with & ~ N(O,O'Z), we specify a ‘regularization’ prior thatis an extension of
Schotman & Van Dijk (1991).
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Macro application: forecasting US real GDP growth (continued)

Table: Forecasting US real GDP growth (in %) : RMSPE

individual models combination schemes
1. RW 1.650 1. BMA 0.718
2. RWD 0.863 2. LIN 0.829
3. AR 0.772 3. TVW 0.757
4. ECM 0.790 4. RTVW 0.727
5. SSM 0.730

6. RSSM 0.747

= - Random walk models (for log US real GDP) perform poorly.

- For all other models, the test of Clark & West (2007, J of Econometrics)
for equal forecasting quality of nested models rejects null versus RW.

- The models with time varying parameters, SSM and RSSM, perform well.
- BMA, RTVW combination schemes are even better than SSM, RSSM.

LIN combination scheme performs poorly.
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Macro application: forecasting US real GDP growth (continued)

Figure: Quarterly US real GDP growth (in %), point forecasts given by
individual models. (Vertical bars highlight NBER recession periods.)
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= The models with fixed parameters (AR, RWD, ECM) perform poorly when GDP
growth decreases rapidly as in NBER recessions. It takes some quarters for
these models to adjust, in particular in 2001 and 2008 recessions.

The
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Macro application: forecasting US real GDP growth (continued)

Figure: Quarterly US real GDP growth (in %), point forecasts given by
combination schemes. (Vertical bars highlight NBER recession periods.)

- LIN performs particularly poorly in
1980's & 1990's. Weight estimates
for LIN may be inaccurate, as
number of individual models n = 6
is relatively large and instability
possibly high.

- BMA, TVW, RTVW react much
faster to sharp decreases in GDP.
Especially RTVW may early

A} ' indicate recessions: before both

1991 & 2001 crises its point

168001 | 199001 ' 200001 ' forecast decreases substantially

with approximately 0.5%.
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Final remarks
Findings in empirical applications:

- Forecast combination strategies can give higher predictive quality
than selecting the best model;

- Properly specified time varying model weights yield higher forecast
accuracy & economic gains compared with other schemes

Multiple directions for future research:
- a rigorous analysis of the impact of some assumptions (e.g. o2, >)
- a study on the robustness of the findings (e.g. for other data sets).

- comparison with other time varying weight combination schemes, e.qg.
regime switching (Guidolin and Timmermann (2007)), or schemes that
carefully model breaks (Ravazzolo, Paap, Van Dijk & Franses (2007)).

- prediction of multivariate returns processes.

- specific prediction of variance, skewness or kurtosis (rather than mean).
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