Forecasting Evaluation and Combination

John Geweke and Gianni Amisano University of Technology Sydney and University of Colorado; European Central Bank and University of Brescia

> Second International Conference in memory of Carlo Giannini Developments in time series econometrics and their uses for macroeconomic forecasting in a policy environment

> > January 18, 2010

1 Optimal prediction pools

- Optimal prediction pools
- 2 Models and data

- Optimal prediction pools
- 2 Models and data
- 3 Optimal pools for joint prediction

- Optimal prediction pools
- 2 Models and data
- 3 Optimal pools for joint prediction
- 4 Optimal pools for individual time series

- Optimal prediction pools
- 2 Models and data
- 3 Optimal pools for joint prediction
- 4 Optimal pools for individual time series
- 5 Conclusions and further research

- Optimal prediction pools
- 2 Models and data
- 3 Optimal pools for joint prediction
- 4 Optimal pools for individual time series
- 5 Conclusions and further research

- Optimal prediction pools
- 2 Models and data
- Optimal pools for joint prediction
- 4 Optimal pools for individual time series
- 5 Conclusions and further research Background: Geweke and Amisano (2009), Optimal Prediction Pools, ECB working paper 1017, http://www.ecb.int/pub/pdf/scpwps/ecbwp1017.pdf

- 1 Optimal prediction pools
- 2 Models and data
- 3 Optimal pools for joint prediction
- 4 Optimal pools for individual time series
- Conclusions and further research Background: Geweke and Amisano (2009), Optimal Prediction Pools, ECB working paper 1017, http://www.ecb.int/pub/pdf/scpwps/ecbwp1017.pdf Geweke (2010),
 - Complete and Incomplete Econometric Models, Princeton University Press

- 1 Optimal prediction pools
- 2 Models and data
- 3 Optimal pools for joint prediction
- 4 Optimal pools for individual time series
- Conclusions and further research Background: Geweke and Amisano (2009), Optimal Prediction Pools, ECB working paper 1017, http://www.ecb.int/pub/pdf/scpwps/ecbwp1017.pdf Geweke (2010),
 - Complete and Incomplete Econometric Models, Princeton University Press

■ There are often several models relevant for a decision

- There are often several models relevant for a decision
 - VAR's (Vector autoregression models)

Econometric motivation

- There are often several models relevant for a decision
 - VAR's (Vector autoregression models)
 - DSGE's (Dynamic stochastic general equilibrium models)

- There are often several models relevant for a decision
 - VAR's (Vector autoregression models)
 - DSGE's (Dynamic stochastic general equilibrium models)
 - DFM's (Dynamic factor models)

Econometric motivation

- There are often several models relevant for a decision
 - VAR's (Vector autoregression models)
 - DSGE's (Dynamic stochastic general equilibrium models)
 - DFM's (Dynamic factor models)
- Decision makers know that all of these models are simplifications

- There are often several models relevant for a decision
 - VAR's (Vector autoregression models)
 - DSGE's (Dynamic stochastic general equilibrium models)
 - DFM's (Dynamic factor models)
- Decision makers know that all of these models are simplifications
 - i.e., they are wrong.

- There are often several models relevant for a decision
 - VAR's (Vector autoregression models)
 - DSGE's (Dynamic stochastic general equilibrium models)
 - DFM's (Dynamic factor models)
- Decision makers know that all of these models are simplifications
 - i.e., they are wrong.
- Bayesian and non-Bayesian methods assume one of the models is true.

- There are often several models relevant for a decision
 - VAR's (Vector autoregression models)
 - DSGE's (Dynamic stochastic general equilibrium models)
 - DFM's (Dynamic factor models)
- Decision makers know that all of these models are simplifications
 - i.e., they are wrong.
- Bayesian and non-Bayesian methods assume one of the models is true.
- What happens if we remove this assumption?

- There are often several models relevant for a decision
 - VAR's (Vector autoregression models)
 - DSGE's (Dynamic stochastic general equilibrium models)
 - DFM's (Dynamic factor models)
- Decision makers know that all of these models are simplifications
 - i.e., they are wrong.
- Bayesian and non-Bayesian methods assume one of the models is true.
- What happens if we remove this assumption?
- Geweke and Amisano (2009), Geweke (2010):

- There are often several models relevant for a decision
 - VAR's (Vector autoregression models)
 - DSGE's (Dynamic stochastic general equilibrium models)
 - DFM's (Dynamic factor models)
- Decision makers know that all of these models are simplifications
 - i.e., they are wrong.
- Bayesian and non-Bayesian methods assume one of the models is true.
- What happens if we remove this assumption?
- Geweke and Amisano (2009), Geweke (2010):
 - Detail on methodology

- There are often several models relevant for a decision
 - VAR's (Vector autoregression models)
 - DSGE's (Dynamic stochastic general equilibrium models)
 - DFM's (Dynamic factor models)
- Decision makers know that all of these models are simplifications
 - i.e., they are wrong.
- Bayesian and non-Bayesian methods assume one of the models is true.
- What happens if we remove this assumption?
- Geweke and Amisano (2009), Geweke (2010):
 - Detail on methodology
 - Application to asset returns

- There are often several models relevant for a decision
 - VAR's (Vector autoregression models)
 - DSGE's (Dynamic stochastic general equilibrium models)
 - DFM's (Dynamic factor models)
- Decision makers know that all of these models are simplifications
 - i.e., they are wrong.
- Bayesian and non-Bayesian methods assume one of the models is true.
- What happens if we remove this assumption?
- Geweke and Amisano (2009), Geweke (2010):
 - Detail on methodology
 - Application to asset returns
- This work: Optimal prediction pools of leading macroeconomic forecasting models

- There are often several models relevant for a decision
 - VAR's (Vector autoregression models)
 - DSGE's (Dynamic stochastic general equilibrium models)
 - DFM's (Dynamic factor models)
- Decision makers know that all of these models are simplifications
 - i.e., they are wrong.
- Bayesian and non-Bayesian methods assume one of the models is true.
- What happens if we remove this assumption?
- Geweke and Amisano (2009), Geweke (2010):
 - Detail on methodology
 - Application to asset returns
- This work: Optimal prediction pools of leading macroeconomic forecasting models

- There are often several models relevant for a decision
 - VAR's (Vector autoregression models)
 - DSGE's (Dynamic stochastic general equilibrium models)
 - DFM's (Dynamic factor models)
- Decision makers know that all of these models are simplifications
 - i.e., they are wrong.
- Bayesian and non-Bayesian methods assume one of the models is true.
- What happens if we remove this assumption?
- Geweke and Amisano (2009), Geweke (2010):
 - Detail on methodology
 - Application to asset returns
- This work: Optimal prediction pools of leading macroeconomic forecasting models

 \blacksquare Time series $\{\mathbf{y}_t\}$

- Time series $\{\mathbf{y}_t\}$
- lacksquare History $old Y_{t-1} = \{old y_1, \dots, old y_{t-1}\}$

- Time series $\{\mathbf{y}_t\}$
- History $\mathbf{Y}_{t-1} = \{\mathbf{y}_1, \dots, \mathbf{y}_{t-1}\}$
- Prediction model A: a probability density $p(\mathbf{y}_t; \mathbf{Y}_{t-1}, A)$

- Time series $\{\mathbf{y}_t\}$
- History $\mathbf{Y}_{t-1} = \{\mathbf{y}_1, \dots, \mathbf{y}_{t-1}\}$
- Prediction model A: a probability density $p(\mathbf{y}_t; \mathbf{Y}_{t-1}, A)$
 - Formal Bayesian approach:

$$\rho\left(\mathbf{y}_{t}; \mathbf{Y}_{t-1}^{o}, A\right) = \rho\left(\mathbf{y}_{t} \mid \mathbf{Y}_{t-1}^{o}, A\right)
= \int \rho\left(\mathbf{y}_{t} \mid \mathbf{Y}_{t-1}^{o}, \theta_{A}, A\right) \rho\left(\theta_{A} \mid \mathbf{Y}_{t-1}^{o}, A\right) d\theta_{A}$$

- Time series $\{\mathbf{y}_t\}$
- History $\mathbf{Y}_{t-1} = \{\mathbf{y}_1, \dots, \mathbf{y}_{t-1}\}$
- Prediction model A: a probability density $p(\mathbf{y}_t; \mathbf{Y}_{t-1}, A)$
 - Formal Bayesian approach:

$$p(\mathbf{y}_{t}; \mathbf{Y}_{t-1}^{o}, A) = p(\mathbf{y}_{t} | \mathbf{Y}_{t-1}^{o}, A)$$

$$= \int p(\mathbf{y}_{t} | \mathbf{Y}_{t-1}^{o}, \theta_{A}, A) p(\theta_{A} | \mathbf{Y}_{t-1}^{o}, A) d\theta_{A}$$

Common non-Bayesian approach:

$$\widehat{\boldsymbol{\theta}}_{A}^{t-1} = f_{t-1} \left(\mathbf{Y}_{t-1}^{o} \right),
\rho \left(\mathbf{y}_{t}; \mathbf{Y}_{t-1}^{o}, A \right) = \rho \left(\mathbf{y}_{t} \mid \mathbf{Y}_{t-1}^{o}, \widehat{\boldsymbol{\theta}}_{A}^{t-1}, A \right)$$

- Time series $\{\mathbf{y}_t\}$
- History $\mathbf{Y}_{t-1} = \{\mathbf{y}_1, \dots, \mathbf{y}_{t-1}\}$
- Prediction model A: a probability density $p(\mathbf{y}_t; \mathbf{Y}_{t-1}, A)$
 - Formal Bayesian approach:

$$p(\mathbf{y}_{t}; \mathbf{Y}_{t-1}^{o}, A) = p(\mathbf{y}_{t} | \mathbf{Y}_{t-1}^{o}, A)$$

$$= \int p(\mathbf{y}_{t} | \mathbf{Y}_{t-1}^{o}, \theta_{A}, A) p(\theta_{A} | \mathbf{Y}_{t-1}^{o}, A) d\theta_{A}$$

Common non-Bayesian approach:

$$\widehat{\boldsymbol{\theta}}_{A}^{t-1} = f_{t-1} \left(\mathbf{Y}_{t-1}^{o} \right),
\rho \left(\mathbf{y}_{t}; \mathbf{Y}_{t-1}^{o}, A \right) = \rho \left(\mathbf{y}_{t} \mid \mathbf{Y}_{t-1}^{o}, \widehat{\boldsymbol{\theta}}_{A}^{t-1}, A \right)$$

■ What matters: A produces a legitimate p.d.f. for \mathbf{y}_t , relying only on \mathbf{Y}_{t-1} and A.

- Time series $\{\mathbf{y}_t\}$
- History $\mathbf{Y}_{t-1} = \{\mathbf{y}_1, \dots, \mathbf{y}_{t-1}\}$
- Prediction model A: a probability density $p(\mathbf{y}_t; \mathbf{Y}_{t-1}, A)$
 - Formal Bayesian approach:

$$p(\mathbf{y}_{t}; \mathbf{Y}_{t-1}^{o}, A) = p(\mathbf{y}_{t} | \mathbf{Y}_{t-1}^{o}, A)$$

$$= \int p(\mathbf{y}_{t} | \mathbf{Y}_{t-1}^{o}, \theta_{A}, A) p(\theta_{A} | \mathbf{Y}_{t-1}^{o}, A) d\theta_{A}$$

Common non-Bayesian approach:

$$\widehat{\boldsymbol{\theta}}_{A}^{t-1} = f_{t-1} \left(\mathbf{Y}_{t-1}^{o} \right),
\rho \left(\mathbf{y}_{t}; \mathbf{Y}_{t-1}^{o}, A \right) = \rho \left(\mathbf{y}_{t} \mid \mathbf{Y}_{t-1}^{o}, \widehat{\boldsymbol{\theta}}_{A}^{t-1}, A \right)$$

■ What matters: A produces a legitimate p.d.f. for \mathbf{y}_t , relying only on \mathbf{Y}_{t-1} and A.

- Time series $\{\mathbf{y}_t\}$
- History $\mathbf{Y}_{t-1} = \{\mathbf{y}_1, \dots, \mathbf{y}_{t-1}\}$
- Prediction model A: a probability density $p(\mathbf{y}_t; \mathbf{Y}_{t-1}, A)$
 - Formal Bayesian approach:

$$p(\mathbf{y}_{t}; \mathbf{Y}_{t-1}^{o}, A) = p(\mathbf{y}_{t} | \mathbf{Y}_{t-1}^{o}, A)$$

$$= \int p(\mathbf{y}_{t} | \mathbf{Y}_{t-1}^{o}, \theta_{A}, A) p(\theta_{A} | \mathbf{Y}_{t-1}^{o}, A) d\theta_{A}$$

Common non-Bayesian approach:

$$\widehat{\boldsymbol{\theta}}_{A}^{t-1} = f_{t-1} \left(\mathbf{Y}_{t-1}^{o} \right),
\rho \left(\mathbf{y}_{t}; \mathbf{Y}_{t-1}^{o}, A \right) = \rho \left(\mathbf{y}_{t} \mid \mathbf{Y}_{t-1}^{o}, \widehat{\boldsymbol{\theta}}_{A}^{t-1}, A \right)$$

■ What matters: A produces a legitimate p.d.f. for \mathbf{y}_t , relying only on \mathbf{Y}_{t-1} and A.

Log scoring

Log scoring

■ Log predictive score:

$$LS\left(\mathbf{Y}_{T}^{o},A\right) = \sum_{t=1}^{T} \log p\left(\mathbf{y}_{t}^{o}; \mathbf{Y}_{t-1}^{o},A\right)$$

Log predictive score:

$$LS\left(\mathbf{Y}_{T}^{o},A\right) = \sum_{t=1}^{T} \log p\left(\mathbf{y}_{t}^{o};\mathbf{Y}_{t-1}^{o},A\right)$$

■ Formal Bayesian approach

$$p\left(\mathbf{y}_{t}^{o}; \mathbf{Y}_{t-1}^{o}, A\right) = p\left(\mathbf{y}_{t}^{o} \mid \mathbf{Y}_{t-1}^{o}, A\right),$$

$$LS\left(\mathbf{Y}_{T}^{o}, A\right) = p\left(\mathbf{Y}_{T}^{o} \mid A\right) = \int p\left(\mathbf{Y}_{T}^{o} \mid \theta_{A}, A\right) p\left(\theta_{A} \mid A\right) d\theta_{A}$$

Log predictive score:

$$LS\left(\mathbf{Y}_{T}^{o},A\right) = \sum_{t=1}^{T}\log p\left(\mathbf{y}_{t}^{o};\mathbf{Y}_{t-1}^{o},A\right)$$

Formal Bayesian approach

$$p(\mathbf{y}_{t}^{o}; \mathbf{Y}_{t-1}^{o}, A) = p(\mathbf{y}_{t}^{o} \mid \mathbf{Y}_{t-1}^{o}, A),$$

$$LS(\mathbf{Y}_{T}^{o}, A) = p(\mathbf{Y}_{T}^{o} \mid A) = \int p(\mathbf{Y}_{T}^{o} \mid \theta_{A}, A) p(\theta_{A} \mid A) d\theta_{A}$$

■ Common non-Bayesian approach:

$$LS\left(\mathbf{Y}_{T}^{o},A\right) = \sum_{t=1}^{T} \log p\left(\mathbf{y}_{t}^{o} \mid \mathbf{Y}_{t-1}^{o}, \widehat{\boldsymbol{\theta}}_{A}^{t-1}, A\right)$$

Log predictive score:

$$LS\left(\mathbf{Y}_{T}^{o},A\right) = \sum_{t=1}^{T} \log p\left(\mathbf{y}_{t}^{o};\mathbf{Y}_{t-1}^{o},A\right)$$

Formal Bayesian approach

$$p(\mathbf{y}_{t}^{o}; \mathbf{Y}_{t-1}^{o}, A) = p(\mathbf{y}_{t}^{o} \mid \mathbf{Y}_{t-1}^{o}, A),$$

$$LS(\mathbf{Y}_{T}^{o}, A) = p(\mathbf{Y}_{T}^{o} \mid A) = \int p(\mathbf{Y}_{T}^{o} \mid \theta_{A}, A) p(\theta_{A} \mid A) d\theta_{A}$$

Common non-Bayesian approach:

$$LS\left(\mathbf{Y}_{T}^{o},A\right) = \sum_{t=1}^{T} \log p\left(\mathbf{y}_{t}^{o} \mid \mathbf{Y}_{t-1}^{o}, \widehat{\boldsymbol{\theta}}_{A}^{t-1}, A\right)$$

Log predictive score:

$$LS\left(\mathbf{Y}_{T}^{o},A\right) = \sum_{t=1}^{T} \log p\left(\mathbf{y}_{t}^{o};\mathbf{Y}_{t-1}^{o},A\right)$$

Formal Bayesian approach

$$p(\mathbf{y}_{t}^{o}; \mathbf{Y}_{t-1}^{o}, A) = p(\mathbf{y}_{t}^{o} \mid \mathbf{Y}_{t-1}^{o}, A),$$

$$LS(\mathbf{Y}_{T}^{o}, A) = p(\mathbf{Y}_{T}^{o} \mid A) = \int p(\mathbf{Y}_{T}^{o} \mid \theta_{A}, A) p(\theta_{A} \mid A) d\theta_{A}$$

Common non-Bayesian approach:

$$LS\left(\mathbf{Y}_{T}^{o},A\right) = \sum_{t=1}^{T} \log p\left(\mathbf{y}_{t}^{o} \mid \mathbf{Y}_{t-1}^{o}, \widehat{\boldsymbol{\theta}}_{A}^{t-1}, A\right)$$

■ In a prediction pool with *n* models the log predictive score function is

$$f_{T}\left(\mathbf{w}\right) = \sum_{t=1}^{T} \log \left[\sum_{i=1}^{n} w_{i} p\left(\mathbf{y}_{t}^{o} \mid \mathbf{Y}_{t-1}^{o}, A_{i}\right) \right]$$

■ In a prediction pool with *n* models the log predictive score function is

$$f_{T}\left(\mathbf{w}\right) = \sum_{t=1}^{T} \log \left[\sum_{i=1}^{n} w_{i} p\left(\mathbf{y}_{t}^{o} \mid \mathbf{Y}_{t-1}^{o}, A_{i}\right) \right]$$

where $\mathbf{w} = (w_1, \dots, w_n)'$, $w_i \ge 0$ $(i = 1, \dots, n)$ and $\sum_{i=1}^n w_i = 1$.

■ In a prediction pool with *n* models the log predictive score function is

$$f_{T}\left(\mathbf{w}\right) = \sum_{t=1}^{T} \log \left[\sum_{i=1}^{n} w_{i} p\left(\mathbf{y}_{t}^{o} \mid \mathbf{Y}_{t-1}^{o}, A_{i}\right) \right]$$

- where $\mathbf{w} = (w_1, ..., w_n)'$, $w_i \ge 0$ (i = 1, ..., n) and $\sum_{i=1}^n w_i = 1$.
- \blacksquare For an ergodic data generating process D,

$$T^{-1}f_{T}\left(\mathbf{w}\right) \stackrel{\text{a.s.}}{\to} \lim_{T \to \infty} T^{-1} \int \log \left[\sum_{i=1}^{n} w_{i} p\left(\mathbf{y}_{t} \mid \mathbf{Y}_{t-1}, A_{i}\right) \right]$$
$$\cdot p\left(\mathbf{Y}_{T} \mid D\right) d\nu\left(\mathbf{Y}_{T}\right) = f\left(\mathbf{w}\right).$$

■ In a prediction pool with *n* models the log predictive score function is

$$f_{T}\left(\mathbf{w}\right) = \sum_{t=1}^{T} \log \left[\sum_{i=1}^{n} w_{i} p\left(\mathbf{y}_{t}^{o} \mid \mathbf{Y}_{t-1}^{o}, A_{i}\right) \right]$$

- where $\mathbf{w} = (w_1, ..., w_n)', w_i \ge 0 \ (i = 1, ..., n)$ and $\sum_{i=1}^n w_i = 1$.
- \blacksquare For an ergodic data generating process D,

$$T^{-1}f_{T}\left(\mathbf{w}\right) \stackrel{\text{a.s.}}{\to} \lim_{T \to \infty} T^{-1} \int \log \left[\sum_{i=1}^{n} w_{i} p\left(\mathbf{y}_{t} \mid \mathbf{Y}_{t-1}, A_{i}\right) \right]$$
$$\cdot p\left(\mathbf{Y}_{T} \mid D\right) d\nu\left(\mathbf{Y}_{T}\right) = f\left(\mathbf{w}\right).$$

■ Some short-hand:

$$p_{ti} = p(\mathbf{y}_t^o; \mathbf{Y}_{t-1}^o, A_i) (t = 1, ..., T; i = 1, ..., n)$$

■ In a prediction pool with *n* models the log predictive score function is

$$f_{T}\left(\mathbf{w}\right) = \sum_{t=1}^{T} \log \left[\sum_{i=1}^{n} w_{i} p\left(\mathbf{y}_{t}^{o} \mid \mathbf{Y}_{t-1}^{o}, A_{i}\right) \right]$$

- where $\mathbf{w} = (w_1, ..., w_n)', w_i \ge 0 \ (i = 1, ..., n)$ and $\sum_{i=1}^n w_i = 1$.
- For an ergodic data generating process D,

$$T^{-1}f_{T}\left(\mathbf{w}\right) \stackrel{\text{a.s.}}{\to} \lim_{T \to \infty} T^{-1} \int \log \left[\sum_{i=1}^{n} w_{i} p\left(\mathbf{y}_{t} \mid \mathbf{Y}_{t-1}, A_{i}\right) \right]$$
$$\cdot p\left(\mathbf{Y}_{T} \mid D\right) d\nu\left(\mathbf{Y}_{T}\right) = f\left(\mathbf{w}\right).$$

Some short-hand:

$$p_{ti} = p\left(\mathbf{y}_{t}^{o}; \mathbf{Y}_{t-1}^{o}, A_{i}\right) (t = 1, \dots, T; i = 1, \dots, n)$$

■ In a prediction pool with *n* models the log predictive score function is

$$f_{T}\left(\mathbf{w}\right) = \sum_{t=1}^{T} \log \left[\sum_{i=1}^{n} w_{i} p\left(\mathbf{y}_{t}^{o} \mid \mathbf{Y}_{t-1}^{o}, A_{i}\right) \right]$$

- where $\mathbf{w} = (w_1, ..., w_n)', w_i \ge 0 \ (i = 1, ..., n)$ and $\sum_{i=1}^n w_i = 1$.
- For an ergodic data generating process D,

$$T^{-1}f_{T}\left(\mathbf{w}\right) \stackrel{\text{a.s.}}{\to} \lim_{T \to \infty} T^{-1} \int \log \left[\sum_{i=1}^{n} w_{i} p\left(\mathbf{y}_{t} \mid \mathbf{Y}_{t-1}, A_{i}\right) \right]$$
$$\cdot p\left(\mathbf{Y}_{T} \mid D\right) d\nu\left(\mathbf{Y}_{T}\right) = f\left(\mathbf{w}\right).$$

Some short-hand:

$$p_{ti} = p\left(\mathbf{y}_{t}^{o}; \mathbf{Y}_{t-1}^{o}, A_{i}\right) (t = 1, \dots, T; i = 1, \dots, n)$$

$$f_{T}\left(\mathbf{w}\right) = \sum_{t=1}^{T} \log \left[\sum_{i=1}^{n} w_{i} p\left(\mathbf{y}_{t}^{o} \mid \mathbf{Y}_{t-1}^{o}, A_{i}\right) \right] = \sum_{t=1}^{T} \log \left(\sum_{i=1}^{n} w_{i} p_{ti} \right)$$

Optimization

$$f_{T}\left(\mathbf{w}\right) = \sum_{t=1}^{T} \log \left[\sum_{i=1}^{n} w_{i} p\left(\mathbf{y}_{t}^{o} \mid \mathbf{Y}_{t-1}^{o}, A_{i}\right) \right] = \sum_{t=1}^{T} \log \left(\sum_{i=1}^{n} w_{i} p_{ti} \right)$$

■ First derivative (after substituting $w_1 = 1 - \sum_{i=2}^{n} w_i$):

$$\partial f_T(\mathbf{w})/\partial w_i = \sum_{t=1}^T \frac{p_{ti} - p_{t1}}{\sum_{j=1}^n w_j p_{tj}} \quad (i = 2, \dots, n)$$

$$f_{T}\left(\mathbf{w}\right) = \sum_{t=1}^{T} \log \left[\sum_{i=1}^{n} w_{i} p\left(\mathbf{y}_{t}^{o} \mid \mathbf{Y}_{t-1}^{o}, A_{i}\right) \right] = \sum_{t=1}^{T} \log \left(\sum_{i=1}^{n} w_{i} p_{ti} \right)$$

■ First derivative (after substituting $w_1 = 1 - \sum_{i=2}^{n} w_i$):

$$\partial f_T(\mathbf{w})/\partial w_i = \sum_{t=1}^T \frac{p_{ti} - p_{t1}}{\sum_{j=1}^n w_j p_{tj}} \quad (i = 2, \dots, n)$$

$$=-T^{-1}\sum_{t=1}^{T}\frac{(p_{ti}-p_{t1})(p_{tj}-p_{t1})}{\left[\sum_{k=1}^{n}w_{k}p_{tk}\right]^{2}} \quad (i,j=2,\ldots,n)$$

$$f_{T}\left(\mathbf{w}\right) = \sum_{t=1}^{T} \log \left[\sum_{i=1}^{n} w_{i} p\left(\mathbf{y}_{t}^{o} \mid \mathbf{Y}_{t-1}^{o}, A_{i}\right) \right] = \sum_{t=1}^{T} \log \left(\sum_{i=1}^{n} w_{i} p_{ti} \right)$$

■ First derivative (after substituting $w_1 = 1 - \sum_{i=2}^{n} w_i$):

$$\partial f_T(\mathbf{w})/\partial w_i = \sum_{t=1}^T \frac{p_{ti}-p_{t1}}{\sum_{j=1}^n w_j p_{tj}} \quad (i=2,\ldots,n)$$

■ Second derivative: $\partial^2 f_T(\mathbf{w}) / \partial w_i \partial w_j$

$$= -T^{-1} \sum_{t=1}^{T} \frac{(p_{ti} - p_{t1}) (p_{tj} - p_{t1})}{\left[\sum_{k=1}^{n} w_k p_{tk}\right]^2} \quad (i, j = 2, \dots, n)$$

 $\mathbf{r}_T(\mathbf{w})$ is a concave function.

$$f_{T}\left(\mathbf{w}\right) = \sum_{t=1}^{T} \log \left[\sum_{i=1}^{n} w_{i} p\left(\mathbf{y}_{t}^{o} \mid \mathbf{Y}_{t-1}^{o}, A_{i}\right) \right] = \sum_{t=1}^{T} \log \left(\sum_{i=1}^{n} w_{i} p_{ti} \right)$$

■ First derivative (after substituting $w_1 = 1 - \sum_{i=2}^{n} w_i$):

$$\partial f_{T}(\mathbf{w}) / \partial w_{i} = \sum_{t=1}^{I} \frac{p_{ti} - p_{t1}}{\sum_{j=1}^{n} w_{j} p_{tj}} \quad (i = 2, ..., n)$$

$$= -T^{-1} \sum_{t=1}^{T} \frac{(p_{ti} - p_{t1}) (p_{tj} - p_{t1})}{\left[\sum_{k=1}^{n} w_k p_{tk}\right]^2} \quad (i, j = 2, \dots, n)$$

- $\mathbf{r}_{T}(\mathbf{w})$ is a concave function.
- Given the evaluations p_{ti} from the alternative prediction models and a sample, finding $\mathbf{w}_{T}^{*} = \arg\max_{\mathbf{w}} f_{T}(\mathbf{w})$ is a straightforward convex programming problem.

$$f_{T}\left(\mathbf{w}\right) = \sum_{t=1}^{T} \log \left[\sum_{i=1}^{n} w_{i} p\left(\mathbf{y}_{t}^{o} \mid \mathbf{Y}_{t-1}^{o}, A_{i}\right) \right] = \sum_{t=1}^{T} \log \left(\sum_{i=1}^{n} w_{i} p_{ti} \right)$$

■ First derivative (after substituting $w_1 = 1 - \sum_{i=2}^{n} w_i$):

$$\partial f_T(\mathbf{w})/\partial w_i = \sum_{t=1}^{I} \frac{p_{ti} - p_{t1}}{\sum_{j=1}^{n} w_j p_{tj}} \quad (i = 2, \dots, n)$$

$$= -T^{-1} \sum_{t=1}^{I} \frac{(p_{ti} - p_{t1}) (p_{tj} - p_{t1})}{\left[\sum_{k=1}^{n} w_k p_{tk}\right]^2} \quad (i, j = 2, \dots, n)$$

- $\mathbf{r}_T(\mathbf{w})$ is a concave function.
- Given the evaluations p_{ti} from the alternative prediction models and a sample, finding $\mathbf{w}_{T}^{*} = \arg\max_{\mathbf{w}} f_{T}(\mathbf{w})$ is a straightforward convex programming problem.

$$f_{T}\left(\mathbf{w}\right) = \sum_{t=1}^{T} \log \left[\sum_{i=1}^{n} w_{i} p\left(\mathbf{y}_{t}^{o} \mid \mathbf{Y}_{t-1}^{o}, A_{i}\right) \right] = \sum_{t=1}^{T} \log \left(\sum_{i=1}^{n} w_{i} p_{ti} \right)$$

■ First derivative (after substituting $w_1 = 1 - \sum_{i=2}^{n} w_i$):

$$\partial f_{T}(\mathbf{w}) / \partial w_{i} = \sum_{t=1}^{I} \frac{p_{ti} - p_{t1}}{\sum_{j=1}^{n} w_{j} p_{tj}} \quad (i = 2, ..., n)$$

$$= -T^{-1} \sum_{t=1}^{I} \frac{(p_{ti} - p_{t1}) (p_{tj} - p_{t1})}{\left[\sum_{k=1}^{n} w_k p_{tk}\right]^2} \quad (i, j = 2, \dots, n)$$

- $\mathbf{r}_T(\mathbf{w})$ is a concave function.
- Given the evaluations p_{ti} from the alternative prediction models and a sample, finding $\mathbf{w}_{T}^{*} = \arg\max_{\mathbf{w}} f_{T}(\mathbf{w})$ is a straightforward convex programming problem.

Review of model averaging and selection

Review of model averaging and selection

■ Recall that for each model A_j , $T^{-1}LS(\mathbf{Y}_T, A_j) \stackrel{a.s.}{\rightarrow}$

$$\lim_{T \to \infty} T^{-1} \int \left[\sum_{t=1}^{T} \log p\left(\mathbf{y}_{t}; \mathbf{Y}_{t-1}, A\right) \right] p\left(\mathbf{Y}_{T} \middle| D\right) d\nu\left(\mathbf{Y}_{T}\right)$$

Review of model averaging and selection

■ Recall that for each model A_j , $T^{-1}LS\left(\mathbf{Y}_T,A_j\right) \stackrel{a.s.}{\rightarrow}$

$$\lim_{T \to \infty} T^{-1} \int \left[\sum_{t=1}^{T} \log p\left(\mathbf{y}_{t}; \mathbf{Y}_{t-1}, A\right) \right] p\left(\mathbf{Y}_{T} \middle| D\right) d\nu\left(\mathbf{Y}_{T}\right)$$

$$LS(\mathbf{Y}_T, A_i) - LS(\mathbf{Y}_T, A_j) \stackrel{a.s.}{\rightarrow} \pm \infty.$$

Review of model averaging and selection

■ Recall that for each model A_j , $T^{-1}LS\left(\mathbf{Y}_T,A_j\right) \overset{a.s.}{\rightarrow}$

$$\lim_{T \to \infty} T^{-1} \int \left[\sum_{t=1}^{T} \log p\left(\mathbf{y}_{t}; \mathbf{Y}_{t-1}, A\right) \right] p\left(\mathbf{Y}_{T} \middle| D\right) d\nu\left(\mathbf{Y}_{T}\right)$$

■ Hence for all interesting pairs A_i and A_j ,

$$LS(\mathbf{Y}_T, A_i) - LS(\mathbf{Y}_T, A_j) \stackrel{a.s.}{\rightarrow} \pm \infty.$$

As a consequence

Review of model averaging and selection

■ Recall that for each model A_j , $T^{-1}LS(\mathbf{Y}_T, A_j) \stackrel{a.s.}{\rightarrow}$

$$\lim_{T \to \infty} T^{-1} \int \left[\sum_{t=1}^{T} \log p\left(\mathbf{y}_{t}; \mathbf{Y}_{t-1}, A\right) \right] p\left(\mathbf{Y}_{T} \middle| D\right) dv\left(\mathbf{Y}_{T}\right)$$

$$LS(\mathbf{Y}_T, A_i) - LS(\mathbf{Y}_T, A_j) \stackrel{a.s.}{\rightarrow} \pm \infty.$$

- As a consequence
 - Bayesian procedures assign probability 1 to one model asymptotically

Review of model averaging and selection

■ Recall that for each model A_j , $T^{-1}LS(\mathbf{Y}_T, A_j) \stackrel{a.s.}{\rightarrow}$

$$\lim_{T \to \infty} T^{-1} \int \left[\sum_{t=1}^{T} \log p\left(\mathbf{y}_{t}; \mathbf{Y}_{t-1}, A\right) \right] p\left(\mathbf{Y}_{T} \middle| D\right) d\nu\left(\mathbf{Y}_{T}\right)$$

$$LS(\mathbf{Y}_T, A_i) - LS(\mathbf{Y}_T, A_j) \stackrel{a.s.}{\rightarrow} \pm \infty.$$

- As a consequence
 - Bayesian procedures assign probability 1 to one model asymptotically
 - Non-Bayesian testing procedures select the same model asymptotically.

Review of model averaging and selection

■ Recall that for each model A_j , $T^{-1}LS(\mathbf{Y}_T, A_j) \stackrel{a.s.}{\rightarrow}$

$$\lim_{T \to \infty} T^{-1} \int \left[\sum_{t=1}^{T} \log p\left(\mathbf{y}_{t}; \mathbf{Y}_{t-1}, A\right) \right] p\left(\mathbf{Y}_{T} \middle| D\right) d\nu\left(\mathbf{Y}_{T}\right)$$

$$LS(\mathbf{Y}_T, A_i) - LS(\mathbf{Y}_T, A_j) \stackrel{a.s.}{\rightarrow} \pm \infty.$$

- As a consequence
 - Bayesian procedures assign probability 1 to one model asymptotically
 - Non-Bayesian testing procedures select the same model asymptotically.
 - Asymptotically, these procedures all use a pseudo-true model with pseudo-true parameter values for prediction.

Review of model averaging and selection

■ Recall that for each model A_i , $T^{-1}LS(\mathbf{Y}_T, A_i) \stackrel{a.s.}{\rightarrow}$

$$\lim_{T \to \infty} T^{-1} \int \left[\sum_{t=1}^{T} \log p\left(\mathbf{y}_{t}; \mathbf{Y}_{t-1}, A\right) \right] p\left(\mathbf{Y}_{T} \middle| D\right) d\nu\left(\mathbf{Y}_{T}\right)$$

$$LS(\mathbf{Y}_T, A_i) - LS(\mathbf{Y}_T, A_j) \stackrel{a.s.}{\rightarrow} \pm \infty.$$

- As a consequence
 - Bayesian procedures assign probability 1 to one model asymptotically
 - Non-Bayesian testing procedures select the same model asymptotically.
 - Asymptotically, these procedures all use a pseudo-true model with pseudo-true parameter values for prediction.
 - This is the wrong answer under a log scoring rule.

Review of model averaging and selection

■ Recall that for each model A_i , $T^{-1}LS(\mathbf{Y}_T, A_i) \stackrel{a.s.}{\rightarrow}$

$$\lim_{T \to \infty} T^{-1} \int \left[\sum_{t=1}^{T} \log p\left(\mathbf{y}_{t}; \mathbf{Y}_{t-1}, A\right) \right] p\left(\mathbf{Y}_{T} \middle| D\right) d\nu\left(\mathbf{Y}_{T}\right)$$

$$LS(\mathbf{Y}_T, A_i) - LS(\mathbf{Y}_T, A_j) \stackrel{a.s.}{\rightarrow} \pm \infty.$$

- As a consequence
 - Bayesian procedures assign probability 1 to one model asymptotically
 - Non-Bayesian testing procedures select the same model asymptotically.
 - Asymptotically, these procedures all use a pseudo-true model with pseudo-true parameter values for prediction.
 - This is the wrong answer under a log scoring rule.

Review of model averaging and selection

■ Recall that for each model A_i , $T^{-1}LS(\mathbf{Y}_T, A_i) \stackrel{a.s.}{\rightarrow}$

$$\lim_{T \to \infty} T^{-1} \int \left[\sum_{t=1}^{T} \log p\left(\mathbf{y}_{t}; \mathbf{Y}_{t-1}, A\right) \right] p\left(\mathbf{Y}_{T} \middle| D\right) d\nu\left(\mathbf{Y}_{T}\right)$$

$$LS(\mathbf{Y}_T, A_i) - LS(\mathbf{Y}_T, A_j) \stackrel{a.s.}{\rightarrow} \pm \infty.$$

- As a consequence
 - Bayesian procedures assign probability 1 to one model asymptotically
 - Non-Bayesian testing procedures select the same model asymptotically.
 - Asymptotically, these procedures all use a pseudo-true model with pseudo-true parameter values for prediction.
 - This is the wrong answer under a log scoring rule.

Population behaviorLimiting behavior of optimal prediction pools

Limiting behavior of optimal prediction pools

■ The population function

$$f\left(\mathbf{w}\right) = \lim_{T \to \infty} T^{-1} f_{T}\left(\mathbf{w}\right) = \lim_{T \to \infty} T^{-1} \sum_{t=1}^{T} \log \left(\sum_{i=1}^{n} w_{i} p_{ti}\right)$$

Limiting behavior of optimal prediction pools

■ The population function

$$f\left(\mathbf{w}\right) = \lim_{T \to \infty} T^{-1} f_{T}\left(\mathbf{w}\right) = \lim_{T \to \infty} T^{-1} \sum_{t=1}^{T} \log \left(\sum_{i=1}^{n} w_{i} p_{ti}\right)$$

is also concave.

■ Define $\mathbf{w}^* = \arg\max f(\mathbf{w})$

Limiting behavior of optimal prediction pools

■ The population function

$$f\left(\mathbf{w}\right) = \lim_{T \to \infty} T^{-1} f_{T}\left(\mathbf{w}\right) = \lim_{T \to \infty} T^{-1} \sum_{t=1}^{T} \log \left(\sum_{i=1}^{n} w_{i} p_{ti}\right)$$

- Define $\mathbf{w}^* = \arg\max f(\mathbf{w})$
 - $\mathbf{w}_T^* \stackrel{a.s.}{\rightarrow} \mathbf{w}^*$

Limiting behavior of optimal prediction pools

■ The population function

$$f\left(\mathbf{w}\right) = \lim_{T \to \infty} T^{-1} f_{T}\left(\mathbf{w}\right) = \lim_{T \to \infty} T^{-1} \sum_{t=1}^{T} \log \left(\sum_{i=1}^{n} w_{i} p_{ti}\right)$$

- Define $\mathbf{w}^* = \arg\max f(\mathbf{w})$
 - $\mathbf{w}_T^* \stackrel{a.s.}{\rightarrow} \mathbf{w}^*$
 - Typically several elements of **w*** are nonnegative...

Limiting behavior of optimal prediction pools

■ The population function

$$f\left(\mathbf{w}\right) = \lim_{T \to \infty} T^{-1} f_{T}\left(\mathbf{w}\right) = \lim_{T \to \infty} T^{-1} \sum_{t=1}^{T} \log \left(\sum_{i=1}^{n} w_{i} p_{ti}\right)$$

- Define $\mathbf{w}^* = \arg\max f(\mathbf{w})$
 - $\mathbf{w}_T^* \stackrel{a.s.}{\rightarrow} \mathbf{w}^*$
 - Typically several elements of **w*** are nonnegative...
 - Despite the fact that both Bayesian and non-Bayesian methods will use just one model in prediction asymptotically.

Limiting behavior of optimal prediction pools

■ The population function

$$f\left(\mathbf{w}\right) = \lim_{T \to \infty} T^{-1} f_{T}\left(\mathbf{w}\right) = \lim_{T \to \infty} T^{-1} \sum_{t=1}^{T} \log \left(\sum_{i=1}^{n} w_{i} p_{ti}\right)$$

- Define $\mathbf{w}^* = \arg\max f(\mathbf{w})$
 - $\mathbf{w}_T^* \stackrel{a.s.}{\rightarrow} \mathbf{w}^*$
 - Typically several elements of **w*** are nonnegative...
 - Despite the fact that both Bayesian and non-Bayesian methods will use just one model in prediction asymptotically.
- What is the explanation?

Limiting behavior of optimal prediction pools

■ The population function

$$f\left(\mathbf{w}\right) = \lim_{T \to \infty} T^{-1} f_{T}\left(\mathbf{w}\right) = \lim_{T \to \infty} T^{-1} \sum_{t=1}^{T} \log \left(\sum_{i=1}^{n} w_{i} p_{ti}\right)$$

- Define $\mathbf{w}^* = \arg\max f(\mathbf{w})$
 - $\mathbf{w}_T^* \stackrel{a.s.}{\rightarrow} \mathbf{w}^*$
 - Typically several elements of **w*** are nonnegative...
 - Despite the fact that both Bayesian and non-Bayesian methods will use just one model in prediction asymptotically.
- What is the explanation?
 - Conventional Bayesian and non-Bayesian procedures assume $A_i = D$ for some j = 1, ..., n.

Limiting behavior of optimal prediction pools

The population function

$$f\left(\mathbf{w}\right) = \lim_{T \to \infty} T^{-1} f_{T}\left(\mathbf{w}\right) = \lim_{T \to \infty} T^{-1} \sum_{t=1}^{T} \log \left(\sum_{i=1}^{n} w_{i} p_{ti}\right)$$

- Define $\mathbf{w}^* = \arg\max f(\mathbf{w})$
 - $\mathbf{w}_{\tau}^{*} \stackrel{a.s.}{\rightarrow} \mathbf{w}^{*}$
 - Typically several elements of w* are nonnegative...
 - Despite the fact that both Bayesian and non-Bayesian methods will use just one model in prediction asymptotically.
- What is the explanation?
 - Conventional Bayesian and non-Bayesian procedures assume $A_i = D$ for some $j = 1, \ldots, n$.
 - Optimal log scoring does not make this assumption.

Limiting behavior of optimal prediction pools

The population function

$$f\left(\mathbf{w}\right) = \lim_{T \to \infty} T^{-1} f_{T}\left(\mathbf{w}\right) = \lim_{T \to \infty} T^{-1} \sum_{t=1}^{T} \log \left(\sum_{i=1}^{n} w_{i} p_{ti}\right)$$

- Define $\mathbf{w}^* = \arg\max f(\mathbf{w})$
 - $\mathbf{w}_{\tau}^{*} \stackrel{a.s.}{\rightarrow} \mathbf{w}^{*}$
 - Typically several elements of w* are nonnegative...
 - Despite the fact that both Bayesian and non-Bayesian methods will use just one model in prediction asymptotically.
- What is the explanation?
 - Conventional Bayesian and non-Bayesian procedures assume $A_i = D$ for some $j = 1, \ldots, n$.
 - Optimal log scoring does not make this assumption.

Limiting behavior of optimal prediction pools

The population function

$$f\left(\mathbf{w}\right) = \lim_{T \to \infty} T^{-1} f_{T}\left(\mathbf{w}\right) = \lim_{T \to \infty} T^{-1} \sum_{t=1}^{T} \log \left(\sum_{i=1}^{n} w_{i} p_{ti}\right)$$

- Define $\mathbf{w}^* = \arg\max f(\mathbf{w})$
 - $\mathbf{w}_{\tau}^{*} \stackrel{a.s.}{\rightarrow} \mathbf{w}^{*}$
 - Typically several elements of w* are nonnegative...
 - Despite the fact that both Bayesian and non-Bayesian methods will use just one model in prediction asymptotically.
- What is the explanation?
 - Conventional Bayesian and non-Bayesian procedures assume $A_i = D$ for some $j = 1, \ldots, n$.
 - Optimal log scoring does not make this assumption.

What if one of the models were true?

What if one of the models were true?

$$f\left(\mathbf{w}\right) = \lim_{T \to \infty} T^{-1} f_T\left(\mathbf{w}\right) = \lim_{T \to \infty} T^{-1} \sum_{t=1}^{T} \log \left(\sum_{i=1}^{n} w_i p_{ti}\right)$$

What if one of the models were true?

■ The population function is

$$f\left(\mathbf{w}\right) = \lim_{T \to \infty} T^{-1} f_{T}\left(\mathbf{w}\right) = \lim_{T \to \infty} T^{-1} \sum_{t=1}^{T} \log \left(\sum_{i=1}^{n} w_{i} p_{ti}\right)$$

■ Define $\mathbf{w}^* = \arg\max f(\mathbf{w})$

What if one of the models were true?

$$f\left(\mathbf{w}\right) = \lim_{T \to \infty} T^{-1} f_{T}\left(\mathbf{w}\right) = \lim_{T \to \infty} T^{-1} \sum_{t=1}^{T} \log \left(\sum_{i=1}^{n} w_{i} p_{ti}\right)$$

- $\blacksquare \ \mathsf{Define} \ \mathbf{w}^* = \mathsf{arg} \ \mathsf{max} \ f \ (\mathbf{w})$
- Proposition: If $A_1 = D$, then $\mathbf{w}^* = (1, 0, \dots, 0)$;

What if one of the models were true?

$$f\left(\mathbf{w}\right) = \lim_{T \to \infty} T^{-1} f_{T}\left(\mathbf{w}\right) = \lim_{T \to \infty} T^{-1} \sum_{t=1}^{T} \log \left(\sum_{i=1}^{n} w_{i} p_{ti}\right)$$

- Define $\mathbf{w}^* = \arg\max f(\mathbf{w})$
- Proposition: If $A_1 = D$, then $\mathbf{w}^* = (1, 0, \dots, 0)$;
 - furthermore,

$$\frac{\partial f(\mathbf{w})}{\partial w_i} \mid_{\mathbf{w}=\mathbf{w}^*} = 0 \quad (j = 1, \dots, m).$$

What if one of the models were true?

$$f\left(\mathbf{w}\right) = \lim_{T \to \infty} T^{-1} f_{T}\left(\mathbf{w}\right) = \lim_{T \to \infty} T^{-1} \sum_{t=1}^{T} \log \left(\sum_{i=1}^{n} w_{i} p_{ti}\right)$$

- Define $\mathbf{w}^* = \arg\max f(\mathbf{w})$
- Proposition: If $A_1 = D$, then $\mathbf{w}^* = (1, 0, \dots, 0)$;
 - furthermore,

$$\frac{\partial f(\mathbf{w})}{\partial w_{j}}\mid_{\mathbf{w}=\mathbf{w}^{*}}=0 \quad (j=1,\ldots,m)$$
.

What if one of the models were true?

$$f\left(\mathbf{w}\right) = \lim_{T \to \infty} T^{-1} f_{T}\left(\mathbf{w}\right) = \lim_{T \to \infty} T^{-1} \sum_{t=1}^{T} \log \left(\sum_{i=1}^{n} w_{i} p_{ti}\right)$$

- Define $\mathbf{w}^* = \arg\max f(\mathbf{w})$
- Proposition: If $A_1 = D$, then $\mathbf{w}^* = (1, 0, \dots, 0)$;
 - furthermore,

$$\frac{\partial f(\mathbf{w})}{\partial w_{j}}\mid_{\mathbf{w}=\mathbf{w}^{*}}=0 \quad (j=1,\ldots,m)$$
.

■ Vector autoregression (VAR)

- Vector autoregression (VAR)
- Dynamic stochastic general equilibrium model (DSGE)

└─Overview of models

- Vector autoregression (VAR)
- Dynamic stochastic general equilibrium model (DSGE)
- Dynamic factor model (DFM)

- Vector autoregression (VAR)
- Dynamic stochastic general equilibrium model (DSGE)
- Dynamic factor model (DFM)
- In each case we used a variant of the model and a method of Bayesian inference representative of current practice at central banks.

- Vector autoregression (VAR)
- Dynamic stochastic general equilibrium model (DSGE)
- Dynamic factor model (DFM)
- In each case we used a variant of the model and a method of Bayesian inference representative of current practice at central banks.
- Caveat:

- Vector autoregression (VAR)
- Dynamic stochastic general equilibrium model (DSGE)
- Dynamic factor model (DFM)
- In each case we used a variant of the model and a method of Bayesian inference representative of current practice at central banks.
- Caveat:
 - Work with several alternative variants is currently proceeding.

- Vector autoregression (VAR)
- Dynamic stochastic general equilibrium model (DSGE)
- Dynamic factor model (DFM)
- In each case we used a variant of the model and a method of Bayesian inference representative of current practice at central banks.
- Caveat:
 - Work with several alternative variants is currently proceeding.
 - The initial results presented today may or may not be representative of results with these variants.

- Vector autoregression (VAR)
- Dynamic stochastic general equilibrium model (DSGE)
- Dynamic factor model (DFM)
- In each case we used a variant of the model and a method of Bayesian inference representative of current practice at central banks.
- Caveat:
 - Work with several alternative variants is currently proceeding.
 - The initial results presented today may or may not be representative of results with these variants.

- Vector autoregression (VAR)
- Dynamic stochastic general equilibrium model (DSGE)
- Dynamic factor model (DFM)
- In each case we used a variant of the model and a method of Bayesian inference representative of current practice at central banks.
- Caveat:
 - Work with several alternative variants is currently proceeding.
 - The initial results presented today may or may not be representative of results with these variants.

Quarterly U.S. data, 1951:I - 2009:I

Quarterly U.S. data, 1951:I - 2009:I

1 Consumption: growth rate in per capita real consumption

Quarterly U.S. data, 1951:1 - 2009:1

- Consumption: growth rate in per capita real consumption
- 2 Investment: growth rate in per capita real investment

Quarterly U.S. data, 1951:I - 2009:I

- Consumption: growth rate in per capita real consumption
- 2 Investment: growth rate in per capita real investment
- 3 Output: growth rate in per capita real GDP

Quarterly U.S. data, 1951:1 - 2009:1

- Consumption: growth rate in per capita real consumption
- 2 Investment: growth rate in per capita real investment
- Output: growth rate in per capita real GDP
- 4 Hours: log per capita weekly hours

Quarterly U.S. data, 1951:I - 2009:I

- Consumption: growth rate in per capita real consumption
- 2 Investment: growth rate in per capita real investment
- 3 Output: growth rate in per capita real GDP
- 4 Hours: log per capita weekly hours
- 5 Inflation: growth rate in GDP deflator

Quarterly U.S. data, 1951:1 - 2009:1

- Consumption: growth rate in per capita real consumption
- 2 Investment: growth rate in per capita real investment
- 3 Output: growth rate in per capita real GDP
- 4 Hours: log per capita weekly hours
- 5 Inflation: growth rate in GDP deflator
- 6 Real wage: growth rate in real wage

Quarterly U.S. data, 1951:I - 2009:I

- Consumption: growth rate in per capita real consumption
- 2 Investment: growth rate in per capita real investment
- Output: growth rate in per capita real GDP
- 4 Hours: log per capita weekly hours
- 5 Inflation: growth rate in GDP deflator
- 6 Real wage: growth rate in real wage
- 7 Interest rate: Federal Funds Rate

Quarterly U.S. data, 1951:I - 2009:I

- Consumption: growth rate in per capita real consumption
- 2 Investment: growth rate in per capita real investment
- 3 Output: growth rate in per capita real GDP
- 4 Hours: log per capita weekly hours
- 5 Inflation: growth rate in GDP deflator
- 6 Real wage: growth rate in real wage
- Interest rate: Federal Funds Rate

Quarterly U.S. data, 1951:1 - 2009:1

- Consumption: growth rate in per capita real consumption
- 2 Investment: growth rate in per capita real investment
- Output: growth rate in per capita real GDP
- 4 Hours: log per capita weekly hours
- 5 Inflation: growth rate in GDP deflator
- 6 Real wage: growth rate in real wage
- 7 Interest rate: Federal Funds Rate

Quarterly U.S. data, 1951:I - 2009:I

- Consumption: growth rate in per capita real consumption
- 2 Investment: growth rate in per capita real investment
- Output: growth rate in per capita real GDP
- 4 Hours: log per capita weekly hours
- 5 Inflation: growth rate in GDP deflator
- 6 Real wage: growth rate in real wage
- 7 Interest rate: Federal Funds Rate

Additional series for DFM

1 Stock returns: Growth rate in S&P 500 index

Quarterly U.S. data, 1951:1 - 2009:1

- Consumption: growth rate in per capita real consumption
- 2 Investment: growth rate in per capita real investment
- Output: growth rate in per capita real GDP
- 4 Hours: log per capita weekly hours
- 5 Inflation: growth rate in GDP deflator
- 6 Real wage: growth rate in real wage
- 7 Interest rate: Federal Funds Rate

- 1 Stock returns: Growth rate in S&P 500 index
- 2 Unemployment rate

Quarterly U.S. data, 1951:1 - 2009:1

- Consumption: growth rate in per capita real consumption
- Investment: growth rate in per capita real investment
- Output: growth rate in per capita real GDP
- 4 Hours: log per capita weekly hours
- 5 Inflation: growth rate in GDP deflator
- 6 Real wage: growth rate in real wage
- 7 Interest rate: Federal Funds Rate

- 1 Stock returns: Growth rate in S&P 500 index
- 2 Unemployment rate
- 3 Term premium: 10 year and 3 month bond rates spread

Quarterly U.S. data, 1951:1 - 2009:1

- Consumption: growth rate in per capita real consumption
- Investment: growth rate in per capita real investment
- Output: growth rate in per capita real GDP
- 4 Hours: log per capita weekly hours
- 5 Inflation: growth rate in GDP deflator
- 6 Real wage: growth rate in real wage
- 7 Interest rate: Federal Funds Rate

- 1 Stock returns: Growth rate in S&P 500 index
- 2 Unemployment rate
- 3 Term premium: 10 year and 3 month bond rates spread
- 4 Risk premium: BAA and AAA corporate bond spread

Data: An extension of Smets and Wouters (2007)

Quarterly U.S. data, 1951:1 - 2009:1

- Consumption: growth rate in per capita real consumption
- Investment: growth rate in per capita real investment
- 3 Output: growth rate in per capita real GDP
- 4 Hours: log per capita weekly hours
- 5 Inflation: growth rate in GDP deflator
- 6 Real wage: growth rate in real wage
- 7 Interest rate: Federal Funds Rate

Additional series for DFM

- 1 Stock returns: Growth rate in S&P 500 index
- 2 Unemployment rate
- 3 Term premium: 10 year and 3 month bond rates spread
- 4 Risk premium: BAA and AAA corporate bond spread
- 5 Money growth: Growth rate in M2

Data: An extension of Smets and Wouters (2007)

Quarterly U.S. data, 1951:1 - 2009:1

- Consumption: growth rate in per capita real consumption
- 2 Investment: growth rate in per capita real investment
- 3 Output: growth rate in per capita real GDP
- 4 Hours: log per capita weekly hours
- 5 Inflation: growth rate in GDP deflator
- 6 Real wage: growth rate in real wage
- 7 Interest rate: Federal Funds Rate

Additional series for DFM

- 1 Stock returns: Growth rate in S&P 500 index
- Unemployment rate
- 3 Term premium: 10 year and 3 month bond rates spread
- 4 Risk premium: BAA and AAA corporate bond spread
- 5 Money growth: Growth rate in M2

Data: An extension of Smets and Wouters (2007)

Quarterly U.S. data, 1951:1 - 2009:1

- Consumption: growth rate in per capita real consumption
- 2 Investment: growth rate in per capita real investment
- 3 Output: growth rate in per capita real GDP
- 4 Hours: log per capita weekly hours
- 5 Inflation: growth rate in GDP deflator
- 6 Real wage: growth rate in real wage
- 7 Interest rate: Federal Funds Rate

Additional series for DFM

- 1 Stock returns: Growth rate in S&P 500 index
- Unemployment rate
- 3 Term premium: 10 year and 3 month bond rates spread
- 4 Risk premium: BAA and AAA corporate bond spread
- 5 Money growth: Growth rate in M2

└Models: VAR

■ Conventional VAR with Minnesota priors

- Conventional VAR with Minnesota priors
- VAR is in levels, predictive densities are for differences (except hours and interest rate)

- Conventional VAR with Minnesota priors
- VAR is in levels, predictive densities are for differences (except hours and interest rate)
- Full Bayesian inference using MCMC

- Conventional VAR with Minnesota priors
- VAR is in levels, predictive densities are for differences (except hours and interest rate)
- Full Bayesian inference using MCMC
- Four lags of each variable

- Conventional VAR with Minnesota priors
- VAR is in levels, predictive densities are for differences (except hours and interest rate)
- Full Bayesian inference using MCMC
- Four lags of each variable

- Conventional VAR with Minnesota priors
- VAR is in levels, predictive densities are for differences (except hours and interest rate)
- Full Bayesian inference using MCMC
- Four lags of each variable

■ Model described in Smets and Wouters, AER 2007

- Model described in Smets and Wouters, AER 2007
- DSGE model with nominal frictions: price and wage stickiness, monopolistic competition.

- Model described in Smets and Wouters, AER 2007
- DSGE model with nominal frictions: price and wage stickiness, monopolistic competition.
- "The marginal likelihood criterion, which captures the out-of-sample prediction performance, is used to test the [DSGE] model against standard and Bayesian VAR models. We find that the [DSGE] model has a fit comparable to that of Bayesian VAR models." (p. 587)

- Model described in Smets and Wouters, AER 2007
- DSGE model with nominal frictions: price and wage stickiness, monopolistic competition.
- "The marginal likelihood criterion, which captures the out-of-sample prediction performance, is used to test the [DSGE] model against standard and Bayesian VAR models. We find that the [DSGE] model has a fit comparable to that of Bayesian VAR models." (p. 587)
- Unit root structure: some exogenous driving variables are I(1), variables transformed to stationarity

- Model described in Smets and Wouters, AER 2007
- DSGE model with nominal frictions: price and wage stickiness, monopolistic competition.
- "The marginal likelihood criterion, which captures the out-of-sample prediction performance, is used to test the [DSGE] model against standard and Bayesian VAR models. We find that the [DSGE] model has a fit comparable to that of Bayesian VAR models." (p. 587)
- Unit root structure: some exogenous driving variables are I(1), variables transformed to stationarity
- Seven structural shocks: total factor productivity, risk premium, investment specific tech shock, wage mark up, price mark up, exogenous government spending, monetary shock

- Model described in Smets and Wouters, AER 2007
- DSGE model with nominal frictions: price and wage stickiness, monopolistic competition.
- "The marginal likelihood criterion, which captures the out-of-sample prediction performance, is used to test the [DSGE] model against standard and Bayesian VAR models. We find that the [DSGE] model has a fit comparable to that of Bayesian VAR models." (p. 587)
- Unit root structure: some exogenous driving variables are I(1), variables transformed to stationarity
- Seven structural shocks: total factor productivity, risk premium, investment specific tech shock, wage mark up, price mark up, exogenous government spending, monetary shock
- Bayesian inference with results based on posterior modal value of parameters (as in DYNARE)

- Model described in Smets and Wouters, AER 2007
- DSGE model with nominal frictions: price and wage stickiness, monopolistic competition.
- "The marginal likelihood criterion, which captures the out-of-sample prediction performance, is used to test the [DSGE] model against standard and Bayesian VAR models. We find that the [DSGE] model has a fit comparable to that of Bayesian VAR models." (p. 587)
- Unit root structure: some exogenous driving variables are I(1), variables transformed to stationarity
- Seven structural shocks: total factor productivity, risk premium, investment specific tech shock, wage mark up, price mark up, exogenous government spending, monetary shock
- Bayesian inference with results based on posterior modal value of parameters (as in DYNARE)

- Model described in Smets and Wouters, AER 2007
- DSGE model with nominal frictions: price and wage stickiness, monopolistic competition.
- "The marginal likelihood criterion, which captures the out-of-sample prediction performance, is used to test the [DSGE] model against standard and Bayesian VAR models. We find that the [DSGE] model has a fit comparable to that of Bayesian VAR models." (p. 587)
- Unit root structure: some exogenous driving variables are I(1), variables transformed to stationarity
- Seven structural shocks: total factor productivity, risk premium, investment specific tech shock, wage mark up, price mark up, exogenous government spending, monetary shock
- Bayesian inference with results based on posterior modal value of parameters (as in DYNARE)

■ Model specification following Stock and Watson (2005, NBER working paper).

- Model specification following Stock and Watson (2005, NBER working paper).
 - k = 3 common factors with VAR dynamics

- Model specification following Stock and Watson (2005, NBER working paper).
 - k = 3 common factors with VAR dynamics
 - \blacksquare n = 12 idiosyncratic terms with AR dynamics

- Model specification following Stock and Watson (2005, NBER working paper).
 - k = 3 common factors with VAR dynamics
 - \blacksquare n = 12 idiosyncratic terms with AR dynamics
- Structure:

- Model specification following Stock and Watson (2005, NBER working paper).
 - k = 3 common factors with VAR dynamics
 - \blacksquare n = 12 idiosyncratic terms with AR dynamics
- Structure:

$$\mathbf{m} \ \, \mathbf{y}_t = \mathbf{\Gamma} \mathbf{f}_t + \mathbf{v}_t \\ \mathbf{(12\times1)} = \mathbf{\Gamma} \mathbf{(3\times1)} + \mathbf{v}_t$$

- Model specification following Stock and Watson (2005, NBER) working paper).
 - k = 3 common factors with VAR dynamics
 - = n = 12 idiosyncratic terms with AR dynamics
- Structure:
 - $\mathbf{y}_t = \Gamma_{(12\times1)} \mathbf{f}_t + \mathbf{v}_t$
 - $b_i(L)v_{it} = \varepsilon_{it}$, i = 1, 2, ...12; lag length 2; $\varepsilon_{t} \stackrel{iid}{\sim} N(\mathbf{0}, diag(\sigma))$

- Model specification following Stock and Watson (2005, NBER working paper).
 - k = 3 common factors with VAR dynamics
 - n = 12 idiosyncratic terms with AR dynamics
- Structure:
 - $\mathbf{y}_t = \mathbf{f}_t + \mathbf{v}_t$ $\mathbf{y}_t = \mathbf{f}_t + \mathbf{v}_t$
 - $b_i(L)v_{it} = \varepsilon_{it}$, i = 1, 2, ...12; lag length 2; $\varepsilon_t \stackrel{iid}{\sim} N(\mathbf{0}, diag(\sigma))$
 - $\mathbf{A}(L)\mathbf{f}_t = \boldsymbol{\eta}_t, \boldsymbol{\eta}_t \stackrel{iid}{\sim} \mathcal{N}(\mathbf{0}, \mathbf{I}_3);$ lag length 2

- Model specification following Stock and Watson (2005, NBER working paper).
 - k = 3 common factors with VAR dynamics
 - = n = 12 idiosyncratic terms with AR dynamics
- Structure:
 - $\mathbf{y}_t = \Gamma \mathbf{f}_t + \mathbf{v}_t$ $\mathbf{f}_t (12 \times 1) = (3 \times 1)$
 - $b_i(L)v_{it} = \varepsilon_{it}$, i = 1, 2, ...12; lag length 2; $\varepsilon_t \stackrel{iid}{\sim} N(\mathbf{0}, diag(\sigma))$
 - **A**(L)**f** $_t = \eta_t, \eta_t \stackrel{iid}{\sim} N(\mathbf{0}, \mathbf{I}_3);$ lag length 2
- Bayesian inference with proper priors

- Model specification following Stock and Watson (2005, NBER working paper).
 - k = 3 common factors with VAR dynamics
 - = n = 12 idiosyncratic terms with AR dynamics
- Structure:
 - $\mathbf{y}_t = \Gamma \mathbf{f}_t + \mathbf{v}_t$ $(12 \times 1) = (3 \times 1)$
 - $b_i(L)v_{it} = \varepsilon_{it}$, i = 1, 2, ...12; lag length 2; $\varepsilon_t \stackrel{iid}{\sim} N(\mathbf{0}, diag(\sigma))$
 - $\mathbf{A}(L)\mathbf{f}_t = \boldsymbol{\eta}_t, \boldsymbol{\eta}_t \stackrel{iid}{\sim} \mathcal{N}(\mathbf{0}, \mathbf{I}_3);$ lag length 2
- Bayesian inference with proper priors
- Marginal predictive distribution for first 7 variables used for model pool

- Model specification following Stock and Watson (2005, NBER working paper).
 - k = 3 common factors with VAR dynamics
 - n = 12 idiosyncratic terms with AR dynamics
- Structure:
 - $\mathbf{y}_t = \Gamma \mathbf{f}_t + \mathbf{v}_t$ $(12 \times 1) = (3 \times 1)$
 - $b_i(L)v_{it} = \varepsilon_{it}$, i = 1, 2, ...12; lag length 2; $\varepsilon_t \stackrel{iid}{\sim} N(\mathbf{0}, diag(\sigma))$
 - $\mathbf{A}(L)\mathbf{f}_t = \boldsymbol{\eta}_t, \boldsymbol{\eta}_t \stackrel{iid}{\sim} \mathcal{N}(\mathbf{0}, \mathbf{I}_3);$ lag length 2
- Bayesian inference with proper priors
- Marginal predictive distribution for first 7 variables used for model pool

- Model specification following Stock and Watson (2005, NBER working paper).
 - k = 3 common factors with VAR dynamics
 - n = 12 idiosyncratic terms with AR dynamics
- Structure:
 - $\mathbf{y}_t = \Gamma \mathbf{f}_t + \mathbf{v}_t$ $(12 \times 1) = (3 \times 1)$
 - $b_i(L)v_{it} = \varepsilon_{it}$, i = 1, 2, ...12; lag length 2; $\varepsilon_t \stackrel{iid}{\sim} N(\mathbf{0}, diag(\sigma))$
 - $\mathbf{A}(L)\mathbf{f}_t = \boldsymbol{\eta}_t, \boldsymbol{\eta}_t \stackrel{iid}{\sim} \mathcal{N}(\mathbf{0}, \mathbf{I}_3);$ lag length 2
- Bayesian inference with proper priors
- Marginal predictive distribution for first 7 variables used for model pool

Log scores of individual models, 1966:I - 2009:I

Log scores of individual models, 1966:I - 2009:I

VAR -1042.5

Log scores of individual models, 1966:1 - 2009:1

VAR -1042.5 DSGE -1087.7

Log scores of individual models, 1966:1 - 2009:1

VAR -1042.5 DSGE -1087.7 DFM -1019.6

Log scores of individual models, 1966:I - 2009:I

VAR -1042.5 DSGE -1087.7 DFM -1019.6

■ Formal interpretation in VAR and DFM: Log marginal likelihood with

- Formal interpretation in VAR and DFM: Log marginal likelihood with
 - Prior and data 1947:I 1965:IV constituting the prior distribution

- Formal interpretation in VAR and DFM: Log marginal likelihood with
 - Prior and data 1947:I 1965:IV constituting the prior distribution
 - Likelihood from the data 1966:I 2009:I

- Formal interpretation in VAR and DFM: Log marginal likelihood with
 - Prior and data 1947:I 1965:IV constituting the prior distribution
 - Likelihood from the data 1966:I 2009:I
- DSGE uses fixed parameter value (posterior mode) each quarter.

- Formal interpretation in VAR and DFM: Log marginal likelihood with
 - Prior and data 1947:I 1965:IV constituting the prior distribution
 - Likelihood from the data 1966:I 2009:I
- DSGE uses fixed parameter value (posterior mode) each quarter.

- Formal interpretation in VAR and DFM: Log marginal likelihood with
 - Prior and data 1947:I 1965:IV constituting the prior distribution
 - Likelihood from the data 1966:I 2009:I
- DSGE uses fixed parameter value (posterior mode) each quarter.

Optimal pool of models

Model VAR DSGE DFM
Log score -1042.5 -1087.7 -1019.6

Optimal pools for joint prediction
Optimal pool

Optimal pool of models

Model	VAR	DSGE	DFM
Log score	-1042.5	-1087.7	-1019.6
Weight	0.429	0.240	0.330

Model	VAR	DSGE	DFM
Log score	-1042.5	-1087.7	-1019.6
Weight	0.429	0.240	0.330
Value	14.6	10.0	40.8

VAR	DSGE	DFM
-1042.5	-1087.7	-1019.6
0.429	0.240	0.330
14.6	10.0	40.8
	-1042.5 0.429	-1042.5 -1087.7 0.429 0.240

Log score of optimal pool: -974.9

Optimal pools for J

Model	VAR	DSGE	DFM
Log score	-1042.5	-1087.7	-1019.6
Weight	0.429	0.240	0.330
Value	14.6	10.0	40.8

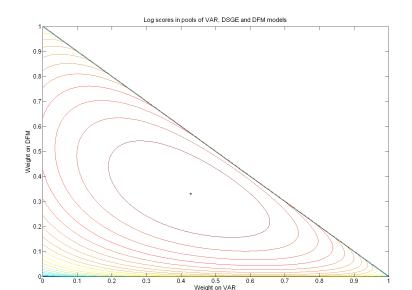
Log score of optimal pool: -974.9

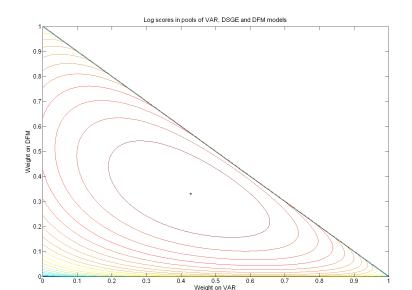
Log score of equally-weighted pool: -975.8

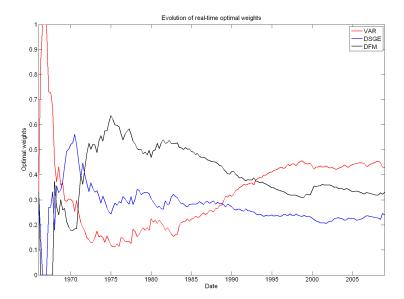
Model	VAR	DSGE	DFM
Log score	-1042.5	-1087.7	-1019.6
Weight	0.429	0.240	0.330
Value	14.6	10.0	40.8

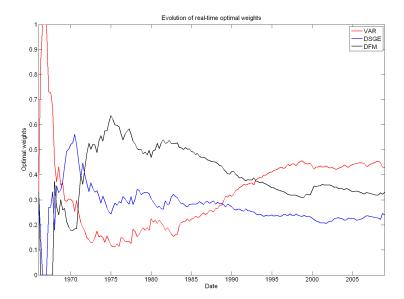
Log score of optimal pool: -974.9

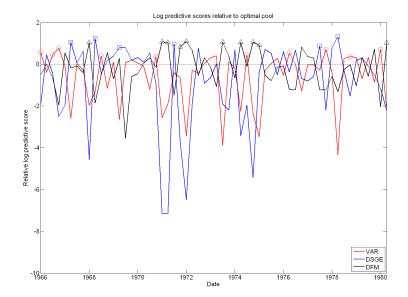
Log score of equally-weighted pool: -975.8

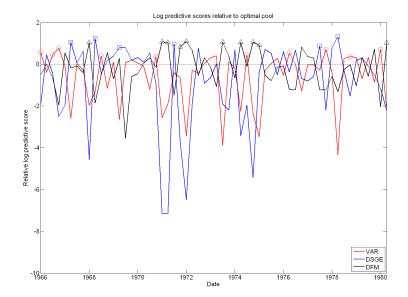








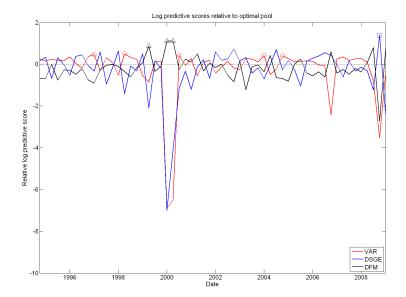




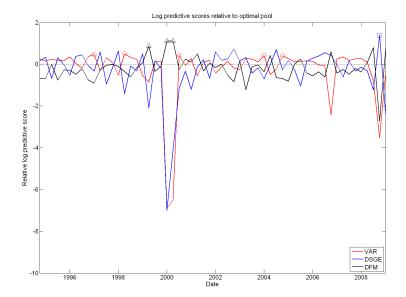




Optimal pools for joint prediction
Optimal pool



Optimal pools for joint prediction
Optimal pool



VAR DSGE DFM Hours 0.146 0.014 0.841

	VAR	DSGE	DFM
Hours	0.146	0.014	0.841
Interest rate	0.161	0.478	0.361

	VAR	DSGE	DFM
Hours	0.146	0.014	0.841
Interest rate	0.161	0.478	0.361
Inflation	0.341	0.659	0.000

	VAR	DSGE	DFM
Hours	0.146	0.014	0.841
Interest rate	0.161	0.478	0.361
Inflation	0.341	0.659	0.000
Real GDP	0.135	0.000	0.865

	VAR	DSGE	DFM
Hours	0.146	0.014	0.841
Interest rate	0.161	0.478	0.361
Inflation	0.341	0.659	0.000
Real GDP	0.135	0.000	0.865
Real consumption	0.356	0.211	0.434

	VAR	DSGE	DFM
Hours	0.146	0.014	0.841
Interest rate	0.161	0.478	0.361
Inflation	0.341	0.659	0.000
Real GDP	0.135	0.000	0.865
Real consumption	0.356	0.211	0.434
Real investment	0.034	0.340	0.625

	VAR	DSGE	DFM
Hours	0.146	0.014	0.841
Interest rate	0.161	0.478	0.361
Inflation	0.341	0.659	0.000
Real GDP	0.135	0.000	0.865
Real consumption	0.356	0.211	0.434
Real investment	0.034	0.340	0.625
Real wage	0.451	0.549	0.000

	VAR	DSGE	DFM
Hours	0.146	0.014	0.841
Interest rate	0.161	0.478	0.361
Inflation	0.341	0.659	0.000
Real GDP	0.135	0.000	0.865
Real consumption	0.356	0.211	0.434
Real investment	0.034	0.340	0.625
Real wage	0.451	0.549	0.000

	VAR	DSGE	DFM
Hours	0.146	0.014	0.841
Interest rate	0.161	0.478	0.361
Inflation	0.341	0.659	0.000
Real GDP	0.135	0.000	0.865
Real consumption	0.356	0.211	0.434
Real investment	0.034	0.340	0.625
Real wage	0.451	0.549	0.000

VAR DSGE DFM Hours 0.069 0.004 2.779

	VAR	DSGE	DFM
Hours	0.069	0.004	2.779
Interest rate	0.305	6.109	17.21

	VAR	DSGE	DFM
Hours	0.069	0.004	2.779
Interest rate	0.305	6.109	17.21
Inflation	1.500	11.904	0.000

	VAR	DSGE	DFM
Hours	0.069	0.004	2.779
Interest rate	0.305	6.109	17.21
Inflation	1.500	11.904	0.000
Real GDP	0.193	0.000	5.453

	VAR	DSGE	DFM
Hours	0.069	0.004	2.779
Interest rate	0.305	6.109	17.21
Inflation	1.500	11.904	0.000
Real GDP	0.193	0.000	5.453
Real consumption	0.622	0.913	1.118

	VAR	DSGE	DFM
Hours	0.069	0.004	2.779
Interest rate	0.305	6.109	17.21
Inflation	1.500	11.904	0.000
Real GDP	0.193	0.000	5.453
Real consumption	0.622	0.913	1.118
Real investment	0.006	1.286	1.819

	VAR	DSGE	DFM
Hours	0.069	0.004	2.779
Interest rate	0.305	6.109	17.21
Inflation	1.500	11.904	0.000
Real GDP	0.193	0.000	5.453
Real consumption	0.622	0.913	1.118
Real investment	0.006	1.286	1.819
Real wage	1.791	3.378	0.000

	VAR	DSGE	DFM
Hours	0.069	0.004	2.779
Interest rate	0.305	6.109	17.21
Inflation	1.500	11.904	0.000
Real GDP	0.193	0.000	5.453
Real consumption	0.622	0.913	1.118
Real investment	0.006	1.286	1.819
Real wage	1.791	3.378	0.000

	VAR	DSGE	DFM
Hours	0.069	0.004	2.779
Interest rate	0.305	6.109	17.21
Inflation	1.500	11.904	0.000
Real GDP	0.193	0.000	5.453
Real consumption	0.622	0.913	1.118
Real investment	0.006	1.286	1.819
Real wage	1.791	3.378	0.000

Summary and further research

■ Optimal pooling:

- Optimal pooling:
 - Does not assume one of the models is true

- Optimal pooling:
 - Does not assume one of the models is true
 - Weights are very different from Bayesian posterior probabilities

- Optimal pooling:
 - Does not assume one of the models is true
 - Weights are very different from Bayesian posterior probabilities
 - Many more properties in Geweke and Amisano (2009), Geweke(2010)

- Optimal pooling:
 - Does not assume one of the models is true
 - Weights are very different from Bayesian posterior probabilities
 - Many more properties in Geweke and Amisano (2009), Geweke(2010)
- In the optimal pool of VAR, DSGE and DFM models

- Optimal pooling:
 - Does not assume one of the models is true
 - Weights are very different from Bayesian posterior probabilities
 - Many more properties in Geweke and Amisano (2009), Geweke(2010)
- In the optimal pool of VAR, DSGE and DFM models
 - All three models have positive weight and value

- Optimal pooling:
 - Does not assume one of the models is true
 - Weights are very different from Bayesian posterior probabilities
 - Many more properties in Geweke and Amisano (2009), Geweke(2010)
- In the optimal pool of VAR, DSGE and DFM models
 - All three models have positive weight and value
 - VAR has the highest weight, DFM the greatest value, and DSGE the lowest weight and value

- Optimal pooling:
 - Does not assume one of the models is true
 - Weights are very different from Bayesian posterior probabilities
 - Many more properties in Geweke and Amisano (2009), Geweke(2010)
- In the optimal pool of VAR, DSGE and DFM models
 - All three models have positive weight and value
 - VAR has the highest weight, DFM the greatest value, and DSGE the lowest weight and value
 - For marginal predictive densities (individual series) results are varied

- Optimal pooling:
 - Does not assume one of the models is true
 - Weights are very different from Bayesian posterior probabilities
 - Many more properties in Geweke and Amisano (2009), Geweke(2010)
- In the optimal pool of VAR, DSGE and DFM models
 - All three models have positive weight and value
 - VAR has the highest weight, DFM the greatest value, and DSGE the lowest weight and value
 - For marginal predictive densities (individual series) results are varied
 - Strong indication that no model is (close to) DGP

- Optimal pooling:
 - Does not assume one of the models is true
 - Weights are very different from Bayesian posterior probabilities
 - Many more properties in Geweke and Amisano (2009), Geweke(2010)
- In the optimal pool of VAR, DSGE and DFM models
 - All three models have positive weight and value
 - VAR has the highest weight, DFM the greatest value, and DSGE the lowest weight and value
 - For marginal predictive densities (individual series) results are varied
 - Strong indication that no model is (close to) DGP
 - Consistent with the observation that all three models are used by central banks despite the fact that posterior odds overwhelmingly favors DFM

- Optimal pooling:
 - Does not assume one of the models is true
 - Weights are very different from Bayesian posterior probabilities
 - Many more properties in Geweke and Amisano (2009), Geweke(2010)
- In the optimal pool of VAR, DSGE and DFM models
 - All three models have positive weight and value
 - VAR has the highest weight, DFM the greatest value, and DSGE the lowest weight and value
 - For marginal predictive densities (individual series) results are varied
 - Strong indication that no model is (close to) DGP
 - Consistent with the observation that all three models are used by central banks despite the fact that posterior odds overwhelmingly favors DFM

- Optimal pooling:
 - Does not assume one of the models is true
 - Weights are very different from Bayesian posterior probabilities
 - Many more properties in Geweke and Amisano (2009), Geweke(2010)
- In the optimal pool of VAR, DSGE and DFM models
 - All three models have positive weight and value
 - VAR has the highest weight, DFM the greatest value, and DSGE the lowest weight and value
 - For marginal predictive densities (individual series) results are varied
 - Strong indication that no model is (close to) DGP
 - Consistent with the observation that all three models are used by central banks despite the fact that posterior odds overwhelmingly favors DFM

Summary and further research

Summary and further research

Further research

■ The application:

- The application:
 - Interpretation of results

- The application:
 - Interpretation of results
 - Variants on each of the three models

- The application:
 - Interpretation of results
 - Variants on each of the three models
 - Variants on methods of inference

Summary and further research

- The application:
 - Interpretation of results
 - Variants on each of the three models
 - Variants on methods of inference
 - Data from other countries

- The application:
 - Interpretation of results
 - Variants on each of the three models
 - Variants on methods of inference
 - Data from other countries
- Optimal pooling:

- The application:
 - Interpretation of results
 - Variants on each of the three models
 - Variants on methods of inference
 - Data from other countries
- Optimal pooling:
 - Nonlinear pools

- The application:
 - Interpretation of results
 - Variants on each of the three models
 - Variants on methods of inference
 - Data from other countries
- Optimal pooling:
 - Nonlinear pools
 - Alternative utility functions

- The application:
 - Interpretation of results
 - Variants on each of the three models
 - Variants on methods of inference
 - Data from other countries
- Optimal pooling:
 - Nonlinear pools
 - Alternative utility functions

- The application:
 - Interpretation of results
 - Variants on each of the three models
 - Variants on methods of inference
 - Data from other countries
- Optimal pooling:
 - Nonlinear pools
 - Alternative utility functions