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Summary  
This paper reviews current density forecast evaluation procedures, in the light of a 

recent proposal that these be augmented by an assessment of “sharpness”. 

 This proposal is motivated by an example in which some standard evaluation 

procedures based on probability integral transforms cannot distinguish between the 

ideal forecast and several competing forecasts.  From a time-series forecasting 

perspective, however, this example has some unrealistic features, and so does not 

give a strong case that existing calibration procedures are inadequate in practice. 

 We present a more realistic example in which several competing forecasts may 

nevertheless satisfy probabilistic calibration.  We show how relevant statistical 

methods, including information-based methods, provide the required discrimination 

between competing forecasts and the ideal forecast.  We propose an extension to 

these methods to test density forecast efficiency.  We conclude that there is no 

need for a subsidiary criterion of sharpness, which in practice may be misleading. 
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The statistical framework 
 
2.1.  Calibration 
 
Dawid’s (1984) prequential principle: assessments should be based on the 
forecast-observation pairs only. 
 
Consider forecasts given as predictive CDFs tF  of outcomes ,  1,2,...tX t =  . 
 
The standard assessment tool is the sequence of probability integral transforms 
(PITs) ( ),  1,2,...t t tp F x t= =  , of observed outcomes in the forecast CDFs. 
 
If tF  coincides with tG , the correct or “ideal” forecast, the PITs are iidU[0,1]. 
 
In practice, does such a sequence “look like” a random sample from U[0,1]?  Note 
that to check this out we don’t need to know tG , actually or hypothetically. 
 
We refer to the two-component condition – indep and U – as complete calibration. 
 
GBR refer to the condition of uniform PITs as probabilistic calibration. 



Attention to the information set on which a forecast is based is usually needed. 
 
Let tΩ  denote the set of all relevant information available at the forecast origin. 
 
Then the “ideal” forecast or correct conditional distribution is written ( )t t tG x Ω : 

 in economics this is often called the “rational” or “fully efficient” forecast. 
 
A practical forecast ( )t t tF x W  has different information, functional form, ... . 
 
Denote the correct distribution conditional on tW  as ( )*

t t tG x W . 
 
Then if ( )t t tF x W  coincides with ( )*

t t tG x W  it has uniform PITs:  tF  satisfies 

 probabilistic calibration, but not necessarily complete calibration. 

 
Analogously, a point forecast may have zero-mean errors and so be unbiased, but  
 
 it may not necessarily be efficient in a minimum MSE sense. 



2.2.  Statistical tests of calibration 
 
Diagnostic checks can be based on the PITs or their inverse normal transforms 

( )1
t tz p−= Φ   (Smith, 1985). 

 
If the PITs are iidU[0,1] then the tz s are iidN[0,1]; again we don’t need to know tG . 
 
Goodness-of-fit tests commonly used include chi-squared tests and, for uniformity, 
Kolmogorov-Smirnov and Anderson-Darling tests, and for normality, the Doornik-
Hansen test. 
 
(These are based on random sampling assumptions.) 
 
Tests of independence include, for the tp s, the Ljung-Box test, and for the tz s, the 
likelihood ratio test of Berkowitz (2001). 
 
 



2.3.  Scoring rules, distance measures and sharpness 
 
For forecast density jtf  the logarithmic score is ( ) ( )log logj t jt tS x f x= . 
 
For two forecasts, the difference in log scores is the log Bayes factor. 
 
If one of the forecasts is the “ideal” tg , the expected difference in log scores is the 
Kullback-Leibler information criterion or distance measure 
  { } { }KLIC log ( ) log ( ) ( )t g t t jt t g t tE g x f x E d x= − = . 
 
KLIC-based tests for density forecast evaluation replace E  by a sample average 
and x by p  or z . 
 
To test equal predictive accuracy of two forecasts jtf  and ktf , their KLIC difference 
does not involve tg , and an LR test is based on the sample average of 
log ( ) log ( )jt t kt tf x f x− .  This is a simple example of a Giacomini-White test. 
 
We propose an efficiency test based on the regression of the density forecast error 

( )t td x  on elements of tW . 



Some simple relations for normal density forecasts 
 

The expected log score of the correct conditional density is a simple function of its 

forecast variance (sharpness/concentration/precision): 

  { } ( )21 1
2 2log ( ) log 2g gE g x πσ= − −  . 

 
With a competing forecast ( )f x  we obtain the KLIC as 

  { } ( ) ( )22
2 21 1 1

2 2 2 2 2log ( ) log ( ) log
2

g fg
g g f

f f
E g x f x

μ μσ
σ σ

σ σ

−
− = − − + +  . 

 
This expression has a minimum at zero.  A positive KLIC may be the result of 

departures in mean and/or variance in either direction, and a KLIC-based test is not 

constructive.  PIT histograms can indicate the direction of such departures. 



Gneiting, Balabdaoui and Raftery’s example 
 
 

Probabilistic forecasts, calibration and sharpness.  Journal of 

the Royal Statistical Society B, vol.69 (2007), pp.243-268. 
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Table 1. Scenario for the simulation study†

Forecaster Ft when nature picks Gt =N (μt , 1) where μt ∼N (0, 1)

Ideal N .μt , 1/
Climatological N .0, 2/

Unfocused
1
2

{N .μt , 1/+N .μt + τt , 1/} where τt =±1 with probability
1
2

each

Hamill’s N .μt + δt , σ2
t /

where .δt , σ2
t /=

(
1
2

, 1
)

,
(

−1
2

, 1
)

or
(

0,
169
100

)
with probability

1
3

each

†At times t =1, 2, . . . , 10000, nature picks a distribution Gt , and the forecaster chooses a probabil-
istic forecast Ft . The observations are independent random numbers xt with distribution Gt . We
write N .μ, σ2/ for the normal distribution with mean μ and variance σ2. The sequences .μt /t=1,2,:::,
.τt /t=1,2,::: and .δt , σ2

t /t=1,2,::: are independent identically distributed and independent of each other.

forecaster observes the current state μt but adds a mixture component to the forecast, which can
be interpreted as distributional bias. A similar comment applies to Hamill’s forecaster. Clearly,
our forecasters are caricatures; yet, climatological reference forecasts and conditional biases are
frequently observed in practice. The observation xt is a random draw from Gt , and we repeat the
prediction experiment 10000 times. Fig. 1 shows that the PIT histograms for the four forecasters
are essentially uniform.

In view of the reliance on the PIT in the literature, this is a disconcerting result. As Diebold
et al. (1998) pointed out, the ideal forecaster is preferred by all users, regardless of the respec-
tive loss function. Nevertheless, the PIT cannot distinguish between the ideal forecaster and her
competitors. To address these limitations, we propose a diagnostic approach to the evaluation of
predictive performance that is based on the paradigm of maximizing the sharpness ofthe predic-
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Fig. 1. PIT histograms for (a) the ideal forecaster, (b) the climatological forecaster, (c) the unfocused fore-
caster and (d) Hamill’s forecaster
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Fig. 1. PIT histograms for (a) the ideal forecaster, (b) the climatological forecaster, (c) the unfocused fore-
caster and (d) Hamill’s forecaster



• all four PIT histograms are “essentially uniform”  –  a “disconcerting result” 
 
• they cannot distinguish the ideal forecast from its competitors 

 
• GBR propose maximising sharpness of the predictive distributions, subject to 

calibration 
 
• to assess this they compare the average width of 50% and 90% prediction 

intervals and mean log scores across the four forecasts (ranked, not tested). 
 

The first indistinguishable competitor is the unconditional forecaster (panel b). 

Its distribution is correct, but in typical time-series forecasting problems time 

dependence results in autocorrelation of the point forecast errors and density 

forecast PITs of an unconditional forecast, denying complete calibration. 

 
However GBR are forecasting white noise (cf. Granger, 1983), which is scarcely a 

representative example in time-series forecasting. 



Panels c and d are based on model mixtures or switching models: 

the forecast issued in each period is one of two (c) or three (d) possible forecasts, 

(none of which have the correct distribution), chosen at random. 

 
Contrast the forecast combination literature, since Bates and Granger (1969): 

multiple (point) forecasts are available in every period, and can be combined in 

various ways;  Wallis (2005) considers density forecast combination. 

 
Equally-weighted combinations of the above forecasts have non-uniform PITs. 

 
Do our formal tests solve their “disconcerting result”? 

• goodness-of-fit and autocorrelation tests: no 

• KLIC-based tests: yes 



Forecasting an autoregressive process 

 

We consider the Gaussian second-order autoregressive DGP: 

   ( )2
1 1 2 2 ,  ~ 0,t t t t tY Y Y N εφ φ ε ε σ− −= + +  

   ( ) ( )2 2
1 1 2 2 1 1 2 1 1 2 21 ,   ,   1 yερ φ φ ρ φ ρ φ σ φ ρ φ ρ σ= − = + = − −  

Given observations 1ty −  and 2ty −  and knowledge of parameter values, the true 

conditional distribution or “ideal” forecast is  

   ( )2
1 1 2 2,t t tG N y y εφ φ σ− −= + . 

Five competing density forecasts are constructed, as follows. 



Climatological forecaster:  ( )20, yN σ  

AR1 forecaster:     ( )2
1 1 1,tN yρ σ− ,  ( )2 2 2

1 11 yσ ρ σ= −  

AR2 (same, with data delay): ( )2
2 2 2,tN yρ σ− ,  ( )2 2 2

2 21 yσ ρ σ= −  

Combined forecast:    ( ) ( )2 21 1
1 1 1 2 2 22 2, ,t tN y N yρ σ ρ σ− −+  

Unfocused (GBR) forecaster: ( ){ }2
1 1 2 20.5 ,t t t tG N y y εφ φ τ σ− −+ + + , 

      where tτ  is either 1 or –1, each with probability one-half. 

 

The first three of these conditional distributions are correct with respect to their 

specific information sets, so we expect to find that they satisfy probabilistic 

calibration.  The unfocused forecaster’s biases are expected to be offsetting. 



Table 1.  Simulation design 
 

   Parameter    Autocorrelation

 1φ  2φ  1ρ  2ρ  

        

  Case (1)     1.5 –0.6   0.94 0.80 

  Case (2)   0.15   0.2   0.19 0.23 

  Case (3)        0   0.95       0 0.95 

  Case (4)   –0.5   0.3 –0.71 0.66 

 

Sample size 150; number of replications 500 



Evaluation methods 

 
• PIT histograms (Figure 2) 

• goodness-of-fit tests;  note performance under autocorrelation (Table 2) 

o Kolmogorov-Smirnov 

o Anderson-Darling 

o Doornik-Hansen test on tz s 

• performance of autocorrelation tests (Table 3) 

o Ljung-Box tests on PITs up to lag 4 

o Berkowitz 3 d.f. LR test on tz s 

• scoring rules and distance measures 

o performance of selection/ranking criteria (Table 4) 

o KLIC-based tests (Table 5) 

• efficiency tests (Table 6), but note shortage of test regressors 



Figure 2.  PIT histograms 
 

 
 
 Rows: cases (1) to (4) 

 Columns: ideal, unconditional, AR1, AR2, combination, unfocused forecasters 
 
 



Table 3.  Tests of independence: error autocorrelns and rejection percents 
 

                     Case (1) Case (2) Case (3)* Case (4) 
 1( )eρ  LB Bk 1( )eρ LB Bk 2( )eρ LB Bk 1( )eρ LB Bk 

             
Ideal     0  4.4  4.2    0 3.8 4.6   0  6.2 5.6     0 5.2 3.4 

Climt .94 100 100  .19 68 53 .95 100 99 –.71 100 100 

AR(1) .56 100 100 –.04 43 17 .95 100 99   .21 78 62 

ARlag .77 100 100  .15 24 30   0  6.2 5.6 –.35 99 97 

Combo  .73 100 100  .06 16 14 .80 98 100 –.16 35 62 

Unfocus –.01  4.4  3.8 –.01 5.0 5.4 –.01  5.0 5.0 –.01 4.6 4.2 

 

*in case (3) 1( ) 0eρ =  for all forecasts except unfocus, where 1( )eρ  is repeated 

 



Table 2.  Goodness-of-fit tests: rejection percentages at nominal 5% level 

 

Forecast  Case (1) Case (2) Case (3) Case (4) 
 KS AD DH KS AD DH KS AD DH KS AD DH 

             
Ideal   4.6 4.4 6.4 4.0 4.4 6.2 4.2 4.2 5.4   6.0 5.2 6.0 

Climt 60 66 43 14 18 6.0 86 89 56 4.4 8.4 5.0 

AR1 0.8 1.0 6.4 9.4 8.8 6.6 86 89 56 13 16 5.6 

AR2 6.6 8.6 12 7.8 6.8 5.6 4.2 4.2 5.4 0.2 0 3.0 

Combo  5.6 6.0 8.2 7.8 8.0 6.0 93 97 11 6.8 7.2 7.8 

Unfocus 4.0 5.2 6.4 5.2 4.8 4.6 6.6 5.8 6.2 5.2 5.0 5.4 

 
   Monte Carlo standard error 1≈  under H0  

 



Table 4.  Additional evaluation criteria 
 

Forecast Case (1) Case (2) Case (3) Case (4) 

 KLIC log S− KLIC log S−  KLIC log S− KLIC log S−

         
Ideal   0 142 0 142 0 142 0 142 

Climt 128 270 3.83 145 117 258 39.6 182 

AR1 22 164 2.04 144 117 258 4.8 147 

AR2 75 217 1.16 143 0 142 11.9 154 

Combo   43 185 0.71 142 35 177 3.3 145 

Unfocus 11 153 11.0 153 11 153 11.0 153 

 



Table 5.  KLIC-based tests against ideal forecaster: rejection percentages 
 

Forecast Case (1) Case (2) Case (3) Case (4) 

        
Climt 100 39 100 100 

AR1   98 25 100   46 

AR2 100 15  n.a.   93 

Combo   100 10 100   55 

Unfocus   87 87   87   90 

 



Evaluation results 

 
• PIT histograms:  “essentially uniform”, except combo  –  “disconcerting”? 
 
• g-o-f tests:  similar conclusion;  combo not very non-normal 

o error autocorrelation increases rejection rates above 5% ... 
o ... especially for climt (unconditional) forecaster 
 

• indep tests: immediately distinguish ideal from all but unfocused forecast 
 
• scoring rule:  gives similar rankings across Cases (1) – (4) ... 

o  ... except for combo, where in Cases (1), (3) optimal weights are far from 
the assumed equal weights 

 
• KLIC-based test:  again solves the “disconcerting result” 

o note that KLIC accounts for sharpness, at least in part 
 
• efficiency test:  power varies with amount of autocorrelation in the data 



Conclusion 

 
GBR’s example is not a good guide to the adequacy or otherwise of existing 

evaluation methods because 

•  it has no time dimension, so the complete calibration criterion is irrelevant 

•  their competitor forecasts have no counterpart in the existing forecast 

combination literature 

•  but in any event, KLIC-based methods can discriminate between them. 

Our example shows that, in a more realistic time-series forecasting setting, 

• the usual complete calibration criterion (and, again, KLICs) can discriminate 

between the ideal forecast and other forecasts with incomplete information 

which nevertheless may have “essentially uniform” PIT histograms 

• so there is no call for a subsidiary criterion of sharpness 

In practical forecasting, a preference for the “sharpest” forecast may be a mistake. 




