Forecasting in the presence of recent structural breaks Second International Conference in memory of Carlo Giannini

Jana Eklund¹, George Kapetanios^{1,2} and Simon Price^{1,3}

 $^{1}\mathrm{Bank}$ of England, $^{2}\mathrm{Queen}$ Mary College and $^{3}\mathrm{City}$ University

19 January 2010

It's just one damn thing after another: or, structural breaks keep on coming

- Structural change is a major source of forecast error
- Breaks are characterized by abrupt parameter shifts
- Two issues:
 - How to detect a break? Chow (1960), Andrews (1993), Bai and Perron (1998)
 - How to modify forecasting strategy? Pesaran-Timmermann (2007)

Recognising and dealing with **recent** breaks when they arrive in **real time**

Few observations available for either estimation or forecast evaluation How to address those two issues?

- Monitoring for a break, i.e. real-time break detection
 - Chu, Stinchcombe and White (1996) asymptotic proper size under successive and repeative testing, although have low power
- How to modify forecasting strategy? not discussed in the literature
 - Are breaks rare OR recurring?
 - Detect a break and react, OR use robust methods?

The class of model we're interested in

$$y_t = x_t' \beta_t + u_t, \qquad t = 1, ..., T_1, ..., T, ...$$

- $x_t k \times 1$ vector of predetermined stochastic variables
- $\beta_t \ k \times 1$ vectors of parameters
- u_t martingale difference sequence independent of x_t with finite variance possibly changing at T_1
- Critical: possibility that T_1 is close to T
- Focus: on forecasting at T

Forecasting strategies for distant past breaks

Pesaran and Timmermann (2007)

- Using basic model estimated over post-break data
- ② Trading off the variance against the bias of the forecast by estimating the optimal size of the estimation window
- Stimating optimal estimation window size by cross-validation
- Combining forecasts from different estimation windows by using weights obtained through cross-validation as in 3
- Simple average forecast combination with equal weights

Can we use these after we have monitored and identified a break?

• No; due to lack of data

We propose to use a modified version of no. 5: Monitoring + forecast combination

- Monitor for a break
- ② After a break is detected, wait for $\underline{\omega}$ periods to estimate post-break model
- Start forecast as soon as feasible post break, averaging forecasts from no-break model using full sample and post-break model, with increasing weight on post-break model
- **100%** weight at $\underline{\omega} + \overline{f}$

 \overline{f} is window size after which the post-break model is the sole forecasting model

Strategies robust to a recent break

- Time varying coefficient models specified in variety of ways controversial specification issues
- Alternative: to consider β_t time dependent but deterministic estimated nonparametrically (kernel based)
- Rolling regressions a pragmatic response
- Exponentially weighted moving averages is a generalisation with declining weights for older observations
- Pesaran and Timmermann forecast combination aggregates different estimation windows

Theoretical results

Hoping to establish theoretical MSFE rankings for two cases:

- Stochastic breaks
- Deterministic breaks
- Interested in MSFE of a one step ahead forecast based on a model estimated over the **whole period** versus one that is estimated from a method that discounts early data
- We consider
 - Full sample forecasts (=benchmark)
 - 2 Rolling estimation
 - Secondary of the sec
 - EWMA forecast

Stochastic breaks

$$y_t = \beta_t + \epsilon_t, t = 1, ..., T$$

 $\beta_t = \sum_{i=1}^t \mathcal{I}(\nu_i = 1) u_i$

- Simplest model that can accommodate multiple breaks location (intercept) shift
- ν_i i.i.d. sequence of Bernouli random variables, value 1 with probability p and 0 otherwise
- ϵ_t and u_i iid series independent of each other and ν_i with finite variance σ_{ϵ}^2 and σ_u^2

MSFE rankings in the stochastic case

- ullet Full sample forecast diverges as T increases o use less data than T
- For window size m, if $m/T \to 0$ can rank methods:

RMSFE rolling < averaging < full sample.

Deterministic breaks

$$y_t = \begin{cases} \beta_1 + \epsilon_t & \text{if } t \le t_1\\ \beta_2 + \epsilon_t & \text{if } t_1 < t \le t_2\\ \vdots & \vdots\\ \beta_n + \epsilon_t & \text{if } t_{n-1} < t \le t_n \equiv T + 1 \end{cases}$$

- Often assumed time dependent breaks are deterministic
- In the full sample and rolling cases natural decomposition of MSFE into squared bias (increases with T or window m) and variance. Either can dominate
- In general, rankings depend on parametrisations

Monte Carlo results

Examine richer cases than a simple location model - breaks in AR models

- Single deterministic break in an AR model
- Multiple stochastic breaks in a location model
- 3 Multiple stochastic breaks in an AR model

Single break (deterministic)

$$y_t = \alpha + \rho y_{t-1} + \epsilon_t, \qquad t = 1, \dots, T_0, \dots, T_1, \dots, T.$$

$$y_t = \begin{cases} \alpha_1 + \rho_1 y_{t-1} + \epsilon_t, & t = 1, \dots, T_1 - 1 \\ \alpha_2 + \rho_2 y_{t-1} + \epsilon_t, & t = T_1, \dots, T \end{cases}$$

- Monitoring and forecasting start T_0
- Break occurs at T_1 in AR parameter, takes the value ρ_1 to T_1 , ρ_2 thereafter
- We assume $\alpha_1 = \alpha_2 = 0$ when ρ breaks, or $\rho = 0$ if α breaks

Single break

Design

- ρ_1 , ρ_2 pairs drawn from $\{-0.6, -0.4, -0.2, 0, 0.2, 0.4, 0.6, 0.8\}$
- α_1 , α_2 pairs drawn from $\{-1.2, -0.8, -0.4, 0, 0.4, 0.8, 1.2, 1.6\}$
- Monitoring ceases when a break is detected
- Forecasting and our evaluation stops at T = 150
- Forecast evaluation therefore over T_0 to T
- Model averaging period $\hat{T}_1 + 5$ to $\hat{T}_1 + \overline{f}$ where \hat{T}_1 is the date at which the break is detected

Multiple break (stochastic)

Design

$$y_t = \alpha + \rho y_{t-1} + \epsilon_t, \qquad t = 1, \dots, T_0, \dots, T_1, \dots, T.$$

$$\rho_t = \begin{cases} \rho_{t-1}, & \text{with probability } 1 - p \\ \eta_{1,t}, & \text{with probability } p \end{cases}$$

$$\alpha_t = \begin{cases} \alpha_{t-1}, & \text{with probability } 1 - p \\ \eta_{2,t}, & \text{with probability } p \end{cases}$$

- p = 0.1, 0.05, 0.02, 0.01 (breaks every 10 to 100 periods).
- $\eta_{i,t} \sim i.i.d.U\left(\eta_{il}, \eta_{iu}\right)$

$$\begin{cases} \eta_{\rho,l}, \eta_{\rho,u} \} = \{-0.8, 0.8\}, \{-0.6, 0.6\}, \{-0.4, 0.4\}, \{-0.2, 0.2\} \\ \{\eta_{\alpha,l}, \eta_{\alpha,u} \} = \{-2, 2\}, \{-1.6, 1.6\}, \{-1.2, 1.2\}, \{-0.8, 0.8\}, \{-0.4, 0.4\} \end{cases}$$

Forecasting strategy

Design

- Rolling estimation window size M
- Forecast averaging of forecasts obtained using parameters estimated over all possible estimation windows
- EWMA based least squares estimator of the regression $y_t = \beta' x_t + u_t, t = 1, ..., T$ is $\hat{\beta} = \left(\lambda \sum_{t=1}^{T} (1 - \lambda)^{T-t} x_t x_t'\right)^{-1} \lambda \sum_{t=1}^{T} (1 - \lambda)^{T-t} x_t y_t$ λ a decay parameter

Following Harvey - we average over $\lambda = 0.1, 0.2, 0.3$

Location model

Multiple stochastic breaks

- Begin with location model have the analytical results
- Rolling regressions (short windows) ⊃ rolling regressions (longer window) ⊃ averaging
- This is roughly the ranking found
- Although there are configurations where any one of the methods outperforms the others

Location model

Multiple stochastic breaks

- Begin with location model have the analytical results
- Rolling regressions (short windows) ⊃ rolling regressions (longer window) ⊃ averaging
- This is roughly the ranking found
- Although there are configurations where any one of the methods outperforms the others

Table 1. RRMSFE: Location Model

u_l	-1	-0.9	-0.8	-0.7	-0.6
$p \setminus \stackrel{\circ}{u_u}$	1	0.9	0.8	0.7	0.6
	R	olling V	Vindow	M = 2	0)
0.2	0.77	0.77	0.79	0.80	0.83
0.1	0.81	0.83	0.84	0.87	0.91
		Forec	ast Ave	raging	
0.2	0.84	0.84	0.85	0.85	0.87
0.1	0.85	0.87	0.87	0.88	0.90
	R	olling V	Vindow	(M=6)	0)
0.2	0.84	0.84	0.84	0.85	0.86
0.1	0.84	0.84	0.85	0.88	0.90
			EWMA	_	
0.2	0.81	0.83	0.86	0.88	0.92
0.1	0.88	0.92	0.94	0.98	1.02

Location model

Summary

- Short rolling windows do best
- Long rolling windows and averaging next best
- EWMA worst
- But not a particularly rich model

Location model

Summary

- Short rolling windows do best
- Long rolling windows and averaging next best
- EWMA worst
- But not a particularly rich model

Table 2. RRMSFE: recurring breaks in ρ : $\alpha = 0$.

$\eta_{ ho,l}$	-0.8	-0.6	-0.4	-0.2	-0.8	-0.6	-0.4	-0.2
$p \setminus \frac{\eta_{ ho,u}}{\eta_{ ho,u}}$	0.8	0.6	0.4	0.2	0.8	0.6	0.4	0.2
	Rolli	ng Wind	ow $(M =$	= 20)	Rolli	ng Wind	low (M =	= 60)
0.1	0.97	1.04	1.07	1.09	1.00	1.01	1.02	1.02
0.05	0.93	1.01	1.06	1.09	0.96	1.00	1.01	1.02
0.02	0.90	1.00	1.05	1.09	0.93	0.97	1.00	1.02
0.01	0.91	1.02	1.06	1.09	0.91	0.97	1.00	1.02
	F	orecast A	Averagin	ıg		EW	MA	
0.1	0.95	0.98	1.00	1.01	1.02	1.14	1.21	1.25
0.05	0.93	0.97	0.99	1.01	1.00	1.12	1.20	1.25
0.02	0.91	0.96	0.99	1.00	0.99	1.12	1.20	1.25
0.01	0.91	0.97	0.99	1.00	1.02	1.16	1.22	1.25

- Infrequent large breaks: low rolling window and averaging good
- As break size declines rolling deteriorates
- Larger window rolling more robust (less small-change penalty)
- EWMA always worst often very bad
- Averaging good performance similar to small windows: but best performer when small changes: **Overall best**

Table 2. RRMSFE: recurring breaks in ρ : $\alpha = 0$.

$\eta_{ ho,l}$	-0.8	-0.6	-0.4	-0.2	-0.8	-0.6	-0.4	-0.2
$p \setminus \frac{\eta_{ ho,u}}{\eta_{ ho,u}}$	0.8	0.6	0.4	0.2	0.8	0.6	0.4	0.2
	Rolli	ng Wind	ow (M :	=20)	Rolli	ng Wind	low (M =	= 60)
0.1	0.97	1.04	1.07	1.09	1.00	1.01	1.02	1.02
0.05	0.93	1.01	1.06	1.09	0.96	1.00	1.01	1.02
0.02	0.90	1.00	1.05	1.09	0.93	0.97	1.00	1.02
0.01	0.91	1.02	1.06	1.09	0.91	0.97	1.00	1.02
	F	orecast A	Averagin	ıg		EW	MA	
0.1	0.95	0.98	1.00	1.01	1.02	1.14	1.21	1.25
0.05	0.93	0.97	0.99	1.01	1.00	1.12	1.20	1.25
0.02	0.91	0.96	0.99	1.00	0.99	1.12	1.20	1.25
0.01	0.91	0.97	0.99	1.00	1.02	1.16	1.22	1.25

- Infrequent large breaks: low rolling window and averaging good
- As break size declines rolling deteriorates
- Larger window rolling more robust (less small-change penalty)
- EWMA always worst often very bad
- Averaging good performance similar to small windows: but best performer when small changes: **Overall best**

Table 3. RRMSFE: recurring breaks in α : $\rho = 0$.

$\eta_{\alpha,l}$	-2	-1.6	-1.2	-0.8	-0.4	-2	-1.6	-1.2	-0.8	-0.4
$p \setminus \eta_{\alpha,u}^{\eta_{\alpha,t}}$	2	1.6	1.2	0.8	0.4	2	1.6	1.2	0.8	0.4
		Rolling	Window ((M = 20)			Rolling	Window	(M = 60)	
0.1	1.04	1.04	1.04	1.05	1.08	1.02	1.01	1.02	1.01	1.02
0.05	0.94	0.95	0.98	1.02	1.07	0.99	0.99	0.99	1.00	1.02
0.02	0.84	0.88	0.92	0.99	1.06	0.91	0.93	0.94	0.97	1.01
0.01	0.84	0.87	0.93	0.99	1.07	0.88	0.89	0.93	0.97	1.01
		Fore	cast Aver	aging				EWMA		
0.1	0.97	0.97	0.98	0.99	1.00	1.06	1.06	1.10	1.16	1.23
0.05	0.93	0.94	0.95	0.97	1.00	0.97	0.99	1.05	1.13	1.22
0.02	0.88	0.90	0.92	0.96	0.99	0.91	0.96	1.02	1.12	1.22
0.01	0.87	0.89	0.92	0.96	1.00	0.93	0.97	1.05	1.13	1.23

- EWMA poor performer
- Averaging overall best
- Overall, similar to results for ρ breaks

Table 4: Single break in ρ : Monitoring

$\rho_1 \backslash \rho_2$	-0.6	-0.4	-0.2	0	0.2	0.4	0.6	0.8			
	Monitoring $(\overline{f} = 60)$										
-0.6	1.00	1.00	1.00	1.00	1.00	0.99	0.99	0.95			
-0.4	1.00	1.00	1.00	1.00	1.00	1.00	0.99	0.97			
-0.2	1.00	1.00	1.00	1.00	1.00	1.00	0.99	0.97			
0	1.00	1.00	1.00	1.00	1.00	1.00	0.99	0.99			
0.2	0.00	1.00	1.00	1.00	1.00	1.00	1.00	0.99			
0.4	0.99	1.00	1.00	1.00	1.00	1.00	1.00	1.00			
0.6	0.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00			
0.8	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00			

- Monitoring works, but few dramatic improvements, and mainly for large breaks
- Conservative, in sense never does much worse than the benchmark

Table 4: Single break in ρ : Rolling

$\rho_1 \backslash \rho_2$	-0.6	-0.4	-0.2	0	0.2	0.4	0.6	0.8		
Rolling Window $(M=20)$										
-0.6	1.09	1.06	1.00	0.94	0.84	0.74	0.61	0.48		
-0.4	1.06	1.09	1.06	1.01	0.94	0.82	0.70	0.54		
-0.2	0.99	1.07	1.09	1.06	1.01	0.93	0.81	0.64		
0	0.90	1.01	1.07	1.09	1.08	1.02	0.90	0.74		
0.2	0.80	0.91	1.01	1.07	1.09	1.08	1.00	0.87		
0.4	0.70	0.84	0.94	1.02	1.08	1.09	1.08	0.97		
0.6	0.61	0.74	0.84	0.94	1.02	1.08	1.11	1.07		
0.8	0.53	0.66	0.76	0.86	0.95	1.01	1.08	1.12		

- Rolling more effective
- Performs best for large breaks

Table 4: Single break in ρ : Rolling

$\rho_1 \backslash \rho_2$	-0.6	-0.4	-0.2	0	0.2	0.4	0.6	0.8		
Rolling Window $(M = 60)$										
-0.6	1.01	1.01	0.99	0.96	0.93	0.88	0.82	0.74		
-0.4	1.01	1.02	1.01	0.98	0.96	0.91	0.84	0.76		
-0.2	0.98	1.01	1.02	1.01	0.99	0.95	0.89	0.79		
0	0.93	0.98	1.01	1.02	1.01	0.98	0.94	0.84		
0.2	0.88	0.94	0.99	1.01	1.02	1.01	0.98	0.90		
0.4	0.85	0.91	0.95	0.99	1.01	1.02	1.01	0.95		
0.6	0.81	0.88	0.92	0.96	0.99	1.01	1.02	1.00		
0.8	0.81	0.86	0.91	0.94	0.96	0.99	1.01	1.02		

- Rolling more effective
- For this window, also a safe strategy

Table 4: Single break in ρ : Averaging

$\rho_1 \backslash \rho_2$	-0.6	-0.4	-0.2	0	0.2	0.4	0.6	0.8			
	Forecast Averaging										
-0.6	1.01	1.00	0.97	0.94	0.89	0.83	0.75	0.67			
-0.4	1.00	1.01	1.00	0.97	0.94	0.87	0.80	0.70			
-0.2	0.96	1.00	1.01	1.00	0.97	0.93	0.85	0.75			
0	0.91	0.97	1.01	1.01	1.00	0.97	0.91	0.81			
0.2	0.86	0.92	0.97	1.00	1.01	1.00	0.96	0.88			
0.4	0.80	0.88	0.93	0.98	1.01	1.01	1.00	0.94			
0.6	0.75	0.83	0.88	0.93	0.97	1.00	1.02	0.99			
0.8	0.72	0.79	0.85	0.89	0.93	0.97	1.00	1.01			

- Averaging also performs well, in this case better than rolling M=60
- Also safe

Table 4: Single break in ρ : EWMA

$\rho_1 \backslash \rho_2$	-0.6	-0.4	-0.2	0	0.2	0.4	0.6	0.8			
	EWMA										
-0.6	1.26	1.23	1.14	1.06	0.90	0.75	0.59	0.41			
-0.4	1.22	1.26	1.23	1.14	1.05	0.87	0.71	0.51			
-0.2	1.13	1.24	1.27	1.22	1.15	1.03	0.84	0.62			
0	1.03	1.16	1.24	1.26	1.22	1.14	0.96	0.74			
.2	0.89	1.04	1.16	1.23	1.25	1.22	1.08	0.90			
0.4	0.75	0.92	1.06	1.16	1.23	1.23	1.18	1.02			
0.6	0.63	0.79	0.92	1.05	1.15	1.22	1.22	1.14			
0.8	0.52	0.68	0.81	0.93	1.04	1.12	1.19	1.19			

[•] EWMA works very well for some large breaks, eg -0.6 to 0.8 ...

• ... but very badly otherwise

Table 4: Single break in ρ : EWMA

$\rho_1 \backslash \rho_2$	-0.6	-0.4	-0.2	0	0.2	0.4	0.6	0.8			
	EWMA										
-0.6	1.26	1.23	1.14	1.06	0.90	0.75	0.59	0.41			
-0.4	1.22	1.26	1.23	1.14	1.05	0.87	0.71	0.51			
-0.2	1.13	1.24	1.27	1.22	1.15	1.03	0.84	0.62			
0	1.03	1.16	1.24	1.26	1.22	1.14	0.96	0.74			
.2	0.89	1.04	1.16	1.23	1.25	1.22	1.08	0.90			
0.4	0.75	0.92	1.06	1.16	1.23	1.23	1.18	1.02			
0.6	0.63	0.79	0.92	1.05	1.15	1.22	1.22	1.14			
0.8	0.52	0.68	0.81	0.93	1.04	1.12	1.19	1.19			

- \bullet EWMA works very well for some large breaks, eg -0.6 to 0.8 ...
- ... but very badly otherwise

Single break results: summary

$\rho_1 \backslash \rho_2$	-0.6	-0.4	-0.2	0	0.2	0.4	0.6	0.8
-0.6	MON	MON	AVG	AVG	ROL	ROL	ROL	ROL
-0.4	MON	MON	MON	AVG	AVG	ROL	ROL	ROL
-0.2	AVG	MON	MON	MON	AVG	AVG	ROL	ROL
0	ROL	AVG	MON	MON	MON	AVG	ROL	ROL
0.2	ROL	ROL	AVG	MON	MON	MON	AVG	ROL
0.4	ROL	ROL	AVG	AVG	MON	MON	MON	AVG
0.6	ROL	ROL	ROL	AVG	AVG	MON	MON	MON
0.8	EWMA	ROL	ROL	AVG	AVG	AVG	MON	MON

Summary

- Monitoring works, is safe and in general has a small pay off
- Rolling windows improve performance after a shock but have a cost where there are small shocks
- Forecast averaging works well and is a safe strategy

Monte Carlo results

Summary

- Monitoring works but generally has a small pay off. But it is safe
- Short rolling windows improve performance after a shock but have a cost where there are small shocks
- Forecast averaging works well and is a safe strategy

Empirical exercise for the UK and US

- UK: **94** series, 1992Q1 to 2008Q2: *sub-periods* 1992Q1-1999Q4, 2000Q1-2008Q2
- US: 98 series, 1975Q1 to 2008Q3: sub-periods 1975Q1-1986Q2, 1986Q3-1997Q4, 1998Q1-2008Q3
- Compare RMSFEs to an AR(1) benchmark
- \bullet Monitoring using 40 and 60-period windows (M40 and M60)
- Rolling-window using 40 and 60-period windows (R40 and R60)
- Averaging across estimation periods (AV)
- EWMA.

UK performance: first period

Relative RMSFE

	M40	M60	R40	R60	AV	EWMA
		First F	Period (1	992Q1 -	1999Q4)	
Mean	0.972	0.980	0.925	0.959	0.903	1.029
Median	1.000	1.000	0.959	0.987	0.949	1.096
Minimum	0.619	0.737	0.006	0.005	0.047	0.005
Maximum	1.040	1.025	1.511	1.514	1.301	1.622
Std. Dev.	0.065	0.044	0.238	0.218	0.189	0.317
Skewness	-2.806	-2.819	-0.676	-0.636	-1.182	-0.525
DM(R)	12	12	16	16	22	8
DM(FS)	1	2	2	8	1	9

UK performance: second period

Relative RMSFE

	M40	M60	R40	R60	AV	EWMA			
Second Period (2000Q1 - 2008Q2)									
Mean	0.978	0.984	0.957	0.975	0.918	1.054			
Median	1.000	1.000	0.974	0.984	0.951	1.056			
Minimum	0.607	0.692	0.118	0.792	0.155	0.010			
Maximum	1.050	1.031	1.525	1.235	1.265	2.228			
Std. Dev.	0.058	0.043	0.170	0.085	0.157	0.301			
Skewness	-3.783	-4.239	-0.725	0.383	-1.429	0.155			
DM(R)	14	14	18	16	17	6			
DM(FS)	2	2	4	4	1	8			

UK summary

- 33 series exhibited breaks (based on Bai-Perron mean shift in an AR)
- On mean and median RMSFE criteria averaging best
- EWMA worst performer. On average fails to beat the full sample AR although in some cases it does extremely well
- The monitoring method on average beats the benchmark, with a 40 period window outperforming 60 periods
- Rolling window does better, especially with a shorter window. Risk averse forecasters might still choose monitoring: maximum RRMSFE are close to unity and variation in RRMSFE smallest
- Conclude: averaging would have been a good strategy

US performance

	M40	M60	R40	R60	AV	EWMA			
First Period (1975Q1 - 1986Q2)									
Mean	1.011	1.005	1.033	1.012	1.032	1.221			
Median	1.000	1.000	1.033	1.007	1.034	1.212			
Minimum	0.872	0.905	0.906	0.937	0.889	0.792			
Maximum	1.171	1.106	1.135	1.355	1.291	2.594			
	Second Period (1986Q3 - 1997Q4)								
Mean	0.990	0.991	0.999	1.040	0.987	1.145			
Median	1.000	1.000	0.999	1.029	1.008	1.161			
Minimum	0.815	0.870	0.641	0.798	0.711	0.583			
Maximum	1.092	1.054	1.284	1.414	1.113	1.732			
	Third Period (1998Q1 - 2008Q3)								
Mean	0.998	0.991	1.002	0.977	0.952	1.307			
Median	1.000	1.000	1.025	0.997	0.969	1.104			
Minimum	0.842	0.877	0.311	0.324	0.513	0.333			
Maximum	1.623	1.052	2.557	1.626	1.113	15.818			

US summary

- Very few breaks identified: 6
- So gains smaller, best in final period
- EWMA remains worst and most volatile

Conclusions

- Systematic theoretical, experimental and empirical examination of strategies appropriate for real-life forecasting activities in the presence of breaks
- First examination of monitoring-combination strategy
- Monitoring and combining works but has few benefits: is safe however
- In Monte Carlo evidence and real data EWMA very variable and often very bad
- Rolling regressions are not bad
- ... but forecast averaging à la Pesaran and Timmermann works well

Conclusions

- Systematic theoretical, experimental and empirical examination of strategies appropriate for real-life forecasting activities in the presence of breaks
- First examination of monitoring-combination strategy
- Monitoring and combining works but has few benefits: is safe however
- In Monte Carlo evidence and real data EWMA very variable and often very bad
- Rolling regressions are not bad
- ... but forecast averaging à la Pesaran and Timmermann works well