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Outline: 
 
- Some literature 
 

- Forecast combination schemes:  
 

●  scheme 1 BMA: Bayesian Model Averaging  
 
 

●  Combination schemes using estimated regression  
coefficients as model weights: 

 

    scheme 2 LIN: Model weights from Ordinary Least 
   Squares in a linear model 

 

  scheme 3 TVW: Time-varying weights 
 
  scheme 4 RTVW: Robust time-varying weights 

 
- Applications:  ● financial: S&P500 monthly returns 

● macro: US quarterly real GDP growth 
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Literature on forecast combinations: 
 
Since “Combination of Forecasts” by Bates & Granger (1969, Operational 
Research Quarterly) a huge number of publications has appeared.  
 
For a wide range of time series processes, forecast combinations have 
appeared to perform better than forecasts based on single models. 
 
Diebold and Pauly (1987, Journal of Forecasting) regression based approach 
with time varying parameters. 
 
Some of the recent publications: 
 
Terui & Van Dijk (2002, International J of Forecasting), “Combined forecasts 
from linear and nonlinear time series models”, generalize the least squares 
model weights by reformulating the linear regression model as a state space 
specification,where the weights are assumed to follow a random walk process. 
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Literature on forecast combinations: Some recent publications: 
 
Stock & Watson (2004, J of Forecasting), “Combination Forecasts of Output  

Growth in a Seven-country Data Set”. 
 

Hendry & Clements (2004, Econometric Reviews), “Pooling of Forecasts”. 
 
Timmermann (2006, Handbook of Economic Forecasting), "Forecast  

Combinations". 
 
Stock & Watson (2004) and Timmermann (2006) compute model weights  

using the inverse mean square prediction error (MSPE) over a set of the 
most recent observations. 

 
Hendry & Clements (2004) and Timmermann (2006) show that simple  

combinations (e.g. averages) often give better performance than more 
sophisticated combination schemes (with weights depending on the full 
covariance matrix of forecast errors). 
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Geweke & Whiteman (2006, Handbook of Economic Forecasting), “Bayesian 
Forecasting”. 



 
Guidolin & Timmermann (2009, J of Econometrics, forthcoming), “Forecasts of  

US Short-term Interest Rates: A Flexible Forecast Combination Approach” 
 
Strachan & Van Dijk (2008), “Bayesian Averaging over Many Dynamic Model 

Structures with Evidence on the Great Ratios and Liquidity Trap Risk”, 
Tinbergen Institute report 2008-096/4. 

  
 Geweke and Amisano, Optimal Prediction Pools, 2008. 

 
Geweke & Whiteman (2006) apply BMA using predictive likelihoods instead of  

marginal likelihoods.  
 
Strachan & Van Dijk (2008) compute impulse response paths and effects of  

policy measures using BMA in the context of a large set of VAR models.  
 
Guidolin & Timmermann (2009) propose model weights having  

regime switching dynamics.  
Geweke and Amisano (2008), propose prediction pools evaluated using log 
predictive scoring rule. 
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We propose: 3 forecast combination schemes that simultaneously allow for: 
 

[1] parameter uncertainty 
 
[2] model uncertainty 

 
 [3] time varying model weights 
 
These approaches can be considered Bayesian extensions of the combination 
scheme of Terui & Van Dijk (2002). 
 
We compare the performance of the proposed methods with Bayesian Model  
Averaging (BMA). 
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Scheme 1 BMA:  Bayesian Model Averaging: 
 
Compute predictive density of  1+Ty  (conditional upon TD , data up to time T):  

 

]|Pr[),|()|(
1

11 Ti
n

i
iTTTT DmmDypDyp ∑

=
++ =  

 
 

 with:    n   = number of individual models 
 

),|( 1 iTT mDyp +  = conditional predictive density given model   im
 

 ]|Pr[ Ti Dm     = posterior probability of model  im  
 
 

The conditional predictive density given model   is: im
 
 iiTiiiTTiTT dmDpmDypmDyp θθθ ),|(),,|(),|( 11 ∫ ++ =  
 
with ),|( iTi mDp θ  the posterior density of parameters  iθ  in model  . im
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Scheme 1 BMA:  Bayesian Model Averaging (continued) 
 

The posterior probability of model  m  is: i
 

∑ =

= n
j jjT

iiT
Ti

mmyp
mmyp Pr[)|(Dm

1 :1

:1

]Pr[)|(
]]|Pr[  

  
]Pr[ im  the prior probability for model im , and )|( :1 iT myp  the  with 

marginal likelihood: 
 
 

yp ∫= iiiiiTiT dmpmypm θθθ )|(),|() :1:1  |(
 

with )|( i mp iθ  the prior density for parameters  iθ   in model  im . 
 
 
Chib (1995, JASA), “Marginal Likelihood from the Gibbs Output” 

Wrap? 
of  

 
Ardia, Hoogerheide & Van Dijk (2009), “To Bridge, to Warp or to 

A comparative study of Monte Carlo methods for efficient evaluation 
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marginal likelihoods.” Tinbergen institute report 09-017. 



Sc ued) heme 1 BMA:  Bayesian Model Averaging (contin
 
We follow Geweke & Whiteman (2006), and use predictive likelihood rather 
than  marginal  likelihood: 
 

∑ = +

+= n
j jkjTk

ikiTk
Ti

mDmyp

mDmyp
Dm

1 ):1(

):1(

]Pr[),|(

]Pr[),|(
]|Pr[  

 
ith ‘initial period’ of k=12 (months), and w

 

∏
+=

−+ =
T

kt
titkiTk DmypDmyp

1
1:)1( ),|(),|(  

 
he densities ),|( 1−tit Dmyp  are evaluated as followsT : 

 
(1) parameters   are simulated from the conditional distribution on iθ 1−tD . 
 

(2) draws ty  are simulated conditionally on the iθ  draws and 1−tD . 
 

ty  in model (3) a kerne smoothing technique is used to esti ate the den of l m sity 
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Scheme 1 BMA:  Bayesian Model Averaging (continued) 
 
 
In all models, we specify uninformative proper priors for the parameters iθ .  
 
The use of predictive likelihoods rather than marginal likelihoods helps us to 
avoid the inference problems due to the Bartlett paradox. 
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Forecast combination schemes using estimated regression 
oefficients as model weights: 

 
s 

on form.  
 

We assume that the data  

c

The three proposed forecast combination schemes estimate the weight
the models  im  ( ni ,,1K= ) in regressi

iw  of 

ty  satisfy the linear equation: 
 

uy ++= tit
n

it yww ∑   ,0(~ IIDu )2σt   Tt ,,2,1 K=  
i=

,0
1

 

ity ,  has the predictive density ),|( 1 itt mDyp − . where 
 
Differences with BMA: - a constant term 

s ≥ 0  or  
0w  is added 

- no restriction that weight wi  11 =∑ =
n
i iw  

 

ret el probabilities 
 

⇒ weights iw  (i=1,…,n) can not be interp ed as mod

 

a e added  
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Granger & R manathan (1984, J of Forecasting): constant term must b
to avoid biased forecasts, often leading to more accurate forecasts. 



Forecast combination schemes using estimated regression 
coefficients as model weights (continued): 

 

tit
i

it uywwy ++= ∑
=

,
1

0   ),0(~ 2σIIDu
n

t    Tt ,,2,1 K=  

 
ity ,  ~ ),|( 1 itt mDyp − . with  

 
We propose three novel sampling algorithms for simulating model weight 
vec rs   given data  ),,,( 10 nwwww K=  Ty :1   and predictive densities 

)1 i

to
,|(yp tt mD − : 

 

 me 2 LIN: Model OLS
 

scheme 3 TVW: Time-varying weights 
 

 

 

 sche weights from  in a linear model 

scheme 4 RTVW: Robust time-varying weights 
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sch  linear model eme 2 LIN: Model weights from OLS in a
 

tit
i

it
=

,
1

0
n

uywwy ++= ∑   ),0(~ 2σIIDut    with  it,y  ~ ),|( 1 itt mDyp − . 

 

[a] Generate a set of S model weights 
 

(i) simulating independently S sets of T x n draws 

sw  (s = 1,…,S) by: 

s
ity ,  from the  

predictive densities ),|( 1 itt mDyp −  ( iTt ,.1;,...,1 n..,== ) 
 

(ii) estimating sw  as OLS estimate in: s
t

s
itit uywy ++=

n

i
w∑

=
,0  

1
 

[b] we draws Use the model ights to combine sw  s
iTy ,1+  from predictive densities  

),|( 1 iTT mDyp +  into ‘combined draws’  s
Ty 1~
+ : 

 

s
iT

n s
i

ss
T ywwy ,10~

+
i 1

1
=
∑+=    +
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s
Ty 1~
+  ( Ss ,...,1= ) is our point forecast  1ˆ +Ty   of  1+Ty .The median of   



scheme 2 LIN: Model weights from OLS (continued) 
 

OLS estimate in: s
t

s
it

n

i
it uywwy ++= ∑

=
,

1
0  

 
Note:  - OLS is interpreted as posterior mean under flat prior. 
 

- OLS est eimator's frequentist prop rty of consistency (for consistency  
no requirement of normality, homoskedastiocity, absence of serial  

s
Ty 1~
+ , this implies  correlation). In combination with taking median of 

s
tu . that the scheme is robust against the distribution of  

 
- Sc

mbine point forecasts using 
akin

 

heme 2 can be considered as an extension of  
Granger & Ramanathan (1984) who co
weights that minimize a square loss function, to m g use of  
Bayesian density forecasts.  

(Simple geometric interpretation: Model weights minimize distance 
between vector of observed values Ty :1  and the space spanned by 
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the constant vector and vectors of ‘predicted’ values sy .) iT ,:1



scheme 2 LIN: Model weights from OLS (continued), 
Interpretation 

ed draws’  s
 
The ‘combin Ty 1~

+   
 

s
T

n s
i

ss
T ywwy 01~ i

i
,1

1
+

=
+ ∑+=  

 
are interpreted as draws from a  ‘shrunk’ predictive density  that aims at 
describing the central part of the predictive density, taking into account the 
parameter uncertainty and model uncertainty. 
 
We compute the point forecast as the median of the ‘combined draws’ s

Ty 1~
+ ,   

where the median is preferred over the mean, because it is more robust to 
extreme draws. 
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scheme 3 TVW: Time-varying weights 

dea behind forecast combination: complementary roles of different models in  
    approximating the data generating process. 

 
I

 
These complementary roles in approximating the data generating process may 
differ over time  ⇒  allow the model weights to change over time: 
 

tit
i

ittt
=

,
1

,0,
n

uywwy ++= ∑   2 ),0(~ σIIDut    with  ity ,  ~ ),|( 1 itt mDyp − . 

 
As Terui & Van Dijk (2002), we assume that the )',...,,( 1,0, ttt wwww ,nt=  

),...,1( nt =  evolve over time as: 
 

ttt ww ξ+= −1   ),0~ ( ΣN  tξ
 

e computationally ea er. 
there will be coinciding (large) changes 

of model  that this is not imposed a priori. 
Still, we intend to analyze the extension to non-diagonal 

We assume Σ  to be diagonal, making the schem si
(This does not rule out that a posteriori 

weights; merely
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Σ  in future research.) 



scheme 3 TVW: Time-varying weights (continued) 
 

A Kalman filter algorithm is used to iteratively update the subsequent model 
weights s

tw 1+  (t=1,…,T+1) in the model 
 

ssn ss uywwy ++= ∑  ),0(~ 2σNus  ttitittt
i=

,,0,
1

 

We  fix  the values of 2σ  and the diagonal elements of Σ . A Bayesian can 
interpret these assumptions as having priors on 2σ  and Σ  with 0 variances.* 

 

For each s the parameters 2σ  and Σ  could also be estimated by maximum 
likelihood or MCMC methods, but we discard this to reduce computational time. 

 
 
   * In the financial application (with n = 4 models) we set 2σ  = OLS estimate, 

diag(Σ) = (0.1, 0. signal-to-noise ratios in [0.005,0.01]. 
For robustness we have tried different 2

01, …, 0.01) to have (small) 
σ , Σ   with signal-to-noise ratios ranging from 

0.0001 to 0.1, all resulting in qualitatively equal results.  
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scheme 3 TVW: Time-varying weights (continued) 
 

The model weights s
tw  incorporate a trade-off between minimizing the 

differences between observed values Ty :1  and linear combinations of 
s

iT ,:1y  ( ni ,...,1= )‘predicted’ values , and structing a ‘smooth’ path of weights  con
s
tw  over time. 

 
 

As in scheme 2, we use the model weights s
Tw 1+  to combine draws s

iTy ,1+

predictive densities )

 from 

,|( 1 iTT  into ‘combined draws’  smy Dp + Ty~ : 1+
 

s
iT

n

i

s
iT

s
T

s
T ywwy ,1

1
,10,11~

+
=

+++ ∑+=    
 

The median of  s
Ty~  ( Ss ,...,1= ) is our point forecast  ˆ 1+Ty   of  1+T1+ y .
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scheme 4 RTVW: Robust time-varying weights 

ecently, a new specification has been developed that makes parameter 
stimation in case of instability over time more robust to prior assumptions,  
ee e.g. Giordani & Villani (2008) and Groen, Paap & Ravazzolo (2009).  

 
s following this reasoning: 

 

 
R
e
s

We extend scheme 3 of time-varying model weight

ttt kww += −1   tξ   ),0(~ ΣNtξ  
 

with tk  = ( nttt kkk ,1,0, ,...,, )’ where each element itk ,  of the vector tk  is an 
unobserved 0/1 variable with iitk π== ]1Pr[ , .  

 

The Hadamard product refers to element-by-element multiplication.   
Σ  is again restricted to be a diagonal matrix. 

 
 

Giordani & Villani (2008), “For
adaptive signal extraction”. Working paper. 

ecasting macroeconomic time series with locally 

l
 

Groen, Paap & Ravazzo o (2009), “Real-time inflation forecasting in a  
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changing world.” Working paper. 



scheme 4 RTVW: Robust time-varying weights (continued) 
 

The model 
ssn ss uywwy ++= ∑  s ),0(~ 2σNu  ttit

i
ittt

=
,

1
,0,

 
s
t

s
t

s
t kww += −1   s

tξ    ),0(~ ΣNs
tξ  

 
is estimated following Gerlach, Carter & Kohn (2000, JASA),  
“Efficient Bayesian inference for dynamic mixture models” : 
 

- deriving the posterior density of s
tk  conditional on 2σ , Σ  (but not on s

tw ) 
s
tw   - then applying the Kalman Filter to estimate the latent factors 

 
We set 2σ  and Σ  to the same fixed values as for scheme 3. 
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F
 

inancial application: forecasting monthly S&P 500 returns 

 
in excess of 1-month T-Bill rate 

eriod:  January 1966 - December 2008 (516 observations) 

Data:  continuously compounded monthly return on S&P 500 index  
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Bear market periods:  -  burst of the internet bubble in 2001-2003  

 21
-  recent financial crisis in 2nd part of 2007 & 2008 

 



Financial application: forecasting S&P 500 returns (continued) 
 
We compare our 4 forecast combination schemes:   -  forecasting performance 

-  economic gains 
 

We use n = 4 individual models: 
 
 

Model 1 Leading Indicator (LI):  linear model with lagged financial and  
macroeconomic variables (taking into account the typical  
publication lag of macroeconomic variables)  

 
Model 2: Halloween Indicator (HI):  linear regression model with a constant  

and a dum y for November-April. (“Sell in May and go am way” 
of Bouman 

 

 

& Jacobsen (2002, AER)) 
 

Model 3: Stochastic Volatility (SV) with time-varying mean and volatility
 

Model 4: Robust Stochastic Volatility (RSV) with time-varying mean & vol. 
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Financial application: forecasting S&P 500 returns (continued) 
 
Model 1 Le
 
  - S&P 500 index dividend yield (ratio of dividends over previous 12 months 

 

 

  - term spread (difference between 10-year T-bond rate & 3-month T-bill rate) 
 

- credit spread (difference between Moody's Baa and Aaa yields) 
 

 - y  

- annual inflation rate (producer price index (PPI) for finished goods) ** 

  - annual growth rate of monetary base measure M1 ** 

ading Indicator (LI):  explanatory variables (1-month lag): 

and current stock price) 
  - 3-month T-Bill rate, monthly change in 3-month T-bill rate 

  

 
 

ield spread (difference between Federal funds rate and 3-month T-bill rate)

  
 

  - annual growth rate of industrial production ** 
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** 2- month lag (publication lag) 



Financial application: forecasting S&P 500 returns (
 

continued) 

& vol.: 

 

Model 3: Stochastic Volatility (SV)   Model 4: Robust SV (RSV) 
  with time-varying mean and vol.:      with time-varying mean 
 

ttttr uσμ +    )1,0(~ Nut     tttt ur σμ +=       )1,0(~ Nut  =
 

 tt ,11t ξμμ += − 1,1 t t            ),0(~ τξ N  2
ttt K ,1,11 ξμμ += −       ),0(~ 2

1,1 τξ Nt  
 

         
 

,)log() ,2
2

1
2

ttt ξσσ += −             log()log( 22
tt σσ = −log( ,) ,2,21 ttK ξ+    

),0(~ 2
2,2 τξ Nt  ),0(~ 2

2,2 τξ Nt  

tK ,1 , tK ,2  ( Tt ,...,1= ) are unobserved 
variables with  RSVtK ,1,1 ]1Pr[ π==  

RSVK ,2]1Pr[ π==  t,2
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For Bayesian estimation of SV, RSV models: Giordani, Kohn & Van Dijk (2007, J of 

co ometrics u ed approac ty, outliers & tr ctu breaks.” E ), “A nifi h to nonlineari  s u ral n



Financial application: forecasting S&P 500 returns (continued) 

We compare 8 approaches:  
- forecast schemes 1, 2, 3, 4 

 
We evaluate:  -  statistical accur
 

-  root mean square prediction error (RMSPE) 
      -  correctly predicted pe ent e of sig

     

 
 - models 1, 2, 3, 4 

acy:   

rc ag n (Sign Ratio) 

-  economic gains: returns for active short-term investment  
exercise (investment horizon of 1 month), with   

 portfolio consisting of S&P500 and riskfree bonds only: 

 

an tio  
- tot

 

 
- ex post annualized mean portfolio return 
 

- annualized standard deviation,  
- nualized Sharpe ra
 

al utility. 
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Financial application: forecasting S&P 500 returns (continued) 
 

estment exercise (investment horizon of 1 month):Active short-term inv  
 
At start of each month T +1, investor decides upon fraction 1+Tpw  of her 

te n stocks, based upon density forecast of excess stock portfolio to be inves d i
return 1+Tr . Wealth 1+TW  at end of month T+1 will be: 
 

( ))1( 11 ++ exp()exp() 1,11,1 ++++ + +−= TTT rpwW TfTTfT rpwrW . 
 
Investor chooses 1+Tpw  to maximize expected utility  
 

]|)([max 1
1

TT
pw

DWuE
T

+
+

  111 )|()(max
1

+++∫
+

= TTTT
pw

drDrpWu
T

. 

 
We assume power utility function with coefficient of relative risk aversion γ : 
 

γ

γ

−
=

−
+

+ 1
)( 1

1
T

TWu , 1>
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1W
γ . 

 



Finan l applica : forecasting S&P 500 retcia tion urns (continued) 

Without loss of generality we set initial wealth equal to one, 
 

1=TW . 
 

xpect
 
We approximate e ed utility ]|)([ 1 TT DWuE  = (u 111 )|() +++ TTTT drDrpW  : ∫+
 

g
Tr 1+  ( Gg ity )|( 1 TT Drp +  ,...,1= ) from predictive dens(i) generating G draws 

 
(ii) computing: ]|)([ˆ 1 TT DWuE +   = 

( )
γ

γ

−

=
+++++∑ ++−

−

1

1
11,11,1 )`exp()exp()1(

1
11 G

g

g
TTfTTfT rrpwrpw

G
  

 
Then we find 1+Tpw  maximizing ]|)([ˆ 1 TT DWuE  using a numerical optimization  +
method. 
 

1+Tpw  to  Note:  We do not allow for short-sales or leveraging, i.e. constraining 
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be in the [0,1] interval (see Barberis (2000, J of Finance)). 
 



Financial application: foreca 00 sting S&P 5 returns (continued) 
 

tility levels are used to compare the forecast approaches: realized utility  
levels are computed by substituting the realized return of the portfolios. 

U

 

Total utility is then the sum of )1( +TWu  across all  *T  investment periods  
1,..., *

00 −+= TTTT , with first investment decision made at end of period 0T .  
 
In order to compare alternative strategies we compute the  
multiplication factor of wealth that would equate their average utilities.  

suppo are two strategiFor example, se we comp es A and B, providing wealth 
1, +TAW , 1, +TBW  at time T +1. Then we determine Δ  such that 

 

∑∑ ++ Δ= 1,1,
00

))exp(/()( TBTA WuWu  
−+−+ 11 ** TTTT

== TTTT 00

 
Δ  Following Fleming, Kirby & Ostdiek (2001, J of Finance), we interpret as the 

m 
stra
maximum performance fee the investor would be willing to pay to switch fro

 28
tegy A to strategy B.  



Financial application: forecasting S&P 500 returns (continued) 

For 
 

Δ  it holds that under a power utility specification:  
 

CversusBCA versusBA versus Δ−Δ=Δ  
 

ees of these strategies with respect to a benchmark strategy C. 
 

We consider 3 static benchmark strategies: 
 

[i]  holding stocks only (

That is, the performance fee an investor is willing to pay to switch from strategy 
A to strategy B can also be computed as the difference between performance 
f

sΔ ) 
[ii]   holding a portfolio consisting of 50% stocks, 50% bonds ( mΔ ),
[iii]  holding bonds only ( b

  
Δ ). 

 
 
Finally, the portfolio weights change every month, so the portfolio must be 

 a non-trivial role.  
herefore, we also consider the results under transaction costs of 0.1%. 

rebalanced accordingly. Hence, transaction costs play
T

 29



Financial application: forecasting S&P 500 returns (continued) 
 
Empirical results 
 
Active investment strategies are implemented for Jan 1987 - Dec 2008, 
involving T* = 264 one month ahead forecasts of excess stock return.  

Individual models are estimated recursively using an expanding window.  

the first combined prediction.  

tatistical accuracy: 

 

The initial 12 predictions for each individual model are used as training period 
for combination schemes and making 
 
S
 

 model combination scheme 
 1 2 3 4 1 2 3 4 
 LI HI SV RSV BMA LIN TVW RTVW
RMSPE 4.618 4.478 4.509 4.470 4.500 4.514 4.484 4.485
Sign ratio 0.527 0.549 0.614 0.598 0.587 0.610 0.602 0.598

 
⇒ Conclusion: performance of models and combination schemes similar. 
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(RSV, SV models best at RMSPE, sign ratio; but differences small) 



Financial application: forecasting S&P 500 returns (continued) 
 
The investment strategies are implemented for a level of relative risk aversion 
of γ  = 6 (γ  = 4 or γ  = 8 results in qualitatively similar results). 
 
Economic gains: (without transaction costs) 

 l
 

mode  emecombination sch  
  3 4 1 4 1 2 2 3 
 I V V MA T RTVW LI H S RS  B LIN VW 
mea 1 1 5 0 1 .0 5.785 n return 4.708 4.74 4.8 2 4.6 7 4.7 1 5. 77 5 21 
st de 9 3 1 3 3 .3 3.062 v return 0.794 0.76 1.1 9 0.6 4 0.7 9 4. 56 1 32 
Sharpe ratio 0.110 0.156 0.168 0.060 0.380 0.108 0.128 0.301 
real 1.56 ized utility -51.77 -51.76 -51.75 -51.79 -51.77 -51.73 -51.70 -5

sΔ  285.5 288.7 295.2 277.9 283.8 304.3 317.1 381.3 
mΔ  -63.71 -60.49 -54.03 -71.29 -65.42 -44.95 -32.09 32.10 
bΔ  11.46 14.68 21.14 3.876 9.748 30.22 43.07 107.3 

 

⇒  
 

RTVW combination scheme best:  highest mean return, Sharpe ratio, perfor- 
mance fees; highest (least negative) utility.  

 31
In fact, only RTVW has mΔ  > 0: only strategy beating 50% stock, 50% bond. 



Financial application: forecasting S&P 500 returns (continued) 
 
Empirical results 
 
Economic g (t ct st %ains: ransa ion co s = 0.1 ) 
 

 model co on embinati  schem  
 1 2 3 4 1 2 3 4 
 RTVW LI HI SV RSV BMA LIN TVW 
mean return 4.708 4.740 4.811 4.657 4.700 5.176 5.020 5.784 
st dev return 0.794 0.769 1.139 0.614 0.739 4.355 1.332 3.062 
Sharpe ratio 0.110 0.156 0.167 0.060 0.108 0.128 0.300 0.380 
realized utility -51.77 -51.77 -51.77 -51.79 -51.78 -51.75 -51.71 -51.58 

sΔ  284.7 287.9 284.5 276.6 279.1 279.1 311.7 373.6 
mΔ  -64.65 -61.42 -64.80 -72.72 -70.18 -52.18 -37.66 24.31 
bΔ  10.81 14.04 10.67 2.741 5.289 23.29 37.81 99.77 

 
  RTVW remains the best, keeping mΔ  > 0, when transaction costs are taken into  ⇒

account. 
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Financial application: forecasting S&P 500 returns (continued) 
Figure: portfoli weight

 

o  p 1+Tw  on risky set (S 500) in ut-of-s ple pe d 
for individual models ( I, SV

  

as &P  o am rio
LI, H SV, R ): 

 

 
 

1+Tpw  to risky asset,  ⇒ Individual models allocate too low weight 

 33 resulting in low portfolio returns.  



Financial application: forecasting S&P 500 returns (continued) 
 

Figure: portfolio weight 1+Tpw  on risky asset (S&P500) in out-of-sample period 
for forecast combination schemes (BMA, LIN, TVW, RTVW): 

 
   

- BMA allocates too low weight  
   1+Tpw  to risky asset  
   (⇒ low portfolio returns)  
 
- LIN, TVW,RTVW combinations  
  allocate higher weights 1+Tpw  to  

 

  stock asset.  
 
 RTV eme that  

 in  

  (burst of internet bubble in 2001- 
n 2nd  

 

- W is the only sch
  drastically reduces this weight
  bear market periods  

  2003, recent financial crisis i
  part of 2007 and 2008).  
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Financial application: forecasting S&P 500 returns (continued) 
 

Robust, flexible structure of RTVW pays off: 
 

- RTVW reduces weight 1+Tpw  in bear m TVW) 
 
  - RTVW has higher weight 

arkets (compared with LIN, 

1+Tpw  in bull   
models and BMA). Reason: ‘shrunk’

 
 

Figure: 

markets (compared with individual
 predictive density: 

The ‘shrunk’  return distribution is not so 
much ‘compre

excess
ssed’ that 1+Tpw  switches from 1+Tpw  over time: 

 

0% to 100% w

result if the ‘sh
 
Rather, the  
incorporated in the ‘shrunk’ predictive density 
imply an investment strategy with a  

 
over time for 

hen its mean changes from 
negative to positive values. (This behavior would 

runk’ density’s st.dev would → 0.)  

parameter and model uncertainty

smooth, ‘moderate’, yet flexible evolvement  
 

1+Tpw . 
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Fin recas

ett 08, R
“Recon

The uncertainty on the siz
respo e difficul urn

 
The ‘shrunk’ predictive density
informative on the current and
the driving force of return predictability.  

  

This may be the explanation f
 
 

We intend to analyze the RTV

of our findings. 

ancial application: fo ting S&P 500 returns (continued) 
 

L au & Van Nieuwerburgh (20 eview of Financial Studies,  
ciling the return predictability evidence”): 

 
e of steady-state shifts rather than their dates is 
ty of forecasting stock ret s in real time.  

 of the RTVW scheme may be particularly 
 future evolvement of this steady-state,  

nsible for th

or the RTVW scheme's good results.  

W scheme’s performance in other portfolio 
management exercises in future research, to investigate the robustness 
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Macro application: forecasting US real GDP growth 
 
Dat
 

Period:  in-sample:  1960:Q1 - 1979:Q4 

a:   quarterly US real GDP growth (in %) 

   out-of-sample: 1980:Q1 – 2008:Q3  (115 obs.) 
 

 
 
Quarterly log levels of US real GDP     Quarterly US GDP growth rate (in %) 

(= 10
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0 x log difference) 

 



Macro a lication: fo casting US real Gpp re DP growth (continued) 

We se n 

Model 1: Random Walk model (RW) * 
 

Model 2: Random Walk model with drift (RWD) * 
 

Model 3: AR(1) model.  We follow Schotman & Van Dijk (1991, J of  
Econometrics, “A Bayesian Analysis of the Unit Root in Real Exchange  
Rates”), specifying a weakly informative ‘regularization’ prior  that helps  
to prevent problems that could be encountered during the estimation  
using the Gibbs sampler, if a flat prior were used. 

 
Model 4: Error Correction Model (ECM) *, from De Pooter, Ravazzolo,  

Segers & Van Dijk (2008, Advances in Econometrics, “Bayesian Near- 

 
Models 5 & 6: the State-Space Model (SSM) and its robust extension  

n. 
 

 
u = 6 individual models: 

 

Boundary Analysis in Basic Macroeconomic Time-Series Models”) 

(RSSM), given by the SV and RSV models of the financial applicatio
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 growth) * Models 1, 2, 4: for log US real GDP (instead of US real GDP 



Macro application: forecasting US real GDP growth (continued) 
 

For the ECM  
 

   tttt ytyy εδρδμρρδ +−Δ−−−−−++=Δ −− )())1()(1(    12121
 
that can
 

 

 be rewritten as 

tttt ty ytyt εδρδρμρρδ +−−+−−+−−=− −− ())1(()1( 221121 ))2(   
 
with ),0(~ 2σN , we specify a ‘regularization’ prior  that is an extension of ε t
Schotman & Van Dijk (1991). 
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Macro application: forecasting US real GDP growth (continued) 

ab : Forecasting US real GDP growth (in %) : RMSPE 
 
T le
 

individual models      combination schemes 
 

1. RW   1.650    1. BMA  0.718 
2. RWD  0.863    2. LIN   0.829 
3 .772    3. TVW  0.757 . AR   0
4. ECM  0.790    4. RTVW  0.727 
5. SSM  0.730 
6. RSSM  0.747 
 

 
⇒   - Random walk models (for log US real GDP) perform poorly. 

- For all other models, the test of Clark & West (2007, J of Econometrics)  
for equal forecasting quality of nested models rejects null versus RW. 
  

well.  

- BMA, RTVW combination schemes are even better than SSM, RSSM. 

 

- The models with time varying parameters, SSM and RSSM, perform 
 

 40
 LIN combination scheme performs poorly. 



Macro application: forecasting US real GDP growth (continued) 
 

Fig  G orecasts given by  ure: Quarterly US real DP growth (in %), point f
individual models. (Vertical bars highlight NBER recession periods.) 

 

          
 
 ⇒  The DP   models with fixed parameters (AR, RWD, ECM) perform poorly when G

growth decreases rapidly as in NBER recessions. It takes some quarters for 

 
these models to adjust, in particular in 2001 and 2008 recessions. 
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The models with time-varying parameters (SSM, RSSM) cope better with this. 



Macro 
Figure: Quarterly US real GDP growth (in %), point forecasts given by  

application: forecasting US real GDP growth (continued) 
 

     combination schemes. (Vertical bars highlight NBER recession periods.) 
 
 

    
- LIN performs particularly poorly in   
  1980's & 1990's. Weight estimates    
  for LIN may be inaccurate, as  
  number of individual models n = 6  
  is relatively large and instability  
  possibly high.  
 
- BMA, TVW, RTVW react much  
  faster to sharp decreases in GDP.  
  Especially RTVW may early  
  indicate recessions: before both 
  1991 & 2001 crises its point  

 

 

 

      

  forecast decreases substantially  
  with approximately 0.5%. 
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Fin
 
 Findings in empirical applications: 

- Forecast combination strategies can gi
than selecting the best model; 

 

-  Properly specified time varying model w
accuracy & economic gains compa

 
Multiple directions for future research: 
 

- a rigorous analysis of the impact of so

 

ve higher predictive quality  

eights yield higher forecast  
red with other schemes 

me assumptions (e.g. 2σ , Σ) 
 
- a study on the robustness of the findin
 
- comparison with other time varying 
   regime switching (Guidolin and Timm
   carefully model breaks (Ravazzolo, P

- prediction of multivariate returns processes.  
 

variance, skewness or kurtosis (rather than mean). 

gs (e.g. for other data sets). 

weight combination schemes, e.g.  
ermann (2007)), or schemes that 

007)).  aap, Van Dijk & Franses (2

- specific prediction of 

al remarks 

 




