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Abstract

The paper discusses prior elicitation for the parameters of dynamic stochastic gen-

eral equilibrium (DSGE) models, and provides a method for constructing prior dis-

tributions for a subset of these parameters from beliefs about the moments of the

endogenous variables. The empirical application studies the role of price and wage

rigidities in a New Keynesian DSGE model and finds that standard macro time se-

ries cannot discriminate among theories that differ in the quantitative importance of

nominal frictions.
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1 Introduction

Bayesian methods are now widely used for the estimation and evaluation of dynamic stochas-

tic general equilibrium (DSGE) models. Of particular interest is the question what endoge-

nous propagation mechanisms to include in the DSGE model to capture the salient features

of macroeconomic time series. Several approaches are available in a Bayesian framework:

comparison of impulse responses computed from DSGE models and a structural vector au-

toregression, e.g., Schorfheide (2000) or Del Negro, Schorfheide, Smets, and Wouters (2007);

an assessment of how far actual sample moments lie in the tails of prior or posterior predic-

tive distributions from DSGE models, e.g., Canova (1994); a comparison of different DSGE

model specifications based on marginal likelihood functions (in-sample fit adjusted for model

complexity), e.g. Smets and Wouters (2003, 2007), and Rabanal and Rubio-Ramirez (2005).

A comprehensive survey is provided in An and Schorfheide (2007). In all of these approaches

prior distributions for the DSGE model parameters play an important role for the analysis.

Despite its importance the literature has paid little attention to the systematic elicitation

of priors.

The paper makes a methodological and a substantive contribution. First, we provide

a framework for constructing priors for different classes of parameters: those determining

the steady state, the endogenous propagation of shocks, and the law of motion of exogenous

disturbances. As part of this framework, we propose an easily implementable method to

elicit prior distributions for DSGE model parameters from beliefs about moments of ob-

servable variables. Second, the empirical part of the the paper studies the role of nominal

rigidities in a New Keynesian DSGE model with both nominal and real frictions. We find

that the macro time series we use – post 1982 U.S. data on output, labor supply, labor share,

inflation and interest rates – cannot discriminate among theories that differ in the quan-

titative importance of these rigidities. Consequently priors play a major role, whence the

need to make explicit the information on which priors are based, and to have a transparent

method for translating this information into statistical distributions, which is the thrust of

our methodological advancement.

Prior distributions either reflect subjective opinions or summarize information derived

from data sets not included in the estimation sample. The latter case is essentially equiv-

alent to simplifying the likelihood function for a larger set of observations that would be

too complicated to model directly. For instance, when pre-sample information is used to

construct a prior, the tacit assumption is that the structure of the economy could have
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changed prior to the beginning of the estimation sample. Alternatively, priors for param-

eters that determine labor supply elasticities, mark-ups, frequencies of price changes, and

capital adjustment costs are often quantified based on evidence from household or firm-level

data sets which makes the specification of a joint likelihood function too cumbersome.1

There are three aspects of the prior specification that this paper aims to improve upon.

First, researchers typically assume that all DSGE model parameters are independent. This

assumption is made for simplicity and has the drawback that the resulting joint distribution

assigns non-negligible probability mass to regions of the parameter space where the model is

quite unreasonable. Second, since most of the exogenous shock processes are latent, it is dif-

ficult to quantify beliefs about their volatilities and autocorrelations. Informally researchers

often choose priors that ensure that the model is roughly consistent with the autocovari-

ance patterns observed, for instance, in a pre-sample.2 Third, after having specified a prior

distribution for the parameters of a benchmark model, researchers often use the same prior

distribution for alternative model specifications when assessing the relative importance of

various model features. But identical parameterizations of the exogenous shock processes

potentially generate very different dynamics across model specifications. Hence the use of

a common prior for all models can implicitly penalize some specifications and favor others.

We begin by dividing the parameters into three groups, which reflect the information

used to construct the prior. Importantly, the placement of the DSGE model parameters

into these groups depends on the prior information researchers decide to use. The choices

made in this paper are meant to provide guidance but are not meant to be universal. The

first group contains the parameters that determine the steady states. In the calibration

literature initiated by Kydland and Prescott (1982) these parameters are often pinned down

by so-called “great ratios,” or other long-run measures such as the average real interest

rate. Our method turns error-ridden measures of these magnitudes into a joint prior for the

steady state parameters.

The second group includes the taste, technology, and policy parameters governing the

DSGE model’s endogenous propagation mechanism. For many of these parameters prior

information comes from unrelated data sets, e.g. the prior for the labor supply elasticity

parameter comes from micro-level studies on labor supply, the one for the price stickiness
1As discussed for instance in Chang, Gomes, and Schorfheide (2002) the prior distribution provides a

useful device for incorporating micro-level information in the estimation of a aggregate time series model.
2The approach of eliciting priors based on beliefs about predictive densities associated with an econo-

metric model dates back at least to Kadane, Dickey, Winkler, Smith, and Peters (1980).
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parameters from studies on price changes, et cetera. Therefore for this second group we

maintain the independence assumption standard in the literature.

The parameters describing the propagation mechanism of exogenous shocks (e.g., auto-

correlations, standard deviations) belong to the third group.3 We propose a method that

translates priors about reasonable magnitudes for second moments of observables into a joint

prior distribution for these parameters. Such priors may come from pre-sample evidence,

for instance, and are assumed to be invariant across different DSGE model specifications.

The translation occurs via a quasi-likelihood function of the DSGE model that depends

on first and second moments of pre-sample or fictitious observations representing the prior

information.

In the remainder of the paper, Section 2 provides a simple example that illustrates that a

naive choice of prior distributions can distort Bayesian posterior odds for competing models.

Section 3 describes the DSGE model, which is used in Section 4 to present our approach

to prior elicitation. The empirical findings are summarized in Section 5 and Section 6

concludes.

2 A Simple Example

The typical choice of priors in DSGE model applications has two related shortcomings:

independence across parameters and the mechanical use of the same prior distribution for

alternative model specifications. In this section, we present two simple models to illustrate

the effect of the current practice on model comparisons. We then show how one can construct

an alternative prior in which autoregressive parameters are correlated based on beliefs about

predictive distributions. Model M1 is of the form

yt = θ + εt, εt ∼ iidN (0, 1) (1)

with the following prior distribution for θ: θ ∼ N (µ, λ2). According to M1 the yt’s are

independent and their marginal distribution is N (µ, λ2 + 1). Model M2 allows for serial

correlation in yt:

yt = θ1yt−1 + θ2 + εt, εt ∼ N (0, 1). (2)

We will explore two prior distributions for M2.
3Canova (2007) in his discussion of calibration refers to these parameters as “nuisance/auxiliary.”
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The first prior is motivated as follows. Since both θ in M1 and θ2 in M2 can be

interpreted as intercepts of a regression function we use the same prior distribution for the

two coefficients and assume that θ2 is independent of θ1:

Prior P1 : θ1 ∼ U [0, 1− ξ], θ2|θ1 ∼ N (µ, λ2). (3)

The autoregressive coefficient θ1 is uniformly distributed on the interval [0, 1 − ξ], ξ > 0.

According to (2) the mean of yt is given by µ = θ2/(1− θ1) and our prior implies that the

variance of the mean is increasing in the persistence of the process

µ|θ1 ∼ N
(
µ,

λ2

(1− θ1)2

)
.

Alternatively, we could interpret the prior for M1 as reflecting the belief that the mean

of yt is normally distributed with mean µ and variance λ2. A straightforward change-of-

variable argument then leads to the second prior4

Prior P2 : θ1 ∼ U [0, 1], θ2|θ1 ∼ N
(
µ(1− θ1), λ2(1− θ1)2

)
. (4)

To illustrate the effect of the prior distributions on model evaluation in situations in

which the sample is not very informative about the parameters, we compute log marginal

likelihood ratios for models M1 and M2 based on two observations y1 and y2. The two

panels of Figure 1 depict contour plots of log marginal likelihood ratios of M2(Pj) versus

M1, which can be interpreted as log posterior odds if the prior model odds are one. We

chose µ = 1 and λ = 2. Under P1, a value of the autoregressive parameter close to one

implies a diffuse distribution for the mean of yt and hence a diffuse predictive distribution.

Hence, compared to P2, prior P1 assigns more mass to realizations of y1 and y2 that have

the same sign and are large in absolute value. As a consequence, the marginal likelihood

for observations that are close to one is smaller for P1 than for P2. Moreover, under P1

these observations would be interpreted as evidence in favor of M1, whereas they constitute

evidence in favor of the autoregressive model M2 if the second prior is used. In other

regions of the sample space, the posterior odds are less sensitive to the choice of prior for

M2. Observations that are large in absolute value and have the identical (opposite) sign,

always provide evidence in favor (against) model M2.

In this simple example it is straightforward to use change-of-variable arguments to trans-

form prior beliefs over the mean and persistence of an autoregressive process into a prior
4This prior has been used, for instance, in Schotman and Van Dijk (1991) in the context of unit-root

testing.
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distribution for θ1 and θ2. This transformation ensures that the first two moments of the

predictive distribution of yt are commensurate. In the case if DSGE models, it is often im-

possible analytically, and hard numerically, to compute the Jacobian terms associated with

the change-of-variables due to the non-linearity of the cross-equation restrictions. Hence,

in Section 4 we propose alternative methods of constructing prior distributions based on

beliefs about the first and second moments of the endogenous variables.

3 The DSGE Model

This section briefly describes the DSGE model to which we apply our methods of con-

structing prior distributions. We use a medium-scale New Keynesian model with price and

wage rigidities, capital accumulation, investment adjustment costs, variable capital utiliza-

tion, and habit formation. The model is based on work of Smets and Wouters (2003) and

Christiano, Eichenbaum, and Evans (2005). The specific version is taken from Del Negro,

Schorfheide, Smets, and Wouters (2007), henceforth DSSW. For brevity we only present the

log-linearized equilibrium conditions and refer the reader to the above referenced papers for

the derivation of these conditions from assumptions on preferences and technologies.

The economy is populated by a continuum of firms that combine capital and labor

to produce differentiated intermediate goods. These firms have access to the same Cobb-

Douglas production function with capital elasticity α and total factor productivity Zt. Total

factor productivity is assumed to be non-stationary, and its growth rate zt = ln(Zt/Zt−1)

follows the autoregressive process:

zt = (1− ρz)γ + ρzzt−1 + σzεz,t. (5)

Output, consumption, investment, capital, and the real wage can be detrended by Zt. In

terms of the detrended variables the model has a well-defined steady state. All variables

that appear subsequently are expressed as log-deviations from this steady state.

The intermediate goods producers hire labor and rent capital in competitive markets

and face identical real wages, wt, and rental rates for capital, rk
t . Cost minimization implies

that all firms produce with the same capital-labor ratio

kt − Lt = wt − rk
t (6)

and have marginal costs

mct = (1− α)wt + αrk
t . (7)
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The intermediate goods producers sell their output to perfectly competitive final good

producers, which aggregate the inputs according to a CES function. Profit maximization of

the final good producers implies that

ŷt(j)− ŷt = −
(

1 +
1

λfe
eλf,t

)
(pt(j)− pt). (8)

Here ŷt(j)− ŷt and pt(j)−pt are quantity and price for good j relative to quantity and price

of the final good. The price pt of the final good is determined from a zero-profit condition

for the final good producers.

We assume that the price elasticity of the intermediate goods is time-varying. Since

this price elasticity affects the mark-up that intermediate goods producers can charge over

marginal costs, we refer to λ̃f,t as mark-up shock. Following Calvo (1983), we assume that

in every period a fraction of the intermediate goods producers ζp is unable to re-optimize

their prices. A fraction ιp of these firms adjust their prices mechanically according to lagged

inflation, while the remaining fraction 1− ιp adjusts to steady state inflation π∗. All other

firms choose prices to maximize the expected discounted sum of future profits, which leads

to the following equilibrium relationship, known as New Keynesian Phillips curve:

πt =
β

1 + ιpβ
IEt[πt+1] +

ιp
1 + ιpβ

πt−1 +
(1− ζpβ)(1− ζp)
ζp(1 + ιpβ)

mct +
1
ζp
λf,t, (9)

where πt is inflation and β is the discount rate.5 Our assumption on the behavior of firms

that are unable to re-optimize their prices implies the absence of price dispersion in the

steady state. As a consequence, we obtain a log-linearized aggregate production function of

the form

ŷt = (1− α)Lt + αkt. (10)

Equations (7), (6), and (10) imply that the labor share lsht equals marginal costs in terms

of log-deviations: lsht = mct.

There is a continuum of households with identical preferences, which are separable in

consumption, leisure, and real money balances. Households’ preferences display (internal)

habit formation in consumption, that is, period t utility is a function of ln(Ct − hCt−1).

Households supply monopolistically differentiated labor services. These services are ag-

gregated according to a CES function that leads to a demand elasticity 1 + 1/λw (see

Equation (8)). The composite labor services are then supplied to the intermediate goods

producers at real wage wt. To introduce nominal wage rigidity, we assume that in each

period a fraction ζw of households is unable to re-optimize their wages. A fraction ιw of

5We used the following re-parameterization: λf,t = [(1− ζpβ)(1− ζp)λf /(1 + λf )(1 + ιpβ)]eλf,t.
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these households adjust their t− 1 nominal wage by πt−1e
γ , where γ represents the average

growth rate of the economy, while the remaining fraction 1− ιp adjusts to steady state wage

growth π∗eγ . All other households re-optimize their wages. First-order conditions imply

that

w̃t = ζwβIEt

[
w̃t+1 + ∆wt+1 + πt+1 + zt+1 − ιwπt−1

]
+

1− ζwβ

1 + νl(1 + λw)/λw

(
νlLt − wt − ξt +

1
1− ζwβ

φt

)
, (11)

where w̃t is the optimal real wage relative to the real wage for aggregate labor services,

wt, and νl would be the inverse Frisch labor supply elasticity in a model without wage

rigidity (ζw = 0) and differentiated labor. Moreover, φt is a preference shock that affects

the intratemporal substitution between consumption and leisure. The real wage paid by

intermediate goods producers evolves according to

wt = wt−1 − πt − zt + ιwπt−1 +
1− ζw
ζw

w̃t. (12)

Households are able to insure the idiosyncratic wage adjustment shocks with state con-

tingent claims. As a consequence they all share the same marginal utility of consumption

ξt, which is given by the expression:

(eγ − hβ)(eγ − h)ξt = −(e2γ + βh2)ct + βheγIEt[ct+1 + zt+1] + heγ(ct−1 − zt), (13)

where ct is consumption. In addition to state-contingent claims households accumulate

three types of assets: one-period nominal bonds that yield the return Rt, capital k̄t, and

real money balances. Since preferences for real money balances are assumed to be additively

separable and monetary policy is conducted through a nominal interest rate feedback rule,

money is block exogenous and we will not use the households’ money demand equation in

our empirical analysis.

The first order condition with respect to bond holdings delivers the standard Euler

equation:

ξt = IEt[ξt+1] +Rt − IEt[πt+1]− IEt[zt+1]. (14)

Capital accumulates according to the following law of motion:

k̄t = (2− eγ − δ)
[
k̄t−1 − zt

]
+ (eγ + δ − 1)it, (15)

where it is investment, δ is the depreciation rate of capital. Investment in our model

is subject to adjustment costs, and S′′ denotes the second derivative of the investment
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adjustment cost function at steady state. Optimal investment satisfies the following first-

order condition:

it =
1

1 + β

[
it−1 − zt

]
+

β

1 + β
IEt[it+1 + zt+1] +

1
(1 + β)S′′e2γ

(ξk
t − ξt), (16)

where ξk
t is the value of installed capital and evolves according to:

ξk
t − ξt = βe−γ(1− δ)IEt

[
ξk
t+1 − ξt+1

]
+ IEt

[
(1− (1− δ)βe−γ)rk

t+1 − (Rt − πt+1)
]
. (17)

Capital utilization ut in our model is variable and rk
t in the previous equation represents the

rental rate of effective capital kt = ut+ k̄t−1. The optimal degree of utilization is determined

by

ut =
rk
∗
a′′
rk
t . (18)

Here a′′ is the derivative of the per-unit-of-capital cost function a(ut) evaluated at the steady

state utilization rate. The central bank follows a standard feedback rule:

Rt = ρRRt−1 + (1− ρR)(ψ1πt + ψ2ŷt) + σRεR,t. (19)

where εR,t represent policy shocks. The aggregate resource constraint is given by:

ŷt = (1 + g∗)
[
c∗
y∗
ct +

i∗
y∗

(
it +

rk
∗

eγ − 1 + δ
ut

)]
+ gt. (20)

Here c∗/y∗ and i∗/y∗ are the steady state consumption-output and investment-output ratios,

respectively, and g∗/(1+ g∗) corresponds to the government share of aggregate output. The

process gt can be interpreted as exogenous government spending shock. It is assumed that

fiscal policy is passive in the sense that the government uses lump-sum taxes to satisfy its

period budget constraint.

We find the steady states for the detrended variables and use the method in Sims (2002)

to construct a log-linear approximation of the model around the steady state. All subsequent

statements about the DSGE model are statements about its log-linear approximation. We

collect all the DSGE model parameters in the vector θ, stack the structural shocks in the

vector εt, and derive a state-space representation for our vector of observables yt, which is

composed of

Real output growth (%, annualized) 400(lnYt − lnYt−1) = 400(ŷt − ŷt−1 + zt)

Hours (%) 100 lnLt = 100(Lt + lnLadj)

Labor Share (%) 100 ln lsht = 100(Lt + wt − ŷt + ln lsh∗)

Inflation (%,annualized) 400(lnPt − lnPt−1) = 400(πt + lnπ∗)

Interest Rates (%,annualized) 400 lnRt = 400(Rt + lnR∗),
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where LS∗, π∗, and R∗ are the steady states of the labor share, the inflation rate, and

the nominal interest rate, respectively. The parameter Ladj captures the units of measured

hours. It can be viewed as a re-parameterization of the steady state associated with the

time-varying preference parameter φt that appears in the households’ utility function.

4 Forming Priors for DSGE Models

We group the DSGE model parameters into three broad categories. First, we use θ(ss)

to denote parameters that can be easily identified from steady state relationships among

observable variables:

θ(ss) = [α, β, γ, δ, λf , π∗, g∗, L
adj ]′.

Second, let θ(exo) denote the parameters that characterize the law of motion of the exogenous

processes

θ(exo) = [ρz, σz, ρφ, σφ, ρλf
, σλf

, ρg, σg, σr]′.

Finally, we stack the remaining parameters in the vector θ(endo):6

θ(endo) = [ζp, ιp, ζw, ιw, λw, s
′′, h, a′′, νl, ψ1, ψ2, ρr]′.

We will in turn describe our method of forming prior distributions for the parameters in

these three blocks. Prior distributions in the context of DSGE model estimation are by and

large designed to reflect empirical observations that are excluded from the likelihood function

because it would be impractical to specify a more encompassing structural econometric

model. Three leading examples of such observations are (i) pre-sample data, e.g., the prior

is influenced by pre-1982 observations, whereas the estimation sample is restricted to post-

1982 data because of a potential monetary policy change; (ii) the use of data from other

countries, e.g., a prior for a DSGE model of the Euro Area is specified based on U.S. data;

(iii) the use of observations that are concurrent to the estimation sample but excluded

from the likelihood function, e.g., aggregate capital stock data or micro-level data that are

informative about labor supply behavior or price rigidities.
6Some of the parameters in θ(endo) do affect steady states. For instance, the habit formation parameter

h affects the steady state of the marginal utility of consumption. Nonetheless, we included these parameters

in the vector θ(endo) instead of θ(ss) because these parameters tend to affect steady states of variables that

are difficult to measure in the data.
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4.1 Forming Priors for Steady-State Related Parameters

Following the work by Kydland and Prescott (1982), there is a long tradition in the business

cycle literature to use long-run averages of macroeconomic time series to infer values for

those parameters of the DSGE model that are related to steady states. We use this basic

insight to derive a prior for the vector θ(ss) from beliefs about plausible values of such long-

run averages that are based on pre-sample observations or data from other countries. The

parameters γ, π∗, and Ladj are directly tied to the steady state growth rate of aggregate

output, steady state inflation, and the steady state of hours worked. The other parameters

in θ(ss) can be linked to “great ratios” as follows. The steady state labor share and the ratio

of consumption and investment relative to output are given by

lsh∗ =
(1− α)
(1 + λf )

,
c∗ + i∗
y∗

= 1/g∗.

The Investment-capital and capital-output ratios can be expressed as

i∗
k̄∗

= e−γ(δ − 1) + 1,
k̄∗
y∗

=
α

1 + λf
[β−1 − e−γ(1− δ)]−1.

The drawbacks of specifying a prior distribution directly on the elements of θ(ss) and as-

suming independence are twofold: First, choosing the prior means for the elements of θ(ss)

so that they jointly satisfy a set of steady state conditions can be cumbersome in a multidi-

mensional case. Second, and most important, the joint prior potentially assigns substantial

mass to parameter combinations that imply unreasonable steady-state relationships.

Instead, we propose to use fictitious measurements of the steady states to construct a

prior distribution for θ(ss) implicitly. Let SD(θ(ss)) be a vector-valued function that relates

DSGE model parameters and steady states and Ŝ a vector of fictitious measurements

Ŝ = SD(θ(ss)) + η, (21)

where η is a vector of measurement errors. We express (21) in terms of a conditional

density (likelihood function) L
(
SD(θ(ss))|Ŝ

)
= p(Ŝ|SD(θ(ss))) and use Bayes theorem in

combination with a marginal density π(θ(ss)) to generate a conditional distribution that

reflects beliefs about steady-state relationships:

p(θss|Ŝ) ∝ L
(
SD(θ(ss))|Ŝ

)
π(θ(ss)

)
. (22)

The term π(θ(ss)) allows for the possibility that the researcher possesses information on

the steady state parameters other than that contained in the term L
(
SD(θ(ss))|Ŝ

)
. Two

features of this prior are noteworthy. First, the information obtained from the steady states
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can be overidentifying in the sense that the dimension of SD(·) exceeds the dimension of

θ(ss). Second, even if the elements of the vector of measurement errors η are independent,

the function SD(·) will induce dependence among the elements of θ(ss). The researcher has

to choose the vector Ŝ and make some assumptions about the distribution of the error term

η in (21). We will re-visit this issue in Section 5.

4.2 Forming Priors for Shock Related Parameters

We now turn to the specification of prior distributions for the parameters associated with

the exogenous shock processes. Whenever the shock processes are latent, it is difficult to

quantify such priors. In practice, many researchers informally specify priors for θ(exo) in

an iterative manner. Starting from some initial distribution, one assesses moments of the

implied predictive distribution of observable endogenous variables. The prior for θ(exo) is

adjusted until the predictive distribution has the desired properties, for instance, in the sense

that it represents prior beliefs formed based on a pre-sample. We provide a formalization

of this approach.

To fix ideas, consider a simplified version of the DSGE model presented in Section 3

where we drop capital as factor of production. This means that the parameters δ, s′′, and

a′′ become obsolete. We further impose the following parameter restrictions

α = 0, γ = 0, π∗ = 1, g∗ = 1, ιp = 0, ιw = 0, h = 0, ψ1 = 1/β, ψ2 = 0, ρr = 0.

We also shut down the government spending and the monetary policy shock for the sake of

exposition: σg = 0 and σr = 0. The slopes of the price and wage Phillips curves are denoted

by the parameters κp and κw, respectively, which are functions of the Calvo parameters ζp

and ζw. One can obtain analytical solutions for output, inflation, and the labor share in

terms of the structural shocks.

If wages are flexible (ζw = 0) but prices are sticky the law of motion of the endogenous

variables becomes

ŷt = − κpψp/β

1− ψpρφ
σφφt −

ψp/(ζpβ)
1− ψpρλf

σλf
λf,t +

ρzψp

1− ψpρz
σzzt (23)

πt =
[
1− (1 + ν)κpψp/β

1− ψpρφ

]
κp

1− βρφ
σφφt

+
[
1− (1 + ν)κpψp/β

1− ψpρλf

]
1/ζp

1− βρλf

σλ,fλf,t +
κpψp(1 + ν)ρz

(1− ψpρz)(1− βρz)
σzzt

lsht =
[
1− (1 + ν)κpψp/β

1− ψpρφ

]
σφφt −

(1 + ν)ψp/(β/ζp)
1− ψpρλf

σλf
λf,t +

(1 + ν)ρzψp

1− ψpρz
σzzt
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where ψp = [1+κp(1+ν)/β]−1. If, on the other hand, prices are flexible (ζp = 0) and wages

are sticky, then the solution changes to

ŷt = − ψwκw

β(1− ψwρφ)(1− ζwβ)
σφφt −

ψw

1− ψwρλf

[
1− ρλf

+
κw + 1− 1/ρλ

β

]
σλf

λf,t

− ψw

ρλf
β
σλf

ελ,t +
ψw

β(1− ψwρz)
σzzt (24)

πt =
κw

(1− βρφ)(1− βζw)

[
1− κwψw(1 + ν)

β(1− ψwρφ)

]
σφφt

+
1

1− βρλf

[
β − κwψw(1 + ν)

1− ψwρλf

] [
1− ρλf

+
κw + 1− 1/ρλ

β

]
σλf

λf,t

+
1
ρλf

[1− κwψw(1 + ν)/β] ελf ,t +
1

1− βρz

[
(βρz − 1) +

κwψw(1 + ν)
β(1− ψwρz)

]
σzzt

lsht = −σλf
λf,t,

where ψw = [1 + κw(1 + ν)/β]−1.

Equations (23) and (24) highlight the relationship between the endogenous variables ŷt,

πt, lsht and the exogenous shock processes φt, λf,t, and zt. Conditional on the parameters

θ(ss) and θ(endo), priors on θ(exo) translate into priors on the moments of the joint predictive

distribution of output, inflation, and the labor share. Vice versa, one can “invert” Equa-

tions (23) and (24) to elicit a prior for θ(exo) from moments of a predictive distribution

for the observables. The latter approach suggests that prior distributions for the shock

processes should be specific to a particular model specification.

Consider, for instance, the mark-up disturbance λf,t. If prices are assumed to be flex-

ible as in (24), then the volatility and persistence of mark-up process and labor share are

identical. Thus, a prior for ρλ,f and σλ,f can be formed directly based on views about the

stochastic properties of the labor share. Alternatively, in a model in which prices are sticky,

the real wage dynamics are also affected by the preference shock φt and the technology

growth process zt, which implies that it is implausible in the context of the sticky price

model to equate beliefs about the persistence and volatility of real wages and the mark-up

shock. We now describe a general method that allows us to translate views about the pre-

dictive distribution of the observed endogenous variables into a prior distribution for the

parameters of the exogenous shock processes.

4.3 Quasi-Likelihood Based Priors

We use a (quasi)-likelihood function to translate prior beliefs about the distribution of ob-

servables, represented by a vector of fictitious observations, into a distribution for the model
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parameters. In principle, one could use the likelihood function of the DSGE for this purpose.

We use instead the likelihood function associated with an approximating model, for which

there exists a low-dimensional vector of sufficient statistics. The advantage of our approach

is that the researcher only needs to specify values for the sufficient statistics on which she

has formed beliefs, rather than specifying a full time series of fictitious observations.

Our approximating model is a p’th order VAR of the form

yt = Φ0 + Φ1yt−1 + . . .+ Φpyt−p + ut, ut ∼ N (0,Σ), (25)

where yt is an n× 1 vector of observables. Let xt be the k× 1 vector [1, y′t−1, . . . , y
′
t−p]

′ and

re-write the VAR as linear regression model

y′t = x′tΦ + u′t. (26)

To relate the DSGE model parameters θ to the VAR parameters Φ,Σ, we assume that

the observables have been transformed such that the vector yt is covariance stationary

according to the DSGE model. Let ΓD
Y Y (θ), ΓD

Y X(θ) and ΓD
XX(θ) denote the population

autocovariances IED
θ [yty

′
t], IE

D
θ [ytx

′
t], and IED

θ [xtx
′
t], respectively, which are calculated from

a DSGE model conditional on a particular parameterization θ. We then define a VAR

approximation of the DSGE model through the population least-squares regression:

ΦD(θ) = [ΓD
XX(θ)]−1ΓD

XY (θ), ΣD(θ) = ΓD
Y Y (θ)− ΓD

Y X(θ)[ΓD
XX(θ)]−1ΓD

XY (θ). (27)

In the multivariate Gaussian linear regression model (26) the sufficient statistics for a set

of fictitious observations {y∗t , x∗t }T∗

t=1 are given by
∑
y∗t y

∗′
t ,

∑
y∗t x

∗′
t , and

∑
x∗tx

∗′
t , which we

will write as T ∗Γ∗Y Y , T ∗Γ∗Y X , and T ∗Γ∗XX , respectively. Finally, our prior for the DSGE

model parameters is obtained by interpreting the quasi-likelihood function (pre-multiplied

by |ΣD(θ)|−(n+1)/2) as a density of θ:

L(θ|Γ∗, T ∗) = |ΣD(θ)|−(T∗+n+1)/2 (28)

× exp
{
−T

∗

2
tr

[
ΣD(θ)−1(Γ∗Y Y − 2ΦD(θ)Γ∗XY + Φ′

D(θ)Γ∗XXΦD(θ)
]}

.

The quasi-likelihood (28), and hence the density of θ, is small at values of θ for which

the DSGE model implied autocovariances strongly differ from the Γ∗’s. The parameter T ∗

captures the precision of our beliefs: The larger T ∗, the sharper the peak of L(θ|Γ∗, T ∗).

The most important aspect in the implementation of the prior is the choice of Γ∗, which

summarizes the information contained in the dummy observations. Suppose that p = 0.

Then Γ∗ only contains information about the mean and the covariance matrix of yt and
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hence the researcher only uses beliefs about location and scale to construct a prior for θ. If

p = 1 and xt is composed only of yt−1 and the autocovariance matrices in Γ∗ are specified

in terms of deviations of yt from its mean, then the prior for θ will indirectly be based on

beliefs about the covariance matrix of yt and first-order autocorrelations. This will be the

case considered in the empirical implementation in Section 5.

The numerical values for the Γ∗ matrix could be obtained from introspection, calculated

from a pre-sample, or based on data from a different country. If Γ∗ is directly constructed

on the basis of a pre-sample and the lag-length p in the approximating model sufficiently

large, then our quasi-likelihood based prior is similar to the use of a training-sample prior

for the estimation of the DSGE model.7 Finally, in our analysis we allow for the possibility

that the researcher has additional prior information on the parameters of the exogenous

shocks processes θ(exo). If one adopts a literal interpretation of government spending shocks

as shocks to government consumption, for instance, one can measure their persistence and

standard deviation. Information from this measures, whenever available, is incorporated in

the prior π(θ(exo)).

4.4 Putting it All Together

Last, we discuss the specification of the prior distribution for θ(endo), the DSGE model

parameters that control the endogenous propagation mechanism. For many of these pa-

rameters the researcher may have beliefs that originate from other sources of information.

For instance, views on the degree of price rigidity or labor supply elasticity may arise from

micro-level studies on the frequency of price changes or labor supply behavior, respectively.

These beliefs are summarized in the informative prior π(θ(endo)).8

Our overall prior distribution will take the following form

Prior PQL : p(θ|Ŝ,Γ∗, T ∗) ∝ π(θ(ss))L
(
SD(θ(ss))|Ŝ

)
× π(θ(endo))

×π(θ(exo))L
(
θ(ss), θ(exo), θ(endo)|Γ∗, T ∗

)
.

(29)

7Training-sample priors, see for instance Koop (2004), are typically constructed using the likelihood

function of the econometric model that is being estimated, rather than a quasi-likelihood of an approximating

model as in our approach.
8It is apparent from (23) and (24) that the elements of θ(endo) affect the distribution of the observables in

a similar way as the θ(exo) parameters. This suggests that one could use a priori views about the moments

of the data to elicit priors on θ(endo) as well, via the quasi-likelihood function described in Section 4.3.

While the implementation of this generalization is straightforward, we do not explore it in this paper.
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We will refer to this prior as quasi-likelihood prior, PQL. The π(·) terms represent initial

distributions for the model parameters that capture information not contained in the infor-

mation in the fictitious observations. For most elements of θ(ss) and θ(exo) we use diffuse

densities, mainly to ensure that the resulting prior is proper. Recall that the function SD(·)

was chosen such that it only depends on the subvector θ(ss). We fixed the parameters θ(ss)

and θ(endo) at the values θ(ss) and θ(endo) in the quasi-likelihood function (28). Hence, we

can factorize the prior as follows:

p(θ|Ŝ,Γ∗, T ∗) = p(θ(ss)|Ŝ)p(θ(exo)|Γ∗, T ∗, θ(ss), θ(endo))p(θ(endo)), (30)

where

p(θ(ss)|Ŝ) = c−1
1 L

(
SD(θ(ss))|Ŝ

)
π(θ(ss)), c1 =

∫
L

(
SD(θ(ss))|Ŝ

)
π(θ(ss))dθ(ss) (31)

and

p(θ(exo)|Γ∗, T ∗, θ(ss), θ(endo)) = c−1
2 (θ(ss), θ(endo))L

(
θ(ss), θ(exo), θ(endo)|Γ∗, T ∗

)
π(θ(exo))

c2(θ(ss), θ(endo)) =
∫
L

(
θ(ss), θ(exo), θ(endo)|Γ∗, T ∗

)
π(θ(exo))dθ(exo). (32)

The normalization constants c1 and c2(θ(ss), θ(endo)) have to be computed numerically. Con-

ceptually, it would be desirable not to condition the prior for θ(exo) on a particular value

of θ(ss) and θ(endo) and replace (32) by p(θ(exo)|Γ∗, T ∗, θ(ss), θ(endo)). Unfortunately, this

modification makes the normalization constant c2 a function of the parameter vectors θ(ss)

and θ(endo), which would have to be evaluated by numerical integration for each value that

these parameters take in a Markov-Chain Monte-Carlo simulation. In the Bayesian liter-

ature, this problem is referred to as a problem of an intractable normalization constant.

While there exist computation strategies to deal with such a problem in simple models9,

the computational burden in the context of our specific application is large and lead us to

condition on prior mean values θ(ss) and θ(endo).

Due to the nonlinearity of the functions SD(θ), ΦD(θ) and ΣD(θ) it is not possible to

generate draws from the prior distribution of θ directly. In the application in Section 5 we use

a random-walk Metropolis algorithm, described in detail for instance in An and Schorfheide

(2007), to generate draws from the prior distribution. This algorithm only requires us to

be able to numerically evaluate the prior density (30) up to the normalization constant.

Based on the output of the Metropolis algorithm, Geweke’s (1999) modified harmonic mean

estimator can be used to calculate the normalization constants that appear in (31) and (32).

The same algorithms can be used to obtain draws from the posterior distribution.
9See, for instance, Moeller, Pettitt, Reeves, and Berthelsen (2006).
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A few practical considerations are worth mentioning. As long as the π(·) functions

are integrable, the resulting prior distribution of θ is proper regardless of the choice of

L
(
SD(θ(ss))|Ŝ

)
and L

(
θ(ss), θ(exo), θ(endo)|Γ∗, T ∗

)
. The curvature of the prior density de-

pends on the particular choice of the quasi-likelihood functions. The curvature of the prior

for θ(ss) will depend on the information included in the vector of steady states SD(θ(ss)).

Likewise, the curvature of the prior for θ(exo) will depend on that of the quasi-likelihood.

Conditional on θ(ss) and θ(endo) it is typically possible to determine the parameters gov-

erning the law of motion of the exogenous shocks, θ(exo), from the autocovariances of order

zero and one. Hence in our application the prior density will have enough curvature even

for small values of T ∗ and p for the above mentioned Markov-Chain Monte Carlo methods

to work satisfactorily. If one were to rely exclusively on the quasi-likelihood to form a prior

on both θ(exo) and θ(endo), this may result in a prior that is flat in certain dimensions (see

Canova and Sala 2007), which in turn may generate computational issues. Finally, it is

important to note that we do not view the quasi-likelihood as a substitute for other sources

of prior information if such information is available. We view it as a tool to elicit priors for

those parameters for which it is difficult to form a prior directly.

5 Assessing the Role of Nominal Rigidities

In the empirical section we use the framework discussed earlier to investigate the importance

of price and wage rigidities. In this investigation we account for the existence of different

a priori views regarding the importance of nominal rigidities. These prior disagreements

reflect either different interpretation of the results of micro studies on rigidities, different

assessments on the importance of strategic complementarities, but also more generally deep-

rooted convictions regarding the importance of nominal frictions.

In our Bayesian setting, these a priori convictions are characterized by the priors on the

stickiness parameters ζp and ζw summarized in Table 1. The priors in the first column of

Table 1 are “non-dogmatic:” In principle all these priors put non-zero weight on the entire

admissible range, hence with lots of data the likelihood would dominate in all three cases.

In practice two of these priors, the Low and High Rigidities, are quite informative, hence

with moderate amount of data they can affect the posterior. The Low Rigidities prior is

roughly centered at the Bils and Klenow (2004) estimate of price stickyness for ζp, which

implies an average frequency of price adjustment of between one and two and half quarters,

and puts little mass on frequencies above three quarters. This prior assumes that nominal
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wage rigidity is similarly low. The High Rigidities prior is centered at 0.75 for ζp and ζw,

which implies that the frequency of price and wage adjustment is on average four quarters.

Most importantly, this prior puts virtually no mass on frequencies below two quarters. The

last prior, called Agnostic because it is less informative, spans both the regions where the

informative priors put most of the mass. We will sometimes refer to these different views

of the world as models or specifications. The priors in the remaining column of Table 1

are “dogmatic:” Since either ζp (Flexible Prices) or ζw (Flexible Wages) are set to zero,

there can be no updating in these dimensions. For the rigidity we do not shut down, we

consider three different values corresponding to the Low, High rigidity, and Agnostic case.

The “dogmatic” priors are of interest not only because the existing literature (Rabanal and

Rubio-Ramirez (2005), Smets and Wouters (2003, 2007)) has focused on these polar cases,

but also since they treat price and wage rigidity asymmetrically.

Regardless of how these a priori views are formed, an important question is which view

of the world best describes the data. In the Bayesian framework, this question is addressed

by comparing the posterior odds associated with the different priors. The problem we face

is that the priors for the other parameters, and in particular for the parameters describing

the exogenous processes, can affect this comparison. The standard practice in the Bayesian

DSGE model estimation literature is to form a prior for these parameters by 1) assuming

independence, and 2) maintaining the same prior across different specifications. We denote

this standard prior as PS . The alternative prior, which we developed in Section 4, is called

quasi-likelihood prior and is denoted by PQL.

5.1 Priors: Standard versus Quasi-Likelihood

We start the section by describing in detail the priors we use. We begin by focusing on

those parameters (θ(ss) and θ(endo)) whose priors do not change across specifications, given

that the information on which the priors are based (great ratios, micro studies, et cetera) is

arguably specification-invariant.

The prior for the steady state related parameters has two components: π(θ(ss)) and

L(SD(θ(ss)|Ŝ)). We use π(θ(ss)) to represent the prior view that the discount factor is

about 0.996, the average annual growth rate of the economy is about 1.65%, the average

mark-up is 15%, the inflation rate is 4.3%, and the mean level of ours worked per capita is
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about 1000 hours per year.10 Prior standard deviations for these parameters are reported in

the last column of Table 2. π(θ(ss)) is constant as a function of α, δ, and g∗. As is standard

practice in the literature π(θ(ss)) is generated as product of marginal densities. We depart

from the existing literature by using the quasi-likelihood function L(SD(θ(ss))|Ŝ)) to induce

an informative distribution for α, δ, and g∗. Table 2 contains fictitious measurements

of the labor share, the ratio of the sum of consumption and investment to output, the

investment-capital ratio, and the capital-output ratio (see the data section in the appendix

for a discussion of how these numbers are computed). The Para (1) entries correspond to

Ŝ, and the Para (2) entries to the standard deviations associated with the η’s in (21). The

function L(SD(θ(ss))|Ŝ)) is constructed by assuming that the elements of η are independently

and normally distributed.

We now turn to the priors for θ(endo). The function π(θ(endo)) is a product of marginal

densities summarized in the bottom half of Table 2. The priors for the degree of price

and wage stickiness are the focus of the model comparison exercise and were discussed in

Table 1. The 90% interval for the prior distribution on νl implies that the Frisch labor

supply elasticity lies between 0.3 and 1.3, reflecting the micro-level estimates at the lower

end, and the estimates of Kimball and Shapiro (2003) and Chang and Kim (2006) at the

upper end. The distribution for ψ1 is centered at a value of 2 with a standard deviation

of 0.25, conditioning on the view that the central bank responded strongly to inflation

movements in the Volcker-Greenspan era. The prior distribution for ψ2 is approximately

centered at 0.2, whereas the smoothing parameter lies in the range from 0.17 to 0.83. The

densities for the indexation parameters ιp and ιw are nearly uniform over the unit interval.

The density for the adjustment cost parameter s′′ spans values that Christiano, Eichenbaum,

and Evans (2005) find when matching DSGE and VAR impulse response functions. The

density for the habit persistence parameter h is centered at 0.7, which is the value used

by Boldrin, Christiano, and Fisher (2001). These authors find that h = 0.7 enhances the

ability of a standard DSGE model to account for key asset market statistics. The density

for a′′ implies that in response to a 1% increase in the return to capital, utilization rates rise

by 0.1 to 0.3%. These numbers are considerably smaller than the one used by Christiano,

Eichenbaum, and Evans (2005).11

10We introduce the following re-parameterizations:

r(A) = 400 ∗ (1/β − 1), π(A) = 400(π∗ − 1), γ(A) = 400γ.

11One can argue that on the last five elements of θ(endo), namely {ιp, ιw, s′′, h, a′′}, the information from

micro studies is fairly limited, and that those parameters are often calibrated to fit the data. Following
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The prior for the θ(exo), the parameters characterizing the exogenous processes (the

ρ’s and σ’s), is summarized in Table 3 under both the standard prior (PS) and our ap-

proach (PQL). Under PS this prior is the product of independent marginal distributions:

π(θ(exo)) = Πiπi(θi,(exo)), where i indexes the elements of θ(exo). These distributions are

shown in the left-hand side of Table 3. The prior for ρz, which measures the serial correla-

tion of technology growth is centered at 0.4, whereas the priors for the other autocorrelation

parameters are centered at 0.75 with a standard deviation of 0.15. These kind of prior

settings for the ρ’s, which are fairly informative, are standard in the literature. The priors

for the σ’s are loosely chosen to obtain realistic magnitudes for the implied volatilities and

autocorrelation of the endogenous variables under the Low Rigidities specification.

Under PQL the prior for the θ(exo) parameters is given by the product of two pieces

(see expression 32): a standard prior π(θ(exo)), which is specified in the right-hand side of

Table 3, times the quasi-likelihood function. Unlike in the standard approach, π(θ(exo)) is

largely uninformative. The prior for all the ρ’s is a Beta distribution with mean 0.45 and

standard deviation 0.25. This density is almost flat, although gently downward sloping, for

most of the [0, 1) interval, but drops sharply as ρ gets very close to one. This is a convenient

feature from the computational point of view, as it avoids posterior peaks with ρ stuck at the

upper corner of the interval. The prior density for the shock standard deviations is chosen

to be proportional to 1/σ. Under PQL the information in the prior comes from the quasi-

likelihood function L
(
θ(ss), θ(exo), θ(endo)|Γ∗, T ∗

)
, which is constructed based on a VAR with

lag length p = 1 for demeaned observations on output growth, hours worked, labor share,

inflation, and interest rates. To specify Γ∗ we are using pre-sample autocovariance matrices

of order zero and one. We consider different choices of T ∗ in the subsequent empirical

analysis (T ∗ = 4, 6, 10), but to save space we only show results for T ∗ = 6.

Table 4 compares the mean and 90% intervals for the parameters describing the ex-

ogenous processes under the standard (PS) and (PQL) prior for the different specifications

described in Table 1.12 The point of Table 4 is that many of these numbers, particularly for

the autocorrelation parameters, do not look at all that different across specifications. The

priors for the σ’s are quite different, but it is hard to tell their implications for the models.

It would be hard to argue solely on the basis of these numbers that one prior is more or less

this argument, one may as well do this explicitly (using the presample) and include these parameters in the

Quasi-Likelihood. We have actually done this in a set of results we do not report because they are similar

to those in the paper.
12For the “dogmatic” specifications, Flexible Wages and Prices, we only show the prior under the Agnostic

rigidity specification to save space.
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reasonable than the other. Yet these priors can make substantial differences in terms of the

model implications for impulse responses and moments of the observables, as we are going

to show. In turn, this will affect model comparisons.

Figure 2 shows four sets of impulse responses. The top set shows the responses to a

mark-up shock obtained under the standard prior for the Low Rigidities (grey, dash-and-

dotted) and the High Rigidities (black, solid) specification. The second set shows the same

responses under the PQL prior. It is apparent that the standard prior generates very different

implications for the two specifications. In particular, the standard prior implies that for

the High Rigidities specification mark-up shocks generate what look like implausibly large

movements in the observables. Moreover, these shocks generate a large negative correlation

between the labor share and inflation, which is also apparent in the simplified model of

Section 5.2.13 From Gaĺı and Gertler (1999) we know that such negative correlation is

likely to be counterfactual. The second panel shows that under the PQL prior the impulse

responses for the two specifications, while not identical, are at least of a similar order of

magnitude. The responses for the Low Rigidities specification do not change dramatically

relative to the PS prior, which is not surprising given that the standard deviations in the

PS prior were loosely calibrated on the Low Rigidities specification. The last two panels of

Figure 2 show the responses to a policy shock under the two specifications. Not surprisingly,

these are quite different for the two specifications, as they should be. Under the PQL prior

such differences persist: the PQL and PS are about the same. In summary, the PS prior is

likely to penalize the High Rigidities specification. The PQL prior appears to remove the

penalty, but at the same time maintains the identifying differences between the two models.

Figure 3 shows the implications of using the PS versus the PQL prior for some of the

moments of the observables. The Figure shows three sets of plots. The first set depicts

the correlation of inflation and the labor share at different lags. The second and third sets

depict the autocorrelation of inflation and the labor share, respectively. In each plot the thick

dark gray line with crosses represents the statistics as computed from the data (the actual

sample used in the estimation, as opposed to that used for the construction of the prior).

The black solid and grey dash-and-dotted lines represent the very same statistics computed

from the model under the High Rigidities and Low Rigidities specification, respectively.

These statistics are computed by generating parameters from the prior and, conditional on

each draw, a size T time series from the model. We repeat this exercise 200,000 times and

compute the median and the 90% bands for the statistics: These are the objects shown in
13Straightforward algebraic manipulations of (23) reveal that ∂πt/∂λf,t > 0 and ∂lsht/∂λf,t < 0.
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Figure 3. The statistics are computed using both the PS (left column) and the PQL prior

(right column).

From the discussion of Figure 2 it should not be surprising to find that under PS the

High Rigidities specification puts substantial mass on negative correlations between inflation

and the labor share (top left chart). The median contemporaneous correlation is −0.4.

The Low Rigidities specification is somewhat closer to the data. Under the PQL prior the

implications for the two specifications are close to each other.14 The remaining plots show

that for the autocorrelation function of inflation and the labor share the difference between

the two specifications is not stark. This is true under both the PS and the PQL prior.

Both specifications can roughly match the persistence of inflation and the labor share. If

anything, both tend to over-predict the one lag autocorrelation of inflation, which is not

very high.

5.2 Posterior Estimates and Model Comparison

The priors in Table 1 capture various hypothesis on the degree of nominal rigidities in the

economy. Which one is correct? We address this question by looking at the relative fit of

the models, as measured by marginal likelihoods. We also look at the posterior estimates

of the rigidity parameters. The role of the quasi-likelihood prior in this exercise is to try

levelling the playing field among the different specifications.

Table 5 shows the log marginal likelihoods for different specifications under both the

standard prior PS (left panel) and the quasi-likelihood prior PQL (right panel). The com-

parison among the “non-dogmatic” specifications, on the left column of each panel, is our

main focus. The relative fit of the “dogmatic” specifications, Flexible Wages and Prices, is

also informative however as it sheds light on which rigidity may be most needed to describe

the data, sticky prices or wages. The model comparison results for the “non-dogmatic”

specifications under the PS prior are striking, since all models seem to describe the data

roughly equally well. The marginal likelihood differences are less than 1.5, which is small,
14An interesting feature of the data sample we use is that Corr(Labor Share(t), Inflation(t + k)) is in-

creasing in k, unlike in the sample used by Gaĺı and Gertler (1999). In other words there seems to be little

(unconditional) predictive power of inflation for future labor share, while current labor share predicts future

inflation. Moreover the contemporaneous correlation is positive but small. As Figure 3 shows however, this

is no evidence against the New-Keynesian model. Even under the High Rigidities specification the model is

able to roughly replicate this pattern.
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in particular if one factors in the numerical approximation error associated with these high-

dimensional integrals. Thus, we find that the data cannot discriminate among the Low ,

High Rigidities, and Agnostic specifications. Under the PQL prior (right panel) the fit of

the Low Rigidities specification is clearly worse than that of the other two – mainly because

the fit of these specifications improve after levelling the playing field. Yet it is still the case

that the High Rigidities and Agnostic specifications describe the data equally well.

If for all the specifications with similar fit the posterior estimates for the Calvo param-

eters ζp and ζw were similar, this finding would not be noteworthy, as there is no posterior

disagreement about the magnitude of the nominal rigidities. However, it turns out that the

posterior estimates for the Calvo parameters are heavily influenced by the priors and quite

different. The left and right panels of Table 6 show the posterior mean and 90% posterior

intervals under the standard and quasi-likelihood prior, respectively.15 The estimates for ζp

indicate that some degree of price rigidity is needed to describe the data, although precisely

how much depends on the prior. These estimates range from about 0.6 for the Low Rigidities

to about 0.8 for the High Rigidities specification. The conclusion that some degree of price

rigidity is needed is confirmed by the fact that the fit of the Flexible Prices specification is

always much worse than that of the corresponding non-dogmatic model (see Table 5).

The assessment of the importance of wage rigidities depends even more on the prior

views. Under the Low Rigidities specification the posterior estimates of ζw are quite low,

about 0.25, while under the High Rigidities prior they are high, between 0.75 and 0.80.

The model comparison results also indicate that the answer to the question “Do we need

nominal wage rigidities?” is less robust than in the price rigidity case. The fit of the Flexible

Wages specification is worse than that of the corresponding non-dogmatic model under High

Rigidities, both under PS and PQL. For the Low Rigidities case the fit of the Flexible Wages

specification is worse than that of the corresponding non-dogmatic model under PS , but

slightly better under PQL. Moreover, the results suggest that, without price rigidity, wage

rigidity may not help much to describe the data: In the Flexible Prices specification the

posterior estimates of ζw are always very small, even under the High Rigidities specification

(the posterior mean is always below 0.25).16

15In the discussion we focus mainly on ζp and ζw, but we also tabulate the estimates for the remaining

endogenous propagation (θ(endo)) and the exogenous persistence parameters for full disclosure.
16We do not show the posterior estimates for the “dogmatic” specifications for brevity. They are available

upon request. An additional piece of evidence on the complementarity between wage and price rigidity

is that, under the Agnostic/PS prior, where the posterior of ζw spans both the low and the high rigidity

region, the posterior correlation between ζw and ζp is 0.89.
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We conjecture that the presence of the labor share among the observables is one of the

reasons for the lack of compelling evidence in favor of wage stickiness: In absence of sub-

stantial price rigidity, the model with high wage rigidity has a hard time explaining the joint

behavior of the labor share, inflation, and output. With low price rigidities movements in

the labor share are dominated by mark-up shocks, which tend to generate a counterfactual

negative correlation between labor share and inflation. Indeed the evidence in favor of nom-

inal wage rigidities is much stronger whenever the labor share is not among the observables.

Table 7 shows the model comparison results and the posterior estimates of ζp and ζw when

the labor share is not among the observables. The estimates of ζw are much higher than in

Table 6, and the Low Rigidity specification is soundly rejected by the data.

In summary, the following two models seem to fit the data equally well: One where

price rigidities are moderate and wage rigidity is trivial, and one where both rigidities are

high. These two models have strikingly different policy implication, as shown by Figure 4.

The Figure plots the impulse responses to a policy shocks for High Rigidities (solid black

lines) and the Agnostic case (grey dash-and-dotted lines) under PQL (results under PS are

similar). It is clear that the reduction in output following a decrease in inflation varies

substantially between these two models.

6 Conclusions

The choice of priors for DSGE model parameters matters for both posterior estimates and

model comparison. Part of this paper’s contribution is to provide a framework for eliciting

priors for different classes of parameters: those determining the steady state, the endogenous

propagation mechanism, and the law of motion of the exogenous disturbances. The main

thrust of our approach is to make explicit the information on which priors are based, whether

that comes from the pre-sample or other sources, and to provide a systematic approach for

translating this information into priors.

The paper uses the approach to investigate the importance of nominal rigidities within

a standard New-Keynesian model with several real rigidities. In the profession there are

widely diverging views on this subject. One would think that if the macro data spoke very

clearly one way or the other, some consensus may eventually emerge as information from

the data eventually trumps people’s priors. The results in this paper suggest that this is not

yet the case. The macro time series we consider – output growth, labor supply, labor share,

inflation and interest rates – are not informative enough to discriminate among different
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theories, in spite of being a natural choice of observables for the question at hand. We

indeed show that posterior estimates of the nominal rigidities parameters to some extent

mirror the prior views. We also show that the model comparison results are in general not

robust to the choice of prior for the parameters describing the exogenous shock processes,

as these priors may inadvertently favor one specification relative to another. One promising

approach to discriminating among theories is to gather evidence from micro data on the

degree of rigidities (see Bils and Klenow 2004, Nakamura and Steinsson 2007) but it remains

a challenge to understand how micro-level rigidities aggregate to macro-level rigidities.
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A Data

The data set is obtained from Haver Analytics (Haver mnemonics are in italics). We compile

observations for the variables that appear in the measurement equation (21). Real output is

obtained by dividing the nominal series (GDP) by population 16 years and older (LN16N),

and deflating using the chained-price GDP deflator (JGDP). We compute quarter-to-quarter

output growth as log difference of real GDP per capita and multiply the growth rates by

100 to convert them into percentages. Our measure of hours worked is computed by taking

total hours worked reported in the National Income and Product Accounts (NIPA), which

is at annual frequency, and interpolating it using growth rates computed from hours of all

persons in the non-farm business sector (LXNFH). We divide hours worked by LN16N to

convert them into per capita terms. We then take the log of the series multiplied by 100

so that all figures can be interpreted as percentage changes in hours worked. The labor

share is computed by dividing total compensation of employees (YCOMP) obtained from

the NIPA by nominal GDP. We then take the log of the labor share multiplied by 100. Infla-

tion rates are defined as log differences of the GDP deflator and converted into annualized

percentages. The nominal rate corresponds to the effective Federal Funds Rate (FFED),

also in percent. We use a pre-sample of observations from 1954:III to 1980:IV to specify

the prior distribution. Our estimation sample ranges from 1982:IV to 2005:IV. Annual data

on consumption, durable consumption, investment, and capital used to construct the great

ratios included in Ŝ (see Table 2 ) also come from Haver Analytics (with mnemonics C, CD,

IDGA, and E, respectively). Since these variables are not included among the observables

we use the entire sample (1954-2006) to obtain information on the great ratios. The average

labor share measurement included in Ŝ comes from the pre-sample.
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Table 1: Prior Views on the Degree of Price and Wage Rigidity

“Non-Dogmatic” Priors

Mean (St. Dev.)

Low Rigidities

ζp .45 (.10)

ζw .45 (.10)

High Rigidities

ζp .75 (.10)

ζw .75 (.10)

Agnostic Prior

ζp .60 (.20)

ζw .60 (.20)

“Dogmatic” Priors

Flexible Wages Flexible Prices

Mean (St. Dev.) Mean (St. Dev.)

.45 (.10) 0

0 .45 (.10)

.75 (.10) 0

0 .75 (.10)

.60 (.20) 0

0 .60 (.20)

Notes: Prior standard deviations are in parenthesis whenever the prior is non-degenerate.
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Table 2: Prior Distribution for Steady State (θ(ss)) and Endogenous Propagation (θ(endo))

Parameters

Parameter Domain Density Para (1) Para (2)

π(θ(ss))

α [0,1) Uniform 0.00 1.00

r(A) R+ Gamma 1.50 1.00

δ [0,1) Uniform 0.00 1.00

γ(A) R+ Gamma 1.65 1.00

λf R+ Gamma 0.15 0.10

π(A) R Normal 4.30 2.50

g∗ − 1 R+ Uniform 0.00 ∞

Ladj R Normal 252 10.0

L(SD(θ(ss))|Ŝ)

LS∗ Normal 0.57 0.02

(c∗ + i∗)/y∗ Normal 0.84 0.02

i∗/k̄∗ Normal 0.09 0.01

k̄∗/y∗ Normal 3.18 0.18

π(θ(endo))

ζp [0,1) Beta see Table 1

ζw [0,1) Beta see Table 1

νl R+ Gamma 2.00 0.75

ψ1 R+ Gamma 2.00 0.25

ψ2 R+ Gamma 0.20 0.10

ρr [0,1) Beta 0.50 0.20

ιp [0,1) Beta 0.50 0.28

ιw [0,1) Beta 0.50 0.28

s′′ R+ Gamma 4.00 1.50

h [0,1) Beta 0.700 0.050

a′′ R+ Gamma 0.20 0.10

Notes: Para (1) and Para (2) correspond to means and standard deviations for the Beta,
Gamma, and Normal distributions and to the upper and lower bounds of the support for
the Uniform distribution. In case of L(SD(θ(ss))|Ŝ) the Para (1) entry can be interpreted
as Ŝ value and the Para (2) entry as standard deviation of η in Equation (21).
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Table 3: Prior for Exogenous Propagation Parameters (θ(exo))

PS PQL

Parameter Domain Density Para (1) Para (2) Density Para (1) Para (2)

ρz [0,1) Beta 0.40 0.25 Beta 0.45 0.25

ρφ [0,1) Beta 0.75 0.15 Beta 0.45 0.25

ρλf
[0,1) Beta 0.75 0.15 Beta 0.45 0.25

ρg [0,1) Beta 0.75 0.15 Beta 0.45 0.25

σz R+ InvGamma 0.30 4.00 ∝ 1/σz

σφ R+ InvGamma 3.00 4.00 ∝ 1/σφ

σλf
R+ InvGamma 0.20 4.00 ∝ 1/σλf

σg R+ InvGamma 0.50 4.00 ∝ 1/σg

σr R+ InvGamma 0.20 4.00 ∝ 1/σr

×
L

(
θ(ss), θ(exo), θ(endo)|Γ∗, T ∗

)
c2(θ(ss), θ(endo))

Notes: Para (1) and Para (2) correspond to means and standard deviations for the Beta
distribution and to s and ν for the Inverse Gamma distribution, where pIG(σ|ν, s) ∝
σ−ν−1e−νs2/2σ2

.
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Table 4: Priors for Exogenous Propagation Parameters θ(exo): Standard vs Quasi-Likelihood

Parameter Agnostic
Low

Rigidities

High

Rigidities

Flexible

Wages

Flexible

Prices

PS PQL PQL PQL PQL PQL

ρz 0.40 0.47 0.47 0.49 0.42 0.48
(0.00,0.76) (0.17,0.75) (0.16,0.75) (0.18,0.77) (0.09,0.72) (0.19,0.72)

ρφ 0.75 0.63 0.68 0.51 0.74 0.70
(0.35,1.00) (0.31,0.97) (0.41,0.98) (0.13,0.89) (0.49,0.99) (0.44,0.98)

ρλf
0.75 0.77 0.81 0.61 0.63 0.84

(0.35,1.00) (0.56,0.99) (0.63,0.99) (0.29,0.95) (0.24,0.98) (0.70,0.99)

ρg 0.75 0.53 0.52 0.52 0.64 0.50
(0.35,1.00) (0.10,0.92) (0.11,0.93) (0.11,0.91) (0.23,1.00) (0.08,0.89)

σz 1.13 1.34 1.40 1.48 1.40 1.48
(0.48,1.78) (0.73,1.91) (0.73,2.01) (0.73,2.34) (0.79,2.37) (0.71,2.21)

σφ 3.76 6.22 4.89 12.74 3.70 5.41
(1.59,5.93) (1.26,11.72) (1.47,8.21) (1.43,24.84) (1.11,7.53) (1.47,9.44)

σλf
0.25 0.25 0.35 0.21 0.28 0.87

(0.11,0.40) (0.10,0.42) (0.15,0.57) (0.06,0.37) (0.11,0.49) (0.42,1.32)

σg 0.63 0.68 0.62 0.67 1.22 0.52
(0.26,0.99) (0.00,1.35) (0.18,1.35) (0.19,1.27) (0.22,2.97) (0.00,1.03)

σr 0.50 0.59 0.54 0.56 0.51 0.56
(0.21,0.79) (0.23,1.04) (0.23,0.92) (0.24,0.91) (0.00,0.78) (0.19,1.04)

Notes: The table shows the mean and, in parenthesis, the 90% intervals. Results for the
PQL prior are shown for T ∗ = 6. For Flexible Wages and Prices we show the prior under
the Agnostic rigidity specification.
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Table 5: Marginal Likelihoods

PS PQL

Non-Dogmatic
Flex.

Wages

Flex.

Prices
Non-Dogmatic

Flex.

Wages

Flex.

Prices

Low Rigidities

-518.83 -526.87 -569.84 -521.96 -519.21 -565.81

Agnostic Prior

-517.54 -527.20 -568.71 -511.63 -517.58 -563.78

High Rigidities

-517.32 -527.98 -578.42 -510.11 -519.84 -575.10

Notes: The table shows the log marginal likelihoods for different specifications under both
the standard prior PS (left panel) and the quasi-likelihood prior PQL (right panel).
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Table 6: Posterior Estimates

PS PQL

Parameter
Low

Rigidities
Agnostic

High

Rigidities

Low

Rigidities
Agnostic

High

Rigidities

Rigidities

ζp 0.64 0.78 0.84 0.56 0.65 0.81
(0.57,0.72) (0.64,0.88) (0.80,0.89) (0.48,0.64) (0.59,0.72) (0.75,0.86)

ζw 0.26 0.52 0.74 0.24 0.19 0.80
(0.18,0.34) (0.16,0.81) (0.61,0.84) (0.15,0.32) (0.10,0.29) (0.73,0.87)

Other Endogenous Propagation (θ(endo)) Parameters

νl 2.20 0.96 0.78 1.77 1.60 1.75
(1.22,3.18) (0.12,1.79) (0.17,1.37) (0.90,2.72) (0.84,2.42) (0.92,2.58)

ψ1 2.40 2.32 2.25 2.47 2.48 2.19
(1.96,2.85) (1.88,2.77) (1.84,2.68) (2.02,2.92) (2.01,2.92) (1.80,2.57)

ψ2 0.04 0.06 0.07 0.06 0.06 0.08
(0.01,0.07) (0.02,0.10) (0.03,0.11) (0.02,0.10) (0.02,0.10) (0.03,0.13)

ρr 0.79 0.80 0.81 0.80 0.79 0.81
(0.75,0.83) (0.76,0.85) (0.77,0.85) (0.75,0.84) (0.75,0.84) (0.77,0.85)

ιp 0.19 0.19 0.20 0.47 0.14 0.08
(0.00,0.38) (0.00,0.38) (0.00,0.41) (0.10,0.85) (0.00,0.30) (0.00,0.18)

ιw 0.49 0.42 0.36 0.52 0.56 0.42
(0.08,0.93) (0.00,0.81) (0.00,0.71) (0.12,0.97) (0.17,1.00) (0.01,0.77)

s′ 8.15 9.76 10.54 8.13 8.58 10.84
(5.19,11.10) (5.98,13.18) (6.91,13.96) (4.67,11.20) (5.36,11.71) (7.40,14.06)

h 0.67 0.80 0.82 0.69 0.70 0.79
(0.58,0.76) (0.70,0.89) (0.77,0.88) (0.60,0.79) (0.60,0.79) (0.72,0.86)

a′ ′ 0.25 0.21 0.21 0.26 0.24 0.22
(0.10,0.40) (0.05,0.35) (0.04,0.36) (0.09,0.42) (0.09,0.39) (0.07,0.36)

Exogenous Propagation (θ(exo)) Parameters (ρs only)

ρz 0.13 0.15 0.18 0.16 0.13 0.27
(0.00,0.25) (0.00,0.28) (0.00,0.33) (0.00,0.30) (0.00,0.24) (0.07,0.45)

ρφ 0.98 0.68 0.50 0.93 0.94 0.27
(0.95,1.00) (0.48,1.00) (0.31,0.69) (0.86,1.00) (0.89,1.00) (0.10,0.45)

ρλf
0.86 0.56 0.41 0.89 0.88 0.68

(0.77,1.00) (0.26,0.93) (0.17,0.65) (0.82,0.96) (0.81,0.95) (0.53,0.85)

ρg 0.91 0.96 0.97 0.92 0.92 0.92
(0.87,0.95) (0.92,1.00) (0.92,1.00) (0.87,0.96) (0.88,0.96) (0.89,0.96)

Notes: The table shows the mean and, in parenthesis, the 90% intervals. The left and right panels show the

estimates under the standard (PS) and quasi-likelihood (PQL) prior, respectively.



33

Table 7: Assessing Nominal Rigidities without the Labor Share Among the Observables

Low

Rigidities
Agnostic

High

Rigidities

ζp 0.78 0.84 0.84

(0.71,0.84) (0.79,0.89) (0.79,0.89)

ζw 0.73 0.94 0.92

(0.42,0.89) (0.91,0.98) (0.87,0.97)

Marg.

Likelihood
-408.45 -387.68 -386.96

Notes: The table shows the mean and, in parenthesis, the 90% intervals for the nominal
rigidity parameters under the standard prior for the Low, High Rigidities and Agnostic
specifications. The table also shows the log marginal likelihoods associated with each spec-
ification.
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Figure 1: Log Posterior Odds in Favor (Positive Values) of M2

Notes:
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Figure 2: A Priori Impulse Response Functions: Low versus High Rigidities
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Notes: The black solid and grey dash-and-dotted lines represent the median impulse re-
sponses and the 90% bands under the High Rigidities and Low Rigidities specifications,
respectively.
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Figure 3: Prior Predictive Moments: Low versus High Rigidities

Corr(Labor Share(t),Inflation(t+ k))

PS PQL

−8 −6 −4 −2 0 2 4 6 8
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

k
−8 −6 −4 −2 0 2 4 6 8

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

k

Corr(Inflation(t),Inflation(t+ k))

PS PQL

1 2 3 4 5 6 7 8
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

k
1 2 3 4 5 6 7 8

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

k

Corr(Labor Share(t),Labor Share(t+ k))

PS PQL

1 2 3 4 5 6 7 8
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

k
1 2 3 4 5 6 7 8

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

k

Notes: For each plot the thick dark gray line with crosses represents the statistics (Corr(Labor Share(t),Inflation(t+

k)), Corr(Inflation(t),Inflation(t + k)), Corr(Labor Share(t),Labor Share(t + k))) as computed from the data. The

black solid and grey dash-and-dotted lines represent the statistics computed from the model under the High

Rigidities and Low Rigidities specification, respectively. These statistics are computed by generating parameters

from the prior and, conditional on each draw, a size T time series from the model. We repeat this exercise 200,000

times and compute the median and the 90% bands for the statistics. The statistics are computed using both the

PS (left column) and the PQL prior (right column).
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Figure 4: Implications of Different Assessments of Nominal Rigidities: Posterior Impulse

Response Functions to a Monetary Policy Shock based on Prior PQL
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Notes: High Rigidities specification IRFs are black solid, Agnostic specification IRFs are
grey dash-and-dotted.




