FORECAST EVALUATION OF SMALL NESTED MODEL SETS

Kirstin Hubrich and Kenneth West

European Central Bank / Federal Reserve Board and University of Wisconsin

January 2009

NBER Working Paper 14601, ECB WP No. 1030, 2009
Motivation

- Forecast evaluation often compares a small set of models
 - Criterion: usually mean squared prediction error (MSPE)
 - Usually: Sequence of pairwise model comparisons is carried out, using Diebold-Mariano-West statistic for non-nested models or Clark-McCracken and Clark-West statistics for nested models
 - Our proposal: Comparing models simultaneously; two statistics easy to compute for simultaneously comparing a parsimonious benchmark model to m alternative models that nest the benchmark
 - We take into account potential correlation of model forecasts

Conclusions from pairwise model comparison might be misleading
Motivation

- Forecast evaluation often compares a small set of models
- **Criterion:** usually mean squared prediction error (MSPE)
 - Usually: Sequence of pairwise model comparisons is carried out, using Diebold-Mariano-West statistic for non-nested models or Clark-McCracken and Clark-West statistics for nested models
 - Our proposal: Comparing models simultaneously; two statistics easy to compute for simultaneously comparing a parsimonious benchmark model to m alternative models that nest the benchmark
 - We take into account potential correlation of model forecasts

Kirstin Hubrich and Kenneth West

FORECAST EVALUATION OF SMALL NESTED MODEL SETS
Motivation

Forecast evaluation often compares a small set of models

Criterion: usually mean squared prediction error (MSPE)

Usually: Sequence of pairwise model comparisons is carried out, using Diebold-Mariano-West statistic for non-nested models or Clark- McCracken and Clark-West statistics for nested models

Our proposal: Comparing models simultaneously; two statistics easy to compute for simultaneously comparing a parsimonious benchmark model to m alternative models that nest the benchmark

We take into account potential correlation of model forecasts

Conclusions from pairwise model comparison might be misleading
Motivation

- Forecast evaluation often compares a small set of models
- Criterion: usually mean squared prediction error (MSPE)
- Usually: Sequence of pairwise model comparisons is carried out, using Diebold-Mariano-West statistic for non-nested models or Clark-McCracken and Clark-West statistics for nested models
- Our proposal: Comparing models simultaneously; two statistics easy to compute for simultaneously comparing a parsimonious benchmark model to m alternative models that nest the benchmark
- We take into account potential correlation of model forecasts

Conclusions from pairwise model comparison might be misleading
Motivation

- Forecast evaluation often compares a small set of models
- Criterion: usually mean squared prediction error (MSPE)
- Usually: Sequence of pairwise model comparisons is carried out, using Diebold-Mariano-West statistic for non-nested models or Clark-McCracken and Clark-West statistics for nested models
- Our proposal: Comparing models simultaneously; two statistics easy to compute for simultaneously comparing a parsimonious benchmark model to m alternative models that nest the benchmark
- We take into account potential correlation of model forecasts

Conclusions from pairwise model comparison might be misleading
Motivation

- Forecast evaluation often compares a small set of models
- Criterion: usually mean squared prediction error (MSPE)
- Usually: Sequence of pairwise model comparisons is carried out, using Diebold-Mariano-West statistic for non-nested models or Clark-McCracken and Clark-West statistics for nested models
- Our proposal: Comparing models simultaneously; two statistics easy to compute for simultaneously comparing a parsimonious benchmark model to m alternative models that nest the benchmark
- We take into account potential correlation of model forecasts

Conclusions from pairwise model comparison might be misleading
Recent literature: Pairwise Model Comparison

- Non-nested model comparisons: Diebold-Mariano-West tests
 - null hypothesis of equal predictive accuracy (in population)
 - Diebold and Mariano (1995): allow for wide variety of forecast accuracy measures and general assumptions on forecast errors
 - West (1996): allows for estimation uncertainty
 - provide conditions for t-type statistics $\sim A N(0, 1)$
 - nested models: under null of equal predictive accuracy the variance of the forecast error differential is zero
 - derive standard and non-standard limiting distributions
 - Clark and West (2006, 2007): test statistic adjusted for estimation uncertainty is approximately normal
Recent literature: Pairwise Model Comparison

- Non-nested model comparisons: Diebold-Mariano-West tests
 - null hypothesis of equal predictive accuracy (in population)
 - Diebold and Mariano (1995): allow for wide variety of forecast accuracy measures and general assumptions on forecast errors
 - West (1996): allows for estimation uncertainty
 - provide conditions for t-type statistics \(\sim A N(0,1) \)

 - nested models: under null of equal predictive accuracy the variance of the forecast error differential is zero
 - derive standard and non-standard limiting distributions
 - Clark and West (2006, 2007): test statistic adjusted for estimation uncertainty is approximately normal
Recent literature: Pairwise Model Comparison

- Non-nested model comparisons: Diebold-Mariano-West tests
 - null hypothesis of equal predictive accuracy (in population)
 - Diebold and Mariano (1995): allow for wide variety of forecast accuracy measures and general assumptions on forecast errors
 - West (1996): allows for estimation uncertainty
 - provide conditions for t-type statistics $\sim N(0, 1)$

 - nested models: under null of equal predictive accuracy the variance of the forecast error differential is zero
 - derive standard and non-standard limiting distributions
 - Clark and West (2006, 2007): test statistic adjusted for estimation uncertainty is approximately normal
Recent literature: Pairwise Model Comparison

- Non-nested model comparisons: Diebold-Mariano-West tests
 - null hypothesis of equal predictive accuracy (in population)
 - Diebold and Mariano (1995): allow for wide variety of forecast accuracy measures and general assumptions on forecast errors
 - West (1996): allows for estimation uncertainty
 - provide conditions for t-type statistics $\sim_A N(0, 1)$

 - nested models: under null of equal predictive accuracy the variance of the forecast error differential is zero
 - derive standard and non-standard limiting distributions
 - Clark and West (2006, 2007): test statistic adjusted for estimation uncertainty is approximately normal
Recent literature: Pairwise Model Comparison

- Non-nested model comparisons: Diebold-Mariano-West tests
 - null hypothesis of equal predictive accuracy (in population)
 - Diebold and Mariano (1995): allow for wide variety of forecast accuracy measures and general assumptions on forecast errors
 - West (1996): allows for estimation uncertainty
 - provide conditions for t-type statistics $\sim A \mathcal{N}(0, 1)$

 - nested models: under null of equal predictive accuracy the variance of the forecast error differential is zero
 - derive standard and non-standard limiting distributions
 - Clark and West (2006, 2007): test statistic adjusted for estimation uncertainty is approximately normal
Recent literature: Pairwise Model Comparison

- Non-nested model comparisons: Diebold-Mariano-West tests
 - null hypothesis of equal predictive accuracy (in population)
 - Diebold and Mariano (1995): allow for wide variety of forecast accuracy measures and general assumptions on forecast errors
 - West (1996): allows for estimation uncertainty
 - provide conditions for t-type statistics $\sim A N(0,1)$

 - nested models: under null of equal predictive accuracy the variance of the forecast error differential is zero
 - derive standard and non-standard limiting distributions
 - Clark and West (2006, 2007): test statistic adjusted for estimation uncertainty is approximately normal
Recent literature: Pairwise Model Comparison

- Non-nested model comparisons: Diebold-Mariano-West tests
 - null hypothesis of equal predictive accuracy (in population)
 - Diebold and Mariano (1995): allow for wide variety of forecast accuracy measures and general assumptions on forecast errors
 - West (1996): allows for estimation uncertainty
 - provide conditions for t-type statistics $\sim A N(0, 1)$

 - nested models: under null of equal predictive accuracy the variance of the forecast error differential is zero
 - derive standard and non-standard limiting distributions
 - Clark and West (2006, 2007): test statistic adjusted for estimation uncertainty is approximately normal
Recent literature: Pairwise Model Comparison

- Non-nested model comparisons: Diebold-Mariano-West tests
 - null hypothesis of equal predictive accuracy (in population)
 - Diebold and Mariano (1995): allow for wide variety of forecast accuracy measures and general assumptions on forecast errors
 - West (1996): allows for estimation uncertainty
 - provide conditions for t-type statistics $\sim N(0, 1)$
 - nested models: under null of equal predictive accuracy the variance of the forecast error differential is zero
 - derive standard and non-standard limiting distributions
 - Clark and West (2006, 2007): test statistic adjusted for estimation uncertainty is approximately normal
Recent literature: Pairwise Model Comparison

- Non-nested model comparisons: Diebold-Mariano-West tests
 - null hypothesis of equal predictive accuracy (in population)
 - Diebold and Mariano (1995): allow for wide variety of forecast accuracy measures and general assumptions on forecast errors
 - West (1996): allows for estimation uncertainty
 - provide conditions for t-type statistics $\sim \mathcal{N}(0, 1)$

 - nested models: under null of equal predictive accuracy the variance of the forecast error differential is zero
 - derive standard and non-standard limiting distributions
 - Clark and West (2006, 2007): test statistic adjusted for estimation uncertainty is approximately normal
Example: Our empirical application considers forecasts of U.S. CPI all items inflation, comparing:

- univariate AR forecast ("model 0") vs. m=4 other models
- the m=4 other models are bivariate VARs with CPI inflation and
 - one the component of the CPI (food, energy, commodities or services inflation)
 - output growth, unemployment, commodities or services inflation

⇒ see e.g. Hubrich (2005) and Hendry and Hubrich (2009) for further empirical results and for analytical and simulation results on the use of disaggregate information in forecasting the aggregate...
Example: Our empirical application considers forecasts of U.S. CPI all items inflation, comparing:

- univariate AR forecast ("model 0") vs. \(m=4 \) other models
- the \(m=4 \) other models are bivariate VARs with CPI inflation and
 - one the component of the CPI (food, energy, commodities or services inflation)
 - output growth, unemployment, commodities or services inflation

⇒ see e.g. Hubrich (2005) and Hendry and Hubrich (2009) for further empirical results and for analytical and simulation results on the use of disaggregate information in forecasting the aggregate
Example: Our empirical application considers forecasts of U.S. CPI all items inflation, comparing:

- univariate AR forecast ("model 0") vs. m=4 other models
- the m=4 other models are bivariate VARs with CPI inflation and
 - one the component of the CPI (food, energy, commodities or services inflation)
 - output growth, unemployment, commodities or services inflation

⇒ see e.g. Hubrich (2005) and Hendry and Hubrich (2009) for further empirical results and for analytical and simulation results on the use of disaggregate information in forecasting the aggregate
Example: Our empirical application considers forecasts of U.S. CPI all items inflation, comparing:

- univariate AR forecast ("model 0") vs. m=4 other models
- the m=4 other models are bivariate VARs with CPI inflation and
 - one the component of the CPI (food, energy, commodities or services inflation)
 - output growth, unemployment, commodities or services inflation

⇒ see e.g. Hubrich (2005) and Hendry and Hubrich (2009) for further empirical results and for analytical and simulation results on the use of disaggregate information in forecasting the aggregate
Empirical Example: Forecasting All Items CPI Inflation

<table>
<thead>
<tr>
<th>Method</th>
<th>1984-2004</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>RMSPE (altern)/RMSPE (bench)</td>
</tr>
<tr>
<td>AR$_{(AIC)}$ (bench)</td>
<td>0.187</td>
</tr>
<tr>
<td>Test AR</td>
<td></td>
</tr>
<tr>
<td>vs VAR$_{(AIC)}^{a,f}$</td>
<td>0.999</td>
</tr>
<tr>
<td>vs VAR$_{(AIC)}^{a,e}$</td>
<td>1.097</td>
</tr>
<tr>
<td>vs VAR$_{(AIC)}^{a,e}$</td>
<td>1.048</td>
</tr>
<tr>
<td>vs VAR$_{(AIC)}^{a,s}$</td>
<td>1.027</td>
</tr>
<tr>
<td>vs 4 models</td>
<td></td>
</tr>
<tr>
<td>Critical value</td>
<td></td>
</tr>
</tbody>
</table>
Motivation

Illustrative of class of applications relevant for our procedures: MSPE is measure of forecast performance, null model nested in a "small" number of other models

"small" number of models m is greater than 1 but much smaller than sample size

relevant applications include ones that conduct evaluations of this sort simultaneously for several data sets

Relevant asset pricing applications: e.g. Hong and Lee (REStat, 2003), Goyal and Welch (working paper, 2004), Cheung et al. (JIMF, 2005), McCracken and Sapp (JMCCB, 2005), Sarno et al. (JMCCB, 2005), Rapach and Wohar (JEmpFin, 2006)

Relevant inflation applications: e.g. Atkeson and Ohanian (FRBMinnQR, 2001), Billmeier (working paper, 2004), Hubrich (IJF, 2005), Cristadoro et al. (JMCCB, 2005), D’Agostino et al. (2006), Hendry and Hubrich (JBES, 2009)
Illustrative of class of applications relevant for our procedures: MSPE is measure of forecast performance, null model nested in a "small" number of other models

- "small" number of models m is greater than 1 but much smaller than sample size
- relevant applications include ones that conduct evaluations of this sort simultaneously for several data sets

Relevant asset pricing applications: e.g. Hong and Lee (REStat, 2003), Goyal and Welch (working paper, 2004), Cheung et al. (JIMF, 2005), McCracken and Sapp (JMCM, 2005), Sarno et al. (JMCM, 2005), Rapach and Wohar (JEmpFin, 2006)

Relevant inflation applications: e.g. Atkeson and Ohanian (FRBMinnQR, 2001), Billmeier (working paper, 2004), Hubrich (IJF, 2005), Cristadoro et al. (JMCM, 2005), D’Agostino et al. (2006), Hendry and Hubrich (JBES, 2009)
Motivation

Illustrative of class of applications relevant for our procedures: MSPE is measure of forecast performance, null model nested in a "small" number of other models

- "small" number of models m is greater than 1 but much smaller than sample size
- relevant applications include ones that conduct evaluations of this sort simultaneously for several data sets

- Relevant asset pricing applications: e.g. Hong and Lee (REStat, 2003), Goyal and Welch (working paper, 2004), Cheung et al. (JIMF, 2005), McCracken and Sapp (JMCB, 2005), Sarno et al. (JMCB, 2005), Rapach and Wohar (JEmpFin, 2006)

- Relevant inflation applications: e.g. Atkeson and Ohanian (FRBMinnQR, 2001), Billmeier (working paper, 2004), Hubrich (IJF, 2005), Cristadoro et al. (JMCB, 2005), D’Agostino et al. (2006), Hendry and Hubrich (JBES, 2009)
Illustrative of class of applications relevant for our procedures: MSPE is measure of forecast performance, null model nested in a "small" number of other models

- "small" number of models m is greater than 1 but much smaller than sample size
- relevant applications include ones that conduct evaluations of this sort simultaneously for several data sets

Relevant asset pricing applications: e.g. Hong and Lee (REStat, 2003), Goyal and Welch (working paper, 2004), Cheung et al. (JIMF, 2005), McCracken and Sapp (JMCB, 2005), Sarno et al. (JMCB, 2005), Rapach and Wohar (JEmpFin, 2006)

Relevant inflation applications: e.g. Atkeson and Ohanian (FRBMinnQR, 2001), Billmeier (working paper, 2004), Hubrich (IJF, 2005), Cristadoro et al. (JMCB, 2005), D’Agostino et al. (2006), Hendry and Hubrich (JBES, 2009)
Existing procedures

Compute χ^2 statistic (multivariate version of DMW):

- Construct $m \times 1$ vector of MSPE differences; compute long run variance of differences; compute the usual quadratic form χ^2 (unadj.) in our tables (West et al. (1993))
- This statistic has possible problems with size and power:
 - **size**: under our null, the vector of MSPE differences is not centered at zero
 - **power**: the alternative is one sided
 ⇒ even if the vector is recentered appropriately, to deliver correct size under the null, a large chi-squared value can come from the wrong tail of the distribution
Compute χ^2 statistic (multivariate version of DMW):

- Construct $m \times 1$ vector of MSPE differences; compute long run variance of differences; compute the usual quadratic form - $\chi^2($unadj.\)$" in our tables (West et al. (1993))

- This statistic has possible problems with size and power:
 - **size:** under our null, the vector of MSPE differences is not centered at zero
 - **power:** the alternative is one sided
 \Rightarrow even if the vector is recentered appropriately, to deliver correct size under the null, a large chi-squared value can come from the wrong tail of the distribution
Compute χ^2 statistic (multivariate version of DMW):

- Construct $m \times 1$ vector of MSPE differences; compute long run variance of differences; compute the usual quadratic form - "χ^2(unadj.)" in our tables (West et al. (1993))
- This statistic has possible problems with size and power:
 - **size:** under our null, the vector of MSPE differences is not centered at zero
 - **power:** the alternative is one sided
 \Rightarrow even if the vector is recentered appropriately, to deliver correct size under the null, a large chi-squared value can come from the wrong tail of the distribution
Existing procedures

Compute χ^2 statistic (multivariate version of DMW):

- Construct $m \times 1$ vector of MSPE differences; compute long run variance of differences; compute the usual quadratic form - ”χ^2(unadj.)” in our tables (West et al. (1993))
- This statistic has possible problems with size and power:
 - **size:** under our null, the vector of MSPE differences is not centered at zero
 - **power:** the alternative is one sided
 \Rightarrow even if the vector is recentered appropriately, to deliver correct size under the null, a large chi-squared value can come from the wrong tail of the distribution
Existing procedures (continued)

Simulation / Bootstrap:

- Reality check (White (2000), proposed for $m \sim T$),
 Test for superior predictive ability (Hansen (2005))
 - problem: might not account for dependence of predictions on
 estimated regression parameters under our null

- Simulate, including reestimation of forecasting models
 (Rapach and Wohar (2006))
 - possible problem: time intensive

Further alternative: Construct a set of pairwise comparisons,
adjust via Bonferroni or related procedure: low power
Simulation / Bootstrap:

- Reality check (White (2000), proposed for $m \sim T$),
 Test for superior predictive ability (Hansen (2005))
 - problem: might not account for dependence of predictions on estimated regression parameters under our null
- Simulate, including reestimation of forecasting models (Rapach and Wohar (2006))
 - possible problem: time intensive

Further alternative: Construct a set of pairwise comparisons, adjust via Bonferroni or related procedure: low power
Existing procedures (continued)

Simulation / Bootstrap:

- Reality check (White (2000), proposed for $m \sim T$),
 Test for superior predictive ability (Hansen (2005))
 - problem: might not account for dependence of predictions on estimated regression parameters under our null

- Simulate, including reestimation of forecasting models (Rapach and Wohar (2006))
 - possible problem: time intensive

Further alternative: Construct a set of pairwise comparisons, adjust via Bonferroni or related procedure: low power
Motivation

Proposals: MSPE-adjusted t-stats, χ^2

Existing procedures

Proposals

Structure of the Talk

Existing procedures (continued)

Simulation / Bootstrap:

- Reality check (White (2000), proposed for $m \sim T$), Test for superior predictive ability (Hansen (2005))
 - problem: might not account for dependence of predictions on estimated regression parameters under our null

- Simulate, including reestimation of forecasting models (Rapach and Wohar (2006))
 - possible problem: time intensive

Further alternative: Construct a set of pairwise comparisons, adjust via Bonferroni or related procedure: low power
Existing procedures (continued)

Simulation / Bootstrap:

- Reality check (White (2000), proposed for $m \sim T$), Test for superior predictive ability (Hansen (2005))
 - problem: might not account for dependence of predictions on estimated regression parameters under our null

- Simulate, including reestimation of forecasting models (Rapach and Wohar (2006))
 - possible problem: time intensive

Further alternative: Construct a set of pairwise comparisons, adjust via Bonferroni or related procedure: low power
Existing procedures (continued)

Simulation / Bootstrap:

- Reality check (White (2000), proposed for $m \sim T$), Test for superior predictive ability (Hansen (2005))
 - problem: might not account for dependence of predictions on estimated regression parameters under our null
- Simulate, including reestimation of forecasting models (Rapach and Wohar (2006))
 - possible problem: time intensive

Further alternative: Construct a set of pairwise comparisons, adjust via Bonferroni or related procedure: low power
Our proposals

- construct a vector of **MSPE differences adjusted** as in Clark and West (2006, 2007) to center vector at zero under the null
- compute a variance-covariance matrix for the vector of MSPE differences
- conduct inference via either of the following two options
 1. "max t-stat (adj.)": inference on the largest of the m adjusted t-statistics that compare null model one by one to each of the m larger models via the distribution of the maximum of correlated normals;
 2. "χ² (adj.)": inference via the usual χ² statistic

Key features:
- we take estimation uncertainty into account
- we use standard or easily computed critical values
Our proposals

- construct a vector of **MSPE differences adjusted** as in Clark and West (2006, 2007) to center vector at zero under the null
- compute a variance-covariance matrix for the vector of MSPE differences
- conduct inference via either of the following two options
 1. "max t-stat (adj.)": inference on the largest of the m adjusted t-statistics that compare null model one by one to each of the m larger models **via the distribution of the maximum of correlated normals**;
 2. "\(\chi^2 \) (adj.)": inference via the usual \(\chi^2 \) statistic

Key features:
- we take estimation uncertainty into account
- we use standard or easily computed critical values
Our proposals

- construct a vector of **MSPE differences adjusted** as in Clark and West (2006, 2007) to center vector at zero under the null
- compute a variance-covariance matrix for the vector of MSPE differences
- conduct inference via either of the following two options
 1. "max t-stat (adj.)": inference on the largest of the m adjusted t-statistics that compare null model one by one to each of the m larger models via the distribution of the maximum of correlated normals;
 2. "χ² (adj.)": inference via the usual χ² statistic

Key features:

- we take estimation uncertainty into account
- we use standard or easily computed critical values
Our proposals

- construct a vector of **MSPE differences adjusted** as in Clark and West (2006, 2007) to center vector at zero under the null
- compute a variance-covariance matrix for the vector of MSPE differences
- conduct inference via either of the following two options
 1. "max t-stat (adj.)": inference on the largest of the m adjusted t-statistics that compare null model one by one to each of the m larger models **via the distribution of the maximum of correlated normals**;
 2. "χ² (adj.)": inference via the usual χ² statistic

Key features:

- we take estimation uncertainty into account
- we use standard or easily computed critical values
Our proposals

- construct a vector of \textbf{MSPE differences adjusted} as in Clark and West (2006, 2007) to center vector at zero under the null
- compute a variance-covariance matrix for the vector of MSPE differences
- conduct inference via either of the following two options
 1. \textit{”max t-stat (adj.)”}: inference on the largest of the m adjusted t-statistics that compare null model one by one to each of the m larger models \textit{via the distribution of the maximum of correlated normals};
 2. \textit{”χ^2 (adj.)”}: inference via the usual χ^2 statistic

Key features:

- we take estimation uncertainty into account
- we use standard or easily computed critical values
Our proposals

- construct a vector of **MSPE differences adjusted** as in Clark and West (2006, 2007) to center vector at zero under the null
- compute a variance-covariance matrix for the vector of MSPE differences
- conduct inference via either of the following two options
 1. "max t-stat (adj.)": inference on the largest of the m adjusted t-statistics that compare null model one by one to each of the m larger models **via the distribution of the maximum of correlated normals**;
 2. "χ² (adj.)": inference via the usual χ² statistic

Key features:

- we take estimation uncertainty into account
- we use standard or easily computed critical values
Introduction

Proposed procedures: max t-stat (adjusted), adjusted χ^2

Simulation results

Empirical example

Conclusions
MSPE-adjusted t-stats: Intuition

Consider first a comparison of a parsimonious model to a single larger model (m=1, in our terminology); Example:

"model 0": $y_t = \beta_0 + \beta_1 y_{t-1} + e_{0t}$

"model 1": $y_t = \beta_0 + \beta_1 y_{t-1} + \beta_2 z_{t-1} + e_{1t}$

$H_0 : \sigma_0^2 - \sigma_1^2 = 0, \ H_A = \sigma_0^2 - \sigma_1^2 > 0$

under the null of equal forecast accuracy attempt to estimate parameters whose population values are zero

⇒ will inflate variance of larger model

⇒ MSPE of the null model will be strictly smaller than that of the larger model
MSPE-adjusted t-stats: Intuition

(for pairwise comparison, generalises to comparison of model sets)

- Consider first a comparison of a parsimonious model to a single larger model (m=1, in our terminology); Example:

 "model 0": \(y_t = \beta_0 + \beta_1 y_{t-1} + e_{0t} \)

 "model 1": \(y_t = \beta_0 + \beta_1 y_{t-1} + \beta_2 z_{t-1} + e_{1t} \)

- \(H_0 : \sigma_0^2 - \sigma_1^2 = 0, \ H_A = \sigma_0^2 - \sigma_1^2 > 0 \)

- under the null of equal forecast accuracy attempt to estimate parameters whose population values are zero

 \(\Rightarrow \) will inflate variance of larger model

 \(\Rightarrow \) MSPE of the null model will be strictly smaller than that of the larger model
MSPE-adjusted t-stats: Intuition

(For pairwise comparison, generalises to comparison of model sets)

- Consider first a comparison of a parsimonious model to a single larger model (m=1, in our terminology); Example:
 "model 0": \(y_t = \beta_0 + \beta_1 y_{t-1} + \epsilon_{0t} \)
 "model 1": \(y_t = \beta_0 + \beta_1 y_{t-1} + \beta_2 z_{t-1} + \epsilon_{1t} \)

- \(H_0 : \sigma_0^2 - \sigma_1^2 = 0, \quad H_A = \sigma_0^2 - \sigma_1^2 > 0 \)

- Under the null of equal forecast accuracy attempt to estimate parameters whose population values are zero
 \(\Rightarrow \) will inflate variance of larger model
 \(\Rightarrow \) MSPE of the null model will be strictly smaller than that of the larger model
Consider first a comparison of a parsimonious model to a single larger model (m=1, in our terminology); Example:
”model 0”: \(y_t = \beta_0 + \beta_1 y_{t-1} + \epsilon_{0t} \)
”model 1”: \(y_t = \beta_0 + \beta_1 y_{t-1} + \beta_2 z_{t-1} + \epsilon_{1t} \)
\(H_0 : \sigma^2_0 - \sigma^2_1 = 0, \ H_A = \sigma^2_0 - \sigma^2_1 > 0 \)
under the null of equal forecast accuracy attempt to estimate parameters whose population values are zero
⇒ will inflate variance of larger model
⇒ MSPE of the null model will be strictly smaller than that of the larger model
MSPE-adjusted t-stats: Intuition

(For pairwise comparison, generalises to comparison of model sets)

- Consider first a comparison of a parsimonious model to a single larger model (m=1, in our terminology); Example:
 "model 0": $y_t = \beta_0 + \beta_1 y_{t-1} + e_{0t}$
 "model 1": $y_t = \beta_0 + \beta_1 y_{t-1} + \beta_2 z_{t-1} + e_{1t}$
- $H_0 : \sigma_0^2 - \sigma_1^2 = 0$, $H_A = \sigma_0^2 - \sigma_1^2 > 0$
- Under the null of equal forecast accuracy attempt to estimate parameters whose population values are zero
 ⇒ will inflate variance of larger model
 ⇒ MSPE of the null model will be strictly smaller than that of the larger model
Consider first a comparison of a parsimonious model to a single larger model (m=1, in our terminology); Example:

"model 0": \(y_t = \beta_0 + \beta_1 y_{t-1} + \epsilon_{0t} \)

"model 1": \(y_t = \beta_0 + \beta_1 y_{t-1} + \beta_2 z_{t-1} + \epsilon_{1t} \)

\(H_0 : \sigma^2_0 - \sigma^2_1 = 0, \quad H_A = \sigma^2_0 - \sigma^2_1 > 0 \)

under the null of equal forecast accuracy attempt to estimate parameters whose population values are zero

\(\Rightarrow \) will inflate variance of larger model

\(\Rightarrow \) MSPE of the null model will be strictly smaller than that of the larger model
MSPE-adjusted t-stats: Intuition

\[P = \text{number of predictions and prediction errors} \]
\[R = \text{size of rolling regression sample used to estimate parameter} \]

Smoothed density estimates of

\[
\text{sample MSPE(null)} - \text{sample MSPE(alternative)} \left(\hat{\sigma}_0^2 - \hat{\sigma}_1^2 \right)
\]

across 1000 simulations:
Adjustment Clark and West, Pairwise model comparison

Clark and West (2006, 2007)

- magnitude of the downward shift is estimable; larger the larger number of extraneous regressors in the alternative model
- when comparing a parsimonious model to one other model
 - adjust difference in MSPEs by estimated downward shift
 - after adjustment, conduct inference in standard Diebold-Mariano-West (DMW) fashion

Denote Clark-West adjusted MSPE as
\[\tilde{f}_1 = \hat{\sigma}_0^2 - (\hat{\sigma}_1 - \text{adj.}) = \hat{\sigma}_0^2 - \hat{\sigma}_1^2 + P^{-1} \sum_t (\hat{y}_{0,t+1} - \hat{y}_{1,t+1})^2 \]
- \(\hat{\sigma}_0^2, \hat{\sigma}_1^2 \) = sample MSPE from null and alternative model
- \(\hat{y}_{0,t+1}, \hat{y}_{1,t+1} \) = one step ahead forecasts
- Corresponding t-statistic is \(P^{1/2} \tilde{f}_1 / \sqrt{\hat{\nu}_1} \)
- Clark and West: conduct inference via \(P^{1/2} \tilde{f}_1 / \sqrt{\hat{\nu}_1} \sim N(0,1) \)

Adjustment is intended to produce test statistics with good size
Adjustment Clark and West, Pairwise model comparison

Clark and West (2006, 2007)

- magnitude of the downward shift is estimable; larger the larger number of extraneous regressors in the alternative model
- when comparing a parsimonious model to one other model
 - adjust difference in MSPEs by estimated downward shift
 - after adjustment, conduct inference in standard Diebold-Mariano-West (DMW) fashion

Denote Clark-West adjusted MSPE as

\[
\tilde{f}_1 = \hat{\sigma}_0^2 - (\hat{\sigma}_1^2 - \text{adj.}) = \hat{\sigma}_0^2 - \hat{\sigma}_1^2 + P^{-1}\sum_t (\hat{y}_{0,t+1} - \hat{y}_{1,t+1})^2
\]

- \(\hat{\sigma}_0^2, \hat{\sigma}_1^2\) = sample MSPE from null and alternative model
- \(\hat{y}_{0,t+1}, \hat{y}_{1,t+1}\) = one step ahead forecasts
- Corresponding t-statistic is \(P^{1/2}\tilde{f}_1/\sqrt{\nu_1}\)

Clark and West: conduct inference via \(P^{1/2}\tilde{f}_1/\sqrt{\nu_1} \sim N(0, 1)\)

Adjustment is intended to produce test statistics with good size
Adjustment Clark and West, Pairwise model comparison

Clark and West (2006, 2007)

- magnitude of the downward shift is estimable; larger the larger number of extraneous regressors in the alternative model
- when comparing a parsimonious model to one other model
 - adjust difference in MSPEs by estimated downward shift
 - after adjustment, conduct inference in standard Diebold-Mariano-West (DMW) fashion

Denote Clark-West adjusted MSPE as

\[\bar{f}_1 = \hat{\sigma}_0^2 - (\hat{\sigma}_1^2 - \text{adj.}) = \hat{\sigma}_0^2 - \hat{\sigma}_1^2 + P^{-1} \Sigma_t (\hat{y}_{0,t+1} - \hat{y}_{1,t+1})^2 \]

- \(\hat{\sigma}_0^2, \hat{\sigma}_1^2 \) = sample MSPE from null and alternative model
- \(\hat{y}_{0,t+1}, \hat{y}_{1,t+1} \) = one step ahead forecasts
- Corresponding t-statistic is \(P^{1/2} \bar{f}_1 / \sqrt{\hat{\nu}_1} \)

- Clark and West: conduct inference via \(P^{1/2} \bar{f}_1 / \sqrt{\hat{\nu}_1} \sim N(0, 1) \)

Adjustment is intended to produce test statistics with good size
Adjustment Clark and West, Pairwise model comparison

Clark and West (2006, 2007)

- magnitude of the downward shift is estimable; larger the larger number of extraneous regressors in the alternative model
- when comparing a parsimonious model to one other model
 - adjust difference in MSPEs by estimated downward shift
 - after adjustment, conduct inference in standard Diebold-Mariano-West (DMW) fashion

- Denote Clark-West adjusted MSPE as
 \[\bar{f}_1 = \hat{\sigma}_0^2 - (\hat{\sigma}_1 - \text{adj.}) = \hat{\sigma}_0^2 - \hat{\sigma}_1^2 + P^{-1} \Sigma_t (\hat{y}_{0,t+1} - \hat{y}_{1,t+1})^2 \]
 - \(\hat{\sigma}_0^2, \hat{\sigma}_1^2 \) = sample MSPE from null and alternative model
 - \(\hat{y}_{0,t+1}, \hat{y}_{1,t+1} \) = one step ahead forecasts
 - Corresponding t-statistic is \(P^{1/2} \bar{f}_1 / \sqrt{\hat{\nu}_1} \)
 - Clark and West: conduct inference via \(P^{1/2} \bar{f}_1 / \sqrt{\hat{\nu}_1} \sim N(0, 1) \)

Adjustment is intended to produce test statistics with good size
Adjustment Clark and West, Pairwise model comparison

Clark and West (2006, 2007)

- magnitude of the downward shift is estimable; larger the larger number of extraneous regressors in the alternative model
- when comparing a parsimonious model to one other model
 - adjust difference in MSPEs by estimated downward shift
 - after adjustment, conduct inference in standard Diebold-Mariano-West (DMW) fashion

Denote Clark-West adjusted MSPE as
\[\bar{f}_1 = \hat{\sigma}_0^2 - (\hat{\sigma}_1^2 - \text{adj.}) = \hat{\sigma}_0^2 - \hat{\sigma}_1^2 + P^{-1} \Sigma_t (\hat{y}_{0,t+1} - \hat{y}_{1,t+1})^2 \]

- \(\hat{\sigma}_0^2, \hat{\sigma}_1^2 \) = sample MSPE from null and alternative model
- \(\hat{y}_{0,t+1}, \hat{y}_{1,t+1} \) = one step ahead forecasts
- Corresponding t-statistic is \(P^{1/2} \bar{f}_1 / \sqrt{\hat{\nu}_1} \)
- Clark and West: conduct inference via \(P^{1/2} \bar{f}_1 / \sqrt{\hat{\nu}_1} \sim N(0, 1) \)

Adjustment is intended to produce test statistics with good size
Adjustment Clark and West, Pairwise model comparison

Clark and West (2006, 2007)

- magnitude of the downward shift is estimable; larger the larger number of extraneous regressors in the alternative model
- when comparing a parsimonious model to one other model
 - adjust difference in MSPEs by estimated downward shift
 - after adjustment, conduct inference in standard Diebold-Mariano-West (DMW) fashion

Denote Clark-West adjusted MSPE as

\[\bar{f}_1 = \hat{\sigma}_0^2 - (\hat{\sigma}_1^2 - \text{adj.}) = \hat{\sigma}_0^2 - \hat{\sigma}_1^2 + P^{-1} \Sigma_t (\hat{y}_{0,t+1} - \hat{y}_{1,t+1})^2 \]

- \(\hat{\sigma}_0^2, \hat{\sigma}_1^2 \) = sample MSPE from null and alternative model
- \(\hat{y}_{0,t+1}, \hat{y}_{1,t+1} \) = one step ahead forecasts
- Corresponding t-statistic is \(P^{1/2} \bar{f}_1 / \sqrt{\nu_1} \)
- Clark and West: conduct inference via \(P^{1/2} \bar{f}_1 / \sqrt{\nu_1} \sim N(0, 1) \)

Adjustment is intended to produce test statistics with good size
Adjustment Clark and West, Pairwise model comparison

Clark and West (2006, 2007)

- magnitude of the downward shift is estimable; larger the larger number of extraneous regressors in the alternative model
- when comparing a parsimonious model to one other model
 - adjust difference in MSPEs by estimated downward shift
 - after adjustment, conduct inference in standard Diebold-Mariano-West (DMW) fashion
- Denote Clark-West adjusted MSPE as
 \[
 \bar{f}_1 = \hat{\sigma}_0^2 - (\hat{\sigma}_1^2 - \text{adj.}) = \hat{\sigma}_0^2 - \hat{\sigma}_1^2 + P^{-1}\Sigma_t(\hat{y}_{0,t+1} - \hat{y}_{1,t+1})^2
 \]
 - \(\hat{\sigma}_0^2, \hat{\sigma}_1^2\) = sample MSPE from null and alternative model
 - \(\hat{y}_{0,t+1}, \hat{y}_{1,t+1}\) = one step ahead forecasts
 - Corresponding t-statistic is \(P^{1/2}\bar{f}_1/\sqrt{\hat{\nu}_1}\)
- Clark and West: conduct inference via \(P^{1/2}\bar{f}_1/\sqrt{\hat{\nu}_1} \sim N(0, 1)\)

Adjustment is intended to produce test statistics with good size
Adjustment Clark and West, Pairwise model comparison

Clark and West (2006, 2007)

- magnitude of the downward shift is estimable; larger the larger number of extraneous regressors in the alternative model
- when comparing a parsimonious model to one other model
 - adjust difference in MSPEs by estimated downward shift
 - after adjustment, conduct inference in standard Diebold-Mariano-West (DMW) fashion

Denote Clark-West adjusted MSPE as

\[\bar{f}_1 = \hat{\sigma}_0^2 - (\hat{\sigma}_1^2 - \text{adj.}) = \hat{\sigma}_0^2 - \hat{\sigma}_1^2 + P^{-1}\Sigma_t (\hat{y}_{0,t+1} - \hat{y}_{1,t+1})^2 \]

- \(\hat{\sigma}_0^2, \hat{\sigma}_1^2 = \) sample MSPE from null and alternative model
- \(\hat{y}_{0,t+1}, \hat{y}_{1,t+1} = \) one step ahead forecasts

Corresponding t-statistic is \(P^{1/2} \bar{f}_1 / \sqrt{\hat{v}_1} \)

- Clark and West: conduct inference via \(P^{1/2} \bar{f}_1 / \sqrt{\hat{v}_1} \sim N(0, 1) \)

Adjustment is intended to produce test statistics with good size
Adjustment Clark and West, Pairwise model comparison

Clark and West (2006, 2007)

- magnitude of the downward shift is estimable; larger the larger number of extraneous regressors in the alternative model
- when comparing a parsimonious model to one other model
 - adjust difference in MSPEs by estimated downward shift
 - after adjustment, conduct inference in standard Diebold-Mariano-West (DMW) fashion

Denote Clark-West adjusted MSPE as

\[\tilde{f}_1 = \hat{\sigma}_0^2 - (\hat{\sigma}_1^2 - \text{adj.}) = \hat{\sigma}_0^2 - \hat{\sigma}_1^2 + P^{-1} \Sigma_t (\hat{y}_{0,t+1} - \hat{y}_{1,t+1})^2 \]

- \(\hat{\sigma}_0^2, \hat{\sigma}_1^2 \) = sample MSPE from null and alternative model
- \(\hat{y}_{0,t+1}, \hat{y}_{1,t+1} \) = one step ahead forecasts
- Corresponding t-statistic is \(P^{1/2} \tilde{f}_1 / \sqrt{\hat{\nu}_1} \)

Clark and West: conduct inference via \(P^{1/2} \tilde{f}_1 / \sqrt{\hat{\nu}_1} \sim N(0, 1) \)

Adjustment is intended to produce test statistics with good size
Adjustment Clark and West, Pairwise model comparison

Clark and West (2006, 2007)

- magnitude of the downward shift is estimable; larger the larger number of extraneous regressors in the alternative model
- when comparing a parsimonious model to one other model
 - adjust difference in MSPEs by estimated downward shift
 - after adjustment, conduct inference in standard Diebold-Mariano-West (DMW) fashion

Denote Clark-West adjusted MSPE as
\[
\bar{f}_1 = \sigma_0^2 - (\sigma_1^2 - \text{adj.}) = \sigma_0^2 - \sigma_1^2 + P^{-1} \Sigma_t (\hat{y}_{0,t+1} - \hat{y}_{1,t+1})^2
\]

- \(\sigma_0^2, \sigma_1^2\) = sample MSPE from null and alternative model
- \(\hat{y}_{0,t+1}, \hat{y}_{1,t+1}\) = one step ahead forecasts
- Corresponding t-statistic is \(P^{1/2} \frac{\bar{f}_1}{\sqrt{\nu_1}}\)
- Clark and West: conduct inference via \(P^{1/2} \frac{\bar{f}_1}{\sqrt{\nu_1}} \sim N(0, 1)\)

Adjustment is intended to produce test statistics with good size
Adjustment Clark and West, Pairwise model comparison

Clark and West (2006, 2007)

- magnitude of the downward shift is estimable; larger the larger number of extraneous regressors in the alternative model
- when comparing a parsimonious model to one other model
 - adjust difference in MSPEs by estimated downward shift
 - after adjustment, conduct inference in standard Diebold-Mariano-West (DMW) fashion
- Denote Clark-West adjusted MSPE as
 $$\bar{f}_1 = \hat{\sigma}_0^2 - (\hat{\sigma}_1^2 - \text{adj.}) = \hat{\sigma}_0^2 - \hat{\sigma}_1^2 + P^{-1} \Sigma_t (\hat{y}_{0,t+1} - \hat{y}_{1,t+1})^2$$
 - $\hat{\sigma}_0^2, \hat{\sigma}_1^2$ = sample MSPE from null and alternative model
 - $\hat{y}_{0,t+1}, \hat{y}_{1,t+1}$ = one step ahead forecasts
 - Corresponding t-statistic is $P^{1/2} \bar{f}_1 / \sqrt{\nu_1}$
- Clark and West: conduct inference via $P^{1/2} \bar{f}_1 / \sqrt{\nu_1} \sim N(0, 1)$

Adjustment is intended to produce test statistics with good size
Adjustment Clark and West, Pairwise model comparison

Clark and West (2006, 2007)

- magnitude of the downward shift is estimable; larger the larger number of extraneous regressors in the alternative model
- when comparing a parsimonious model to one other model
 - adjust difference in MSPEs by estimated downward shift
 - after adjustment, conduct inference in standard Diebold-Mariano-West (DMW) fashion

Denote Clark-West adjusted MSPE as

\[\bar{f}_1 = \hat{\sigma}_0^2 - (\hat{\sigma}_1^2 - \text{adj.}) = \hat{\sigma}_0^2 - \hat{\sigma}_1^2 + P^{-1} \Sigma_t (\hat{y}_{0,t+1} - \hat{y}_{1,t+1})^2 \]

- \(\hat{\sigma}_0^2, \hat{\sigma}_1^2 = \) sample MSPE from null and alternative model
- \(\hat{y}_{0,t+1}, \hat{y}_{1,t+1} = \) one step ahead forecasts
- Corresponding t-statistic is \(P^{1/2} \bar{f}_1 / \sqrt{\nu_1} \)
- Clark and West: conduct inference via \(P^{1/2} \bar{f}_1 / \sqrt{\nu_1} \sim N(0, 1) \)

Adjustment is intended to produce test statistics with good size
"Max t-stat (adjusted)" statistic

Our first proposal for comparison of model sets

- Compute adjusted t-statistic for each of the m model comparisons; Suppose \(m = 2 \) alternative models for simplicity. We propose basing inference on

\[
P^{1/2} \begin{pmatrix}
\bar{f}_1 \\
\sqrt{\hat{\nu}_1}
\end{pmatrix} \sim_A \mathcal{N}(0, \Omega), \quad \Omega = \begin{pmatrix} 1 & \rho \\ \rho & 1 \end{pmatrix}.
\]

- Here, \(\rho \) is the correlation between the two t-statistics.
Our first proposal for comparison of model sets

- Compute adjusted t-statistic for each of the m model comparisons; Suppose $m = 2$ alternative models for simplicity.

We propose basing inference on

$$p^{1/2} \begin{pmatrix} \bar{f}_1 \\ \sqrt{\hat{\nu}_1} \\ \bar{f}_2 \\ \sqrt{\hat{\nu}_2} \end{pmatrix} \sim A N(0, \Omega), \ \Omega = \begin{pmatrix} 1 & \rho \\ \rho & 1 \end{pmatrix}.$$

- Here, ρ is the correlation between the two t-statistics.
Our first proposal for comparison of model sets

- Compute adjusted t-statistic for each of the m model comparisons; Suppose $m = 2$ alternative models for simplicity. We propose basing inference on

$$P^{1/2} \left(\frac{\overline{f}_1}{\sqrt{\hat{\nu}_1}}, \frac{\overline{f}_2}{\sqrt{\hat{\nu}_2}} \right) \sim_A \mathcal{N}(0, \Omega), \quad \Omega = \begin{pmatrix} 1 & \rho \\ \rho & 1 \end{pmatrix}.$$

- Here, ρ is the correlation between the two t-statistics.
"Max t-stat (adjusted)" statistic

Inference via the distribution of the maximum of correlated normals

- Let \(\hat{z} \) be the larger of the two t-statistics
 \[
 \hat{z} = \max(P^{1/2} \bar{f}_1/\sqrt{\hat{\nu}_1}, \, \bar{f}_2/\sqrt{\hat{\nu}_2}) = \text{max t-stat (adj.).}
 \]

- Reject the null when \(\hat{z} \) is sufficiently large (one-tailed test).

Critical values for \(m=2 \):

<table>
<thead>
<tr>
<th>(\rho)</th>
<th>1</th>
<th>0.8</th>
<th>0.6</th>
<th>0.4</th>
<th>0.2</th>
<th>0</th>
<th>-0.2</th>
<th>-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>size=5 %</td>
<td>1.645</td>
<td>1.846</td>
<td>1.900</td>
<td>1.929</td>
<td>1.946</td>
<td>1.955</td>
<td>1.959</td>
<td>1.960</td>
</tr>
<tr>
<td>size=10 %</td>
<td>1.282</td>
<td>1.493</td>
<td>1.556</td>
<td>1.594</td>
<td>1.617</td>
<td>1.632</td>
<td>1.640</td>
<td>1.645</td>
</tr>
</tbody>
</table>
"Max t-stat (adjusted)" statistic

Inference via the distribution of the maximum of correlated normals

- Let \(\hat{z} \) be the larger of the two t-statistics

 \[
 \hat{z} = \max\left(P^{1/2} \bar{f}_1 / \sqrt{\nu_1}, \bar{f}_2 / \sqrt{\nu_2} \right) = \text{max t-stat (adj.)}.
 \]

- Reject the null when \(\hat{z} \) is sufficiently large (one-tailed test).
- Critical values for \(m=2 \):

<table>
<thead>
<tr>
<th>(\rho)</th>
<th>1</th>
<th>0.8</th>
<th>0.6</th>
<th>0.4</th>
<th>0.2</th>
<th>0</th>
<th>-0.2</th>
<th>-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>size=5 %</td>
<td>1.645</td>
<td>1.846</td>
<td>1.900</td>
<td>1.929</td>
<td>1.946</td>
<td>1.955</td>
<td>1.959</td>
<td>1.960</td>
</tr>
<tr>
<td>size=10 %</td>
<td>1.282</td>
<td>1.493</td>
<td>1.556</td>
<td>1.594</td>
<td>1.617</td>
<td>1.632</td>
<td>1.640</td>
<td>1.645</td>
</tr>
</tbody>
</table>
"Max t-stat (adjusted)" statistic

Inference via the distribution of the maximum of correlated normals

Let \hat{z} be the larger of the two t-statistics

$$\hat{z} = \max(P^{1/2} \tilde{f}_1/\sqrt{\hat{\nu}_1}, \, \tilde{f}_2/\sqrt{\hat{\nu}_2}) = \max \text{ t-stat (adj.)}.$$

Reject the null when \hat{z} is sufficiently large (one-tailed test).

Critical values for $m=2$:

<table>
<thead>
<tr>
<th>ρ</th>
<th>1</th>
<th>0.8</th>
<th>0.6</th>
<th>0.4</th>
<th>0.2</th>
<th>0</th>
<th>-0.2</th>
<th>-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>size=5 %</td>
<td>1.645</td>
<td>1.846</td>
<td>1.900</td>
<td>1.929</td>
<td>1.946</td>
<td>1.955</td>
<td>1.959</td>
<td>1.960</td>
</tr>
<tr>
<td>size=10 %</td>
<td>1.282</td>
<td>1.493</td>
<td>1.556</td>
<td>1.594</td>
<td>1.617</td>
<td>1.632</td>
<td>1.640</td>
<td>1.645</td>
</tr>
</tbody>
</table>

Kirstin Hubrich and Kenneth West
FORECAST EVALUATION OF SMALL NESTED MODEL SETS
"Max t-stat (adjusted)" statistic

Inference via the distribution of the maximum of correlated normals

Let \(\hat{z} \) be the larger of the two t-statistics

\[
\hat{z} = \max(P^{1/2} \bar{f}_1 / \sqrt{\hat{\nu}_1}, \bar{f}_2 / \sqrt{\hat{\nu}_2}) = \text{max t-stat (adj.).}
\]

- Reject the null when \(\hat{z} \) is sufficiently large (one-tailed test).
- Critical values for \(m=2 \):

<table>
<thead>
<tr>
<th>(\rho)</th>
<th>1</th>
<th>0.8</th>
<th>0.6</th>
<th>0.4</th>
<th>0.2</th>
<th>0</th>
<th>-0.2</th>
<th>-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>size=5 %</td>
<td>1.645</td>
<td>1.846</td>
<td>1.900</td>
<td>1.929</td>
<td>1.946</td>
<td>1.955</td>
<td>1.959</td>
<td>1.960</td>
</tr>
<tr>
<td>size=10 %</td>
<td>1.282</td>
<td>1.493</td>
<td>1.556</td>
<td>1.594</td>
<td>1.617</td>
<td>1.632</td>
<td>1.640</td>
<td>1.645</td>
</tr>
</tbody>
</table>
"Max t-stat (adjusted)" statistic

Inference via the distribution of the maximum of correlated normals

- Let \(\hat{z} \) be the larger of the two t-statistics
 \[
 \hat{z} = \max \left(\sqrt{P} \bar{f}_1 / \sqrt{\hat{\nu}_1}, \quad \bar{f}_2 / \sqrt{\hat{\nu}_2} \right) = \text{max t-stat (adj.)}.
 \]

- Reject the null when \(\hat{z} \) is sufficiently large (one-tailed test).

Critical values for \(m=2 \):

<table>
<thead>
<tr>
<th>(\rho)</th>
<th>1</th>
<th>0.8</th>
<th>0.6</th>
<th>0.4</th>
<th>0.2</th>
<th>0</th>
<th>-0.2</th>
<th>-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>size=5 %</td>
<td>1.645</td>
<td>1.846</td>
<td>1.900</td>
<td>1.929</td>
<td>1.946</td>
<td>1.955</td>
<td>1.959</td>
<td>1.960</td>
</tr>
<tr>
<td>size=10 %</td>
<td>1.282</td>
<td>1.493</td>
<td>1.556</td>
<td>1.594</td>
<td>1.617</td>
<td>1.632</td>
<td>1.640</td>
<td>1.645</td>
</tr>
</tbody>
</table>
"Max t-stat (adjusted)" statistic: critical values

- critical values in tables obtained by numerically integrating the relevant density
- More generally, for arbitrary $m > 1$, one can obtain a p-value from a set of draws from a normal distribution:
 - compute m MSPE-adjusted t-statistics, each of which compares benchmark model to one of the m larger models
 - compute $\hat{\Omega}$: mxm sample correlation matrix of m t-statistics
 - do (say) 50,000 draws on $mx1$ vector $\sim N(0, \hat{\Omega})$, saving the maximum value from each draw
 - use the distribution of 50,000 maxima to compute the p-value of the largest of the m MSPE-adjusted t-statistics computed from the actual data
 - Whatever the method of obtaining the critical value, we call this procedure "max t-stat (adj.)"
"Max t-stat (adjusted)" statistic: critical values

- Critical values in tables obtained by numerically integrating the relevant density.
- More generally, for arbitrary $m > 1$, one can obtain a p-value from a set of draws from a normal distribution:
 - Compute m MSPE-adjusted t-statistics, each of which compares benchmark model to one of the m larger models.
 - Compute $\hat{\Omega}$: $m \times m$ sample correlation matrix of m t-statistics.
 - Do (say) 50,000 draws on $m \times 1$ vector $\sim \mathcal{N}(0, \hat{\Omega})$, saving the maximum value from each draw.
 - Use the distribution of 50,000 maxima to compute the p-value of the largest of the m MSPE-adjusted t-statistics computed from the actual data.

Whatever the method of obtaining the critical value, we call this procedure "max t-stat (adj.)"
"Max t-stat (adjusted)" statistic: critical values

- Critical values in tables obtained by numerically integrating the relevant density.
- More generally, for arbitrary $m > 1$, one can obtain a p-value from a set of draws from a normal distribution:
 - Compute m MSPE-adjusted t-statistics, each of which compares benchmark model to one of the m larger models.
 - Compute $\hat{\Omega}$: $m \times m$ sample correlation matrix of m t-statistics.
 - Do (say) 50,000 draws on $m \times 1$ vector $\sim N(0, \hat{\Omega})$, saving the maximum value from each draw.
 - Use the distribution of 50,000 maxima to compute the p-value of the largest of the m MSPE-adjusted t-statistics computed from the actual data.

Whatever the method of obtaining the critical value, we call this procedure "max t-stat (adj.)"
"Max t-stat (adjusted)" statistic: critical values

- Critical values in tables obtained by numerically integrating the relevant density.
- More generally, for arbitrary \(m > 1 \), one can obtain a p-value from a set of draws from a normal distribution:
 - Compute \(m \) MSPE-adjusted t-statistics, each of which compares benchmark model to one of the \(m \) larger models.
 - Compute \(\hat{\Omega} := \text{mxm sample correlation matrix of m t-statistics} \).
 - Do (say) 50,000 draws on \(\text{mx1 vector } \sim N(0, \hat{\Omega}) \), saving the maximum value from each draw.
 - Use the distribution of 50,000 maxima to compute the p-value of the largest of the \(m \) MSPE-adjusted t-statistics computed from the actual data.

 Whatever the method of obtaining the critical value, we call this procedure "max t-stat (adj.)".
Proposals: MSPE-adjusted t-stats, χ^2

Simulation results

Empirical example

Conclusions

Further Research

Adjustment

"Max t-stat (adj.)" statistic

χ^2

Theoretical justification

Encompassing Statistic

χ^2 statistic (adjusted)

Second proposal for comparison of model sets

- compute m adjusted differences in MSPEs
- compute variance or long run variance of $mx1$ vector of adjusted differences
- compute usual quadratic form, use critical values from $\chi^2(m)$

"χ^2 (adj.)" = $P\bar{f}'\hat{V}^{-1}\bar{f}$

with $\bar{f} = \hat{\sigma}_0^2 - (\hat{\sigma}_i^2 - (adj.))$ for $i = 1, ..., m$

⇒ possible sacrifice in power given the one-sided nature of the test
Motivation

Proposals: MSPE-adjusted t-stats, χ^2

Simulation results
Empirical example
Conclusions
Further Research

Adjustment

"Max t-stat (adj.)" statistic

χ^2

Theoretical justification

Encompassing Statistic

χ^2 statistic (adjusted)

Second proposal for comparison of model sets

- compute m adjusted differences in MSPEs
- compute variance or long run variance of $mx1$ vector of adjusted differences
- compute usual quadratic form, use critical values from $\chi^2(m)$

"χ^2 (adj.)" = $P\tilde{\bar{f}}' \hat{V}^{-1} \tilde{f}$

with $\tilde{f} = \hat{\sigma}_0^2 - (\hat{\sigma}_i^2 - (adj.))$ for $i = 1, ..., m$

⇒ possible sacrifice in power given the one-sided nature of the test

Kirstin Hubrich and Kenneth West

FORECAST EVALUATION OF SMALL NESTED MODEL SETS
\(\chi^2 \) statistic (adjusted)

Second proposal for comparison of model sets

- Compute \(m \) adjusted differences in MSPEs
- Compute variance or long run variance of \(mx1 \) vector of adjusted differences
- Compute usual quadratic form, use critical values from \(\chi^2(m) \)
- \(\chi^2 \) (adj.) = \(P\bar{f}'\hat{V}^{-1}\bar{f} \)

\[\bar{f} = \hat{\sigma}_0^2 - (\hat{\sigma}_i^2 - (adj.)) \text{ for } i = 1, ..., m \]

⇒ possible sacrifice in power given the one-sided nature of the test
\(\chi^2 \) statistic (adjusted)

Second proposal for comparison of model sets

- compute \(m \) adjusted differences in MSPEs
- compute variance or long run variance of \(mx1 \) vector of adjusted differences
- compute usual quadratic form, use critical values from \(\chi^2(m) \)

\["\chi^2 \text{ (adj.)} = P\bar{\bar{f}}' \hat{V}^{-1}\bar{\bar{f}} \]

with \(\bar{\bar{f}} = \hat{\sigma}_0^2 - (\hat{\sigma}_i^2 - \text{(adj.)}) \) for \(i = 1, ..., m \)

\(\Rightarrow \) possible sacrifice in power given the one-sided nature of the test
\(\chi^2 \) statistic (adjusted)

Second proposal for comparison of model sets

- compute \(m \) adjusted differences in MSPEs
- compute variance or long run variance of \(mx1 \) vector of adjusted differences
- compute usual quadratic form, use critical values from \(\chi^2(m) \)
- \(\chi^2 \) (adj.) = \(P\bar{f}'\hat{V}^{-1}\bar{f} \)

with \(\bar{f} = \sigma_0^2 - (\hat{\sigma}_i^2 - (adj.)) \) for \(i = 1, ..., m \)

⇒ possible sacrifice in power given the one-sided nature of the test
\[\chi^2 \text{ statistic (adjusted)} \]

Second proposal for comparison of model sets

- compute \(m \) adjusted differences in MSPEs
- compute variance or long run variance of \(mx1 \) vector of adjusted differences
- compute usual quadratic form, use critical values from \(\chi^2(m) \)
- \(" \chi^2 \text{ (adj.)}" = P \bar{f}' \hat{V}^{-1} \bar{f} \)

with \(\bar{f} = \hat{\sigma}_0^2 - (\hat{\sigma}_i^2 - (\text{adj.})) \) for \(i = 1, \ldots, m \)

\(\Rightarrow \) possible sacrifice in power given the one-sided nature of the test
Theoretical justification for our procedures

- asymptotic validity of use of normal distribution follows from conditions such as in Giacomini and White (2007):
 ⇒ rolling windows (asymptotics: R fixed, P grows); null model: white noise; also for multistep forecasts if direct method used

- approximate asymptotic validity of normal distribution for pairwise model comparison (m=1) follows from Clark and McCracken (2001, 2005) asymptotics:
 ⇒ rolling and recursive windows (asymptotics: P grows at slower rate than R, i.e. \(P/R \to 0 \) as T grows); forecasts from null model rely on estimated regression parameters; generally for one-step ahead forecasts, for multistep: depends on DGP
 - we conjecture approximate asymptotic validity for \(m > 1 \) (see paper for more details)
Theoretical justification for our procedures

- Asymptotic validity of use of normal distribution follows from conditions such as in Giacomini and White (2007):
 ⇒ rolling windows (asymptotics: \(R \) fixed, \(P \) grows); null model: white noise; also for multistep forecasts if direct method used

- Approximate asymptotic validity of normal distribution for pairwise model comparison (\(m=1 \)) follows from Clark and McCracken (2001, 2005) asymptotics:
 ⇒ rolling and recursive windows (asymptotics: \(P \) grows at slower rate than \(R \), i.e. \(P/R \to 0 \) as \(T \) grows); forecasts from null model rely on estimated regression parameters; generally for one-step ahead forecasts, for multistep: depends on DGP
 - We conjecture approximate asymptotic validity for \(m > 1 \) (see paper for more details)
Theoretical justification for our procedures

- asymptotic validity of use of normal distribution follows from conditions such as in Giacomini and White (2007):
 \[\Rightarrow \text{rolling windows (asymptotics: } R \text{ fixed, } P \text{ grows); null model: white noise;} \]
 \[\Rightarrow \text{also for multistep forecasts if direct method used} \]

- approximate asymptotic validity of normal distribution for pairwise model comparison \((m=1) \) follows from Clark and McCracken (2001, 2005) asymptotics:
 \[\Rightarrow \text{rolling and recursive windows (asymptotics: } P \text{ grows at slower rate than } R, \text{ i.e. } P/R \to 0 \text{ as } T \text{ grows); forecasts from null model rely on estimated regression parameters; generally for one-step ahead forecasts, for multistep: depends on DGP} \]
 \[\Rightarrow \text{we conjecture approximate asymptotic validity for } m > 1 \text{ (see paper for more details)} \]
Theoretical justification for our procedures

- asymptotic validity of use of normal distribution follows from conditions such as in Giacomini and White (2007):
 - rolling windows (asymptotics: R fixed, P grows); null model: white noise; also for multistep forecasts if direct method used

- approximate asymptotic validity of normal distribution for pairwise model comparison (m=1) follows from Clark and McCracken (2001, 2005) asymptotics:
 - rolling and recursive windows (asymptotics: P grows at slower rate than R, i.e. \(P/R \rightarrow 0 \) as \(T \) grows); forecasts from null model rely on estimated regression parameters; generally for one-step ahead forecasts, for multistep: depends on DGP
 - we conjecture approximate asymptotic validity for \(m > 1 \) (see paper for more details)
Theoretical justification for our procedures

- Asymptotic validity of use of normal distribution follows from conditions such as in Giacomini and White (2007):
 ⇒ rolling windows (asymptotics: R fixed, P grows); null model: white noise; also for multistep forecasts if direct method used.

- Approximate asymptotic validity of normal distribution for pairwise model comparison ($m=1$) follows from Clark and McCracken (2001, 2005) asymptotics:
 ⇒ rolling and recursive windows (asymptotics: P grows at slower rate than R, i.e. $P/R \to 0$ as T grows); forecasts from null model rely on estimated regression parameters; generally for one-step ahead forecasts, for multistep: depends on DGP.
 - We conjecture approximate asymptotic validity for $m > 1$ (see paper for more details).
• **Note:** Statistic based on adjusted difference in MSPEs is algebraically identical with the encompassing statistic:

\[
\hat{f}_{i,t+1} = \hat{e}_{0,t+1}^2 - (\hat{e}_{i,t+1}^2 - (\hat{y}_{0,t+1} - \hat{y}_{i,t+1})^2)
\]

\[
= \hat{e}_{0,t+1}^2 - \hat{e}_{i,t+1}^2 + (\hat{y}_{0,t+1} - \hat{y}_{i,t+1})^2
\]

\[
= \hat{e}_{0,t+1}^2 - \hat{e}_{i,t+1}^2 + (\hat{y}_{0,t+1} + y_{t+1} - y_{t+1} - \hat{y}_{i,t+1})^2
\]

\[
= 2\hat{e}_{0,t+1}^2 - 2\hat{e}_{0,t+1}\hat{e}_{i,t+1}
\]

\[
= 2\hat{e}_{0,t+1}(\hat{e}_{0,t+1} - \hat{e}_{i,t+1})
\]

⇒ we provide an encompassing test for small model sets, extending pairwise encompassing test literature; we explicitly allow for estimation uncertainty in contrast to Harvey and Newbold (2000);
• **Note:** Statistic based on adjusted difference in MSPEs is algebraically identical with the encompassing statistic:

\[
\hat{f}_{i,t+1} = \hat{e}^2_{0,t+1} - \left(\hat{e}^2_{i,t+1} - (\hat{y}_{0,t+1} - \hat{y}_i,t+1)^2 \right)
= \hat{e}^2_{0,t+1} - \hat{e}^2_{i,t+1} + (\hat{y}_{0,t+1} - \hat{y}_i,t+1)^2
= \hat{e}^2_{0} - \hat{e}^2_{i} + (\hat{y}_{0,t+1} + y_{t+1} - y_{t+1} - \hat{y}_i,t+1)^2
= 2\hat{e}^2_{0,t+1} - 2\hat{e}_{0,t+1}\hat{e}_{i,t+1}
= 2\hat{e}_{0,t+1}(\hat{e}_{0,t+1} - \hat{e}_{i,t+1})
\]

⇒ we provide an encompassing test for small model sets, extending pairwise encompassing test literature; we explicitly allow for estimation uncertainty in contrast to Harvey and Newbold (2000);
Note: Statistic based on adjusted difference in MSPEs is algebraically identical with the encompassing statistic:

\[
\hat{f}_{i,t+1} = \hat{e}_{0,t+1}^2 - (\hat{e}_{i,t+1}^2 - (\hat{y}_{0,t+1} - \hat{y}_i,t+1)^2)
\]

\[
= \hat{e}_{0,t+1}^2 - \hat{e}_{i,t+1}^2 + (\hat{y}_{0,t+1} - \hat{y}_i,t+1)^2
\]

\[
= \hat{e}_0^2 - \hat{e}_i^2 + (\hat{y}_{0,t+1} + y_{t+1} - y_{t+1} - \hat{y}_i,t+1)^2
\]

\[
= 2\hat{e}_{0,t+1}^2 - 2\hat{e}_{0,t+1}\hat{e}_{i,t+1}
\]

\[
= 2\hat{e}_{0,t+1}(\hat{e}_{0,t+1} - \hat{e}_{i,t+1})
\]

⇒ we provide an encompassing test for small model sets, extending pairwise encompassing test literature; we explicitly allow for estimation uncertainty in contrast to Harvey and Newbold (2000);
Simulation design

Our simulations compare "max t-stat (adj.)" and "χ^2(adj.)" with

- "χ^2(unadj.)" proceeds as does "χ^2(adj.)", but uses raw rather than adjusted differences in MSPEs
- White’s (2000) bootstrap reality check

Simulation set-up (macro and finance DGPs):

- Macro DGP: (y_{1t}, y_{2t}, ..., y_{it})′ follows a VAR(1)
- Null model ⇒ univariate AR(1) in y_t
- m=2 and m=4 alternative models, each of which uses a constant + one lag of y_t + one lag of other variables
- rolling (and recursive) samples; nominal size 10% (5%)
Simulation design

Our simulations compare "max t-stat (adj.)" and "\(\chi^2(\text{adj.}) \)" with

- "\(\chi^2(\text{unadj.}) \)" proceeds as does "\(\chi^2(\text{adj.}) \)" but uses raw rather than adjusted differences in MSPEs
- White’s (2000) bootstrap reality check

Simulation set-up (macro and finance DGPs):

- Macro DGP: \((y_{1t}, y_{2t}, ..., y_{it})'\) follows a VAR(1)
- Null model \(\Rightarrow\) univariate AR(1) in \(y_t\)
- \(m=2\) and \(m=4\) alternative models, each of which uses a constant + one lag of \(y_t\) + one lag of other variables
- rolling (and recursive) samples; nominal size 10% (5%)
Our simulations compare ”max t-stat (adj.)” and ”$\chi^2(adj.)$” with

- ”$\chi^2(unadj.)$” proceeds as does ”$\chi^2(adj.)$”, but uses raw rather than adjusted differences in MSPEs
- White’s (2000) bootstrap reality check

Simulation set-up (macro and finance DGPs):

- Macro DGP: $(y_{1t}, y_{2t}, \ldots, y_{it})'$ follows a VAR(1)
- Null model \Rightarrow univariate AR(1) in y_t
- $m=2$ and $m=4$ alternative models, each of which uses a constant + one lag of y_t + one lag of other variables
- rolling (and recursive) samples; nominal size 10% (5%)
Our simulations compare "max t-stat (adj.)" and "χ²(adj.)" with

- "χ²(unadj.)" proceeds as does "χ²(adj.)", but uses raw rather than adjusted differences in MSPEs
- White’s (2000) bootstrap reality check

Simulation set-up (macro and finance DGPs):

- Macro DGP: \((y_{1t}, y_{2t}, ..., y_{it})'\) follows a VAR(1)
- Null model ⇒ univariate AR(1) in \(y_t\)
- \(m=2\) and \(m=4\) alternative models, each of which uses a constant + one lag of \(y_t\) + one lag of other variables
- rolling (and recursive) samples; nominal size 10% (5%)
Simulation design

Our simulations compare ”max t-stat (adj.)” and ”\(\chi^2(\text{adj.}) \)” with

- ”\(\chi^2(\text{unadj.}) \)” proceeds as does ”\(\chi^2(\text{adj.}) \)” but uses raw rather than adjusted differences in MSPEs
- White’s (2000) bootstrap reality check

Simulation set-up (macro and finance DGPs):

- Macro DGP: \((y_{1t}, y_{2t}, \ldots, y_{it})'\) follows a VAR(1)
 - Null model \(\Rightarrow\) univariate AR(1) in \(y_t\)
 - m=2 and m=4 alternative models, each of which uses a constant + one lag of \(y_t\) + one lag of other variables
 - rolling (and recursive) samples; nominal size 10% (5%)
Simulation design

Our simulations compare "max t-stat (adj.)" and "χ²(adj.)" with

- "χ²(unadj.)" proceeds as does "χ²(adj.)", but uses raw rather than adjusted differences in MSPEs
- White’s (2000) bootstrap reality check

Simulation set-up (macro and finance DGPs):

- Macro DGP: (y₁ₜ, y₂ₜ, ..., yᵢₜ)' follows a VAR(1)
- Null model ⇒ univariate AR(1) in yₜ
 - m=2 and m=4 alternative models, each of which uses a constant + one lag of yₜ + one lag of other variables
 - rolling (and recursive) samples; nominal size 10% (5%)
Simulation design

Our simulations compare “max t-stat (adj.)” and \(\chi^2(\text{adj.}) \) with

- \(\chi^2(\text{unadj.}) \) proceeds as does \(\chi^2(\text{adj.}) \), but uses raw rather than adjusted differences in MSPEs
- White’s (2000) bootstrap reality check

Simulation set-up (macro and finance DGPs):

- Macro DGP: \((y_{1t}, y_{2t}, ..., y_{it})' \) follows a VAR(1)
- Null model \(\Rightarrow \) univariate AR(1) in \(y_t \)
- \(m=2 \) and \(m=4 \) alternative models, each of which uses a constant + one lag of \(y_t \) + one lag of other variables
- rolling (and recursive) samples; nominal size 10% (5%)
Simulation design

Our simulations compare "max t-stat (adj.)" and "\(\chi^2(\text{adj.}) \)" with

- "\(\chi^2(\text{unadj.}) \)" proceeds as does "\(\chi^2(\text{adj.}) \)" but uses raw rather than adjusted differences in MSPEs
- White’s (2000) bootstrap reality check

Simulation set-up (macro and finance DGPs):

- Macro DGP: \((y_{1t}, y_{2t}, ..., y_{it})'\) follows a VAR(1)
- Null model \(\Rightarrow \) univariate AR(1) in \(y_t \)
- \(m=2 \) and \(m=4 \) alternative models, each of which uses a constant + one lag of \(y_t \) + one lag of other variables
- rolling (and recursive) samples; nominal size 10\% (5\%)
Simulation results: Size of Tests

<table>
<thead>
<tr>
<th>P</th>
<th>Max t-stat (adj.)</th>
<th>χ^2 (adj.)</th>
<th>χ^2 (unadj.)</th>
<th>Reality check</th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
<td>0.081</td>
<td>0.119</td>
<td>0.157</td>
<td>0.019</td>
</tr>
<tr>
<td></td>
<td>$R=40$</td>
<td>$R=100$</td>
<td>$R=200$</td>
<td>$R=400$</td>
</tr>
<tr>
<td>100</td>
<td>0.073</td>
<td>0.112</td>
<td>0.241</td>
<td>0.001</td>
</tr>
<tr>
<td></td>
<td>$m=2$</td>
<td>$R=100$</td>
<td>$R=200$</td>
<td>$R=400$</td>
</tr>
<tr>
<td>200</td>
<td>0.100</td>
<td>0.134</td>
<td>0.416</td>
<td>0.000</td>
</tr>
<tr>
<td></td>
<td>$R=100$</td>
<td>$R=200$</td>
<td>$R=400$</td>
<td></td>
</tr>
</tbody>
</table>
Simulation results: Size of Tests

Empirical Size of Nominal .10 Tests, 1 Step Ahead Predictions

<table>
<thead>
<tr>
<th>P</th>
<th>(m=2)</th>
<th>(m=4)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(R=40)</td>
<td>(R=100)</td>
</tr>
<tr>
<td>40</td>
<td>Max t-stat (adj.)</td>
<td>0.081</td>
</tr>
<tr>
<td></td>
<td>(\chi^2) (adj.)</td>
<td>0.119</td>
</tr>
<tr>
<td></td>
<td>(\chi^2) (unadj.)</td>
<td>0.157</td>
</tr>
<tr>
<td></td>
<td>Reality check</td>
<td>0.019</td>
</tr>
<tr>
<td>100</td>
<td>Max t-stat (adj.)</td>
<td>0.073</td>
</tr>
<tr>
<td></td>
<td>(\chi^2) (adj.)</td>
<td>0.112</td>
</tr>
<tr>
<td></td>
<td>(\chi^2) (unadj.)</td>
<td>0.241</td>
</tr>
<tr>
<td></td>
<td>Reality check</td>
<td>0.001</td>
</tr>
<tr>
<td>200</td>
<td>Max t-stat (adj.)</td>
<td>0.100</td>
</tr>
<tr>
<td></td>
<td>(\chi^2) (adj.)</td>
<td>0.134</td>
</tr>
<tr>
<td></td>
<td>(\chi^2) (unadj.)</td>
<td>0.416</td>
</tr>
<tr>
<td></td>
<td>Reality check</td>
<td>0.000</td>
</tr>
</tbody>
</table>
Simulation results: Power of Tests

<table>
<thead>
<tr>
<th>P</th>
<th>Max t-stat (adj.)</th>
<th>χ^2 (adj.)</th>
<th>χ^2 (unadj.)</th>
<th>Reality check</th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.648</td>
<td>0.584</td>
<td>0.177</td>
<td>0.230</td>
</tr>
<tr>
<td></td>
<td>0.767</td>
<td>0.651</td>
<td>0.252</td>
<td>0.408</td>
</tr>
<tr>
<td></td>
<td>0.809</td>
<td>0.703</td>
<td>0.301</td>
<td>0.478</td>
</tr>
<tr>
<td></td>
<td>0.832</td>
<td>0.708</td>
<td>0.298</td>
<td>0.522</td>
</tr>
<tr>
<td>100</td>
<td>Max t-stat (adj.)</td>
<td>χ^2 (adj.)</td>
<td>χ^2 (unadj.)</td>
<td>Reality check</td>
</tr>
<tr>
<td></td>
<td>0.885</td>
<td>0.851</td>
<td>0.268</td>
<td>0.314</td>
</tr>
<tr>
<td></td>
<td>0.983</td>
<td>0.954</td>
<td>0.430</td>
<td>0.658</td>
</tr>
<tr>
<td></td>
<td>0.987</td>
<td>0.966</td>
<td>0.519</td>
<td>0.753</td>
</tr>
<tr>
<td></td>
<td>0.991</td>
<td>0.971</td>
<td>0.564</td>
<td>0.766</td>
</tr>
<tr>
<td>200</td>
<td>Max t-stat (adj.)</td>
<td>χ^2 (adj.)</td>
<td>χ^2 (unadj.)</td>
<td>Reality check</td>
</tr>
<tr>
<td></td>
<td>0.989</td>
<td>0.986</td>
<td>0.465</td>
<td>0.483</td>
</tr>
<tr>
<td></td>
<td>0.997</td>
<td>0.998</td>
<td>0.743</td>
<td>0.900</td>
</tr>
<tr>
<td></td>
<td>0.999</td>
<td>0.997</td>
<td>0.790</td>
<td>0.933</td>
</tr>
<tr>
<td></td>
<td>1.000</td>
<td>1.000</td>
<td>0.814</td>
<td>0.944</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Power</th>
<th>$R=40$</th>
<th>$R=100$</th>
<th>$R=200$</th>
<th>$R=400$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$m=2$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Simulation results: Power of Tests

<table>
<thead>
<tr>
<th>Simulation design</th>
<th>Power</th>
<th>Size</th>
<th>Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>$m=2$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R=200</td>
<td>0.088</td>
<td>0.087</td>
<td>0.091</td>
</tr>
<tr>
<td>R=400</td>
<td>0.177</td>
<td>0.252</td>
<td>0.301</td>
</tr>
<tr>
<td>R=100</td>
<td>0.584</td>
<td>0.651</td>
<td>0.703</td>
</tr>
<tr>
<td>R=40</td>
<td>0.478</td>
<td>0.478</td>
<td>0.522</td>
</tr>
<tr>
<td>$m=4$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R=200</td>
<td>0.062</td>
<td>0.081</td>
<td>0.091</td>
</tr>
<tr>
<td>R=400</td>
<td>0.394</td>
<td>0.474</td>
<td>0.513</td>
</tr>
<tr>
<td>R=100</td>
<td>0.559</td>
<td>0.592</td>
<td>0.567</td>
</tr>
<tr>
<td>R=40</td>
<td>0.532</td>
<td>0.542</td>
<td>0.536</td>
</tr>
</tbody>
</table>
Simulation results: Summary

Size:

- "max t-stat (adj.)" and "χ^2 (adj.)" have comparable size, one slightly undersized, one slightly oversized
- previous proposals have size problems: "χ^2 (unadj.)" slightly to grossly oversized, Reality check grossly undersized

Power:

- "max t-stat (adj.)" best, also better than "χ^2 (adj.)"
- previous procedures rank third (Reality check) and fourth ("χ^2 (unadj.)")
Simulation results: Summary

Size:

- "max t-stat (adj.)" and "χ² (adj.)" have comparable size, one slightly undersized, one slightly oversized
- Previous proposals have size problems: "χ² (unadj.)" slightly to grossly oversized, Reality check grossly undersized

Power:

- "max t-stat (adj.)" best, also better than "χ² (adj.)"
- Previous procedures rank third (Reality check) and fourth ("χ² (unadj.)")
Simulation results: Summary

Size:

- "max t-stat (adj.)" and "χ² (adj.)" have comparable size, one slightly undersized, one slightly oversized
- Previous proposals have size problems: "χ² (unadj.)" slightly to grossly oversized, Reality check grossly undersized

Power:

- "max t-stat (adj.)" best, also better than "χ² (adj.)"
- Previous procedures rank third (Reality check) and fourth ("χ² (unadj.)")
Simulation results: Summary

Size:

- “max t-stat (adj.)” and “\(\chi^2\) (adj.)” have comparable size, one slightly undersized, one slightly oversized
- previous proposals have size problems: “\(\chi^2\) (unadj.)” slightly to grossly oversized, Reality check grossly undersized

Power:

- “max t-stat (adj.)” best, also better than “\(\chi^2\) (adj.)”
- previous procedures rank third (Reality check) and fourth ("\(\chi^2\) (unadj.)")
Simulation results: Summary

Size:

- "max t-stat (adj.)" and "\(\chi^2 \) (adj.)" have comparable size, one slightly undersized, one slightly oversized
- previous proposals have size problems: "\(\chi^2 \) (unadj.)" slightly to grossly oversized, Reality check grossly undersized

Power:

- "max t-stat (adj.)" best, also better than "\(\chi^2 \) (adj.)"
- previous procedures rank third (Reality check) and fourth ("\(\chi^2 \) (unadj.)")
Simulation results: Summary

Size:

- "max t-stat (adj.)" and "χ^2 (adj.)" have comparable size, one slightly undersized, one slightly oversized
- previous proposals have size problems: "χ^2 (unadj.)" slightly to grossly oversized, Reality check grossly undersized

Power:

- "max t-stat (adj.)" best, also better than "χ^2 (adj.)"
- previous procedures rank third (Reality check) and fourth ("χ^2 (unadj.)")
Empirical example: Forecasting Inflation

- predictand = annual U.S. CPI inflation, one month ahead
- two sample periods 1960-1983 and 1960-2004
 - prediction period = 1970-1983; R=120, P=168
 - prediction period = 1984-2004; R=288, P=252
- rolling samples (also recursive)
- null model = univariate AR, lag length selected by AIC
- alternatives are bivariate VARs, lag lengths again selected by AIC. Second predictor (in addition to CPI inflation) is
 - component of inflation (food, energy, commodities, services)
 - output growth, change in unemployment
(see Hubrich (2005) and Hendry and Hubrich (2009) for further empirical results on use of disaggregate information in forecasting the aggregate)
Empirical example: Forecasting Inflation

- predictand = annual U.S. CPI inflation, one month ahead
- two sample periods 1960-1983 and 1960-2004
 - prediction period = 1970-1983; R=120, P=168
 - prediction period = 1984-2004; R=288, P=252
- rolling samples (also recursive)
- null model = univariate AR, lag length selected by AIC
- alternatives are bivariate VARs, lag lengths again selected by AIC. Second predictor (in addition to CPI inflation) is
 - component of inflation (food, energy, commodities, services)
 - output growth, change in unemployment
(see Hubrich (2005) and Hendry and Hubrich (2009) for further empirical results on use of disaggregate information in forecasting the aggregate)
Empirical example: Forecasting Inflation

- predictand = annual U.S. CPI inflation, one month ahead
- two sample periods 1960-1983 and 1960-2004
 - prediction period = 1970-1983; R=120, P=168
 - prediction period = 1984-2004; R=288, P=252
- rolling samples (also recursive)
- null model = univariate AR, lag length selected by AIC
- alternatives are bivariate VARs, lag lengths again selected by AIC. Second predictor (in addition to CPI inflation) is
 - component of inflation (food, energy, commodities, services)
 - output growth, change in unemployment

(see Hubrich (2005) and Hendry and Hubrich (2009) for further empirical results on use of disaggregate information in forecasting the aggregate)
Empirical example: Forecasting Inflation

- predictand = annual U.S. CPI inflation, one month ahead
- two sample periods 1960-1983 and 1960-2004
 - prediction period = 1970-1983; R=120, P=168
 - prediction period = 1984-2004; R=288, P=252
- rolling samples (also recursive)
 - null model = univariate AR, lag length selected by AIC
 - alternatives are bivariate VARs, lag lengths again selected by AIC. Second predictor (in addition to CPI inflation) is
 - component of inflation (food, energy, commodities, services)
 - output growth, change in unemployment

 (see Hubrich (2005) and Hendry and Hubrich (2009) for further empirical results on use of disaggregate information in forecasting the aggregate)
Empirical example: Forecasting Inflation

- predictand = annual U.S. CPI inflation, one month ahead
- two sample periods 1960-1983 and 1960-2004
 - prediction period = 1970-1983; R=120, P=168
 - prediction period = 1984-2004; R=288, P=252
- rolling samples (also recursive)
- null model = univariate AR, lag length selected by AIC
- alternatives are bivariate VARs, lag lengths again selected by AIC. Second predictor (in addition to CPI inflation) is
 - component of inflation (food, energy, commodities, services)
 - output growth, change in unemployment
(see Hubrich (2005) and Hendry and Hubrich (2009) for further empirical results on use of disaggregate information in forecasting the aggregate)
Empirical example: Forecasting Inflation

- predictand = annual U.S. CPI inflation, one month ahead
- two sample periods 1960-1983 and 1960-2004
 - prediction period = 1970-1983; R=120, P=168
 - prediction period = 1984-2004; R=288, P=252
- rolling samples (also recursive)
- null model = univariate AR, lag length selected by AIC
- alternatives are bivariate VARs, lag lengths again selected by AIC. Second predictor (in addition to CPI inflation) is
 - component of inflation (food, energy, commodities, services)
 - output growth, change in unemployment

(see Hubrich (2005) and Hendry and Hubrich (2009) for further empirical results on use of disaggregate information in forecasting the aggregate)
Empirical example: Forecasting Inflation

- predictand = annual U.S. CPI inflation, one month ahead
- two sample periods 1960-1983 and 1960-2004
 - prediction period = 1970-1983; R=120, P=168
 - prediction period = 1984-2004; R=288, P=252
- rolling samples (also recursive)
- null model = univariate AR, lag length selected by AIC
- alternatives are bivariate VARs, lag lengths again selected by AIC. Second predictor (in addition to CPI inflation) is
 - component of inflation (food, energy, commodities, services)
 - output growth, change in unemployment

(see Hubrich (2005) and Hendry and Hubrich (2009) for further empirical results on use of disaggregate information in forecasting the aggregate)
Empirical example: Forecasting Inflation

- predictand = annual U.S. CPI inflation, one month ahead
- two sample periods 1960-1983 and 1960-2004
 - prediction period = 1970-1983; R=120, P=168
 - prediction period = 1984-2004; R=288, P=252
- rolling samples (also recursive)
- null model = univariate AR, lag length selected by AIC
- alternatives are bivariate VARs, lag lengths again selected by AIC. Second predictor (in addition to CPI inflation) is
 - component of inflation (food, energy, commodities, services)
 - output growth, change in unemployment

(see Hubrich (2005) and Hendry and Hubrich (2009) for further empirical results on use of disaggregate information in forecasting the aggregate)
Empirical example: Forecasting Inflation

- predictand = annual U.S. CPI inflation, one month ahead
- two sample periods 1960-1983 and 1960-2004
 - prediction period = 1970-1983; R=120, P=168
 - prediction period = 1984-2004; R=288, P=252
- rolling samples (also recursive)
- null model = univariate AR, lag length selected by AIC
- alternatives are bivariate VARs, lag lengths again selected by AIC. Second predictor (in addition to CPI inflation) is
 - component of inflation (food, energy, commodities, services)
 - output growth, change in unemployment
(see Hubrich (2005) and Hendry and Hubrich (2009) for further empirical results on use of disaggregate information in forecasting the aggregate)
US CPI Inflation

US CPI year-on-year inflation: aggregate, energy, commodities, food and services

Forecasting inflation

Data
High, volatile inflation period
Low, stable inflation period

Interpretation

Components and real variables

Summary

Motivation

Proposals: MSPE-adjusted t-stats, χ^2

Simulation results

Empirical example

Conclusions

Further Research

Kirstin Hubrich and Kenneth West
Forecasting US Inflation by components

Table 5: Tests of Equal Forecast Accuracy, US year-on-year inflation

<table>
<thead>
<tr>
<th>method</th>
<th>1970-1983</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>RMSPE (altern)/RMSPE (bench)</td>
</tr>
<tr>
<td>AR$_{(AIC)}$ (bench)</td>
<td>0.307</td>
</tr>
<tr>
<td>Test AR</td>
<td></td>
</tr>
<tr>
<td>vs VAR$_{a,f}^{(AIC)}$</td>
<td>1.039</td>
</tr>
<tr>
<td>vs VAR$_{a,e}^{(AIC)}$</td>
<td>1.029</td>
</tr>
<tr>
<td>vs VAR$_{a,c}^{(AIC)}$</td>
<td>1.016</td>
</tr>
<tr>
<td>vs VAR$_{a,s}^{(AIC)}$</td>
<td>0.986</td>
</tr>
<tr>
<td>vs 4 models</td>
<td></td>
</tr>
<tr>
<td>critical value</td>
<td></td>
</tr>
</tbody>
</table>
Note 2: It is possible to have the following seemingly paradoxical result:

- sample MSPE from null model $< \text{sample MSPE from alternative model}$
- we reject the null of equal population MSPE in favor of the alternative that the larger model has lower population MSPE
- reason: adjustment larger than MSPE difference
 \[\bar{f}_1 = \hat{\sigma}_0^2 - \hat{\sigma}_1^2 + P^{-1}\sum_t (\hat{y}_{0,t+1} - \hat{y}_{1,t+1})^2 \]

- Implication for future modeling: there is information in the larger model that is useful for forecasting, but we have not successfully exploited that information
Note 2: It is possible to have the following seemingly paradoxical result:

- sample MSPE from null model < sample MSPE from alternative model
- we reject the null of equal population MSPE in favor of the alternative that the larger model has lower population MSPE
- reason: adjustment larger than MSPE difference
 \[\bar{f}_1 = \hat{\sigma}_0^2 - \hat{\sigma}_1^2 + P^{-1} \sum_t (\hat{y}_{0,t+1} - \hat{y}_{1,t+1})^2 \]

Implication for future modeling: there is information in the larger model that is useful for forecasting, but we have not successfully exploited that information
Note 2: It is possible to have the following seemingly paradoxical result:

- sample MSPE from null model < sample MSPE from alternative model
- we reject the null of equal population MSPE in favor of the alternative that the larger model has lower population MSPE
- reason: adjustment larger than MSPE difference
 \[\bar{f}_1 = \hat{\sigma}_0^2 - \hat{\sigma}_1^2 + P^{-1} \sum_t (\hat{y}_{0,t+1} - \hat{y}_{1,t+1})^2 \]

- Implication for future modeling: there is information in the larger model that is useful for forecasting, but we have not successfully exploited that information
Note 2: It is possible to have the following seemingly paradoxical result:

- sample MSPE from null model < sample MSPE from alternative model
- we reject the null of equal population MSPE in favor of the alternative that the larger model has lower population MSPE
- reason: adjustment larger than MSPE difference

\[\tilde{f}_1 = \hat{\sigma}_0^2 - \hat{\sigma}_1^2 + P^{-1}\Sigma_t (\hat{y}_{0,t+1} - \hat{y}_{1,t+1})^2 \]

Implication for future modeling: there is information in the larger model that is useful for forecasting, but we have not successfully exploited that information.
Note 2: It is possible to have the following seemingly paradoxical result:

- sample MSPE from null model < sample MSPE from alternative model
- we reject the null of equal population MSPE in favor of the alternative that the larger model has lower population MSPE
- reason: adjustment larger than MSPE difference
 \[\bar{f}_1 = \hat{\sigma}_0^2 - \hat{\sigma}_1^2 + P^{-1}\Sigma_t (\hat{y}_{0,t+1} - \hat{y}_{1,t+1})^2 \]

Implication for future modeling: there is information in the larger model that is useful for forecasting, but we have not successfully exploited that information
Forecasting US Inflation by components

<table>
<thead>
<tr>
<th>method</th>
<th>1984-2004</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>RMSPE (altern)</td>
</tr>
<tr>
<td>$\text{AR}_{(AIC)}$ (bench)</td>
<td>0.187</td>
</tr>
<tr>
<td>Test AR</td>
<td></td>
</tr>
<tr>
<td>vs $\text{VAR}^{a,f}_{(AIC)}$</td>
<td>0.999</td>
</tr>
<tr>
<td>vs $\text{VAR}^{a,e}_{(AIC)}$</td>
<td>1.097</td>
</tr>
<tr>
<td>vs $\text{VAR}^{a,e}_{(AIC)}$</td>
<td>1.048</td>
</tr>
<tr>
<td>vs $\text{VAR}^{a,s}_{(AIC)}$</td>
<td>1.027</td>
</tr>
<tr>
<td>vs 4 models</td>
<td>1.860</td>
</tr>
<tr>
<td>critical value</td>
<td>1.282</td>
</tr>
</tbody>
</table>
Forecasting US Inflation: components and real variables

Table 6: Tests of Equal Forecast Accuracy, US year-on-year inflation

<table>
<thead>
<tr>
<th>method</th>
<th>1970-1983</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>RMSPE (altern)/RMSPE (bench)</td>
<td>t-stat adj.</td>
<td>max t-stat adj.</td>
<td>χ^2 adj</td>
<td>χ^2 unadj</td>
<td>Reality check</td>
</tr>
<tr>
<td>AR$_{(AIC)}$ (bench)</td>
<td>0.307</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test AR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>vs VAR$^{a,y}_{(AIC)}$</td>
<td>0.987</td>
<td>2.013*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>vs VAR$^{a,u}_{(AIC)}$</td>
<td>0.974</td>
<td>3.439*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>vs VAR$^{a,c}_{(AIC)}$</td>
<td>1.016</td>
<td>1.743*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>vs VAR$^{a,s}_{(AIC)}$</td>
<td>0.986</td>
<td>2.311*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>vs 4 models</td>
<td></td>
<td>3.439*</td>
<td>21.762*</td>
<td>2.432</td>
<td>0.061</td>
<td></td>
</tr>
<tr>
<td>critical value</td>
<td></td>
<td>1.282</td>
<td>1.917</td>
<td>7.78</td>
<td>7.78</td>
<td>0.146</td>
</tr>
</tbody>
</table>
Forecasting US Inflation: components and real variables

<table>
<thead>
<tr>
<th>method</th>
<th>1984-2004</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>RMSPE (altern)/RMSPE (bench)</td>
</tr>
<tr>
<td>$AR_{(AIC)}$ (bench)</td>
<td>0.187</td>
</tr>
<tr>
<td>Test AR</td>
<td></td>
</tr>
<tr>
<td>vs $VAR_{(AIC)}$</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>vs $VAR_{(AIC)}$</td>
<td>1.046</td>
</tr>
<tr>
<td>vs $VAR_{(AIC)}$</td>
<td>1.024</td>
</tr>
<tr>
<td>vs $VAR_{(AIC)}$</td>
<td>1.048</td>
</tr>
<tr>
<td>vs $VAR_{(AIC)}$</td>
<td>1.027</td>
</tr>
<tr>
<td>vs 4 models</td>
<td></td>
</tr>
<tr>
<td>critical value</td>
<td>1.282</td>
</tr>
</tbody>
</table>
Empirical Example: Summary of Results

- In high and volatile inflation period 1970-1983 some disaggregate inflation rates or real variables can improve significantly, also according to the test of model sets.

Important to apply appropriate test!

⇒ In low and stable inflation period 1984-2004 disaggregate food inflation and unemployment changes do improve forecast accuracy over simple AR model significantly with pairwise forecast accuracy test, but not with test of model sets.

⇒ Implication of both "max t-stat (adj.)" and "χ²(adj.)".

- "χ²(unadj.)" opposite result: can reject H0 1984-2004 but not 1970-1983; reality check - cannot reject H0 in either period; but: both tests have poor size and poor power.
Empirical Example: Summary of Results

- In high and volatile inflation period 1970-1983 some disaggregate inflation rates or real variables can improve significantly, also according to the test of model sets.

Important to apply appropriate test!

⇒ In low and stable inflation period 1984-2004 disaggregate food inflation and unemployment changes do improve forecast accuracy over simple AR model significantly with pairwise forecast accuracy test, but not with test of model sets.

⇒ Implication of both \(\text{max t-stat (adj.)} \) and \(\chi^2(\text{adj.}) \)

- \(\chi^2(\text{unadj.}) \) opposite result: can reject H0 1984-2004 but not 1970-1983; reality check - cannot reject H0 in either period; but: both tests have poor size and poor power.
Empirical Example: Summary of Results

- In high and volatile inflation period 1970-1983 some disaggregate inflation rates or real variables can improve significantly, also according to the test of model sets.

Important to apply appropriate test!

⇒ In low and stable inflation period 1984-2004 disaggregate food inflation and unemployment changes do improve forecast accuracy over simple AR model significantly with pairwise forecast accuracy test, but not with test of model sets.

⇒ Implication of both "max t-stat (adj.)" and "χ²(adj.)"

"χ²(unadj.)" opposite result: can reject H0 1984-2004 but not 1970-1983; reality check - cannot reject H0 in either period; but: both tests have poor size and poor power.
Conclusions

We have suggested two tractable methods for:

Comparison of a null (benchmark) model to a small number of alternative models that nest the benchmark

- explicitly account for estimation error in parameters
- easily executed, do not require bootstrap procedures
- Simulation evidence suggests that our procedures have distinctly better size and power than existing procedures
- Empirical examples forecasting US inflation show
 - importance of simultaneously comparing small number of models with benchmark (correlations between forecasts)
 - sequence of pairwise model comparison can lead to wrong conclusions
Conclusions

We have suggested **two tractable methods** for

Comparison of a null (benchmark) model to a small number of alternative models that nest the benchmark

- explicitly account for estimation error in parameters
- easily executed, do not require bootstrap procedures
- Simulation evidence suggests that our procedures have distinctly better size and power than existing procedures
- Empirical examples forecasting US inflation show
 - importance of simultaneously comparing small number of models with benchmark (correlations between forecasts)
 - sequence of pairwise model comparison can lead to wrong conclusions
We have suggested **two tractable methods** for

Comparison of a null (benchmark) model to a small number of alternative models that nest the benchmark

- explicitly account for *estimation error in parameters*
- easily executed, do not require bootstrap procedures
- Simulation evidence suggests that our procedures have distinctly better size and power than existing procedures
- Empirical examples forecasting US inflation show
 - importance of simultaneously comparing small number of models with benchmark (correlations between forecasts)
 - sequence of pairwise model comparison can lead to wrong conclusions
Conclusions

We have suggested two tractable methods for

Comparison of a null (benchmark) model to a small number of alternative models that nest the benchmark

- explicitly account for estimation error in parameters
- easily executed, do not require bootstrap procedures
- Simulation evidence suggests that our procedures have distinctly better size and power than existing procedures
- Empirical examples forecasting US inflation show
 - importance of simultaneously comparing small number of models with benchmark (correlations between forecasts)
 - sequence of pairwise model comparison can lead to wrong conclusions
Conclusions

We have suggested **two tractable methods** for

Comparison of a null (benchmark) model to a small number of alternative models that nest the benchmark

- explicitly account for **estimation error in parameters**
- **easily executed**, do not require bootstrap procedures
- Simulation evidence suggests that our procedures have **distinctly better size and power** than existing procedures
- Empirical examples forecasting US inflation show
 - importance of simultaneously comparing small number of models with benchmark (correlations between forecasts)
 - sequence of pairwise model comparison can lead to wrong conclusions
Conclusions

We have suggested **two tractable methods** for

Comparison of a null (benchmark) model to a small number of alternative models that nest the benchmark

- explicitly account for **estimation error in parameters**
- **easily executed**, do not require bootstrap procedures
- Simulation evidence suggests that our procedures have **distinctly better size and power** than existing procedures
- Empirical examples forecasting US inflation show
 - importance of simultaneously comparing small number of models with benchmark (correlations between forecasts)
 - sequence of pairwise model comparison can lead to wrong conclusions
Conclusions

We have suggested two tractable methods for

Comparison of a null (benchmark) model to a small number of alternative models that nest the benchmark

- explicitly account for estimation error in parameters
- easily executed, do not require bootstrap procedures
- Simulation evidence suggests that our procedures have distinctly better size and power than existing procedures
- Empirical examples forecasting US inflation show
 - importance of simultaneously comparing small number of models with benchmark (correlations between forecasts)
 - sequence of pairwise model comparison can lead to wrong conclusions
We have suggested **two tractable methods** for

Comparison of a null (benchmark) model to a small number of alternative models that nest the benchmark

- explicitly account for **estimation error in parameters**
- **easily executed**, do not require bootstrap procedures
- Simulation evidence suggests that our procedures have **distinctly better size and power** than existing procedures
- Empirical examples forecasting US inflation show
 - importance of simultaneously comparing small number of models with benchmark (correlations between forecasts)
 - sequence of pairwise model comparison can lead to wrong conclusions
Further Research

1. Use restrictions in accordance with the nesting properties of the alternative models for test procedure to improve power: Likelihood Ratio test (Granziera, Hubrich and Moon, 2008)
 - all alternative models are nested and nest the benchmark
 - all alternative models are non-nested, but nest the benchmark
 - some alternative models are nested, some are non-nested, all models nest the benchmark

2. Extension to comparison of models that might or might not nest the benchmark (Hubrich, McCracken and West, 2009)
 - implications for asymptotic theory
 - implications for small sample performance
 - wider range of applications

3. "Max t-stat (adj.)" might also be applicable to environments with number of models equal to sample size
Further Research

1. Use restrictions in accordance with the nesting properties of the alternative models for test procedure to improve power: Likelihood Ratio test (Granziera, Hubrich and Moon, 2008)
 - All alternative models are nested and nest the benchmark
 - All alternative models are non-nested, but nest the benchmark
 - Some alternative models are nested, some are non-nested, all models nest the benchmark

2. Extension to comparison of models that might or might not nest the benchmark (Hubrich, McCracken and West, 2009)
 - Implications for asymptotic theory
 - Implications for small sample performance
 - Wider range of applications

3. "Max t-stat (adj.)" might also be applicable to environments with number of models equal to sample size
Further Research

1. Use restrictions in accordance with the nesting properties of the alternative models for test procedure to improve power: Likelihood Ratio test (Granziera, Hubrich and Moon, 2008)
 - All alternative models are nested and nest the benchmark
 - All alternative models are non-nested, but nest the benchmark
 - Some alternative models are nested, some are non-nested, all models nest the benchmark

2. Extension to comparison of models that might or might not nest the benchmark (Hubrich, McCracken and West, 2009)
 - Implications for asymptotic theory
 - Implications for small sample performance
 - Wider range of applications

3. "Max t-stat (adj.)" might also be applicable to environments with number of models equal to sample size