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Abstract

This paper proposes a new approach for studying parameter identification in linearized DSGE
models, based on analytical evaluation of the Information matrix of such models. The Information
matrix is decomposed into a part that depends on the model only, and a part which also depends on
the data used for estimation. This allows researchers to determine: first, whether the parameters
of the model are identified; second, whether identification is strong or weak; and third, if identifi-
cation problems are detected, whether they originate in the structure of the model, or in the data.
We apply this approach to study parameter identification in a large-scale monetary business cycle
model estimated by Smets and Wouters (2007). We find that, for parameters that are identifiable,
identification is generally very weak. Moreover our results indicate that the problem is largely em-
bedded in the structure of the model, and, therefore, cannot be resolved by using more informative
data. We also show that there are substantial differences in the parameters estimates obtained
with classical and Bayesian estimation methods. We conclude that using estimated DSGE models
for policy analysis should be done with caution since, when identification is weak, the results are
likely to be strongly influenced by the prior distribution.
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... A lot of your posteriors look exactly like the priors...

Richard Blundell, when awarding Frank Smets and Raf Wouters with the Hicks-Tinbergen Medal at the 2004 EEA Meetings.

... How do you know if the model is identified? Check if the information matrix is full rank!
You do that one thing. No more. No less.

Thomas Sargent.

1 Introduction

The last several years have witnessed a remarkable growth in the research on empirical evaluation of
DSGE models. Nowadays researchers routinely estimate rich micro-founded models, that until recently
had to be calibrated. Unlike reduced-form or single equation estimation methods, the full set of model
parameters are being estimated in an internally-consistent fashion. This, together with the finding
that empirical DSGE models can fit the data as well as model-free reduced-form vector autoregressions
(VAR), has made them extremely popular in central banks and other policy-making institutions.1

A question that is rarely addressed in the empirical DSGE literature is that of parameter identifi-
ability. This is surprising as identification is a prerequisite for estimation of the parameters, and the
ability to do that for full-fledged structural models is believed to be one of the main accomplishments
of this line of research. That parameter identification is a potentially serious issue for DSGE models
is not a new concern. Among the authors who have made this point are Sargent (1976) and Pesaran
(1989). More recently Beyer and Farmer (2004) provide several examples of commonly used models
that are unidentifiable. They argue that the problem is likely to be common in DSGE models.

In most empirical DSGE papers the question of parameter identification is not confronted directly.
Usually, if some of the parameters are considered to be of lesser interest, and/or with potentially
problematic identifiability, their values are calibrated and assumed known, instead of being estimated.
Furthermore, since DSGE models are frequently estimated using Bayesian methods, potential identifica-
tion problems remain hidden due to the use of priors. As a result, it is often unclear to what extent the
reported estimates reflect information in the data instead of subjective beliefs or other considerations
reflected in the choice of prior distribution for the parameters. One reason why this is an important
issue is that DSGE models are increasingly being used for analyzing policy-relevant questions, such
as, for instance, the design of optimal monetary policy. Such analysis often hinges crucially on the
values assigned to the parameters of the model. It is, therefore, important to know how informative
the data is for the parameters of interest, and whether there are any benefits from estimating instead
of calibrating the models we use to address policy questions.

The objective of this paper is to shed light on the relative importance of information from the data
versus subjective prior beliefs for the estimation of a state-of-the-art DSGE model. We address the
problem in two steps. First, we develop a new identification analysis procedure, based on analytical
evaluation of the information matrix, and use it to study the identification of the parameters in the
model. Second, we estimate the model using maximum likelihood, and compare the results to those
obtained by using Bayesian techniques. The model we consider is a large-scale New Keynesian business
cycle model with various real and nominal frictions developed and estimated in Smets and Wouters
(2007). Similar models have been studied, using Bayesian techniques, in Onatski and Williams (2004),
DelNegro, Schorfheide, Smets, and Wouters (2005), Justiniano and Primiceri (2006), and Boivin and

1Models similar to the one considered in this paper have been estimated, and are used for policy analysis in institutions
such as the Federal Reserve Board, the European Central Bank, Bank of England, RiksBank, the Bank of Canada, and
the IMF.
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Giannoni (2006). Previous research suggests that the model fits the data well, in some cases out-
performing unrestricted vector autoregressions in out-of-sample forecasting. Schmitt-Grohe and Uribe
(2004) and Levin, Onatski, Williams, and Williams (2005) study the design of optimal monetary policy
rules in estimated versions of that model (see also Juillard, Karam, Laxton, and Pesenti (2006)).

Although its importance has been recognized (see e.g. An and Schorfheide (2005)), the identification
of parameters in this or other similar DSGE models has not been studied previously. Perhaps the main
reason for this is that applying the standard approach to identification is very difficult for DSGE models
(see Schorfheide (2007)). In general, DSGE models have the following form:

EtJ(Z̃t+1, Z̃t, Z̃t−1, Ut; θ) = 0 (1.1)

where J is a non-linear function of the endogenous variables Z̃, and the exogenous shocks U , and θ is
a vector of deep parameters. Since the model in (1.1) is, for most purposes, too difficult to work with,
researchers use a linear or log-linear approximation of (1.1) around the steady state. The resulting
system of linear stochastic equations is of the form

EtĴ(Zt+1, Zt, Zt−1, Ut; θ) = 0 (1.2)

where Z is the log-deviation of Z̃ from its steady-state level, and Ĵ is function linear in the variables
Z and U . Solving the linearized version of the DSGE model yields a reduced-form model, given by

R(Zt, Zt−1, Ut; τ) = 0 (1.3)

where R is a linear function of Z and U , parameterized by the m×1 vector of reduced-form parameters
τ .

A classic result of Rothenberg (1971) relates the identification of parameters to the information
matrix of the model. In particular, a singular information matrix indicates that some parameters in θ
are not identifiable. Finding the information matrix in DSGE models, however, is not straightforward
since, for most models, the mapping from the structural model - (1.2) to the reduced-form one - (1.3),
can be evaluated only numerically. This makes the analytical derivation of the information matrix by
direct differentiation of the likelihood function impossible.

In Iskrev (2007a) we showed how the information matrix can be evaluated analytically for linearized
DSGE models. We factorize the information matrix for θ as a product of two terms: one is the gradient
of the mapping from reduced-form parameters τ to deep parameters θ; the second is the information
matrix of the reduced-form model (1.3). Both factors can be derived and evaluated analytically. This
approach not only makes a precise evaluation of the information matrix possible, but also provides a
necessary condition for identification of the deep parameters, which does not depend on the data. The
condition is that the gradient of the mapping from θ to τ has full rank. This mapping is completely
independent from the data used in estimation. Thus, we can detect identification problems that are
inherent in the structure of the DSGE model, and not caused by data deficiencies.

Identification problems may arise in the model for two reasons. First, the reduced-form solution of
the model, which represents the equilibrium law of motion for the state variables, may be insensitive
to changes in a deep parameter. This would make the likelihood surface very flat with respect to
that parameter, thus rendering it poorly identified. Second, the changes in the reduced-form model
resulting from changes in a deep parameter may be well approximated by changes in a combination
of other deep parameters. This would make the first parameter difficult to distinguish from the other
deep parameters in the model. The likelihood would again be flat, but this time in the direction of
a linear combination of deep parameters. The decomposition of the Information matrix we propose
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makes it possible to find out exactly which parameters are poorly identifiable for either of the reasons
described above.

Knowing how to evaluate the Information matrix allows us to determine the identifiability of any
value of θ in the parameter space of the model. This is useful both for post-estimation and pre-
estimation analysis. After the model has been estimated, we may want to know how well identified are
the point estimates, and thus how reliable are the estimated standard errors and confidence intervals.
If Bayesian techniques are applied for estimation, the Information matrix can be used to assess the
importance of priors relative to the data.

More generally, both applied researchers and macroeconomic modelers may be interested in knowing
how well-identified is a particular DSGE model, before it is taken to the data. Such analysis could reveal,
for instance, that there are features of the model that make it unidentifiable, or poorly identified, and
this does not depend on particular data used for estimation. Or, we may find that the parameters θ
are well-identified in some parts of the parameter space of the model, while in others identification is
poor. In order to study the identifiability of the theoretical model, we have to examine the Information
matrix everywhere in the parameter space, that is, at all a priori admissible parameter values.

In the paper we illustrate both types of identification analysis using the model estimated by Smets
and Wouters (2007). In particular, in Section 2 we draw a large number of points from the parameter
space of the model, and check the necessary and sufficient rank conditions at each one of them. In
addition, we evaluate the conditioning of the matrices whose ranks determine identification. A poorly
conditioned matrix is one close to being of reduced rank. Thus we determine not only whether the
parameters are identifiable in the strict sense, but also how strong is identification. We do this for
six parameterizations that differ in which parameters are assumed to be known. Then we turn to the
estimation of parameters using quarterly US data. We depart from most of the previous empirical
DSGE literature by using maximum likelihood for estimation of the model. This allows us to compare
parameter estimates driven by the data only, with those obtained with Bayesian methods, which are
determined by both the data and the prior distribution. When the number of observations is large, the
two approaches should produce similar results. In small samples, however, the prior distribution could
be very influential, especially when identification is weak. This may result in parameter estimates that
have little to do with the actual data used for estimation.

On the identification side, we find that Smets and Wouters (2007), who state that three of the deep
parameters of the model are not identifiable, are correct only with respect to two of them. The third
one - the steady state wage markup parameter, is, identifiable, though generally very weakly so. When
we restrict our analysis to identifiable parameterizations, we find that identification is generally quite
weak. We show that the problem to a large degree originates in the structure of the model, and thus
cannot be resolved by using more informative data. Furthermore, we are able to determine which of
the deep parameters are most responsible for the weak identifiability of the model as a whole. The set
of worst identifiable parameters varies somewhat across the parameter space, but ten of them are very
poorly identified virtually everywhere. These parameters are: elasticity of labor supply, coefficients
of price and wage stickiness, steady state wage markup, habit persistence, elasticity of intertemporal
substitution, fixed cost of production, and the coefficients of monetary policy response to output,
inflation and lagged interest rates. The problem with these parameters is that their role in the model
can be very well approximated by other deep parameters. We also show that this problem is not easily
solved by assuming that a few of these parameters are known. For instance, to reduce the parameter
interdependence problem for the wage stickiness coefficient, one may have to assume that up to eight
other deep parameters are known, instead of estimating them. Our analysis thus provides concrete
evidence for the notion that models of this scale are severely overparameterized.

5



On the estimation side, we find that disposing with the strong priors used in previous studies affects
substantially the estimates of the parameters in the model. This has some important implications for
the behavior of the model, as we show using impulse response and variance decomposition analysis.

Our paper is not the first to systematically study parameter identification in DSGE models. An
important recent contribution that deals exclusively with these issues is Canova and Sala (2006). There
are three important differences between their study and the present paper. First, they approach param-
eter identification from the perspective of a particular limited information estimation method, namely,
impulse response matching (see Rotemberg and Woodford (1998), and Altig, Christiano, Eichenbaum,
and Linde (2005) for explanation and illustration of this estimation approach). As they recognize,
identification failures of that or other limited information methods do not imply that the problems are
generic to all estimation methods. In contrast, if identification fails or is weak when a full information
approach is used, as we do here, it will remain a problem for any alternative estimation method. Sec-
ond, unlike this paper, which evaluates the information matrix analytically, Canova and Sala (2006)
use numerical approximation of the Hessian. It is well-known that numerical differentiation could be
very imprecise for highly non-linear functions, as is the case with DSGE models.2 Moreover, with our
approach for computing the Information matrix, we are able to distinguish between the model struc-
ture and the data as sources of identification problems. Finally, unlike Canova and Sala (2006), who
study identification only in the neighborhood of a particular point in the parameter space, we study
the identifiability of a large number of points drawn randomly from everywhere in the space. Thus we
are able to characterize parameter identification as a global instead of a local problem of the theoretical
model.

Regarding the effect of priors for Bayesian estimation of DSGE models, results similar to ours are
reported in Onatski and Williams (2004). They estimate a similar large-scale New Keynesian model,
using European data, and find that greater prior uncertainty results in substantially different parameter
estimates, compared to those obtained with the tighter priors common in the empirical DSGE literature.
They do not address formally the issue of parameter identifiability, as we do in this paper.

The rest of the paper is organized as follows. Section 2 explains our approach to identification.
There we show how the Information matrix can be computed analytically, and outline a procedure
for studying model identification in general linearized DSGE models. We also discuss the difference
between identification in a strict sense, and weak identification as a finite sample phenomenon, and
explain, using a simple example, the role of the model and the data in determining the strength of
identification. In section 3 we apply the proposed identification analysis procedure to the model of our
case study. The main results are in 3.4 where we determine which parameters are not well identified in
the model and why. In section 4 we use the data from Smets and Wouters (2007) to find the maximum
likelihood estimate of the model, and compare the results to the Bayesian estimates reported in Smets
and Wouters (2007). We also compare, using impulse response and variance decomposition analysis,
the economic implications of the different parameter estimates. The last section offers some concluding
remarks and directions for future research.

2 Identification in DSGE models

2.1 Structural and Reduced Form

Currently, most analyses involving either simulation or estimation of DSGE models use linear approx-
imations the original models. Specifically, the model is first expressed in terms of stationary variables,
and then linearized or log-linearized around the steady-state values of these variables.

2Hansen, McGrattan, and Sargent (1994) also argue in favor of using analytical derivatives when estimating DSGE
models
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Typically, the linearized system can be written in the form

Γ0Zt = Γ1EtZt+1 + Γ2Zt−1 + Γ3Ut (2.1)

where Zt is a m×1 vector of endogenous variables, and the structural errors, Ut, are i.i.d. n-dimensional
random vectors with E[Ut] = 0, E[UtU ′t ] = I. The coefficient matrices Γ0, Γ1, Γ2 and Γ3 are functions
of the k × 1 vector of deep parameters θ.

There are several algorithms for solving linear rational expectations models like (2.1) (see for instance
Blanchard and Kahn (1980), Anderson and Moore (1985), Klein (2000), Christiano (2002), Sims (2002)).
Depending on the value of θ, there may exist zero, one, or many stable solutions. Assuming that a
unique solution exists, it can be cast in the following form

Zt = AZt−1 +BUt (2.2)

where A and B are functions of θ, and are unique for each value of θ. We collect the reduced-form
parameters in a τ , defined as

τ = [vec(A)′, vec(B)′]′

I also define the define the function mapping θ into τ as

τ = h(θ)

The deep parameters of the model cannot be estimated directly from (2.2) as some of the variables
in Z are not observed. Instead, we can write the reduced-form system in a state space form, with
transition equation given by (2.2), and the following measurement equation

Xt = CZt (2.3)

where Xt is a vector of observed state variables, and C is a known matrix.

Assuming that Ut is normally distributed, the conditional log likelihood function l(X, θ) can be
computed recursively using the Kalman filter (see Hamilton (1994, ch.13)).

2.2 Identification of θ

Let Θ be the admissible parameter space of θ, that is, the set of all values of θ which conform to
the restrictions postulated by the theoretical model. For each θ ∈ Θ, the DSGE model (2.1) is a
data generating process for X = {Xt}Tt=1. By the assumption of uniqueness of the solution (2.2) to
(2.1), each admissible θ implies a unique joint probability density function F (X; θ) of the elements
of X. Identification of θ requires that the inverse association is also unique. Specifically, θ0 ∈ Θ is
globally identifiable if for any other θ1 ∈ Θ, we have F (X; θ0) 6= F (X; θ1) for some X with a non-zero
probability measure. Local identification of θ0, on the other hand, requires that the F (X; θ0) is unique
only in some neighborhood of θ0. Clearly, local identifiability is necessary for θ to be globally identified.
Finally, when all a priori admissible values θ ∈ Θ are (locally) identifiable, we say that the model is
(locally) identified.

A well-known result from Rothenberg (1971, Theorem 1) is that a necessary and sufficient condition
for local identification of θ0 is that the information matrix, defined by

Iθ = E

[{
∂l(X; θ)
∂θ

}′{
∂l(X; θ)
∂θ

}]
= −E

[{
∂2l(X; θ)
∂θ∂θ′

}]
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has a full rank when evaluated at θ0. Here l(X; θ) = lnF (X; θ0) is log-likelihood function. Using this
condition we can, in principle, determine the local identifiability of the model as a whole by evaluating
the rank of the information matrix at all points of the parameter space.

The problem with applying this result to determine identifiability in DSGE models is that the
mapping from θ to the log-likelihood function is, for most models, not available in analytical form.
The likelihood function is determined by A and B, which have to be solved for numerically with some
of the algorithms mentioned earlier. This makes it impossible to derive analytically the information
matrix by direct differentiation of the log-likelihood function. Using numerical differentiation, on the
other hand, is computationally very costly, and is known to be very inaccurate for highly non-linear
functions which is typically the case for DSGE models. Not only is the function non-linear, but it has
to be evaluated numerically in the first place.

In Iskrev (2007a) we showed an alternative approach for evaluating the information matrix. It is
based on a result by Rothenberg (1966) who showed that Iθ(θ,X) can be expressed in the following
way3

Iθ = H(θ)′Iτ (θ,X)H(θ) (2.4)

where Iτ (θ,X) is the Information matrix of the unrestricted state space model, and H(θ) is the gradient
of h, i.e.

H(θ) = hθ(θ)

Both H(θ) and Iτ (θ,X) can be derived analytically. We outline the derivation of H(θ) below; see
Iskrev (2007a) for references on how Iτ (θ,X) can be computed.

The first step in finding H(θ) is to realize that even though h cannot be written explicitly, we can
find an implicit function relating θ and τ . From (2.1) and (2.2) and the law of iterated expectations
we obtain the following two sets of equations (see the Appendix for details):

(Γ0 − Γ1A)A− Γ2 = 0 (2.5)
(Γ0 − Γ1A)B − Γ3 = 0 (2.6)

A and B depend on θ only through τ , while Γ0, Γ1, Γ2 and Γ3 are functions of θ only. The expressions
in (2.5) and (2.6) define an implicit function F (θ, τ(θ)) = 0.4 Therefore, by the Implicit function
theorem,5

H =
∂τ(θ)
∂θ′

= −
(
Fτ (θ, τ(θ))

)−1
Fθ(θ, τ(θ)) (2.7)

In practice, it is straightforward to compute Fθ and Fτ using standard packages for symbolic cal-
culus, such as the Symbolic Toolbox in Matlab. The computation is further simplified by the fact that
F can be factored as6

F (θ, τ(θ)) = F1(τ(θ))F2(θ) (2.8)

The approach described above is useful for two reasons. First, it avoids numerical differentiation,
and allows one to accurate evaluate the Information matrix. Second, it can also help in discovering
the sources of the identification problems, if such exist. The roots of identification problems may be
either in Iτ (θ,X), or H(θ), or both. The first matrix measures how well the reduced form parameters
τ are identified, and depends, in part, on the properties of the data, as X is used in its calculation.

3This follows from a straightforward application of the rule for differentiating composite functions.
4Evaluating the matrix F proved to be an extremely useful method for detecting and correcting programming errors.

See the Appendix for more details on this and a complementary method for doing that.
5To apply the implicit function theorem, we need the matrix Fτ (θ, τ(θ)) to be invertible. This was true for all

admissible values of θ used in our identification analysis. See below for details.
6see the Appendix in Iskrev (2007a)
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H(θ), on the other hand, tells us how well-identified are the deep parameters θ given τ , and does not
depend on the data. Therefore, finding a rank deficient, or poorly conditioned H(θ), means that θ is
not identifiable, or is weakly identifiable, due to reasons inherent in the structure of the model. The
distinction between the model and the data as causes for identification problems is relevant only as far
as the strength of identification is concerned. For fully articulated economic models, such as DSGE
models, the identifiability of parameters is completely determined by the structure of the model. This
is because every aspect of the data generating process, and the likelihood of the model, can be traced
back to the underlying deep parameters and structural relationships. As we know from the literature
on weak instruments, however, how strong identification is has important implications for the small
sample properties of estimators, as well as for inference. We find it useful, therefore, to distinguish
between the role of H(θ), which depends on θ only, and Iτ (θ,X), which depends on both θ and the
data.

The following simple example helps clarify the distinction between the model and the data as sources
of identification problems.

2.3 Model vs. Data as Sources of Identification problems: Example

Suppose that the model (2.1) is given by

Zt = θ1EtZt+1 + (1− θ1)Zt−1 + θ2Ut (2.9)

where Zt is univariate, θ1 > .5 and Ut ∼ N(0, 1). The reduced-form solution is

Zt = τ1Zt−1 + τ2Ut (2.10)

In terms of the notation used above we have Γ0 = 1, Γ1 = θ1, Γ2 = 1 − θ1, Γ3 = θ2, and C = 1.
Here the state variable Zt is observed (i.e. Xt = Zt), and therefore the information matrix Iτ for the
reduced-form parameter vector τ is straightforward to compute. Moreover, one can solve by hand for
the reduced-form coefficients to find

τ1 =
1− θ1

θ1
, τ2 =

θ2

θ1
(2.11)

We can view the estimation of the deep parameters θ as a two-step procedure: first, estimate the
reduced form parameters τ ; second, given the estimated τ̂ , solve for θ̂.

Therefore the following two conditions must be satisfied for θ to be well-identified:

1. τ can be precisely estimated;

2. small errors in τ̂ result in small errors in θ̂.

The first condition is determined by how informative is the particular realization of the data we
observe. If, for example, the data is very noisy, or the sample very short, the standard errors of τ̂ , and
therefore of θ̂, will be large. The second condition is determined solely by the features of the model,
and, more precisely, by the mapping in (2.11). If that mapping is poorly conditioned, small errors in τ
would result in large errors in θ. In that case θ would be poorly identified for reasons particular to the
structure of the model and not because of the data.

The intuition from this simple example extends to the general model. One can show that, when
the parameters τ of the reduced form model are identified, the two step procedure described above
is asymptotically equivalent to full information maximum likelihood estimation (see Iskrev (2007b)).
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Therefore features of the data sample used in estimation, which reduce the quality of the reduced form
estimates, will also cause poor identifiability of θ. Another such factor, in addition to the short sample
size and noisiness of the data mentioned above, would be strong collinearity among the observed data
series. This is known to cause problems with identification in the standard linear model, and has the
same effect on the estimates of τ .

2.4 Identification vs. Weak Identification

Given a parameter value θ0, computing the rank of Iθ(θ0) would tell us whether θ0 is identifiable or
not. Verifying that the rank condition is satisfied is a prerequisite for the estimation of any model.

However, identification in the strict sense is a either/or property of the model, and from the rank
condition one cannot determine how strong identification is. This is important because much of the
theory on which econometric practice is based relies on approximations that are valid only asymptoti-
cally. There is now a considerable literature showing that the quality of these approximations depends
crucially on the strength of identification (see Dufour (2003) and the references therein). In particular,
even if the rank condition is satisfied, if identification is weak the small sample properties of the esti-
mators may be very poor, and the traditional methods for constructing confidence intervals, and for
testing hypothesis are prone to be very inaccurate.

What do we mean by weak identification? To answer this question it helps to first analyze the causes
for lack of identification. There are two possible reasons why a parameter θi may be unidentifiable:

(a) Changing θi does not change the likelihood, i.e.

∂l

∂θi
= 0, for all X (2.12)

(b) The change in the likelihood caused by changing θi can be offset by changing other parameters
in θ, i.e.

∂l

∂θi
=
∑
j 6=i

aj
∂l

∂θj
, for all X (2.13)

where aj , j 6= i is a scalar.

In the first case row i and column i of the Information matrix will be vectors of zeros; in the second
they will be equal to a linear combination of the other rows/columns of the Information matrix. The
likelihood will be flat with respect to θi in the first case, and with respect to a linear combination of
several parameters in θ - in the second.

If ”=” in (2.12) and (2.13) is replaced by ”≈”, θi will be weakly identified - the likelihood will be
almost though not completely flat with respect to one or a combination of deep parameters. In the first
case the value of θi is difficult to pin down from the likelihood, and its estimate will be very sensitive
to random variation is the data; in the second case the estimates of several of the deep parameters will
be highly correlated and again small changes in the data may result in substantial changes in the point
estimates.

Note that the weak identification version of (a) is equivalent to a very small variance of i-th com-
ponent of the score vector; likewise, (b) is equivalent to a strong linear dependence, or collinearity,
among the components of the score. To separate these two causes for poor identification of θ we use
the following factorization of the Information matrix

Iθ = D
1
2 ĨθD

1
2 , D = diag(Iθ) (2.14)
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i.e. D is a diagonal matrix with the variance of ∂l
∂θi

in the (i, i)-th position, and Ĩθ is the normalized
Information matrix whose (i, j)-th element contains the correlation between the i-th and j-th component
of the score vector.

As with the singularity of the Information matrix, which captures both of the possible causes for lack
of identification, weak identification in either of the two forms results in having an Information matrix
which has full rank, but is close to being singular.7 Unlike singularity, however, which is unambiguously
determined by the rank of the matrix, near-singularity and therefore weak identification is harder to
characterize.

An obvious candidate for a measure of identification strength is the condition number of the In-
formation matrix. It can be shown that the condition number of a non-singular matrix A, defined by
cond(A) = ‖A‖‖A−1‖, is equal to the inverse of distance of that matrix to the set of singular matrices.8

Specifically
1

cond(A)
= min

{
‖4A‖
‖A‖ : A+4A is singular

}
(2.17)

Note that cond(.) depends on the underlying norm; if the Euclidean norm is used the condition
number of a matrix is equal to the ratio of the largest to the smallest singular values of that matrix.
From 2.17 it follows that the smaller is the condition number of the Information matrix, the further it
is from singularity, and therefore the stronger is the identification of parameters.9

The condition number of Iθ is an indicator of how informative the likelihood is for θ as a whole. It
plays a role, in the multivariate case, similar to that of the value the Information matrix when θ is a
scalar. In the univariate case, Iθ = 0 indicates that the likelihood does not change as we vary θ, i.e.
the likelihood function is completely flat and θ is unidentifiable. When Iθ > 0 but is very small, the
likelihood is almost flat, and thus θ is weakly identified. Similarly, in the multivariate case when the
Information matrix is exactly singular, the condition number is infinity, and the likelihood function is
absolutely flat in some directions, and is thus completely uninformative with respect to one or more
parameters. An almost singular Information matrix, on the other hand, has a large condition number,
and implies that the likelihood is nearly flat in some directions, and thus provides very little information
for some parameters. We say that a matrix with low condition number is well-conditioned, and if the
condition number is high, the matrix is poorly conditioned.

Because of the factorization in (2.14), the Information matrix will be poorly conditioned if either D
or Ĩθ or both are poorly conditioned. Large condition number of Ĩθ indicates identification problems
due to strong collinearity (see (2.13)). Note, however, that unlike the correlation matrix Ĩθ, D is not
scale invariant. Its conditioning is determined by the magnitude of smallest and largest component of
∂l
∂θ , and, therefore, depends on the units with which the parameters in θ are measured. A unit-free
measure is θi∂l

θi
- the percentage change in the likelihood due to a 1% change in θi. Therefore, instead

of matrix D we will check the conditioning of the matrix D̃ defined by
7This is consistent with the notion of weakness in the weak instruments literature. For instance, in Moreira (2003)

the structural parameters β in

yn×1 = Yn×lβ + u (2.15)

Y = Zn×kΠk×l + ε (2.16)

are said to be ”almost unidentified when Π is in a small neighborhood around a matrix with rank less than l.” (footnote
3). In a fully parametric setting this is equivalent to the Information matrix for β being close to singularity.

8This is known as the Eckart-Young theorem (see e.g. Demmel (1987)).
9In the standard linear regression model y = Xβ+u, the Information matrix is proportionate toX′X, and identification

problems are caused by strong linear dependence among the columns of X. Belsley, Kuh, and Welsch (1980) suggest the
use of the condition number of X′X for detection of collinearity problems in this setting.
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D̃(i, i) = θ(i)2D(i, i) (2.18)

A poorly conditioned D̃ indicates identification problems due to a low sensitivity of the likelihood
with respect to some deep parameters; a poorly conditioned Ĩθ indicates identification problems caused
by a strong parameter interdependence with respect to the likelihood function.

The factorization of the information matrix into two scale-free component - D̃ and Ĩθ may be used
to shed light on the question of what constitutes a large condition number. In the Appendix we show
that the asymptotic variance of the estimate of θi can be expresses as

var(θ̂i) = D(i, i)−1

(
1

1− cos2(i,−i)

)
where cos(i,−i) is the cosine of the angle between the i-th element of the score, and the space spanned by
the other elements of the score. A large value of cos(i,−i) indicates strong parameter interdependence
problem for θi. Dividing both sides by θ2

i , we have

var(θ̂i)
θ2
i

=
(

1
D̃(i, i)

)(
1

1− cos2(i,−i)

)
(2.19)

From (2.19) it follows that the normalized asymptotic variance of θ̂i will be large if either D̃(i, i)
is small, or if cos(i,−i) is close to one. Suppose first that cos(i,−i) = 0, i.e. there is no parameter
interdependence problem for θi. Let D̃(m,m) = mini D̃(i, i) and D̃(M,M) = maxi D̃(i, i). Then

var(θ̂M )
θ2
M

= cond(D̃)2 var(θ̂m)
θ2
m

That is, cond(D̃) is large, the normalized asymptotic variance of θ̂M is much larger than that of θ̂m.
Next, consider the effect of the second term on the left hand side of (2.19). It tells us how much the

intrinsic uncertainty in θ̂i , represented by 1
D̃(i,i)

, is magnified because of parameter interdependence.

For instance, if \cos(i,-i) = .9, 1
1−cos2(i,−i) = 5.26. That is, because of the parameter interdepen-

dence, the normalized asymptotic variance of θ̂i is more than 5 times as large as what it would have
been if there was no parameter interdependence. The condition number of Ĩθ provides a bound on the
values of cos(i,−i), namely10

max
i

\cos(i,-i) ≤ \cos\left (2 \cot^{-1}(\sqrt{\mathrm{cond}(\tilde{\mathcal{I}}_{\theta})}) \right )

For instance, if cond(Ĩθ) = 100, a value which is frequently used as an indicator of severe multi-
collinearity in linear models, the value of the bound is .98. It implies that the the second factor in
(2.19), measuring the parameter interdependence effect on the asymptotic variance, may be as large as
25.

We should make it clear from the outset that the Information matrix approach to identification
is for local analysis only. In general, global identification analysis for models that are non-linear in
the parameters is not feasible.11 In Iskrev (2007b) we derive conditions for global identification of the
structural parameters in linearized DSGE models, i.e. parameters in which the structural equations are
linear.12 However, the goal in the empirical DSGE research is usually to estimate the deep parameters,
for which identification can be analyzed only locally.

10This result follows directly from the Kantorovich-Wielandt inequality, see ? for details
11See Rothenberg (1971) for more details.
12We distinguish between deep and structural parameters. For instance, if one of the equations in the linearized DSGE
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2.5 Identification analysis procedure

In the previous section we outlined how the information matrix Iθ(θ,X) can be evaluated. Using
that approach, we can determine whether the particular value of θ, where the matrix is evaluated, is
identifiable or not. The model as a whole is identified if all points from the parameter space Θ are
identifiable. It is clearly not feasible to check the rank condition for all points in Θ, and instead we will
perform such checks for many randomly drawn points from Θ.13 Our proposed identification analysis
procedure consists of the following steps:

1. Draw randomly a point θj from Θ.

2. Check whether the reduced-form solution of the linearized structural model exists and is unique.
If both of these conditions are not satisfied, go back to (1).

3. Evaluate the rank and the conditioning of H(θ)′H(θ). If it is of less then full rank, go back to
(1).

4. Evaluate the rank and the conditioning of Iθ, D̃ and Ĩθ.

In Step (1) we take one a priori admissible value of θ, which we then treat as the true parameter
value in steps (2) to (4). Upon completion of the procedure, we will know if that value of θ is identifiable,
and how strong identification is. Step (2) is necessary to ensure that there exists a unique likelihood
function at θj . Conditions for existence and uniqueness of the solution can be found in Sims (2002),
and are automatically checked by most computer algorithms for solving linear rational expectations
models. We call admissible the values of θ for which these conditions are satisfied. In Step (3) we
check the necessary condition for identification. Finding that H(θ)H(θ)′ is rank deficient, or poorly
conditioned at θj , tells us that this particular point of the parameter space is either not identifiable,
or is weakly identifiable for structural reasons, i.e. irrespectively of the data. To complete step (4)
we need to evaluate Iτ (θ,X), which depends on the data as well as on θj . Therefore we need to first
generate data X, assuming that θj is the true parameter value. To account for sampling variability,
in practice we generate many replicas of X, and compute the reduced form Information matrix as the
average Information matrix. From the rank of Iθ(θ,X), and conditioning of D̃ and Ĩθ(θ,X) we then
determine whether θj is identified or not, and whether identification, from both the model and the
data, is strong or weak.

3 Case Study: Identification

3.1 The Smets Wouters (2007) model

The model in Smets and Wouters (2007) (see also Christiano, Eichenbaum, and Evans (2005)) is an
extension of the standard RBC model featuring a number of nominal frictions, such as price and
wage stickiness, and real rigidities - habit formation in consumption, investment adjustment cost,
monopolistic competition, and variable cost of adjusting capital utilization. In addition, it contains a

model is the New Keynesian Phillips curve

πt =
β

1 +$β
Etπt+1 +

(ψ + ν)(1− ζβ)(1− ζ)
(1 +$β)ζ

yt +
$

1 +$β
πt−1 + et

we call β, $, ψ, ν and ζ deep parameters, and γ1 = β
1+$β

, γ2 =
(ψ+ν)(1−ζβ)(1−ζ)

(1+$β)ζ
and γ3 = $

1+$β
- structural

parameters.
13Boswijk and Doornik (2003) suggest this approach for checking identification of cointegration relationships.
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large number of serially correlated structural shocks. In this section we present a brief outline of the
main components of the model. For details see the appendix accompanying Smets and Wouters (2007).

3.1.1 Households

There is a continuum of households indexed by j, each having the following utility function

Et

[ ∞∑
s=0

βs
1

1− σC

(
(Ct+s(j)− λCt+s−1(j))1−σC

)
exp
(
σc − 1
1 + σl

Lt+s(j)1+σl

)]
, (3.1)

where Ct+s(j) is consumption, Lt+s(j) is hours worked; λ is an external habit persistence parameter.

Each household supplies differentiated labor services monopolistically to a continuum of labor mar-
kets charging nominal wage denoted with Wt(j); Wt is an index of the nominal wage in the economy.

Households supply homogeneous labor to labor unions (indexed by l), who then sell it to labor
packers. Labor services are differentiated by a union, who therefore have market power. Wage setting
by unions (as well as price setting by firms discussed below) is subject to nominal rigidities with a
Calvo mechanism whereby each period a union can set the nominal wage to the optimal level with
constant probability equal to 1− ξw. Unions that cannot adjust their nominal wage optimally, change
it according to the following indexation rule

Wt+s(l) = γWt−1(l)πιwt−1π
(1−ιw)
∗ , (3.2)

where γ is the deterministic growth rate, ιw measures the degree of wage indexation to past inflation,
and π∗ is the steady state rate of inflation.

Labor packers buy differentiated labor services Lt(l) from unions, package and sell composite labor
Lt, defined implicitly by ∫ 1

0

H
(
Lt(l)
Lt

;λw,t

)
dl = 1, (3.3)

to the intermediate good sector firms. The function H is increasing, concave, and satisfies H(1) = 1;
λw,t is a stochastic exogenous process changing the elasticity of demand, and the wage markup over
the marginal disutility from work.

In addition to supplying labor at wage Wt, households rent capital to the firms producing inter-
mediate goods, and earn rent at rate RKt (j). Households accumulate physical capital according to the
following law of motion:

K̄t(j) = (1− δ)K̄t−1(j) + εit

[
1− S

(
It(j)
It−1(j)

)]
It(j), (3.4)

where δ is the rate of depreciation, It is gross investment, and the investment adjustment cost function
S satisfies S ′ > 0, S ′′ > 0, and in steady state S = 0, S ′ = 0. εIt represents the current state
of technology for producing capital, and is interpreted as investment-specific technological progress
(Greenwood, Hercowitz, and Krusell (2000)).

Households control the utilization rate Zt(j) of the physical capital they own, and pay Pta(Zt(j))K̄t−1(j)
in terms of consumption good when the capital intensity is Zt(j). The income from renting capital to
firms is RktKt(j), where Kt(j) = Zt(j)K̄t−1(j) is the flow of capital services provided by the existing
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stock of physical capital K̄t−1(j). The utility function (3.1) is maximized with respect to consumption,
hours, investment, and capital utilization, subject to the capital accumulation equation (3.4), and the
following the per-period budget constraint

Ct+s(j) + It+s(j) +
Bt+s(j)

εbt+sRt+sPt+s
− Tt+s =

Wt+s(j)
Pt+s

Lt+s(j)

+
(
Rkt+sZt+s(j)

Pt+s
− a(Zt+s(j))

)
K̄t+s−1(j) +

Bt+s−1(j)
Pt+s

+
Πt+s(j)
Pt+s

, (3.5)

where Bt+s is a one-period nominal bond expressed on a discount basis. εbt is an exogenous premium
on the bond return, Tt+s is lump-sum taxes or subsidies, and Πt+s is profit distributed by the labor
union.

3.1.2 Firms

A perfectly competitive sector produces a single final good used for consumption and investment. The
final good is produced from intermediate inputs Yt(i) using technology defined implicitly by∫ 1

0

G
(
Yt(i)
Yt

;λp,t

)
di = 1, (3.6)

where G is increasing, concave, and G(1) = 1; λp,t is an exogenous stochastic process affecting the
elasticity of substitution between different intermediate goods, also corresponding to markup over
marginal cost for intermediate good firms.

Firms maximize profits given by

PtYt −
∫ 1

0

Pt(i)Yt(i)di, (3.7)

where Pt(i) is the price of intermediate good Yt(i).

Intermediate goods are produced in a monopolistically competitive sector. Each variety i is produced
by a single firm using the technology

Yt(i) = εatKt(i)α(γtLt(i))1−α − Φγt, (3.8)

where Φ is a fixed cost, εat denotes total factor productivity, and γ is the deterministic growth rate of
labor productivity.

As with wages, every period only a fraction 1− ξP of intermediate firms can set optimally the price
of the good they produce. The remaining ξp firms index their prices to past inflation according to

Pt(t) = γPt−1(i)πιpt−1π
(1−ιp)
∗ , (3.9)

where ιp measures the degree of price indexation to past inflation.

3.1.3 The Government

The government’s budget constraint is simply

PtGt +Bt−1 = Tt +
Bt
Rt
, (3.10)
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where Gt is government consumption in terms of final good.

The central bank sets the nominal interest rate according to the following rule

Rt
R∗

= rt

(
Rt−1

R∗

)ρ[(
πt
π∗

)rπ( Yt
Y ∗t

)ry]1−ρ(
Yt/Yt−1

Y ∗t /Y
∗
t−1

)r4y
(3.11)

where R∗ is the steady state level of the gross nominal interest rate, rt is a monetary policy shock, and
Y ∗ is potential output, defined as the output in a flexible price and wage economy.

3.1.4 Shocks

There are seven exogenous shocks in the model. Five of the shocks - the risk premium, TFP, investment-
specific technology, government purchases, and monetary policy - follow AR(1) processes

ln εbt = ρb ln εbt−1 + ηbt (3.12)
ln εat = ρa ln εat−1 + ηat (3.13)

ln εit = ρi ln εit−1 + ηit (3.14)
ln εgt = ρg ln εgt−1 + ρgaη

a
t + ηgt (3.15)

ln εrt = ρr ln εrt−1 + ηrt (3.16)

The remaining two shocks - wage and price markup shocks - follow ARMA(1, 1) processes

lnλw,t = (1− ρw) lnλw + ρw lnλw,t−1 + ηwt + µwη
w
t−1 (3.17)

lnλp,t = (1− ρp) lnλp + ρp lnλp,t−1 + ηpt + µpη
p
t−1 (3.18)

3.1.5 Model Solution

The economy in the model is assumed to evolve along a deterministic growth path, with γ being
the gross rate of growth. To solve the model, we first detrend all growing variables - consumption,
investment, capital, real wages, output and government spending, and then all equilibrium conditions
are log-linearized around the deterministic steady state of the detrended variables. A detailed discussion
of all log-linear equations can be found in Smets and Wouters (2007)

The linearized version of the model can be written as in 2.1 with Zt being a 33× 1 vector given by

Zt =
[
Z
′f
t , Z

′s
t

]′
, where Zft and Zst are defined as

Zft =
[
cft , l

f
t , w

f
t , q

f
t , i

f
t , r

kf
t , rft , k

f
t , k̄

f
t−1, y

f
t , z

f
t

]′
and

Zst =
[
cst , l

s
t , πt, w

s
t , q

s
t , i

s
t , r

ks
t , r

s
t , k

s
t , k̄

s
t−1, y

s
t , z

s
t ,mct, εbt , ε

i
t, ε

a
t , ε

g
t , ε

p
t , ε

w
t , ε

r
t , η

p
t , η

w
t

]′
Here we use small letters to represent the percent deviation of the variables from their steady state

levels14. Zf is a vector collecting the variables in the flexible price and wage version of the economy,
and Zs collects the variables from the sticky price and wage economy. Ut is a vector of the seven
structural shocks:

Ut = [ηat , η
b
t , η

I
t , η

w
t , η

p
t , η

g
t , η

r
t ]
′

14q denotes the percent deviation of real value of capital from the steady state level of one.
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The coefficient matrices Γ0, Γ1, Γ2 and Γ3 in the canonical form 2.1 are functions of a 39×1 vector
of deep parameters θ, defined by

θ = [δ, λw, gy, εp, εw, ρga, β, µw, µp, α, ψ, ϕ, σc, λ,Φ, ιw, ξw, ιp, ξp, σl, rπ, r4y, ry, ρ, ρa, ρb,
ρg, ρI , ρr, ρp, ρw, γ, σa, σb, σg, σI , σr, σp, σw]′ (3.19)

As in Smets and Wouters (2007), we assume that the only observed variables are consumption,
investment, output, wages, hours, inflation, and the nominal interest rate. Thus Xt is given by

Xt =
[
ct lt πt wt it rt yt

]
and the remaining 39−7 = 32 variables in Z are treated as latent. Finally, matrix C is the measurement
equation (2.3) is a 7× 32 matrix constructed from the rows of 32× 32 identity matrix.

3.2 Identification of the Smets Wouters (2007) model

Now we apply the procedure from section 3 to the model described above. We take the parameter
space Θ to be the one defined by the prior distribution of θ, as specified in Smets and Wouters (2007).
A summary of that distribution is provided in Table A.1 of Appendix A. This prior distribution is
very common in the recent studies using Bayesian methods to estimate similar New Keynesian DSGE
models. An alternative approach would be to treat all a priori admissible parameter values as equally
likely, that is, to assume uniform priors. The benefit of our approach is that it provides a better
coverage of the parts of the space that are considered in the literature as more plausible. For instance,
the discount factor β could, theoretically, lie anywhere between 0 and 1. However, values close to .99
are considered to be much more likely than values close to 0. This type of considerations are reflected
by the choice of shape and parameters of the prior distribution.

In their estimation procedure Smets and Wouters (2007) treat five deep parameters as known. These
are: discount rate δ, share of government spending in GDP gy, steady state markup in the labor market
λw, and the two curvature parameters of the aggregation functions in the labor and final good sectors -
εp and εw. 15 For the first two parameters the reason is that they are difficult to estimate with the data
used in estimation. The markup and the two curvature parameters, on the other hand, are asserted to
be unidentifiable. The second claim is easier to check, so we examine it first.

The easiest way to detect lack of identification of one or more deep parameters is to examine matrix
H(θ) = ∂τ(θ)

∂θ′ . It must have full column rank for θ to be identified. Moreover, if a parameter is generally
unidentifiable, it would not matter at what admissible value of θ we compute H(θ), as it will be with
reduced rank for any θ ∈ Θ. In what follows we use the posterior mode of θ reported in Smets and
Wouters (2007). When θ includes all 39 parameters listed in (3.19), the rank of H(θ) is 36. One of
these parameters, however, is the trend growth rate γ for which there is additional information in the
trending observed variables that we have not taken into account. Treating γ as known, and computing
H(θ) for the remaining 38 deep parameters, we conclude that two of them are not identifiable. Closer
inspection of H(θ) (see section 3.4 for more details) shows us that εp and εw are indistinguishable from
the Calvo probability parameters ξp and ξw. In other words, one can identify either εp or ξp but not
both simultaneously, and similarly for εw and ξw.

15These parameters are defined as εp =
∂ ln(κp(1))

∂ ln(P̃ )
, εw =

∂ ln(κw(1))

∂ ln(W̃ )
, where κp(x) = − G

′(x)
xG′′(x) , κw(y) = − H

′(y)
yH′′(y) are

elasticities of demand for goods and labor services, and P̃ and W̃ are the relative price and wage. They measure the
percent change in the elasticity of demand for goods and labor due to one percent change in the relative price/wage,
evaluated in steady state. In the simple case, where the aggregator functions H and G have the Dixit-Stiglitz functional
form, both parameters are equal to zero (see Eichenbaum and Fisher (2007))
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The lack of separate identification of these parameters is due to the role they play in the model.
A high value of εp, for instance, implies that the elasticity of demand increases rapidly when a firm’s
relative price increases. This implies that it is optimal for the firm to increase its price by a smaller
amount, compared to a case when εp is low. As a result prices are adjusted less rapidly. The same
outcome is observed when ξp - the probability of a firm not being able to adjust its price to the optimal
level, is large. Similar relationship exist between the wage parameters εw and ξw.16 No such problem
was detected regarding λw, and when we compute H(θ) after εp and εw are removed from θ, it has
full rank. We conclude, therefore, that there is nothing in the model that makes the wage markup
parameter λw unidentified. Computing the full information matrix Iθ(θ,X) = H(θ)′Iτ (θ,X)H(θ)
confirms that λw is indeed identified at the posterior mode of θ.

As we mentioned above, having γ among the parameters with respect to which H(θ) is computed
causes additional identification problems. It may be useful to know what the source of these problems
is, and whether it would be possible to estimate γ from the stationary version of the model using
detrended data. To answer these questions we computed H(θ) for θ that includes γ, and sequentially
exclude one of the remaining deep parameters. We find that H(θ) has reduced rank when δ, β, ϕ, λ
and γ are all included, and is with full rank whenever one of these five parameters is excluded. This
implies that γ can be identified, using detrended data only, if either δ, β, ϕ or λ is kept fixed instead of
estimated. This is true, for instance, for the parametrization estimated in Smets and Wouters (2007),
where it is assumed that δ is known.

We study the identifiability of the model for six parameterizations that differ in the parameters
assumed to be known. The parameters are those assumed known in Smets and Wouters (2007) plus
γ. The values of the fixed parameters, reported in Table 3.1 below, are also taken from that paper.
The trend parameter γ is held fixed in all cases except parametrization 5. In parametrization 1 all
other parameters are left free. In parameterizations 2 to 4 one of the other three parameters - δ, λw
and gy respectively, is also assumed known. Considering these cases allows us to compare the strength
of these parameters’ identifiability. In parametrization 5 all parameters except γ are fixed. Since δ is
one of them, as we explained above, γ is identified from the stationary model. In parametrization 6 all
parameters are assumed known and thus it is closest to the parametrization estimated in Smets and
Wouters (2007).17 The number of free parameters in θ, for each parametrization, is given in Column 6
of Table 3.1.

Table 3.1: Parameterizations

param. δ λw gy γ dim(θ) cond(H) cond(Iθ)
1 free free free .431 36 6.0e2 1.8e7
2 .025 free free .431 35 5.8e2 3.7e6
3 free 1.5 free .431 35 3.4e2 1.2e7
4 free free .18 .431 35 5.9e2 1.8e7
5 .025 1.5 .18 free 34 7.4e2 2.0e7
6 .025 1.5 .18 .431 33 3.1e2 1.9e6

Note: Column 6 shows the number of free parameters in θ. Columns 7 and 8 show the
median condition numbers of the Jacobian H = ∂τ

∂θ′ and the full Information matrix,

respectively. Values cond(X) < 4.5e15 = 4.5× 1015 indicate that matrix X is full
rank.

16Note, however, that although they play similar roles, these two pairs of parameters are not necessarily indistinguish-
able in the non-linear version of the model. Linearization in general make parameters harder to identify (see McManus
(1992)).

17The difference is that in Smets and Wouters (2007) γ is estimated using trending data, while in parametrization 6 γ
is assumed known.
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We draw 1, 000, 000 points from Θ and perform steps (1) to (3) described in section 2.5 for each one
of them. The distributions of the actual draws are shown in Figure A.1 in Appendix A). We sort the
admissible draws and divide them into 10 groups; then we perform step (4) for 100 points from each
group. Thus we compute the full information matrix Iθ(θ,X) for 1,000 admissible points from Θ. We
did not evaluate that matrix for all admissible draws because with the routine we use for evaluation of
Iτ (θ,X), it takes very long to compute that matrix.

Between 96% and 98% of the draws were admissible (see table A.2 in Appendix A). There was no
stable solution for about .1% to .3% of them, and for about 2% to 4% there were multiple solutions.

Matrix H(θ) had a full column rank for all of the admissible draws. Thus the necessary condition
for identification was satisfied everywhere in the parameter space. Columns 7 Table 3.1 show, for each
of the six parameterizations, the median condition number of the Jacobian H(θ). The other deciles of
the distribution of the condition numbers of H(θ) are reported in Table A.3 of Appendix A.

The significance of the quite large condition numbers of H(θ) is twofold. First, being the part of
the full Information matrix that depends only of the model, a poorly conditioned H makes Iθ close to
singular, even when the date is very informative, i.e. Iτ is very well conditioned. Second, H(θ) gives
the sensitivity of the likelihood function to small perturbations in θ. A high condition number of H(θ),
therefore, implies that the likelihood responds very slightly to relatively large perturbations in some of
the components of θ. Both implication of a poorly conditioned H(θ) in turn indicate that θ is not well
identified for model-related reasons.

The information matrix Iθ(θ,X) failed to be of full rank for about .8% of the 1000 draws for which
it was evaluated. Columns 8 Table 3.1 show, for each of the six parameterizations, the median condition
number of the full Information matrix for θ. Table A.5 in Appendix A shows the ten deciles of the
distribution of the condition numbers of Iθ(θ,X). We see that even though it has a full rank for almost
all of the draws, its condition numbers is extremely high, which implies that the matrix is poorly
conditioned virtually everywhere in the parameter space.

Table 3.2: Cross-correlations

λw gy µp ϕ σc h Φ ιw ξw ιp σl r4y ry
β .42 .98 -.07 .28 .44 -.40 -.85 -.24 -.41 .26 -.36 .42 -.30
ϕ .95 .26 -.92 1 .90 -.78 -.24 -.87 -.95 .90 -.73 .96 -.98
σc .99 .40 -.78 .90 1 -.96 -.54 -.91 -.99 .84 -.88 .86 -.88
h -.91 -.36 .69 -.78 -.96 1 .56 .90 .92 -.67 .95 -.72 .78
ιw -.90 -.21 .75 -.87 -.91 .90 .29 1 .90 -.71 .88 -.79 .87
ξw -.99 -.38 .84 -.95 -.99 .92 .49 .90 1 -.89 .83 -.91 .92
ιp .90 .22 -.76 .90 .84 -.67 -.33 -.71 -.89 1 -.51 .89 -.81
ξp .52 .89 -.11 .30 .58 -.61 -.98 -.34 -.52 .31 -.53 .38 -.31
σl -.82 -.30 .69 -.73 -.88 .95 .45 .88 .83 -.51 1 -.66 .75
r4y .92 .37 -.84 .96 .86 -.72 -.32 -.79 -.91 .89 -.66 1 -.93
ry -.92 -.29 .93 -.98 -.88 .78 .22 .87 .92 -.81 .75 -.93 1
ρ .89 .32 -.74 .88 .84 -.68 -.40 -.69 -.88 .95 -.57 .91 -.78
ρI .81 .50 -.56 .65 .87 -.94 -.68 -.79 -.82 .51 -.93 .61 -.68
σI -.96 -.45 .81 -.91 -.97 .93 .50 .91 .97 -.76 .91 -.88 .92
σp -.81 -.04 .99 -.91 -.76 .67 0 .74 .82 -.74 .67 -.83 .92

Note: Pairwise correlation coefficients corr(θ̂i, θ̂j) exceeding .95 in absolute value. The values are
obtained by inverting and normalizing the information matrix evaluated at θ for which the
condition number of the matrix is equal to the median value from Table A.3. High correlation
between the estimates of two deep parameters indicates that they are difficult to identify.
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The poor conditioning of the information matrix suggests that some of its columns are nearly
linearly dependent. Since the information matrix is equal to the inverse of the asymptotic covariance
matrix for the estimate of θ, this in turn implies that there exists a strong degree of interdependence
among the estimates of some of the deep parameters. This creates identification problems as these
parameters’ separate effects on the likelihood are difficult to isolate.18 We can measure the degree
of linear dependence by computing the correlations between the columns of the covariance matrix.
The complete set of pairwise correlation coefficients may be obtained by inverting and normalizing
the information matrix.19 Table 3.2 shows all pairs of parameters whose estimates have correlation
exceeding .95 in absolute value. The correlation coefficients were computed at the value of θ where
the condition number of Iθ(θ,X) equals the median of all points at which the information matrix was
evaluated. We see, for instance, that the estimate of the wage markup parameter λw is extremely
highly correlated with ξw and σc. This partially confirms the claim in Smets and Wouters (2007) that
this parameter is difficult to identify in their model, although, as we discussed above, they are mistaken
in asserting that λw is not identified. Other parameters that would be very difficult to identify at this
particular value of θ are σc, ξw, h and σl as well as the policy rule coefficients ρ, ρy and ρ4y. Although
these observations are made on the basis of single point θ from the parameter space, they remained
valid for many other parameter values we tried. In addition, as can be seen from Table A.6, very high
degree of linear dependence can also be found for other pairs of parameters, such as σw, ξw, h and
λ2, or rπ, ρ, ρI and σI . The correlation coefficients reported in Table A.6 were computed at θ equal
to the value where the condition number of Iθ(θ,X) equals the 7-th percentile of all points at which
the information matrix was evaluated. Since the condition number of matrix is higher - 6.4 × 108 vs.
1.8× 107, the linear dependencies shown in Table A.6 are substantially stronger than those reported in
Table 3.2.

We draw the following three conclusions from this exercise. First, although the necessary and
sufficient condition for identification is generally satisfied, the conditioning of the information matrix
is very poor, indicating that θ is very weakly identified in most of the parameter space. Second, the
reasons for weak identification are mainly in H(θ), which is entirely determined by the structure of the
model, and not affected by the data. To see that, remember the relationship between the information
matrix Iθ(θ,X) and H(θ) (see equation (2.4)). Even when Iτ (θ,X) is very well conditioned, poor
conditioning of H(θ) will result in poorly conditioned Iθ(θ,X). For instance, suppose that there is
very small amount of uncertainty in the estimate of τ , and Iτ (θ,X) has a condition number equal to
one. In particular, we let Iτ (θ,X) = I∗τ be a diagonal matrix whose inverse - the covariance matrix
for τ , has non-zero elements equal to 1% of the true values of τ . The deciles of the distribution of
the condition numbers of Iθ = H ′I∗τH are shown in table A.4. If, for instance, the condition number
of H(θ) is 6e2 - the median for parametrization 1, we find that the condition number of Iθ(θ,X) is
about 3.7e5. Thus, even though Iθ(θ,X) was computed in relatively small number of points from Θ,
our findings regarding H(θ) suggest that the identification of θ is generally weak. Third, the strength
of identification improves only a little when δ, λw and gy are kept fixed. We see that by comparing
the conditioning of H(θ) and Iθ(θ,X) for parametrization 1 and 6. The difference is relatively small.
Moreover, the improvement seen in parametrization 6 is, at least partly, due to the smaller number of
free parameters, and not only because the identifiability of the fixed parameters is much weaker. Of
these three parameters, gy appears to be be the worst identified one. This can be deduced by comparing
the conditioning of parametrization 4 with that of parameterizations 2 and 3.

18This is easy to see for the linear regression model y = Xβ + ε. When two of the regressors, Xi and Xj are nearly
collinear, the corresponding coefficients, βi and βj will be difficult to identify. Also, since the covariance matrix of

the estimate β̂ is proportionate to EX′X, high collinearity between the regressors implies high correlation between the
corresponding elements of β̂.

19That is, we divide each i, j covariance term of the matrix by the product of the standard deviations of variables i
and j. Neely, Roy, and Whiteman (2001) also use the correlation matrix of the parameter estimates to determine the
sources of identification problems
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3.3 Discussion

Our analysis of parameter identification in the Smets and Wouters model suggests that weak identifi-
ability, and not complete failure of identification, is likely to be the more serious problem for DSGE
models in general. Even when some parameters are not identifiable, as is the case with εp, ξp, εw, and
ξw in the model we consider here, this is easy to detect - by computing the rank of Jacobian matrix H,
and straightforward to deal with - by fixing instead of estimating parameters that lack identification.

In the previous section we used the condition number of the Information matrix to measure the
strength of identification. As we discussed in section 2.4 , the condition number of a matrix measures the
distance from singularity of the matrix. In the econometrics literature Forchini and Hillier (2005) also
propose the condition number of the information matrix as a measure of the strength of identification
in parametric models, and show that it is closely related to the concentration parameter, suggested by
Stock, Wright, and Yogo (2002) as a measure for the strength of identification in linear models.

A well known property of the condition number, usually emphasized in the context of linear regres-
sion models yt = X ′tθ + εt, is that it measures the sensitivity of the estimator of θ to errors in the
estimates of EXtX

′
t and EXtyt. Since the true parameter value θ0 solves the population equation

EXtyt = EXtX
′
tθ

and with finite data EXtX
′
t and EXtyt are estimated with error, the estimate θ̂ differs from the true θ0.

In this context the identification of θ can be considered as poor if small errors 4EXtX
′
t and 4EXty

′
t

in the estimates of EXtX
′
t and EXtyt lead to a large error 4θ = θ̂ − θ0. This sensitivity is quantified

by cond(EXtX
′
t) from

max
4EXtX′t, 4EXty′t

‖θ̂ − θ0‖
‖θ0‖

= cond(EXtX
′
t)
(
‖4EXtX

′
t‖

‖EXtX ′t‖
+
‖4EXty

′
t‖

‖EXty′t‖

)
(3.20)

That is, the larger is the condition number of EXtX
′
t, the more sensitive is θ̂ to errors in the

estimates of EXtX
′
t and EXtyt.

Another useful property of the condition number is that it measures the sensitivity of the estimate
of the inverse of a matrix to errors in the estimate of the matrix itself. Specifically,

max
4A

‖(A+4A)−1 −A−1‖
‖A−1‖

= cond(A)
(
‖4A‖
‖A‖

)
(3.21)

Therefore, if a matrix is poorly conditioned, small errors in the estimate of the matrix lead to large
errors in the estimate of its inverse.

For correctly specified parametric models the asymptotic covariance matrix of the estimators is equal
to the inverse of the Information matrix. The implication of (3.21) is that when cond(Iθ) is large, even
small errors in the estimate Îθ of Iθ, may cause large errors in the estimate of the covariance matrix
Vθ. In particular, the standard errors for θ̂ - the diagonal elements of Vθ, could be very imprecisely
estimated when cond(Iθ) is large. To see how large these errors could be in our example, we carried
out the following Monte Carlo simulation exercise. For each of the ten deciles shown in Table A.5, we
assumed that the corresponding matrix Iθ is the true information matrix. We then added small errors
to the diagonal elements of Iθ, drawn from standard normal distribution with variance equal to 1%
of the true value. The resulting matrix Ĩθ is then inverted and the percentage error in the diagonal
elements of Ṽθ recorded. Table A.7 in Appendix A shows the results from 1000 repetitions. The
reported numbers are percent error in the standard errors of θ for 1 percent error in the corresponding
diagonal element of Iθ. The results demonstrate that the estimated covariance matrix is very sensitive
to even small errors in the estimate of the information matrix, and the higher the condition number of
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Iθ is, the larger the errors in the estimate of Vθ tend to be. This shows us that the standard errors
obtained by inverting the information matrix are practically meaningless.

In addition to the implications for the validity of the estimated covariance matrix and confidence
intervals, the conditioning of the Information matrix also affects the speed with which the estimator θt
converges to θ0 as t increases. To see that, consider again the linear regression model yt = X ′tθ+ εt. It
can be shown that the optimal estimate with T + 1 observations is

θ̂T+1 = θ̂T +
[
ÊT+1XtX

′
t

]−1

XT+1

[
yT+1 −X ′T+1θ̂T

]
(3.22)

where θ̂T is the ÊTXtX
′
t are the estimates of θ and information matrix EXtX

′
t with T observations.

From (3.22) it is clear that the rate with which θ̂T converges to θ0 depends on the convergence of
(ÊTXtX

′
t)
−1 to (EXtX

′
t)
−1. However, from (3.21) it can be deduced that when cond(EXtX

′
t) is large,

the convergence of (ÊTXtX
′
t)
−1 will be slow.

3.4 Why is identification weak?

Our results so far suggests that the model as a whole is poorly identified. Moreover, our findings
regarding the conditioning of H(θ) indicate that the cause for this is in the structure of the (linearized)
model. This is because poor conditioning of H(θ) translates into poor conditioning of the information
matrix, and consequently, weak identification of θ. Specifically, note that applying the chain rule for
differentiation we can express the derivative of the log-likelihood with respect to θi as

∂l

∂θi
=

∂l

∂τ ′
∂τ

∂θi
(3.23)

Then it follows that

if
∂τ

∂θi
≈ 0 ⇒ ∂l

∂θi
≈ 0, and (3.24)

if
∂τ

∂θi
≈
∑
j 6=i

aj
∂τ

∂θj
⇒ ∂l

∂θi
≈
∑
j 6=i

aj
∂l

∂θj
(3.25)

In words, if θi is poorly identified in the model, it will be poorly identified when the model is
taken to the data. Poor identification in the model results either from the reduced-form parameters τ
being almost insensitive to θi, or from the effect of θi on τ being well approximated by that of a linear
combination of other deep parameters. When τ is completely insensitive to θi, or the effect of θi can
be exactly replicated by that of other elements of the vector θ, θi will be unidentifiable in the model,
and, therefore, from the data.

The condition number of H is a simple overall indicator of the existence of problems of that nature.
Both the low sensitivity of reduced-form parameters τ to a deep parameter, and the strong interde-
pendence among the effect of multiple deep parameters in the model, will result in at least one very
small singular value of H. According to the condition number, a singular value is small when it is much
smaller relative to the largest singular value. Like the rank of a matrix, which indicates whether or not
there is an exact linear dependence among the columns, a large condition number indicates only that
there is at least one near linear dependence among the columns of the matrix.

More information about the properties of H may be obtained by considering all singular values of
the matrix, instead of only the smallest and the largest ones. Figure 1 shows the singular values of
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Figure 1: Singular values of H(θ) at the posterior mean reported in Smets and Wouters (2007)

H(θ) evaluated at the posterior mean in Smets and Wouters (2007). On the figure each singular value
is divided by the largest one. We see that the last six singular values are all very close to zero, and to
each other. Therefore there are at least six independent combinations of deep parameters which are
nearly linearly dependent. This conclusion can only be made with respect to the particular point of the
parameter space where H was evaluated. However, similar plots of the singular values of H evaluated
at different points in the parameter space lead to similar conclusions. Small singular values imply that
the original matrix H may be very well approximated with a matrix of lower rank. For example, if
rank of H is 36, but the the smallest six singular values are nearly zero, there exist a matrix Ȟ(30)
with rank 30, such that the distance d(H, Ȟ(30)) = ‖H−Ȟ(30)‖

‖H‖ is small. Using the Frobenius norm20,
Figure 2 plots the distance d(H, Ȟ(i)) for i = 1 : 36. At i = 30 we have d(H, Ȟ(i)) = .0041. Again, we
can conclude that a matrix with a rank of 30 provides an extremely close approximation of the rank
36 matrix H.

From a modeler’s perspective it important to know what parameters are involved in the near linear
dependencies indicated by the condition number and the singular values plots. Each deep parameter
represents some feature of the model, and it is useful to know what features are either unimportant or
almost redundant, given the other features of the model. As with the full Information matrix, either one
of the possible causes for problems with identification - low sensitivity and parameter interdependence,
result in the poor conditioning of matrix H(θ) ≡ { ∂τ∂θi }i. Therefore we can determine which parameters
are not well identified in the model and why, by studying the columns of H(θ) and the relationships
among them. This will be my objective in the remaining of this section.

20The Frobenius norm for a non-square matrix Am×n = {aij} is

‖A‖F =

√√√√ m∑
i

n∑
j

a2
ij
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Figure 2: Distance d(H, Ȟ(i)) = ‖H−Ȟ(i)‖
‖H‖ between H and best rank i approximation of H at the

posterior mean reported in Smets and Wouters (2007)

3.4.1 Sensitivity

The sensitivity of the reduced-form parameters with respect to the deep parameters can be measured
by

si(θ) =

√√√√ 1
J

J∑
j

(
θi
∂τj
∂θi

)2

(3.26)

where J is the dimension of τ . This gives us the root mean squared change in τ due to a 1% change
in the deep θi. Large value of si(θ) implies that θi plays an important role in the model, while smaller
value means that θi is relatively less important.

Table 3.3 shows the results for the relative importance of the parameters in the model when θ is
evaluated at the posterior mean value from Smets and Wouters (2007). The most important parameters,
according to this measure, are the autocorrelation coefficients of the wage and price markup shocks,
the wage and price stickiness parameters, and two of the policy rule parameters - smoothing coefficient
and the coefficient of the response to inflation. Quite important are also the steady state wage markup
and the habit persistence parameters. Among the least important parameters are discount factor, and
all of the standard deviations of the structural shocks in the model. The dispersion of the sensitivity
values is quite striking. On average, the five most important parameters are more than 120 times more
important than the five least important parameters.

Table A.8 in the Appendix shows the values si(θ) computed at values of θ corresponding to the
minimum and the 10 deciles of the distribution of cond(H ′H) based on the 1 million draws from Θ.
There we see that the relative ranking of the parameters varies somewhat depending on the value of
θ. For instance the habit persistence parameter or the elasticity of the investment adjustment cost
function are sometimes among the most important parameters in the model. On the other hand the
autocorrelation coefficient of the wage markup shock is frequently among the least important parameters
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in the model. Nevertheless, the sets of the most and the least important parameters remain generally
stable.

3.4.2 Parameter interdependence

The problem of parameter interdependence arises when different parameters play very similar role in
the model. When this is true, a deep parameter will be poorly identified even if it is important in the
model, in the sense of the reduced-form parameters being very sensitive to changes in that parameter.
As a result the likelihood will be almost flat with respect to a linear combination of parameters, even
if it is not flat with respect to the individual parameters.

Locally, the degree of parameter interdependence between θi and the other deep parame-
ters can be measured as the angle between ∂τ

∂θi
and its projection onto the space spanned by

{ ∂τ∂θ1 ,
∂τ
∂θ2

, ..., ∂τ
∂θi−1

, ∂τ
∂θi+1

, ..., ∂τ∂θJ }. For ease of notation we will use Hi to denote ∂τ
∂θi

, and H−i to
denote its projection. The cosine of the angle between Hi and H−i is given by

cos(i,−i) =
H ′iH−i

(H ′iHi)1/2(H ′−iH−i)1/2
(3.27)

We will call this angle the degree of multiple collinearity, and use it to measure how well the effect
of θi in the model can be mimicked by the other deep parameters. Values close to -1 or 1 imply that
there is a very strong collinearity problem for θi. Values close to 0 on the other hand suggest that the
role θi plays in the model cannot be approximated well by other deep parameters.

We can similarly measure the degree of interdependence between any two deep parameters θi and
θj as the angle between Hi and Hj . We will call this the degree of pairwise collinearity and use it to
measure how closely related or substitutable are these two parameters in the model. For instance, the
degree of pairwise collinearity between the Calvo parameter for wages ξw and the elasticity parameter
εw in the Smets and Wouters (2007) model is 1, as is that between the price parameters ξp and εp .
Therefore these two pairs of parameters are completely substitutable and cannot be identified separately.

Table 3.4 shows the largest values of the pairwise collinearity measure for each of the deep parame-
ters when θ is evaluated at the posterior mean in Smets and Wouters (2007). Columns 3 to 8 correspond
to each of the six parameterizations we consider. The results suggest severe collinearity problems for
the wage markup and wage stickiness parameters (λw and ξw) as well as for the policy rule parameters
(ρ, r4y, rπ). The degree of pairwise collinearity for these parameters is .99 (.98 for r4y) which implies
that, at least locally, the effect of changing one of these parameters can be almost completely offset
by changing another deep parameter. Fixing λw does not resolve the problem since ξw remains highly
collinear with elasticity of labor supply (σl). Other parameters with high degree of pairwise collinearity
are: price stickiness parameter (ξp), policy response to output (ry), elasticity of intertemporal substi-
tution parameter (σc), price indexation (ιp), habit persistence (λ), and the autocorrelation coefficients
of the price and wage markup shocks (ρw and ρp).
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Table 3.3: Parameter Importance

Parameter si(θ)

ρw autocorr. wage markup shock 5.436
ρ policy smoothing 2.928
ρp autocorr. price markup shock 1.961
ξw Calvo wages 1.778
ξp Calvo prices 1.040
rπ policy inflation 0.989
λw wage markup 0.914
λ habit 0.862
Φ fixed cost 0.683
ρg autocorr. gov. spending 0.569
ρa autocorr. TFP 0.486
σc elast.inter.subst. 0.386
r4y policy output growth 0.367
ρI autocorr. investment 0.310
µp MA price markup shock 0.283
µw MA wage markup shock 0.268
ψ cap. utilization cost 0.266
α share capital 0.204
ϕ invest. adj. cost 0.172
σl elast. hours 0.164
ιw indexation wages 0.143
δ depreciation rate 0.119
ιp indexation prices 0.114
ry policy output 0.111
ρb autocorr. risk premium 0.096
σb std. dev. risk premium 0.092
σI std. dev. investment 0.080
σa std. dev. TFP 0.054
gy G/Y 0.049
σg std. dev. gov. spending 0.036
σr std. dev. policy 0.027
σw std. dev. wage markup shock 0.024
σp std. dev. price markup shock 0.021
ρr autocorr. policy 0.019
β discount factor 0.008

Note: The table shows the values of the sensitivity statistic

si(θ) =

√
1
J

∑J
j

(
θi
∂τj
∂θi

)2
evaluated at the posterior mean of θ reported in

Smets and Wouters (2007)

26



Table 3.4: Maximum pairwise collinearity (posterior mean)

parametrization
i 1 2 3 4 5 6 k
λw wage markup .99 .99 fixed .99 fixed fixed ξw
ξw Calvo wages .99 .99 -.90 .99 -.90 -.90 λw (σl)
ξp Calvo prices .83 .83 .83 .83 .83 .83 ιp
ιw indexation wages .51 .51 .51 .51 .51 .51 ρp
ιp indexation prices .83 .83 .83 .83 .83 .83 ξp
µw MA wage shock .55 .55 .55 .55 .55 .55 ξw
µp MA price shock .48 .48 .48 .48 .48 .48 ξp
α capital share .56 .56 .56 .56 .56 .56 r4y
ψ cap. utilization cost .32 .32 .32 .32 .32 .32 β
ϕ invest. adj. cost -.62 -.62 -.62 -.62 -.62 -.62 Φ
σc elast.inter.subst. .84 .84 .84 .84 .84 .84 λ
λ habit .84 .84 .84 .84 .84 .84 σc
Φ fixed cost .80 .80 .80 .80 .80 .80 ξp
σl elast. hours -.92 -.92 -.90 -.92 -.90 -.90 λw (ξw)
rπ policy inflation -.99 -.99 -.99 -.99 -.99 -.99 ρ
r4y policy output growth -.98 -.98 -.98 -.98 -.98 -.98 rπ
ry policy output -.85 -.85 -.85 -.85 -.85 -.85 rπ
ρ policy smoothing -.99 -.99 -.99 -.99 -.99 -.99 rπ
δ depreciation rate -.74 fixed -.74 -.74 fixed fixed λ
gy G/Y .78 .78 .78 fixed - fixed rπ
γ trend fixed fixed fixed fixed -.78 fixed ψ
β discount factor -.45 -.45 -.45 -.45 .64 -.45 α
ρa autocorr. TFP -.37 -.37 -.37 -.37 -.37 -.37 σa
ρb autocorr. risk premium .29 .29 .29 .29 .29 .29 λ
ρg autocorr. gov. spending -.24 -.24 -.24 -.24 -.24 -.24 σb
ρI autocorr. investment .32 .32 .32 .32 .32 .32 σg
ρr autocorr. policy .18 .18 .18 .18 .18 .18 σI
ρp autocorr. price shock .82 .82 .82 .82 .82 .82 ξp
ρw autocorr. wage shock .85 .85 .84 .85 .84 .84 λw (ξw)
σa std. dev. TFP -.37 -.37 -.37 -.37 -.37 -.37 ρa
σb std. dev. risk premium .29 .29 .29 .29 .29 .29 λ
σg std. dev. gov. spending -.24 -.24 -.24 -.24 -.24 -.24 ρg
σI std. dev. investment .32 .32 .32 .32 .32 .32 ρI
σr std. dev. policy .18 .18 .18 .18 .18 .18 ρr
σp std. dev. price shock -.12 -.12 -.12 -.12 -.12 -.12 µp
σw std. dev. wage shock -.13 -.13 -.13 -.13 -.13 -.13 µw

Note: The table shows for each deep parameter θi the value of max
j 6=i

(
H′iHj

(H′iHi)
1/2(H′jHj)

1/2

)
, where

Hl = ∂τ
∂θl

gives the effect on the reduced-form model of changes in θl. Values close to 1 or -1 indicate

that Hi and Hk are nearly collinear. θ is evaluated at the posterior mean in SmetsWouters(2007)

27



Table 3.5: Multiple collinearity (posterior mean)

parametrization
1 2 3 4 5 6

λw wage markup .999 .999 fixed .999 fixed fixed
ξw Calvo wages .999 .999 .996 .999 .996 .995
ξp Calvo prices .997 .997 .995 .997 .995 .995
ιw indexation wages .976 .976 .976 .976 .976 .976
ιp indexation prices .975 .974 .969 .974 .968 .967
µw MA wage shock .719 .698 .719 .719 .719 .697
µp MA price shock .877 .875 .869 .876 .867 .863
α capital share .983 .982 .980 .983 .980 .977
ψ cap. utilization cost .420 .417 .420 .420 .420 .417
ϕ invest. adj. cost .928 .923 .925 .927 .933 .919
σc elast.inter.subst. .997 .996 .996 .997 .996 .995
λ habit .993 .992 .993 .993 .994 .992
Φ fixed cost .991 .991 .990 .989 .987 .987
σl elast. hours .993 .992 .993 .993 .993 .992
rπ policy inflation .999 .999 .999 .999 .999 .999
r4y policy output growth .995 .995 .995 .995 .995 .995
ry policy output .996 .995 .996 .996 .996 .995
ρ policy smoothing .999 .999 .999 .999 .999 .999
δ depreciation rate .990 fixed .989 .990 fixed fixed
β discount factor .983 .983 .978 .982 .983 .977
gy G/Y .909 .908 .908 fixed fixed fixed
γ trend fixed fixed fixed fixed .994 fixed
ρa autocorr. TFP .922 .875 .918 .922 .918 .869
ρb autocorr. risk premium .843 .841 .790 .839 .786 .786
ρg autocorr. gov. spending .731 .642 .711 .729 .707 .619
ρI autocorr. investment .554 .551 .537 .546 .530 .528
ρr autocorr. policy .230 .227 .229 .230 .229 .226
ρp autocorr. price shock .996 .996 .996 .996 .996 .996
ρw autocorr. wage shock .997 .995 .997 .997 .997 .995
σa std. dev. TFP .447 .446 .445 .446 .444 .444
σb std. dev. risk premium .838 .836 .785 .834 .781 .781
σg std. dev. gov. spending .285 .284 .285 .274 .274 .274
σI std. dev. investment .370 .370 .367 .368 .365 .365
σr std. dev. policy .264 .259 .262 .264 .262 .258
σp std. dev. price shock .212 .211 .212 .211 .211 .209
σw std. dev. wage shock .191 .189 .191 .191 .191 .189

Note: The table shows for each deep parameter θi the value of

(
H′iH−j

(H′iHi)
1/2(H′−jH−j)

1/2

)
,

where Hi = ∂τ
∂θi

gives the effect on the reduced-form model of changes in θi, and H−i is the

projection of Hi onto the space spanned by the other columns of H. Values close to 1 or -1
indicate that Hi and H−i are nearly collinear. θ is evaluated at the posterior mean in
SmetsWouters(2007)
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Table 3.5 shows the values of the multiple collinearity measure for each of the deep parameters when
θ is evaluated at the posterior mean in Smets and Wouters (2007). For 21 out of 35 parameters the
degree of multiple collinearity exceeds .9, and for 14 of them it is greater than .99. Virtually all of the
behavioral and technology parameters are very poorly identified according to this measure. Apart from
the elasticity of the capacity utilization cost function (ψ), the only parameters in the model that do not
suffer from severe interdependence problem are the stochastic shock parameters, with the exception of
the autocorrelation coefficients of the sector-neutral technology, price and wage markup shocks (ρa, ρp,
ρw), and the standard deviation of the risk premium shock (σb). Fixing some of the parameters in the
other 5 parameterizations leads to only marginal improvements.

These results suggest that most of the parameters estimated in Smets and Wouters (2007) are very
poorly identified in the (linearized) theoretical model, which, as we explained before, implies that they
will be poorly identified when the model is estimated. We should emphasize however, that the results in
Tables 3.4 and 3.5 are conditional on the value of θ that we used, namely the posterior mean reported in
Smets and Wouters (2007). It is possible that in other points in the parameter space the identification
is much better. To examine if such is the case we used the admissible points from Θ that we drew
in the previous section. These points were ordered according to the condition number of H(θ), and
eleven of them were selected - those yielding the smallest value and the 10 deciles of the distribution
of cond(H(θ)). For each of these eleven values of θ we computed the pairwise and multiple collinearity
values as for Tables 3.4 and 3.5. The results are shown in Tables A.9 and A.10 in the Appendix. We
see that the poor parameter identification in the model is not a problem only at the particular point we
studied before. Even though there is some variability in the degrees of pairwise or multiple collinearity,
the parameters we found before to be poorly identified remain so for all values of θ we checked.

Table 3.6: Worst identified parameters

Multiple collinearity
all subset most important

λw wage markup .999 .997 σc ,ξw ,σl ,ρw
σc elast.inter.subst. .997 .980 β ,α ,λ ,ιw ,σl ,r4y ,ρa
λ habit .993 .970 δ ,σc ,ρ ,ρb ,ρw ,σb
Φ fixed cost .991 .980 δ ,ϕ ,λ ,ιp ,ξp ,σl ,ρp ,ρw ,
ξw Calvo wages .999 .994 λw ,σl ,ρw
ξp Calvo prices .997 .980 λw ,Φ ,ξw ,ιp ,σl ,ρp
σl elast. hours .993 .962 λw ,σc ,ξw ,ry
rπ policy inflation .999 .999 gy ,r4y ,ry ,ρ
ry policy output .996 .971 λw ,gy ,β ,ιw ,ξw ,ξp ,σl ,rπ ,ρw
ρ policy smoothing .999 .990 α ,ϕ ,Φ ,rπ ,r4y
Note: Parameters that have multiple collinearity coefficients larger than .95
everywhere in Θ. Column 3 shows the values of the multiple collinearity at the
posterior mean when all other parameters in θ are used. Column 4 gives the multiple
collinearity when only a subset of the most important parameters (shown in column 5)
are used.

Table 3.6 presents those deep parameters that tend to be very poorly identified everywhere in the
parameter space. They are the ones with a value of the multiple collinearity exceeding .95 at all points
in Θ we checked. Column 3 gives the multiple collinearity (computed at posterior mean from Smets and
Wouters (2007)) when all other parameters in θ are used, i.e. when column Hi is projected onto the
space spanned by all other columns of matrix H. However, not all other parameters are very important
in explaining the role a given deep parameter plays in the model. For each of the worst identified
parameters we determined the parameters that are most important using techniques from the model
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selection literature.21 These parameters are listed in the last column, and column 4 shows the values
of the multiple correlation when only the subsets of the most important parameters are used. For
instance, the Calvo parameter for wages (ξw) has a multiple collinearity of .999 when all other deep
parameters are used. If the multiple collinearity is computed only with respect to σl, λw, and ρw,
the value is .994. These parameters are: elasticity of labor supply, steady state wage markup, and
autocorrelation coefficient of the shock to wage markup. We know (see Table 3.4) that the presence of
λw alone is sufficient to have a collinearity of .99. However, even if λw is removed (i.e. assumed to be
known), the degree of multiple collinearity would exceed .95 as long as σl, and ρw remain among the
included parameters. On the other hand even if σl, and ρw are removed in addition to λw, the degree
of multiple collinearity of ξw would still exceed .9. The only way to reduce it to below that level is to
remove all of the following 8 parameters: λw, σc, σl , ρw, ρp, α, ξp, λ

Remark. It is worth mentioning that parameter interdependence problems in the latest version
of the ”Smets and Wouters” model are somewhat less severe than those in earlier versions. This is
due to the simpler structure of the current model. For instance, the autocorrelation coefficient of the
preference shocks, present in the previous versions of the model, was very difficult to distinguish from
the habit persistence and elasticity of intertemporal substitution parameters λ and σc. In the current
version a similar role is played by the risk premium shock, but the interdependence among ρb, λ and
σc is not as strong as before. Another change that improves the identifiability of the model is the
simplified monetary policy rule. In the earlier versions of the model the central bank responded to
both past inflation and output gap, which was making it difficult to separately identify the response
coefficients for current and past inflation and output gap.

Strong interdependence among the parameters makes it difficult to identify them separately. As a
consequence not only the point estimates will be imprecise, but also the standard measures of estimation
uncertainty, based on the marginal distributions of the estimates, will be misleading. For instance,
constructing confidence intervals using the estimated standard errors would underestimate the true
sampling uncertainty. The same holds for the highest (marginal) posterior density intervals, typically
reported when Bayesian techniques are used for estimation. The problem with these measures of
estimation uncertainty is that they allow for variations in only one parameter estimate at a time. If
two parameter estimates are correlated, allowing for simultaneous variation in both will cover a much
wider range of values. We return to this point in Section 4.2.2 where we explain how we construct
confidence intervals for our maximum likelihood estimates.

The above analysis suggests an extension of the identification analysis procedure outlined in Section
2.5, which would help gain a better understanding of the causes for weak identification in the model.
Repeating steps 1 to 4 from Section 2.5 many times provides information on whether the necessary and
sufficient condition for identification are satisfied, and keeping track of the condition numbers of Iθ and
H, tells us about the strength of identification. The model-related causes for weak identification result
in a large condition number of H. To find out what features of the model are responsible one should:

1. Compute the sensitivity si(θ) using (3.26) for each column i of H. Small values of si(θ) imply
that the parameter θi has only a marginal effect in the model.

2. Compute the pairwise and multiple collinearity measures (3.27). Values close to one imply that
the role of parameter θi in the model is very well approximated by a combination of other deep
parameters.

In Appendix B we provide a summary of all steps involved in the identification and weak identifi-
cation analysis presented here and in section 2.5

21I used the elastic net algorithm proposed by ?. See the appendix for more details.
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To summarize, our objective in this section was to study the identifiability of model described in
section 3.1. We started by drawing randomly a large number of points from the parameter space,
and evaluating the conditioning of the Information matrix at those points. We found that the matrix
is generally very poorly conditioned, which suggest that the identification of the model parameters
as a whole is week. We also found that matrix H(θ), which depends only on the parameter values
and the structure of the model, is poorly condition too, indicating that problems originate in the
model. Studying the columns of that matrix and relationships among them allowed us to determine
the causes for poor identification in the model, as well as to get a better sense of severity of these
problems. We found that a large number of deep parameters are strongly interdependent - the effect
of each one of them can be very well replicated by a combination of other deep parameters. Moreover,
parameters for which interdependence is not a serious problem, such as most of the stochastic shock
parameters, are also those with respect to which the reduced-form model, and therefore the likelihood
in not very sensitive. We found that these problems occur pretty much everywhere in the parameter
space, suggesting that the problem is a global one. Moreover, since the poor identifiability is largely
due to the model, it is unlikely that having more observed variables or longer time series would be of
much help.

Here we studied the identification of the theoretical model as it is, without reference to a particular
data set used for estimation. Thus the problems we found may arise whenever this or similar DSGE
models are estimated. To find out how strong identification is at a particular parameter estimate, that
is, conditional on a specific data set, one should examine the conditioning of the information matrix
evaluated at that particular point. Furthermore, if Bayesian techniques are used for estimation, in
addition to the posterior mode, one could also evaluate the conditioning of the information matrix for
all points from the posterior distribution. We return to that in the next section, after the estimation
results are presented.

4 Case Study: Estimation

The results from the previous section suggest that the likelihood, and therefore the data, is not very
informative about the parameters of the model. One consequence of this is that estimating the model
using Bayesian techniques, as in Smets and Wouters (2007), one places relatively large weight on the
priors compared to the likelihood. To explore this further, in this section we estimate the model by
maximizing the the likelihood only, and then compare the results with the posterior mode estimates
reported in Smets and Wouters (2007)

We start by describing the data to which the model is applied. Then we turn to estimation of the
model.

4.1 Data

The model is estimated using quarterly US data over the period 1966:1-2004:4. The observed variables
are: real consumption (c), real investment (i), real output (y), real wages (w), hours (h), inflation (π),
and the nominal interest rate (r).

Consumption is personal consumption expenditures. Investment is fixed private investment. Wages
are hourly compensation for nonfarm business. Real consumption, investment and wages are obtained
by deflating the nominal variables with the GDP implicit price deflator. Real output is real GDP.
Hours are average hours for nonfarm business. Inflation is the first difference of the log GDP implicit
price deflator. Consumption, investment, and output are expressed in per capita terms by dividing with
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civilian population of 16 and older. The nominal interest rate is the quarterly average of the Federal
Funds rate.

More details on the definitions and data sources used are provided in the data Appendix to Smets
and Wouters (2007).

4.2 Estimation

4.2.1 Maximizing the likelihood function and the posterior density

Both MLE and Bayesian estimation require the evaluation of the likelihood function. To do that we
first solve the linearized structural model (2.1) to find the state equation (2.2); then the Kalman filter
is used to evaluate the log-likelihood l(Z; θ) = lnL(Z; θ) of the reduced-form model (2.2)-(2.3). In
order to keep the estimate of θ within theoretically meaningful bounds, we optimize the likelihood with
respect to unbounded variables that are one-to-one transformations of the restricted variables in the θ.
The bounds on the parameters in θ are shown in Table E.1, and are the same as those used by Smets
and Wouters (2007). In addition, when computing the likelihood we impose the restriction that the
model has a unique solution. This is achieved by setting the value of the likelihood to a very small
number for values of θ that result in multiple or no solutions.

Using the Bayes rule, the posterior density can be expressed as

p(θ;Z) =
L(Z; θ)p(θ)

p(Z)
∝ L(Z; θ)p(θ) (4.1)

where p(θ) denotes the prior distribution of θ. Thus, to maximize the posterior density, we evaluate the
likelihood, as before, and the prior p(θ), which alternatively may be though of as a penalty function.

A well-known practical problem with non-linear optimization/estimation is that one cannot be
certain that a global maximum is found, and not just a local one. A common strategy for dealing
with this is to try many different starting values. Our approach was to combine simulation techniques,
gradient and non-gradient based optimization methods. We started with picking ten of the points
drawn for the purpose of identification analysis (see section 2.5), which yielded the highest values of
the likelihood or the posterior density. Then, taking these points as starting values, we run ten Markov
chains generated by the random walk implementation of the Metropolis-Hastings algorithm (we follow
Schorfheide (2000), see the appendix for more details). The modes of the distributions generated by
each chain were then used as starting values for several optimization routines, and the final maximizer
was determined by direct comparison of the resulting values.

4.2.2 Results

We estimate two different parameterizations of the model. In the first one three of the identified
parameters - depreciation rate δ, wage markup λw, and government spending share in output gy, are
assumed known instead of estimated. This is the parametrization estimated in Smets and Wouters
(2007). The values at which these parameters are fixed - .025, 1.5 and .18, respectively, are also taken
from that paper. In the second parametrization these parameters are estimated.

We follow Smets and Wouters (2007) and estimate the model using data for the full sample period
(1966:1-2004:4), and for two subperiods (1966:1-1979:2 and 1984:1-2004:4). This is done in order to
investigate the sources of the differences in the economic environment during these two periods.

The estimation results for the first parametrization are presented in Tables 4.1 (deep parameters),
and 4.2 (shock parameters). In addition to the maximum likelihood estimates, and the posterior mode
values from Smets and Wouters (2007), we report the 90% confidence intervals. Also, the values of the
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Table 4.1: Estimation Results: Deep Parameters 1966:1-2004:4

Param. Prior Bayesian MLE

Distr. Mean St.dev. 5% mode 95% 5% mode 95%
ϕ N 4.00 1.50 3.97 5.49 7.42 1.84 8.00 21.31
σc N 1.50 0.38 1.16 1.40 1.59 1.22 1.78 2.88
λ B 0.70 0.10 0.64 0.71 0.78 0.41 0.70 0.86
ξw B 0.50 0.10 0.60 0.74 0.81 0.62 0.88 1.03
σl N 2.00 0.75 0.91 1.92 2.78 -0.04 2.94 8.69
ξp B 0.50 0.10 0.56 0.66 0.74 0.41 0.67 0.87
ιw B 0.50 0.15 0.38 0.59 0.78 0.05 0.73 1.61
ιp B 0.50 0.15 0.10 0.23 0.38 0.01 0.01 0.01
ψ B 0.50 0.15 0.36 0.55 0.72 0.25 0.76 1.56
Φ N 1.25 0.12 1.48 1.61 1.73 1.34 1.86 2.56
rπ N 1.50 0.25 1.74 2.03 2.33 1.78 2.62 10.66
ρ B 0.75 0.10 0.77 0.82 0.85 0.82 0.87 0.98
ry N 0.12 0.05 0.05 0.08 0.12 0.07 0.13 0.79
r4y N 0.12 0.05 0.10 0.22 0.38 0.16 0.25 0.52
π̄ G 0.62 0.10 0.61 0.82 0.96 0.61 0.98 1.66
100(β−1 − 1) G 0.25 0.10 0.07 0.16 0.26 0.01 0.01 0.01
l̄ N 0.00 2.00 0.07 -0.10 0.26 -2.62 -0.30 2.03
γ N 0.40 0.10 0.40 0.43 0.45 0.33 0.42 0.47
α N 0.30 0.05 0.16 0.19 0.21 0.10 0.18 0.25
Log Likelihood: -840.11 -820.36
cond(Iθ): 2.7e7 4.4e7

Note: δ = .025, λw = 1.5 and gy = .18 are fixed. π̄, and l̄ are quarterly steady state inflation rate, and steady
state hours worked.

log likelihood as well as the condition number of the information matrix evaluated at the respective
point estimates are shown.

Before we turn to the discussion of the results, we should explain how the confidence intervals
we report were obtained. For the Bayesian estimates we show the 5-th and 90-th percentile of the
marginal posterior distribution of the parameters. The numbers are taken from Smets and Wouters
(2007), and are obtained from the output of the Metropolis-Hastings algorithm used for sampling from
the posterior distribution. Regarding the ML estimates, theoretically one could compute confidence
intervals using the fact that the Information matrix is the inverse of the asymptotic covariance matrix.
The diagonal elements of the inverse are, therefore, the estimated standard errors, and can be used to
construct asymptotic confidence intervals. There are two problems with this approach. First, as we
explained in Section 3.3, even small errors in a poorly conditioned Information matrix lead to large
errors in its inverse. The simulation evidence discussed in Section 3.3 show that standard errors and
confidence intervals obtained in this fashion are likely to be very misleading. Second, as we discussed in
section 3.4, even when the standard errors (S.E.) are precisely estimated, the usual confidence intervals
of the form θ̂j ± S.E.(θ̂j) × crit.value may be very misleading if a strong degree of interdependence
exists among the parameter estimates. As we explained in section 3.4, the reason is that standard
confidence intervals are based the marginal distribution of the estimates, and when dependence among
parameter estimates is strong, the product of the marginal distributions is quite different from the joint
distribution.

Because of these two reasons we use an alternative approach for constructing confidence intervals,
namely inverting the likelihood ratio test statistic. This is a standard approach for obtaining approxi-
mate confidence regions, and uses the result that, for θ in the neighborhood of the MLE θ̂, the likelihood
ratio statistic 2

(
l(θ̂)− l(θ)

)
is asymptotically distributed as χ2(k), where k is the dimension of θ. The
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100(1 − a)% asymptotic confidence region contains all θ in the neighborhood of the θ̂ for which the
likelihood ratio statistic does not exceed the upper a percentile of the chi-squared distribution with
k-degrees of freedom.

Starting with the deep parameters estimated over the whole sample, the results show significant
differences between the MLE and Bayesian estimates for most of them. Particularly large is the effect
on ϕ, σl, ιp, ιw , ξw , ψ, and rπ. Smaller, but still substantial are the differences for σc, Φ, ry, π̄, and
l̄. For the remaining parameters the estimates are very close.

The maximum likelihood estimates of both Calvo parameters, ξp and ξw, are higher than their
Bayesian estimates. This implies longer average duration of the wage (6.3 vs. 3.9 quarters) and price
(3.1 vs. 2.9 quarters) contracts. The estimates of ιp and ιw suggest much larger degree of indexation
of wages, and much weaker degree of price indexation than those implied by the Bayesian estimates.22

The elasticity of the investment adjustment cost function (ϕ) is also larger according to the ML
estimates, as are fixed cost parameter (Φ), and the elasticity of the capacity utilization adjustment cost
function (ψ).

Overall, for all frictions in the model, except the habit persistence parameter (h), the ML estimates
are substantially different and larger than the Bayesian ones. The latter are in turn larger than the
respective means of the prior distribution, which is therefore the most likely explanation of the observed
discrepancies.

The ML estimate of the monetary policy rule parameters suggest a much stronger interest rate
response to inflation and output gap, and slightly stronger response to the change in output gap; the
degree of interest rate smoothing is also higher, according to the ML estimate. Again, these differences
between the Bayesian and the maximum likelihood estimates can be attributed to the use of the
particular prior values.

Turning to the estimates of the exogenous shock parameters, presented in Table 4.2, we see that
the MLE and Bayesian estimates are quite close. One exception is the autocorrelation parameter of
the policy shock (ρr), which is estimated to be substantially larger when a prior (with mean of .5) is
used. This confirms the observation made in Smets and Wouters (2007) that ”the data appear to be
very informative on the stochastic processes of for the exogenous disturbances” (p.9). One implication
of this is that we should expect that the forecast error variance decompositions of the model variables
will be quite similar across the two sets of estimates.

The results from the estimation of the model using data for the two subsamples are shown in Tables
E.2 and E.3. There we observe much larger discrepancies between the maximum likelihood and Bayesian
estimates of the deep parameters. For some parameters, for instance rπ for the first subperiod, and
ϕ - for the second, the ML estimates were pushed towards the bounds for those parameters. Similar
experience, resulting from relaxation of the prior precision, was reported in Onatski and Williams
(2004). One possible explanation of these discrepancies is that much less data is used for estimation,
which makes the likelihood relative less informative, and the priors - relative more influential with
respect to the posterior distribution. This is indicated by the high value of the condition numbers of
the information matrix. These values are quite high even when all data is used, but particularly so for
two subsample estimates.

22This findings are consistent with the remarks in Smets and Wouters (2007) on the effect of relaxing their priors. See
their footnote 9.
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Table 4.2: Estimation Results: Shock Processes 1966:1-2004:4

Param. Prior Bayesian MLE

Distr. Mean St.dev. 5% mode 95% 5% mode 95%
ρa B 0.50 0.20 0.94 0.96 0.97 0.93 0.97 0.99
ρb B 0.50 0.20 0.07 0.18 0.36 -0.27 0.15 0.69
ρg B 0.50 0.20 0.96 0.98 0.99 0.95 0.98 1.00
ρI B 0.50 0.20 0.61 0.71 0.80 0.36 0.70 0.95
ρr B 0.50 0.20 0.04 0.13 0.24 0.01 0.01 0.01
ρp B 0.50 0.20 0.80 0.90 0.96 0.70 0.93 1.00
ρw B 0.50 0.20 0.94 0.97 0.99 0.88 0.98 1.00
ρga B 0.50 0.25 0.37 0.53 0.66 0.03 0.45 0.82
µw B 0.50 0.20 0.75 0.89 0.93 0.85 0.96 0.99
µp B 0.50 0.20 0.54 0.74 0.85 0.12 0.73 0.93
σa IG 0.10 2.00 0.41 0.45 0.50 0.36 0.44 0.54
σb IG 0.10 2.00 0.19 0.24 0.27 0.13 0.24 0.37
σg IG 0.10 2.00 0.48 0.52 0.58 0.45 0.54 0.69
σI IG 0.10 2.00 0.37 0.45 0.53 0.33 0.45 0.73
σr IG 0.10 2.00 0.22 0.24 0.27 0.19 0.23 0.30
σp IG 0.10 2.00 0.11 0.14 0.16 0.05 0.12 0.21
σw IG 0.10 2.00 0.20 0.24 0.28 0.20 0.26 0.38
Log Likelihood: -840.11 -820.36
cond(Iθ): 2.7e7 4.4e7

Note: δ = .025, λw = 1.5 and gy = .18 are fixed. π̄, and l̄ are quarterly steady state inflation rate, and steady
state hours worked.

Remark. Unlike in Section 2, where we computed condition numbers of the information matrix at
the true values of θ, here the parameters are estimated, and therefore subject to sampling uncertainty.
Accounting for this uncertainty is straightforward for the estimates obtained with Bayesian methods.
We can simply find the posterior distribution of cond(Iθ). The 5-th and 95-th percentiles of the
distribution are 2.4e7 and 2.9e7, respectively. It is not obvious how to put similar confidence bounds
on the condition number of the information matrix evaluated at the ML estimates.

The results reported in Tables 4.1 and 4.2 were obtained under the assumption that δ, λw, and gy
are known and fixed at the values assumed in Smets and Wouters (2007). As we discussed in section
2 the reason given for not estimating these parameters was their poor identification. However, we
found evidence supporting that claim only with respect to λw. In Table E.4 we report the maximum
likelihood estimates of the model parameters obtained when δ, λw, and gy are assumed unknown and
also estimated. The values we estimated for these parameters are δ̂ = .021, λ̂w = 1.77, and ĝy = .3.
Turning to the other parameters, the effect is most noticeable for the policy rule parameters, the
estimates of all of which increase substantially. The higher condition numbers (6.7e10 vs. 2.7e10)
suggest that the identification of this parametrization is indeed weaker. However, the difference is not
particularly large and is, at least partly, due to the large number of parameter estimated in the second
case.

Overall, we find that the use of priors have significant effects on the parameter estimates for the
model we consider. This by itself does not imply that the model behavior is also affected substantially.
To assess the implications of different estimates on the internal dynamics and the propagation mecha-
nism of the model, we next compare the impulse responses to the structural shocks, and the variance
decompositions for the observed variables.
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4.2.3 Impulse responses and variance decompositions

Impulse responses and variance decompositions are standard tools for gauging the behavior of macroeco-
nomic models, and assessing their credibility. Impulse response analysis allows us to trace the dynamic
interactions among economic variables, while the variance decompositions measure the contribution of
each structural shock to the total variation of each variable. Here we compare the implications along
these two dimensions of three different parameter estimates for the whole sample period (1966:1-2004:4)
- the Bayesian and ML estimates for the first parameterizations (columns 2 and 3 of tables 4.1 and 4.2),
and the ML estimate for the second parametrization (columns 2 and 6 of Table E.4 in the Appendix).
For ease of notation, henceforth we refer to the first two estimates as SW and MLE1, and the the last
one - as MLE2.

Figures F.2 - F.8 plot the impulse responses (percent deviations from steady state level) of the seven
observed variables (output, consumption, investment, hours, inflation, wages, and interest rate) to a
one standard deviation in each of the seven structural shocks (productivity, risk premium, government
spending, investment, monetary policy, price and wage markup shocks). Overall, the responses seem
reasonable, and are, in most cases, qualitatively similar in the sense of having the same sign on impact
and similar dynamics. In particular, most impulse responses implied by the two ML estimates are
very close. The most common difference between MLE1 and MLE2 on one hand, and SW - on the
other, are in the magnitude and persistence of the responses. For instance, the responses of output and
consumption to productivity, investment or price markup shocks, take longer to reach their peaks, and
last longer under the MLE, compared to SW estimates.

The opposite is true for the response of most variables, and particularly investment and wages, to
a wage markup shock. In some cases there is also a substantial difference in the impact effect of the
shocks. For instance, wages and inflation respond much more strongly to monetary policy, productivity,
risk premium, or government spending shocks, under the SW estimates compared to the MLE ones.
In the case of response of wages to exogenous spending shock, the impact effects are also in different
directions (see Figure F.4). Under SW the response is positive and remains so for up to 10 quarters,
while the two ML estimates imply a smaller and negative response.

Tables G.1 - G.3 report, for the three parameter estimates - SW, MLE1 and MLE2 respectively, the
contributions of each structural shock to the forecast error variances of the observed variables at different
horizons. As with the impulse responses, the results are broadly similar, with some differences emerging
in the medium to long-run horizon. With respect to the determinants of output, for instance, the
Bayesian parameter estimates overemphasize, relative to the ML ones, the importance of wage markup,
exogenous spending, and risk premium shocks, and underestimate that of sector-neutral productivity,
and price markup shocks. Similar differences may be observed regarding inflation. Relative to the ML
estimates, the Bayesian estimates overestimate the importance of risk premium, exogenous spending,
investment and monetary policy shocks, and underestimate the importance of price markup shocks.
These differences are again more significant at medium and long-run horizons.

Similar differences in the importance assigned to different structural shocks can be observed with
respect to the other variables in the model. One property that all estimates have in common is that
”demand” shocks, such as government spending, risk premium, or investment-specific shocks, are the
main driving forces behind the fluctuations in output in a short run. According to both the Bayesian
and ML estimates, these shocks 50% to 70% of the forecast error variance of output at horizons of
1 to 4 quarters. On the other hand, at medium to long-run, ”supply” shocks - productivity, price
and particularly wage markup shocks, are the main driving forces behind the fluctuations in output,
explaining between 60% and 80% of the forecast error variance of output at horizons of 10 years and
beyond. These observations were made in Smets and Wouters (2007), and as our results show, are
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robust to the method used for estimation.

5 Conclusion

One of the main promises of the rapidly expanding literature on empirical evaluation of DSGE models, is
that we can now estimate rich micro-founded structural models that until recently had to be calibrated.
However, the extent to which this is of practical use depends crucially on whether the parameters we
want to estimate are well identified. In this paper we developed a new methodology that can be used
to address the following questions - are the parameters identified, how strong is identification, are
the identification problems inherent in the structure of the model, or due to data deficiencies - for
any linearized DSGE model. We then applied this methodology to study parameters identification
of a state-of-the-art monetary DSGE model, that is widely regarded as one of the success stories of
the empirical DSGE literature. We found that many of the parameters of the model are very poorly
identified virtually everywhere in the parameter space. In addition, our results suggest that the problem
to a large extent originates in the structure of the model. Thus, it is likely that other models in the
empirical DSGE literature, that share features of the model we considered, also suffer from weak
parameter identifiability. We showed how parameter interdependence problems can be detected and
possibly alleviated by reparametrization. For the model we considered this improved, but unfortunately
did not fully solve the identification problem. Estimating the model by maximum likelihood, we found
substantial differences in the parameter estimates compared to those obtained with Bayesian methods.
We attribute those differences to the the use of priors in the latter.

Are these differences important? The answer of this question depends on the purpose of estimating
the model in the first place. For instance, using estimated DSGE models solely for forecasting purposes
does not require knowledge of the values of behavioral or technology parameters. Similarly, if the
estimated model is used to conduct impulse response and variance decomposition analysis, then the
strength of parameter identification is not very important. We saw evidence to that effect in the
last section, where quite different parameter values often implied very similar, and even identical
impulse response functions, or variance decomposition results. This should not be surprising, as by
definition weak local identification means that different deep parameters imply very similar reduced-
form dynamics. However, when estimated DSGE models are used for policy analysis, such as designing
optimal monetary policy, the values of the deep parameters may be of crucial importance. This is
because for the purpose of such analysis one needs to work with non-linear versions of the model, for
which the implications of different parameter values are likely to be stronger than in the linearized
version of the model.

Our results may cause one to seriously doubt the validity of parameter estimates reported in some
of the empirical DSGE literature. For instance, in their empirical comparison of the US and Euro area
business cycles, Smets and Wouters (2005) conclude that the structures of the two economies are very
similar, and have not changed much over time. Since the model they estimate is similar to the one in
this paper, these findings may be explained with the fact that they use the same prior distributions for
both economic areas, and the different sample periods. Of course, if the priors are chosen so that they
truly reflect the researcher’s a priori beliefs for the parameters of interest, weak identification is not an
issue, as long as care is taken to sample from the true posterior distribution. We believe, however, that
even when this is the case, conducting and reporting the results of identification analysis as described
here, would help in communicating one’s findings to a broader audience, who may not hold the same
subjective beliefs as the author. Providing such information would help the reader assess the relative
importance of the data and the priors, and let her judge for herself the credibility of the reported
estimates. Also, as we saw in Section 3.4, the current practice of reporting percentiles of the marginal
posterior distributions, or showing plots of these distributions along with the distributions of the priors,
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may sometimes be misleading. This would be the case when there is strong dependence among some
parameters. What these parameters are could be determined with the help of matrix H(θ) defined in
Section 2.1. Instead of the marginal distributions, one should report results based on the joint posterior
distributions for parameters parameters that are found to be strongly dependent.

Given the increasing popularity of empirical DSGE analysis, one may wonder whether the problems
we have discussed in this paper are specific to our model, or endemic, as the analysis in Beyer and Farmer
(2004) may lead one to believe. To partially answer this question, we carried out the identification
analysis described in section 2.5 for three different DSGE models - a prototypical three-equations New
Keynesian model, a standard one-sector stochastic growth model, and a two-country monetary New
Open Economy model. The first two are stripped-down versions of our main model, focusing on features
that are important in the New Keynesian and the RBC economics, respectively. The third one is an
example of a model which is comparable, in terms of size and number of parameters, to our model,
but simpler in terms of structural features. More information on the models, and the results from
the identification analysis is provided in the Appendix. We find that parameter identification in these
models, is much stronger than in the large scale New Keynesian model adopted in this paper. Thus the
problem with identification is not necessarily generic, and should be addressed for each DSGE model
separately.

One way to deal with the identification problems, when such are detected, is to re-parameterize the
structural model and estimate parameters that are well identified. This would be an useful approach in
situations where the values of the individual deep parameters are not of primary interest, and estimating
functions of such parameters is also acceptable. As we suggested above, if the DSGE model is used
for forecasting, or to study the dynamic responses of economic variables to structural shocks, this can
be accomplished without estimating deep parameters. Moreover, in such situations many of the cross-
equation restrictions imposed when the deep parameters are estimated, can be relaxed, thus making
the results robust to larger classes of models.

Another possible solution is to work with higher order approximations instead of linearized models.
McManus (1992) proves that identification failures are much rearer in non-linear than in linear models,
and argues that using linear approximations is a major cause for poor parameter identifiability in
econometrics. Although the estimation of non-linear DSGE models is computationally much more
demanding, recent work by Fernandez-Villaverde and Rubio-Ramirez (2005), An (2005), and Amisano
and Tristani (2006) have shown how it could be accomplished. However, the procedures for studying
identification proposed here cannot be applied to non-linear models. The development of appropriate
methods is left for future work. Another question suggested by the findings in this paper, is whether
the difficulties with identification of some of the preference parameters is specific to our model as a
whole, or would arise in any model with the same specification of the consumer preferences. This is
also left for future investigation.
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A Case Study: Identification
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Figure A.1: Distributions of the draws of parameters used in the identification analysis.
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Table A.1: Prior Distribution of θ

Prior

Parameter Distr. Mean Stdd.

α N 0.300 0.050
ψ B 0.500 0.150
ϕ N 4.000 1.500
σc N 1.500 0.375
h B 0.700 0.100

100(β−1 − 1) G 0.250 0.100
Φ N 1.250 0.125
ιw B 0.500 0.150
ξw B 0.500 0.100
ιp B 0.500 0.150
ξp B 0.500 0.100
σl N 2.000 0.750
rπ N 1.500 0.250
r4y N 0.125 0.050
ry N 0.125 0.050
ρ B 0.750 0.100
γ N 0.400 0.100
δ B 0.025 0.005
λw N 1.500 0.250
gy N 0.180 0.050
ρga B 0.500 0.250
ρa B 0.500 0.200
ρb B 0.500 0.200
ρg B 0.500 0.200
ρI B 0.500 0.200
ρr B 0.500 0.200
ρp B 0.500 0.200
ρw B 0.500 0.200
µw B 0.500 0.200
µp B 0.500 0.200
σa IG 0.100 2.000
σb IG 0.100 2.000
σg IG 0.100 2.000
σI IG 0.100 2.000
σr IG 0.100 2.000
σp IG 0.100 2.000
σw IG 0.100 2.000

Note:N is Normal distribution, B is Beta-distribution, G is Gamma distribution,
IG is Inverse Gamma distribution. The inverse Gamma priors are in the form

p(σ; ν, s) ∝ σ−ν−1 exp−νs
2/2σ2

; s and ν are given in the Mean column and
Stdd. column respectively.
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Table A.2: Admissability of draws

Param. Non-existence Indeterminacy Admissible
1 0.30% 3.20% 96.50%
2 0.10% 2.00% 97.90%
3 0.30% 3.10% 96.60%
4 0.20% 3.40% 96.40%
5 0.10% 4.10% 95.80%
6 0.20% 2.40% 97.40%

Note: The total number of draws is 1, 000, 000.

Table A.3: Conditioning of H for different parameterizations.

Param. Decile of cond(H)

min 1 2 3 4 5 6 7 8 9 max

1 6.4e1 2.2e2 2.9e2 3.7e2 4.7e2 6.0e2 7.9e2 1.1e3 1.6e3 3.2e3 3.1e11
2 4.8e1 2.0e2 2.8e2 3.6e2 4.5e2 5.8e2 7.6e2 1.0e3 1.6e3 3.1e3 2.9e11
3 4.3e1 1.5e2 1.9e2 2.3e2 2.8e2 3.4e2 4.2e2 5.4e2 7.3e2 1.2e3 2.8e8
4 6.4e1 2.1e2 2.8e2 3.6e2 4.6e2 5.9e2 7.7e2 1.1e3 1.6e3 3.1e3 3.0e11
5 7.0e1 2.8e2 3.9e2 4.9e2 6.1e2 7.4e2 9.1e2 1.1e3 1.5e3 2.1e3 2.8e8
6 3.4e1 1.3e2 1.7e2 2.1e2 2.5e2 3.1e2 3.8e2 4.9e2 6.6e2 1.1e3 2.8e8

Note: H = ∂τ
∂θ′ is the gradient of the reduced-form parameters w.r.t. θ. rank(H) = dim(θ) is a necessary

condition for identification of θ. Large values of cond(H) imply near failure of this condition, thus
indicating weak identification. The statistics were computed on the basis of 1, 000, 000 random draws of
θ.

Table A.4: Conditioning of H ′H for different parameterizations.

Param. Decile of cond(H ′H)

min 1 2 3 4 5 6 7 8 9 max

1 4.1e3 4.8e4 8.6e4 1.4e5 2.2e5 3.7e5 6.2e5 1.2e6 2.6e6 1.0e7 9.5e22
2 2.3e3 4.1e4 7.6e4 1.3e5 2.1e5 3.4e5 5.8e5 1.1e6 2.4e6 9.4e6 8.5e22
3 1.8e3 2.2e4 3.6e4 5.5e4 8.0e4 1.2e5 1.8e5 2.9e5 5.3e5 1.4e6 7.6e15
4 4.1e3 4.5e4 8.1e4 1.3e5 2.1e5 3.5e5 6.0e5 1.1e6 2.5e6 9.6e6 9.0e22
5 4.9e3 8.0e4 1.5e5 2.4e5 3.7e5 5.5e5 8.3e5 1.3e6 2.2e6 4.5e6 7.6e15
6 1.2e3 1.6e4 2.7e4 4.2e4 6.3e4 9.4e4 1.4e5 2.4e5 4.4e5 1.1e6 7.6e15

Note: cond(Iθ) = cond(H′H) if Iτ is perfectly well conditioned. Thus cond(H′H) can be thought of as
the unattainable lower bound for cond(Iθ).
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Table A.5: Conditioning of Iθ for different parameterizations

Param. Decile of cond(Iθ)

min 1 2 3 4 5 6 7 8 9 max

1 4.2e5 1.6e6 2.1e6 4.9e6 8.1e6 1.8e7 5.0e7 6.4e8 2.3e9 2.2e10 4.4e24
2 2.7e5 4.7e5 1.3e6 2.9e6 3.3e6 3.7e6 4.9e7 3.5e8 2.2e9 2.1e10 4.1e25
3 1.8e5 1.6e6 1.9e6 2.6e6 4.5e6 1.2e7 1.6e7 4.4e8 1.1e9 2.2e10 1.8e14
4 4.1e5 1.4e6 2.1e6 4.6e6 7.1e6 1.8e7 4.9e7 6.1e8 2.3e9 2.2e10 2.8e24
5 4.3e5 7.6e5 1.3e6 1.5e6 1.8e6 2.0e6 1.5e7 2.8e8 1.0e9 2.1e10 1.6e14
6 1.0e5 4.2e5 1.1e6 1.5e6 1.8e6 2.0e6 1.4e7 1.9e8 1.0e9 2.1e10 1.6e14

Note: Iθ = H′IτH is the information matrix for θ. rank(Iθ) = dim(θ) is a necessary and sufficient
condition for identification of θ. Large values of cond(Iθ) imply near failure of this condition, thus
indicating weak identification. These statistics were computed on the basis of 1, 000 random draws of θ.

Table A.6: Cross-correlations

λw β µp ψ σc h Φ ξw σl rπ ρ ρb ρI
α .77 .98 -.54 -.88 .82 -.84 -.75 -.82 -.92 .94 .87 -.74 .89
ψ -.97 -.94 .85 1 -.98 .99 .97 .98 .93 -.97 -.97 .59 -.94
σc .99 .89 -.87 -.98 1 -.99 -.95 -.99 -.93 .96 .98 -.56 .94
h -.99 -.91 .84 .99 -.99 1 .94 .99 .95 -.97 -.97 .59 -.93
ξw -.99 -.89 .86 .98 -.99 .99 .95 1 .93 -.96 -.97 .58 -.93
ξp .96 .87 -.85 -.97 .95 -.95 -.99 -.95 -.83 .90 .92 -.55 .87
rπ .93 .97 -.75 -.97 .96 -.97 -.89 -.96 -.97 1 .98 -.67 .97
ρ .97 .92 -.84 -.97 .98 -.97 -.92 -.97 -.93 .98 1 -.58 .97
ρI .92 .92 -.77 -.94 .94 -.93 -.86 -.93 -.92 .97 .97 -.57 1
σb .50 .69 -.24 -.57 .54 -.57 -.48 -.56 -.66 .64 .56 -.99 .55
σI -.91 -.94 .73 .94 -.94 .94 .84 .94 .97 -.99 -.97 .63 -.99
σp -.95 -.71 .98 .90 -.93 .90 .92 .93 .77 -.82 -.89 .35 -.82
σw -.99 -.86 .90 .97 -.99 .98 .94 .99 .92 -.94 -.97 .53 -.92

Note: Pairwise correlation coefficients corr(θ̂i, θ̂j) exceeding .95 in absolute value. The values are
obtained by inverting and normalizing the information matrix evaluated at θ for which the
condition number of the matrix is equal to the 7-th percentile from Table A.3. High correlation
between the estimates of two deep parameters indicates that they are difficult to identify.
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Table A.7: Percent error in diag(V (θ̂)) for 1% error in diag(Iθ(θ̂))

Param. Decile of Iθ
min 1 2 3 4 5 6 7 8 9

δ 93.6 202.2 -136.8 -294.9 355.7 -96.8 266.6 2245.6 49.3 -236.7
λw 102.6 218.2 97.3 211.3 -132.5 -173.0 -265.0 -177.6 62.4 -56.2
gy 0.4 9.1 -495.3 -56.6 49.6 -587.8 159.5 -23.8 1308.6 1530.8
ρga -19.7 -123.8 -57.8 -34.1 -17.1 22.6 9.2 -16.9 -32.8 -12.3
β̄ 65.5 54.9 -138.4 -736.3 68.6 -225.4 90.2 569.2 -58.5 -89.8
µw -11.3 28.5 2.8 6.7 23.7 -7.5 -25.1 -23.2 -34.7 -324.4
µp 18.8 89.3 114.5 -539.5 7.1 -76.6 -68.8 -14.0 128.0 -119.6
α -39.2 -369.0 69.1 -135.4 -31.2 -116.3 81.2 -27.5 -141.0 -234.6
ψ 52.8 54.0 -64.4 -75.5 -46.8 -13.5 203.6 -30.3 -1471.1 521.7
ϕ 66.7 65.9 56.0 -98.7 -35.9 -633.6 -164.0 -992.9 291.9 -1407.6
σc -40.2 -47.7 107.7 171.4 -1720.9 -176.7 127.8 203.4 199.3 156.9
λ 163.7 -60.5 -42.8 83.9 36.6 1920.0 179.5 61.9 107.0 -136.9
Φ 160.5 -63.2 388.8 509.4 -119.7 1251.6 2346.8 185.1 -113.1 144.4
ιw -9.3 6.8 -382.7 -231.4 -34.5 654.0 -123.2 -361.7 109.0 -112.5
ξw 319.4 153.1 -1231.1 187.7 59.1 159.9 104.6 327.6 310.5 -150.1
ιp 99.3 309.5 178.8 549.4 612.1 57.7 -180.6 24.1 -88.5 -69.0
ξp -67.0 59.4 -122.4 172.9 89.2 78.1 -68.2 -78.9 -81.0 -76.3
σl -144.1 134.3 -128.9 1450.5 73.7 30.9 -241.8 41.5 -114.9 123.9
rπ 77.6 -139.4 337.8 102.2 -61.3 -872.6 138.7 -256.9 -9506.0 -4013.2
r4y -118.2 32.0 -48.8 24.9 -86.9 -24.1 -171.3 -4639.8 72.8 -38.5
ry 71.7 -50.7 143.9 41.8 -216.4 -98.2 84.0 113.2 -198.2 -167.6
ρ -70.4 108.5 396.0 625.5 -121.6 289.8 -2027.8 97.0 -149.8 -408.1
ρa -36.7 -22.4 772.4 461.4 0.4 -32.5 8.9 -12.5 -29.7 -19.4
ρb -0.8 90.4 -69.7 -233.8 -204.0 -37.4 -90.3 957.3 118.8 179.8
ρg 0.8 1.4 0.8 14.5 -4.3 -4.7 38.5 -4.3 38.4 -20.2
ρI -0.6 -87.2 -38.1 2.8 1.4 -179.7 214.4 43.1 12.3 -35.1
ρr 6.4 -182.2 5.5 -189.0 1306.1 -78.6 -183.6 -86.1 68.0 11.1
ρp -5.1 1.8 -4.2 748.3 -8.4 -2.9 -227.3 -7.2 -7.7 -21.0
ρw -1.2 -0.4 58.0 -9.5 3.4 2.8 -2.8 63.1 -2.3 136.8
σa -88.9 -70.7 79.8 101.0 39.8 119.0 67.2 17.2 999.0 -348.2
σb -5.9 -70.8 149.8 -148.7 76.2 60.1 268.5 -34.9 173.3 107.3
σg -63.9 14.3 7.5 13.0 34.5 -24.8 -1221.2 14.2 -27.0 -28.7
σI 1.0 -15.1 -58.5 -11.4 -27.8 34.8 -234.5 35.2 -14.5 10550.7
σr -167.0 -41.1 -3.4 -191.1 -57.3 1022.8 154.5 -162.7 -646.0 -656.9
σp 19.7 50.0 167.8 -227.5 -14.6 117.5 173.0 12.5 42.2 25.4
σw -0.2 -8.6 7.6 -168.3 -12.0 -24.0 -256.9 128.7 25.6 -44.8
cond(Iθ) 4.2e5 1.6e6 2.1e6 4.9e6 8.1e6 1.8e7 5.0e7 6.4e8 2.3e9 2.2e10
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Table A.8: Parameter Importance

Parameter si(θ)
Decile of cond(H′H)

min 1 2 3 4 5 6 7 8 9 10
ρw autocorr. wage shock .104 .086 .082 .071 .082 .081 .134 .074 .087 2.207 .188
ρ policy smoothing .141 .140 .831 1.217 .540 .727 .324 2.305 .437 1.919 2.200
ρp autocorr. price shock .136 .355 .109 .125 .127 .151 .123 .100 .155 .087 .219
ξw Calvo wages .065 .120 .227 .180 .252 .361 .189 .240 .316 .980 .317
ξp Calvo prices .132 .319 .224 .186 .178 .290 .166 .198 .246 .300 .308
rπ policy inflation .156 .192 .310 .202 .143 .594 .265 .614 .263 .605 .533
λw wage markup .038 .074 .162 .146 .181 .288 .140 .184 .264 .508 .218
λ habit .098 .434 .673 .362 1.397 1.376 1.639 .715 3.432 .461 1.808
Φ fixed cost .145 .338 .434 .298 .187 .459 .300 .217 .378 .551 .357
ρg autocorr. gov. spending .062 .124 .110 .083 .164 .159 .193 .107 .113 .146 .090
ρa autocorr. TFP .118 .171 .140 .192 .225 .170 .197 .186 .234 .138 .166
σc elast.inter.subst. .201 .227 .380 .151 .414 .452 .406 .274 .529 .359 .522
r4y policy output growth .026 .032 .068 .069 .047 .076 .036 .066 .046 .175 .162
ρI autocorr. investment .105 .104 .179 .126 .147 .081 .190 .117 .105 .124 .077
µw MA wage shock .066 .067 .058 .057 .058 .061 .079 .057 .062 .170 .089
µp MA price shock .079 .140 .062 .073 .071 .077 .072 .067 .075 .055 .113
ψ cap. utilization cost .077 .122 .183 .136 .127 .217 .126 .128 .170 .121 .222
α capital share .035 .055 .066 .077 .063 .079 .083 .079 .098 .083 .162
ϕ invest. adj. cost .067 .085 .113 .336 .079 .226 .155 .299 .339 .074 2.410
σl elast. hours .027 .028 .062 .045 .047 .064 .046 .054 .054 .080 .053
ιw indexation wages .021 .030 .038 .026 .022 .060 .028 .044 .032 .073 .043
δ depreciation rate .006 .012 .014 .020 .015 .019 .019 .016 .030 .034 .026
ιp indexation prices .016 .022 .028 .024 .018 .040 .020 .033 .021 .040 .046
ry policy output .010 .017 .024 .022 .014 .039 .018 .030 .018 .103 .064
ρb autocorr. risk premium .032 .120 .361 .112 .241 .560 .279 .190 .477 .116 .356
σb std. dev. risk premium .025 .082 .120 .110 .162 .198 .200 .197 .335 .117 .220
σI std. dev. investment .050 .053 .068 .052 .064 .046 .071 .053 .055 .061 .040
σa std. dev. TFP .046 .071 .050 .081 .101 .053 .095 .105 .093 .050 .069
gy G/Y .018 .027 .047 .024 .030 .048 .031 .027 .037 .030 .021
σg std. dev. gov. spending .036 .079 .068 .068 .099 .097 .120 .078 .101 .094 .053
σr std. dev. policy .029 .019 .047 .074 .042 .044 .039 .115 .030 .056 .122
σw std. dev. wages .015 .016 .015 .015 .015 .018 .016 .015 .018 .017 .022
σp std. dev. prices .011 .016 .009 .009 .011 .013 .012 .012 .010 .010 .010
ρr autocorr. policy .028 .013 .045 .085 .036 .052 .045 .203 .021 .056 .217
β discount factor .002 .002 .004 .004 .003 .003 .004 .004 .005 .004 .011

Note: The table shows the values of the sensitivity statistic si(θ) =

√
1
J

∑J
j

(
θi
∂τj
∂θi

)2

evaluated at values of θ

corresponding to the minimum and the deciles of the distribution of cond(H′H) computed on the basis of 1 million
draws from Θ.
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Table A.9: Maximum pairwise correlations

Decile of cond(H ′H)

min 1 2 3 4 5 6 7 8 9 10

λw .767 .943 .938 .959 .945 .941 .973 .908 .932 .984 .998
ξw .767 .943 .938 .959 .945 .941 .973 .908 .932 .984 .998
ξp .862 .910 .635 .860 .825 .878 .629 .650 .870 .815 .932
ιw .361 .661 .661 .775 .833 .841 .667 .586 .748 .625 -.540
ιp .656 .833 .635 .860 .825 .878 .629 .616 .870 .815 .932
µw .502 .213 .255 .218 .225 .071 .236 .284 .114 .179 .611
µp .570 .643 .353 .324 .182 .150 .341 .190 .406 .341 .122
α -.585 -.698 -.854 .580 -.853 -.769 -.755 -.802 -.833 -.976 -.650
ψ .117 .157 .065 .165 .100 .087 -.072 -.179 -.085 -.143 -.367
ϕ -.291 .349 -.475 .477 -.556 -.404 -.385 .395 -.559 .718 .572
σc .514 .940 .869 .956 .828 .982 .953 .943 .966 .905 .806
λ .534 .940 .869 .956 .768 .982 .953 .943 .966 .955 .674
Φ .862 .910 .554 .642 .513 .549 .485 .650 .561 -.607 .848
σl .514 .589 -.716 -.707 .828 -.783 -.610 -.622 -.695 -.867 -.888
rπ -.614 -.735 -.970 .923 -.989 .968 -.866 -.719 -.781 -.982 -.951
r4y .358 .646 .588 .661 -.502 .725 .454 .440 .462 .881 .959
ry -.614 -.703 -.915 .923 -.959 .968 .767 -.698 -.794 .881 .959
ρ .530 -.735 -.970 -.861 -.989 -.874 -.866 -.719 -.766 -.982 -.951
δ .256 -.655 -.708 -.708 -.653 .408 -.680 -.618 -.722 .809 -.728
gy -.664 -.470 .337 -.570 .530 .431 -.415 .396 .448 -.464 -.481
β -.664 -.698 -.854 -.708 -.853 -.769 -.755 -.802 -.833 -.976 -.650
ρa .184 .399 .322 .220 .411 .418 .464 .402 .440 .161 .219
ρb .534 .790 .561 .909 .666 -.957 .821 .900 .951 .955 .650
ρg .221 .293 -.165 .168 .259 .173 .227 .270 -.238 .140 .244
ρI .151 .238 .302 .303 .129 .123 .304 .395 .137 .086 -.222
ρr .530 .115 -.781 .424 -.941 .441 .413 .674 .154 -.934 .298
ρp .503 .893 .420 .323 .182 .311 .391 .270 .501 .418 .151
ρw .524 .213 .255 .218 .225 .071 .236 .284 .114 .301 .974
ρga -.186 -.741 -.648 -.142 -.854 .418 -.856 -.882 -.788 -.565 -.356
σa -.186 -.741 -.648 -.142 -.854 -.279 -.856 -.882 -.788 -.565 -.356
σb .085 .486 .664 .144 .508 .083 .692 .414 .168 .253 .384
σg .044 .062 -.123 .044 -.067 .105 .174 .163 -.159 .019 .049
σI .049 .191 .263 .208 .031 .123 .087 .157 .043 .006 -.136
σr .183 .056 -.125 .196 -.276 .073 .071 .090 .163 -.256 .098
σp -.042 -.055 -.227 -.034 -.067 -.093 -.055 -.075 -.094 -.302 -.083
σw -.021 -.149 -.017 -.024 -.036 -.031 -.020 -.172 -.045 -.050 -.022

cond 170 1346 1458 2807 8234 8413 9067 10188 20638 48567 305217

Note: The table shows for each deep parameter θi the value of max
j 6=i

(
H′iHj

(H′iHi)
1/2(H′jHj)

1/2

)
, where

Hl = ∂τ
∂θl

gives the effect on the reduced-form model of changes in θl. Values close to 1 or -1 indicate

that Hi and Hk are nearly collinear.
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Table A.10: Multiple correlations

Decile of cond(H ′H)

min 1 2 3 4 5 6 7 8 9 10

λw .975 .992 .996 .997 .999 .995 .999 .998 .999 .999 .999
ξw .968 .991 .996 .997 .999 .997 .999 .998 .999 .999 .999
ξp .959 .991 .936 .968 .955 .978 .945 .954 .957 .962 .992
ιw .638 .764 .832 .939 .954 .971 .844 .875 .896 .857 .903
ιp .715 .894 .824 .934 .927 .966 .802 .818 .916 .928 .973
µw .669 .411 .489 .433 .473 .156 .566 .648 .241 .345 .837
µp .778 .894 .682 .653 .406 .398 .585 .426 .657 .767 .310
α .770 .860 .943 .928 .941 .934 .903 .920 .926 .989 .916
ψ .253 .328 .190 .262 .246 .201 .181 .249 .188 .230 .393
ϕ .656 .729 .849 .868 .892 .928 .767 .842 .832 .957 .799
σc .969 .997 .996 .998 .999 .999 .999 .999 .999 .999 .999
λ .947 .995 .991 .997 .995 .999 .999 .999 .999 .999 .990
Φ .939 .982 .922 .947 .921 .944 .936 .960 .932 .899 .994
σl .901 .952 .971 .938 .992 .975 .987 .986 .989 .981 .997
rπ .967 .962 .990 .994 .998 .995 .979 .910 .977 .999 .999
r4y .422 .717 .625 .728 .582 .840 .504 .521 .563 .913 .969
ry .959 .945 .972 .975 .972 .988 .908 .910 .957 .990 .998
ρ .873 .839 .992 .984 .997 .977 .966 .879 .933 .998 .997
δ .508 .862 .922 .805 .904 .881 .865 .862 .967 .892 .968
gy .844 .902 .789 .927 .819 .874 .915 .911 .797 .746 .941
β .827 .899 .956 .936 .958 .936 .923 .942 .971 .989 .912
ρa .621 .770 .748 .672 .788 .718 .851 .829 .829 .655 .651
ρb .737 .957 .831 .995 .922 .997 .982 .984 .996 .997 .856
ρg .500 .697 .529 .538 .662 .526 .646 .712 .630 .421 .774
ρI .340 .344 .559 .587 .362 .174 .483 .649 .335 .394 .398
ρr .846 .169 .898 .663 .984 .769 .567 .751 .219 .994 .767
ρp .697 .972 .656 .647 .354 .784 .660 .589 .782 .794 .487
ρw .572 .290 .278 .374 .296 .264 .456 .642 .358 .740 .998
ρga .310 .750 .653 .283 .858 .606 .865 .888 .792 .574 .562
σa .350 .746 .664 .214 .861 .338 .863 .884 .795 .598 .377
σb .123 .804 .876 .422 .870 .356 .957 .867 .767 .874 .677
σg .145 .225 .190 .168 .202 .354 .552 .543 .282 .068 .275
σI .069 .262 .497 .323 .049 .208 .124 .272 .101 .031 .262
σr .364 .079 .189 .307 .529 .115 .095 .098 .238 .675 .209
σp .102 .157 .414 .075 .145 .215 .125 .175 .188 .484 .177
σw .047 .245 .030 .046 .067 .064 .042 .277 .092 .094 .038

cond 170 1346 1458 2807 8234 8413 9067 10188 20638 48567 305217

Note: The table shows for each deep parameter θi the value of

(
H′iH−j

(H′iHi)
1/2(H′−jH−j)

1/2

)
, where

Hi = ∂τ
∂θi

gives the effect on the reduced-form model of changes in θi, and H−i is the projection of Hi onto

the space spanned by the other columns of H. Values close to 1 or -1 indicate that Hi and H−i are nearly
collinear.
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B Identification and weak identification analysis procedure

Here I outline the steps involved in the identification analysis performed in section 3.
Steps:

1 Define a discrete approximation Θ̂ of the the parameter space Θ. The parameter space is (usually
a continuous) set of values that are possible, from a theoretical point of view, for the deep
parameters to take. Typically, for each deep parameter there is an open or closed interval such
that −∞ ≤ θmini ≤ θi ≤ θmaxi ≤ ∞. In Θ̂ these intervals are approximated by a grid with a finite
number of points. In addition, Θ̂ is constrained to includes only points θi for which the linearized
model has a unique solution. Lastly, the grid should be finer for regions in the parameter space
that are considered as a priori more likely.

2 Evaluate rank(H), cond(H) and the singular value decomposition (SVD) H = LQR of H(θ) at
each θi ∈ Θ̂. Since H(θ) depends only on the structure of the linearized model and the value of θ

(a) if rank(H) < dim(θ), some deep parameter or parameters cannot be identified because they
have no effect in the model, or their effect cannot be distinguished from that of other deep
parameters. In the first case one or more columns of H are zeros, which implies that the
corresponding elements of θ are unidentifiable. In the second case there is one or more sets
of columns of H that are exactly linearly dependent. The number of such sets is equal to
the number of singular values of H that are equal to zero. The columns of H that belong to
each such set can be established by identifying the non-zero elements of Li - the i-th column
of matrix L from the SVD of H that correspond to a singular value Qi = 0.

(b) if rank(H) = dim(θ), but cond(H) >> 1, then some deep parameter or parameters are not
well identified either because they have a very small effect in the model, or their effect cannot
be easily distinguished from that of other deep parameters. To find out which parameters
are involved

- compute the sensitivity si(θ) using (3.26) for each column i of H. Small values of si(θ)
imply that the parameter θi has only a marginal effect in the model.

- compute the pairwise and multiple collinearity measures (3.27). Values close to one im-
ply that the role of parameter θi in the model is very well approximated by a combination
of the other deep parameters.

3 Evaluate the rank and the condition number of Iθ. In general DSGE models, some of the state
variables are unobserved, and because of that some reduced-form parameters τ may be uniden-
tifiable. By verifying that Iθ has full rank, we make sure that θ can be identified from the
identifiable parameters or combinations of parameters in τ . This is usually the case since typi-
cally dim(θ) << dim(τ), and Iθ = H(θ)IτH(θ)′ has full rank even though Iτ does not.

The multiple collinearity coefficient (3.27), computed in step 2(b) measures the severity of the
parameter interdependence problem for each deep parameter θi. It is the absolute value of the cosine
of the angle between Hi(θ) = ∂τ

∂θi
and the linear space spanned by the other columns of H(θ). A

large value implies that locally the effect of θi on τ can be very well approximated by the effect
of a combination of all other deep parameters. However, not all other deep parameters are equally
important in this approximation. In fact it is reasonable to expect that only a small subset of them -
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those representing closely related features of the theoretical model, will be important, while the others
have only a marginal contribution.

The problem of selecting the important deep parameters is similar to that of selecting a parsimonious
set of regressors, in the linear regression framework. The motivation, however, is different. In linear
regression the goal is to improve the precision of the parameter estimates. Our goal is to find out
what feature of the model are closely related and therefore difficult to distinguish. Specifically, we
want to select a small set Ji of parameters θj 6=i such that adding one or more of the other parameters
θl /∈ Ji leads to only a small increase in the multiple collinearity coefficient, and replacing some θj ∈ Ji
by θl /∈ Ji would lead to a significantly lower value of the multiple collinearity coefficient. To select
candidates for Ji we can use the naive elastic net algorithm proposed by ?. The algorithm finds a
vector ai that minimizes the following function

‖Hi −H−iai‖2 + λ1‖ai‖1 + λ2‖ai‖2

where Hi is the i-th column of H, and H−i is H with the i-th column deleted. Our interest is in finding
the non-zero entries in the solution ai. Their number increases with the value of λ1. A positive value
of λ2, on the other hand, instructs the algorithm to keep in Ji all columns of H−i that are important in
approximating Hi, even is they exhibit strong pairwise collinearity, and therefore have only a marginal
contribution in the approximation.23

23More precisely, we need λ2
λ1+λ2

> 0 for the regression coefficients of highly collinear regressors to be similar, see ?,

Theorem 2

47



C Identification: Three Alternative Models

The three models we consider are: a simple New Keynesian model (see An and Schorfheide (2005)
for details), a simple real business cycle (RBC) model (see Chang, Doh, and Schorfheide (2007) for
details), and a two-country Open Economy model (see Lubik and Schorfheide (2005) for details). The
New Keynesian model has nominal rigidities only in prices, and no capital accumulation. It has 11
deep parameters, and 3 structural shocks - productivity, government consumption, and monetary policy.
The RBC is a standard stochastic growth model with 10 deep parameters and 2 stochastic shocks -
productivity and labor supply. The New Open Economy model is a two-country version of the New
Keynesian model with nominal rigidities in domestic and import prices. It has 32 deep parameters, and
8 structural shocks - country-specific productivity, government consumption, and monetary policy for
both countries, a world-wide technology shock, and a shock capturing deviations from the purchasing
power parity.

Table C.1: Conditioning of H for 3 different DSGE models

model Decile

dim(θ) min 1 2 3 4 5 6 7 8 9 10

New Keynesian 11 8.2 22.8 28.1 33.2 38.7 45.1 52.7 62.7 77.1 103.4 8.7e2
RBC 10 4.9 17.5 23.7 30.1 36.7 44.1 53.5 68.1 95.7 177.7 4.0e8
NOE 32 12.3 41.3 52.2 62.9 75.0 89.6 108.9 137.0 185.4 303.5 1.1e10

Note:H = ∂τ
∂θ

is the gradient of the reduced-form parameters w.r.t. θ. rank(H) = dim(θ) is a necessary condition for
identification of θ. Large values of cond(H) imply near failure of this condition, thus indicating weak identification.
The statistics were computed on the basis of 1, 000, 000 random draws of θ.
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D Monte Carlo Study: Small Example

Structural Model
Γ0yt = Γ1Etyt+1 + Γ1yt−1 + Γ3ut, (D.1)

where y is univariate and

Γ0 = (1 + δ), Γ1 = (1 + γ + γ2/2), Γ2 = (δ − γ − γ2/2), Γ3 = eγ

Parameters: δ, γ.

The reduced form solution is:
yt = Ayt−1 +Bet (D.2)

where A and B can be calculated by hand:

A =
2δ − 2γ + γ2

2 + 2γ + γ2
, B =

2eγ

2 + 2γ + γ2

Identification problems δ and γ are difficult to identify separately when γ ≈ 0. One way to see
that is by computing H given by

H =

[
∂A
∂δ

∂A
∂γ

∂B
∂δ

∂B
∂γ

]
=
[

2/(2 + 2γ + γ2) −4(1 + γ)(1 + δ)/(2 + 2γ + γ2)2

0 2eγγ2/(2 + 2γ + γ2)2

]
When γ ≈ 0 the columns of H are almost collinear, which implies that, locally, the effect on A and

B of perturbing δ is very similar to that of perturbing γ. Since the likelihood function depends on the
parameters only through A and B, this implies that they are poorly identified for γ ≈ 0. For instance,
if δ = .25 and γ = .01, the condition number of H is 51247. If δ = 3.6 and γ = 1.4, on the other hand,
the condition number of H is 11.

We can also see why the problem arises directly, by realizing that δ and γ only enter the likelihood
function as either f = 1+γ+γ2/2

1+δ or g = eγ

1+δ (we can write A = 1−f
f , and B = g

f ). When γ ≈ 0, f and
g are very similar, which make it difficult to separate δ from γ.

Table D.1: Condition number and finite sample properties of MLE: Example

Relative Bias Relative MSE
Parameter 1 2 3 4 5 1 2 3 4 5

δ -0.3 0.6 1.0 1.0 1.1 1.0 2.7 3.2 3.3 3.5
γ -0.5 -0.6 1.4 12.5 68.7 0.9 3.9 37.8 376.2 766.8

cond(H) 2.6e1 5.1e2 5.1e4 5.1e6 2.0e7 2.6e1 5.1e2 5.1e4 5.1e6 2.0e7
Note: Results from Monte Carlo study with 1000 repetitions.
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E Estimation

Table E.1: Parameter Bounds

Parameter lower bounds upper bounds
ϕ 2.000 15.000
σc 0.250 3.000
λ 0.001 0.990
ξw 0.300 0.950
σl 0.250 10.000
ξp 0.500 0.950
ιw 0.010 0.990
ιp 0.010 0.990
ψ 0.010 1.000
Φ 1.000 3.000
rπ 1.000 6.000
ρ 0.500 0.975
ry 0.001 0.500
r4y 0.001 0.500
π̄ 0.100 2.000
100(β−1 − 1) 0.010 2.000
l̄ -10.000 10.000
γ 0.100 0.800
α 0.010 1.000
δ 0.010 0.400
λw 1.000 2.000
gy 0.150 0.300
ρa 0.010 1.000
ρb 0.010 1.000
ρg 0.010 1.000
ρI 0.010 1.000
ρr 0.010 1.000
ρp 0.010 1.000
ρw 0.001 1.000
ρga 0.010 2.000
µw 0.010 1.000
µp 0.010 1.000
σa 0.010 3.000
σb 0.025 5.000
σg 0.010 3.000
σI 0.010 3.000
σr 0.010 3.000
σp 0.010 3.000
σw 0.010 3.000

50



E.1 Estimation: Restricted Model (δ = .025, λw = 1.5 and gy = .18)

Table E.2: Estimation Results:1966:1-1979:2

Param. Prior Bayesian MLE

Distr. Mean St.dev. 5% mode 95% 5% mode 95%
ϕ N 4.00 1.50 1.93 3.62 5.31 1.02 2.12 5.83
σc N 1.50 0.38 1.03 1.39 1.75 0.73 1.21 2.29
λ B 0.70 0.10 0.52 0.63 0.75 0.28 0.53 0.75
ξw B 0.50 0.10 0.54 0.66 0.77 0.50 0.73 0.94
σl N 2.00 0.75 0.45 1.52 2.59 -0.21 1.55 3.85
ξp B 0.50 0.10 0.42 0.56 0.69 0.43 0.63 0.87
ιw B 0.50 0.15 0.37 0.59 0.80 0.35 0.86 1.41
ιp B 0.50 0.15 0.16 0.46 0.75 -0.16 0.25 0.80
ψ B 0.50 0.15 0.13 0.35 0.56 0.00 0.16 0.71
Φ N 1.25 0.12 1.29 1.43 1.58 1.05 1.38 1.71
rπ N 1.50 0.25 1.35 1.66 1.97 3.00 3.00 3.00
ρ B 0.75 0.10 0.76 0.81 0.86 0.81 0.91 0.96
ry N 0.12 0.05 0.13 0.18 0.22 0.25 0.40 0.60
r4y N 0.12 0.05 0.16 0.21 0.26 0.18 0.27 0.40
π̄ G 0.62 0.10 0.54 0.72 0.90 0.44 0.76 1.18
100(β−1 − 1) G 0.25 0.10 0.05 0.15 0.24 0.01 0.01 0.01
l̄ N 0.00 2.00 -0.99 0.03 1.05 -2.99 0.04 3.23
γ N 0.40 0.10 0.27 0.34 0.40 0.15 0.32 0.50
α N 0.30 0.05 0.16 0.20 0.23 0.07 0.15 0.24
ρa B 0.50 0.20 0.96 0.97 0.99 0.94 0.99 1.00
ρb B 0.50 0.20 0.12 0.40 0.68 0.22 0.60 0.92
ρg B 0.50 0.20 0.86 0.91 0.96 0.74 0.91 1.00
ρI B 0.50 0.20 0.44 0.61 0.77 0.17 0.47 0.97
ρr B 0.50 0.20 0.17 0.22 0.27 -0.34 0.07 0.48
ρp B 0.50 0.20 0.12 0.51 0.90 0.26 0.82 1.00
ρw B 0.50 0.20 0.93 0.97 1.00 0.96 1.00 1.00
ρga B 0.50 0.25 0.41 0.59 0.77 0.19 0.55 0.92
µw B 0.50 0.20 0.73 0.85 0.96 0.87 0.97 1.00
µp B 0.50 0.20 0.13 0.46 0.79 0.34 0.98 1.17
σa IG 0.10 2.00 0.50 0.58 0.66 0.43 0.61 0.91
σb IG 0.10 2.00 0.16 0.23 0.29 0.11 0.20 0.39
σg IG 0.10 2.00 0.46 0.54 0.63 0.40 0.52 0.87
σI IG 0.10 2.00 0.37 0.52 0.67 0.24 0.56 1.03
σr IG 0.10 2.00 0.17 0.20 0.24 0.16 0.21 0.31
σp IG 0.10 2.00 0.18 0.22 0.27 0.12 0.26 0.42
σw IG 0.10 2.00 0.17 0.20 0.24 0.17 0.25 0.36
Log Likelihood: -320.24 -303.56
cond(Iθ): 4.0e7 1.0e9
Note: δ = .025, λw = 1.5 and gy = .18 are fixed. π̄, and l̄ are quarterly steady state inflation rate, and steady
state hours worked.
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Table E.3: Estimation Results: 1984:1-2004:4

Param. Prior Bayesian MLE

Distr. Mean St.dev. 5% mode 95% 5% mode 95%
ϕ N 4.00 1.50 4.39 6.23 8.07 14.84 14.97 15.04
σc N 1.50 0.38 1.26 1.48 1.69 1.33 1.71 2.38
λ B 0.70 0.10 0.62 0.69 0.75 0.59 0.72 0.84
ξw B 0.50 0.10 0.53 0.75 0.96 0.94 0.95 0.95
σl N 2.00 0.75 1.20 2.30 3.40 1.19 2.42 5.14
ξp B 0.50 0.10 0.67 0.74 0.80 0.61 0.83 0.92
ιw B 0.50 0.15 0.20 0.47 0.73 -0.14 0.27 0.81
ιp B 0.50 0.15 0.07 0.21 0.36 0.01 0.01 0.01
ψ B 0.50 0.15 0.52 0.70 0.88 0.99 1.00 1.00
Φ N 1.25 0.12 1.39 1.54 1.69 1.40 1.59 2.11
rπ N 1.50 0.25 1.29 1.77 2.25 1.56 2.39 3.17
ρ B 0.75 0.10 0.81 0.84 0.88 0.83 0.89 0.95
ry N 0.12 0.05 0.00 0.09 0.17 0.01 0.10 0.21
r4y N 0.12 0.05 0.13 0.16 0.19 0.11 0.20 0.30
π̄ G 0.62 0.10 0.51 0.67 0.84 0.52 0.83 1.12
100(β−1 − 1) G 0.25 0.10 0.05 0.13 0.21 0.00 0.00 0.34
l̄ N 0.00 2.00 -2.54 -0.55 1.44 -4.58 0.57 3.04
γ N 0.40 0.10 0.41 0.45 0.48 0.27 0.40 0.50
α N 0.30 0.05 0.18 0.22 0.25 0.12 0.17 0.24
ρa B 0.50 0.20 0.91 0.94 0.97 0.92 0.98 1.00
ρb B 0.50 0.20 0.01 0.14 0.28 -0.38 0.09 0.37
ρg B 0.50 0.20 0.95 0.97 0.98 0.92 0.97 1.00
ρI B 0.50 0.20 0.53 0.65 0.76 0.49 0.75 0.92
ρr B 0.50 0.20 0.13 0.30 0.46 -0.18 0.12 0.47
ρp B 0.50 0.20 0.53 0.75 0.96 0.67 0.89 1.00
ρw B 0.50 0.20 0.58 0.83 1.07 0.18 0.65 0.90
ρga B 0.50 0.25 0.22 0.40 0.58 -0.12 0.41 0.64
µw B 0.50 0.20 0.34 0.62 0.90 -0.09 0.52 0.88
µp B 0.50 0.20 0.30 0.60 0.89 0.41 0.81 0.97
σa IG 0.10 2.00 0.32 0.35 0.39 0.28 0.37 0.45
σb IG 0.10 2.00 0.16 0.19 0.22 0.15 0.21 0.30
σg IG 0.10 2.00 0.37 0.42 0.46 0.34 0.47 0.55
σI IG 0.10 2.00 0.32 0.40 0.48 0.20 0.31 0.51
σr IG 0.10 2.00 0.11 0.12 0.14 0.09 0.12 0.15
σp IG 0.10 2.00 0.10 0.12 0.13 0.05 0.13 0.18
σw IG 0.10 2.00 0.17 0.22 0.27 0.15 0.22 0.34
Log Likelihood: -337.76 -304.35
cond(Iθ): 6.6e7 3.1e8
Note: δ = .025, λw = 1.5 and gy = .18 are fixed. π̄, and l̄ are quarterly steady state inflation rate, and steady
state hours worked.
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E.2 Estimation: Unrestricted Model

Table E.4: Estimation Results: MLE

Parameter 1966:1-2004:4 1966:1-1979:2 1984:1-2004:4

5% mode 95% 5% mode 95% 5% mode 95%

ϕ 4.13 7.92 13.63 2.00 2.00 2.00 14.96 15.00 15.10
σc 1.27 1.68 2.37 0.83 1.19 2.00 1.35 1.62 2.38
λ 0.59 0.72 0.86 0.28 0.53 0.68 0.55 0.70 0.83
ξw 0.61 0.85 0.98 0.47 0.74 0.96 0.95 0.95 0.96
σl 1.08 2.88 5.18 0.08 1.61 3.63 0.82 2.47 5.17
ξp 0.51 0.67 0.85 0.45 0.64 0.84 0.66 0.79 0.93
ιw 0.32 0.79 1.18 0.39 0.84 1.26 -0.14 0.44 0.91
ιp 0.01 0.01 0.01 -0.13 0.22 0.69 0.01 0.01 0.01
ψ 0.37 0.75 1.17 0.00 0.18 0.76 1.00 1.00 1.01
Φ 1.52 1.81 2.15 1.08 1.35 1.61 1.38 1.63 2.01
rπ 3.00 3.00 3.00 3.00 3.00 3.00 1.76 2.60 3.33
ρ 0.83 0.89 0.93 0.81 0.90 0.95 0.83 0.88 0.96
ry 0.07 0.19 0.26 0.24 0.41 0.59 0.03 0.09 0.22
r4y 0.19 0.27 0.40 0.19 0.28 0.41 0.12 0.21 0.30
π̄ 0.73 1.00 1.35 1.01 1.32 1.70 0.57 0.78 1.07
100(β−1 − 1) 0.01 0.01 0.01 0.01 0.01 0.01 0.00 0.02 0.28
l̄ -3.68 -0.69 1.75 -5.20 -1.41 0.83 -4.55 -2.28 2.94
γ 0.35 0.41 0.48 0.15 0.32 0.52 0.28 0.36 0.50
α 0.14 0.20 0.28 0.10 0.17 0.25 0.12 0.19 0.27
δ 0.00 0.02 0.05 0.01 0.02 0.03 0.01 0.02 0.05
λw 1.25 1.77 4.15 0.93 1.54 3.10 1.01 1.53 2.55
gy 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30
ρa 0.93 0.97 0.99 0.97 0.99 1.00 0.96 0.98 1.00
ρb -0.11 0.12 0.47 0.19 0.61 0.91 -0.32 0.09 0.40
ρg 0.94 0.98 1.00 0.76 0.93 0.99 0.91 0.96 0.99
ρI 0.48 0.69 0.85 0.07 0.47 0.87 0.44 0.68 0.88
ρr 0.01 0.01 0.01 -0.23 0.07 0.39 -0.11 0.19 0.42
ρp 0.72 0.94 1.00 0.38 0.83 1.00 0.69 0.93 1.00
ρw 0.92 0.98 1.00 0.96 0.99 1.00 0.19 0.66 0.90
ρga 0.20 0.51 0.85 0.26 0.62 0.99 -0.03 0.32 0.65
µw 0.89 0.97 1.00 0.86 0.97 1.02 -0.05 0.55 0.87
µp 0.29 0.76 0.93 0.85 0.99 1.22 0.44 0.83 0.96
σa 0.33 0.43 0.54 0.42 0.61 0.85 0.26 0.37 0.47
σb 0.19 0.26 0.35 0.11 0.20 0.31 0.13 0.20 0.30
σg 0.43 0.51 0.63 0.38 0.50 0.73 0.30 0.38 0.50
σI 0.33 0.46 0.63 0.32 0.57 0.92 0.23 0.35 0.51
σr 0.20 0.23 0.28 0.16 0.21 0.31 0.09 0.12 0.15
σp 0.06 0.12 0.20 0.20 0.27 0.41 0.06 0.12 0.17
σw 0.21 0.27 0.33 0.17 0.25 0.32 0.16 0.24 0.35

Log Likelihood: -814.06 -301.31 -299.65
cond(Iθ): 6.0e7 1.8e9 4.2e8

Note: δ, λw, and gy are estimated
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F Impulse responses
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Figure F.2: Impulse Responses to a productivity shock
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Figure F.3: Impulse Responses to risk premium shock
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Figure F.4: Impulse Responses to exogenous spending shock
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Figure F.5: Impulse Responses to investment shock
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Figure F.6: Impulse Responses to monetary policy shock
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Figure F.7: Impulse Responses to price markup shock
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Figure F.8: Impulse Responses to wage markup shock
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G Variance Decompositions

Table G.1: Variance Decomposition: Bayesian 1966:1-2004:4

product- risk exog. invest- monetary price wage
qrt ivity premium spend. ment policy markup markup

1 Output 0.164 0.264 0.363 0.136 0.053 0.019 0.002
Consumption 0.022 0.817 0.011 0.002 0.112 0.012 0.024
Investment 0.033 0.037 0.004 0.879 0.026 0.019 0.002
Hours 0.234 0.239 0.337 0.123 0.047 0.007 0.014
Inflation 0.036 0.004 0.002 0.014 0.019 0.725 0.199
Wages 0.018 0.007 0.000 0.003 0.004 0.292 0.676
interest rate 0.077 0.204 0.014 0.020 0.583 0.075 0.027

2 Output 0.193 0.210 0.274 0.200 0.077 0.035 0.011
Consumption 0.047 0.671 0.022 0.001 0.169 0.030 0.060
Investment 0.043 0.020 0.006 0.877 0.027 0.025 0.004
Hours 0.172 0.215 0.292 0.193 0.077 0.021 0.031
Inflation 0.047 0.006 0.004 0.022 0.030 0.597 0.295
Wages 0.031 0.009 0.000 0.010 0.011 0.297 0.642
interest rate 0.106 0.190 0.020 0.052 0.477 0.100 0.055

4 Output 0.242 0.124 0.179 0.250 0.093 0.067 0.044
Consumption 0.097 0.413 0.043 0.001 0.207 0.072 0.167
Investment 0.063 0.009 0.008 0.846 0.026 0.038 0.010
Hours 0.101 0.151 0.231 0.262 0.108 0.056 0.091
Inflation 0.052 0.007 0.005 0.031 0.042 0.464 0.399
Wages 0.056 0.011 0.001 0.026 0.022 0.330 0.555
interest rate 0.132 0.152 0.026 0.129 0.327 0.115 0.118

10 Output 0.312 0.046 0.088 0.196 0.064 0.111 0.183
Consumption 0.144 0.124 0.064 0.010 0.112 0.111 0.435
Investment 0.126 0.004 0.019 0.709 0.021 0.069 0.052
Hours 0.044 0.069 0.145 0.202 0.086 0.114 0.341
Inflation 0.046 0.007 0.006 0.037 0.053 0.346 0.505
Wages 0.126 0.008 0.000 0.059 0.032 0.407 0.368
interest rate 0.119 0.103 0.028 0.224 0.204 0.093 0.230

40 Output 0.308 0.018 0.045 0.089 0.026 0.071 0.443
Consumption 0.116 0.030 0.078 0.034 0.029 0.052 0.661
Investment 0.196 0.002 0.045 0.472 0.014 0.069 0.201
Hours 0.021 0.029 0.096 0.092 0.037 0.067 0.659
Inflation 0.041 0.006 0.008 0.035 0.048 0.298 0.564
Wages 0.291 0.004 0.004 0.072 0.022 0.398 0.208
interest rate 0.105 0.084 0.033 0.206 0.168 0.077 0.327

100 Output 0.295 0.016 0.042 0.079 0.023 0.063 0.482
Consumption 0.105 0.023 0.090 0.032 0.022 0.042 0.686
Investment 0.192 0.002 0.051 0.456 0.013 0.066 0.219
Hours 0.020 0.026 0.105 0.086 0.034 0.062 0.668
Inflation 0.040 0.006 0.010 0.034 0.046 0.285 0.579
Wages 0.314 0.004 0.010 0.072 0.021 0.377 0.202
interest rate 0.104 0.077 0.039 0.194 0.154 0.071 0.361

Note: Based on the posterior mode of θ reported in Smets and Wouters (2007). δ = .025, λw = 1.5 and
gy = .18 are fixed.
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Table G.2: Variance Decomposition: MLE1 1966:1-2004:4

product- risk exog. invest- monetary price wage
qrt ivity premium spend. ment policy markup markup

1 Output 0.150 0.252 0.393 0.151 0.039 0.012 0.002
Consumption 0.037 0.828 0.015 0.000 0.090 0.010 0.020
Investment 0.025 0.022 0.004 0.918 0.017 0.014 0.000
Hours 0.344 0.195 0.304 0.116 0.030 0.005 0.006
Inflation 0.041 0.001 0.002 0.001 0.006 0.769 0.180
Wages 0.018 0.000 0.000 0.001 0.000 0.283 0.698
interest rate 0.091 0.193 0.021 0.021 0.593 0.064 0.017

2 Output 0.183 0.194 0.296 0.235 0.061 0.025 0.007
Consumption 0.079 0.669 0.031 0.003 0.145 0.027 0.046
Investment 0.033 0.011 0.005 0.913 0.018 0.019 0.000
Hours 0.277 0.176 0.273 0.188 0.055 0.016 0.014
Inflation 0.052 0.001 0.002 0.001 0.009 0.694 0.241
Wages 0.025 0.000 0.000 0.005 0.001 0.260 0.709
interest rate 0.130 0.181 0.030 0.052 0.484 0.089 0.033

4 Output 0.234 0.109 0.186 0.312 0.080 0.056 0.024
Consumption 0.157 0.387 0.056 0.021 0.192 0.074 0.112
Investment 0.049 0.005 0.007 0.884 0.020 0.033 0.001
Hours 0.186 0.128 0.224 0.278 0.091 0.052 0.041
Inflation 0.058 0.001 0.003 0.002 0.012 0.622 0.303
Wages 0.039 0.001 0.000 0.014 0.003 0.291 0.652
interest rate 0.162 0.142 0.036 0.125 0.345 0.124 0.067

10 Output 0.312 0.037 0.081 0.276 0.067 0.138 0.090
Consumption 0.225 0.101 0.073 0.070 0.120 0.161 0.250
Investment 0.110 0.002 0.015 0.752 0.022 0.090 0.009
Hours 0.083 0.062 0.145 0.257 0.101 0.177 0.176
Inflation 0.059 0.001 0.004 0.001 0.015 0.528 0.391
Wages 0.083 0.001 0.000 0.041 0.010 0.416 0.449
interest rate 0.156 0.093 0.034 0.207 0.214 0.146 0.149

40 Output 0.370 0.012 0.031 0.130 0.027 0.152 0.278
Consumption 0.222 0.020 0.085 0.077 0.031 0.133 0.431
Investment 0.234 0.001 0.040 0.476 0.016 0.156 0.078
Hours 0.036 0.025 0.089 0.115 0.047 0.178 0.509
Inflation 0.052 0.001 0.006 0.003 0.015 0.432 0.491
Wages 0.219 0.001 0.004 0.057 0.009 0.540 0.171
interest rate 0.142 0.071 0.039 0.186 0.166 0.124 0.271

100 Output 0.371 0.010 0.026 0.110 0.022 0.130 0.330
Consumption 0.215 0.015 0.104 0.064 0.023 0.105 0.473
Investment 0.240 0.001 0.049 0.453 0.015 0.149 0.094
Hours 0.039 0.022 0.097 0.105 0.041 0.158 0.539
Inflation 0.052 0.001 0.008 0.004 0.014 0.406 0.516
Wages 0.275 0.001 0.011 0.055 0.008 0.504 0.147
interest rate 0.145 0.063 0.048 0.172 0.146 0.116 0.311

Note: δ = .025, λw = 1.5 and gy = .18 are fixed.
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Table G.3: Variance Decomposition: MLE2 1966:1-2004:4

product- risk exog. invest- monetary price wage
qrt ivity premium spend. ment policy markup markup

1 Output 0.176 0.255 0.361 0.165 0.033 0.010 0.001
Consumption 0.032 0.863 0.011 0.000 0.075 0.006 0.013
Investment 0.027 0.023 0.006 0.918 0.015 0.012 0.000
Hours 0.303 0.215 0.306 0.138 0.028 0.004 0.005
Inflation 0.041 0.001 0.001 0.001 0.007 0.762 0.187
Wages 0.020 0.000 0.000 0.001 0.000 0.280 0.698
interest rate 0.091 0.239 0.023 0.023 0.542 0.061 0.020

2 Output 0.209 0.194 0.271 0.249 0.052 0.020 0.004
Consumption 0.073 0.723 0.024 0.001 0.128 0.018 0.033
Investment 0.035 0.011 0.007 0.914 0.016 0.017 0.000
Hours 0.240 0.192 0.273 0.217 0.051 0.013 0.012
Inflation 0.051 0.001 0.002 0.001 0.010 0.685 0.250
Wages 0.028 0.000 0.000 0.005 0.001 0.255 0.712
interest rate 0.129 0.222 0.033 0.058 0.435 0.086 0.037

4 Output 0.265 0.109 0.170 0.320 0.071 0.046 0.018
Consumption 0.162 0.441 0.049 0.013 0.185 0.058 0.092
Investment 0.053 0.004 0.011 0.884 0.018 0.029 0.001
Hours 0.158 0.139 0.224 0.310 0.088 0.045 0.037
Inflation 0.056 0.001 0.002 0.001 0.014 0.613 0.313
Wages 0.046 0.001 0.000 0.014 0.003 0.279 0.657
interest rate 0.157 0.172 0.040 0.138 0.303 0.117 0.073

10 Output 0.359 0.038 0.073 0.268 0.062 0.119 0.081
Consumption 0.254 0.117 0.071 0.057 0.123 0.143 0.235
Investment 0.120 0.002 0.023 0.749 0.019 0.077 0.011
Hours 0.074 0.069 0.146 0.271 0.103 0.163 0.175
Inflation 0.055 0.001 0.003 0.001 0.018 0.518 0.404
Wages 0.103 0.001 0.000 0.041 0.010 0.389 0.456
interest rate 0.147 0.114 0.038 0.228 0.187 0.134 0.153

40 Output 0.426 0.012 0.027 0.126 0.025 0.123 0.260
Consumption 0.252 0.023 0.084 0.073 0.031 0.110 0.426
Investment 0.252 0.001 0.057 0.488 0.014 0.119 0.070
Hours 0.036 0.028 0.087 0.123 0.049 0.158 0.520
Inflation 0.047 0.001 0.004 0.002 0.017 0.423 0.505
Wages 0.279 0.000 0.006 0.060 0.009 0.468 0.178
interest rate 0.130 0.091 0.040 0.207 0.151 0.114 0.267

100 Output 0.424 0.010 0.022 0.106 0.021 0.103 0.314
Consumption 0.248 0.017 0.097 0.062 0.023 0.083 0.472
Investment 0.262 0.001 0.066 0.459 0.013 0.113 0.086
Hours 0.039 0.024 0.089 0.109 0.042 0.138 0.559
Inflation 0.045 0.001 0.005 0.003 0.016 0.394 0.537
Wages 0.350 0.000 0.015 0.058 0.008 0.418 0.151
interest rate 0.131 0.081 0.045 0.191 0.135 0.105 0.310

Note: δ, λw, and gy are estimated.
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Table G.4: Variance Decomposition: Bayesian 1966:1-1979:2

product- risk exog. invest- monetary price wage
qrt ivity premium spend. ment policy markup markup

1 Output 0.279 0.265 0.300 0.091 0.049 0.013 0.002
Consumption 0.086 0.792 0.000 0.001 0.110 0.011 0.000
Investment 0.061 0.083 0.020 0.794 0.034 0.008 0.000
Hours 0.141 0.315 0.370 0.111 0.057 0.005 0.001
Inflation 0.072 0.011 0.004 0.008 0.022 0.644 0.240
Wages 0.106 0.023 0.002 0.003 0.009 0.359 0.499
interest rate 0.114 0.342 0.038 0.018 0.345 0.068 0.075

2 Output 0.336 0.240 0.218 0.119 0.068 0.019 0.001
Consumption 0.155 0.676 0.001 0.001 0.143 0.021 0.003
Investment 0.088 0.057 0.028 0.779 0.036 0.010 0.002
Hours 0.091 0.328 0.312 0.161 0.091 0.013 0.004
Inflation 0.097 0.017 0.007 0.014 0.038 0.427 0.401
Wages 0.204 0.030 0.003 0.006 0.016 0.283 0.458
interest rate 0.129 0.338 0.046 0.040 0.247 0.063 0.139

4 Output 0.457 0.161 0.140 0.129 0.076 0.024 0.012
Consumption 0.312 0.457 0.005 0.001 0.158 0.034 0.033
Investment 0.154 0.031 0.044 0.713 0.035 0.011 0.012
Hours 0.055 0.279 0.259 0.212 0.128 0.027 0.039
Inflation 0.092 0.020 0.008 0.019 0.053 0.257 0.551
Wages 0.382 0.029 0.003 0.012 0.025 0.185 0.363
interest rate 0.132 0.280 0.051 0.079 0.144 0.041 0.274

10 Output 0.622 0.068 0.064 0.078 0.045 0.015 0.109
Consumption 0.503 0.173 0.013 0.000 0.081 0.020 0.209
Investment 0.329 0.013 0.079 0.468 0.022 0.007 0.081
Hours 0.054 0.165 0.170 0.163 0.101 0.024 0.322
Inflation 0.066 0.015 0.008 0.018 0.055 0.181 0.657
Wages 0.682 0.014 0.001 0.015 0.020 0.080 0.187
interest rate 0.096 0.180 0.044 0.098 0.086 0.026 0.471

40 Output 0.659 0.032 0.031 0.037 0.021 0.007 0.212
Consumption 0.553 0.059 0.014 0.008 0.028 0.007 0.330
Investment 0.528 0.006 0.066 0.223 0.010 0.003 0.163
Hours 0.043 0.092 0.100 0.096 0.057 0.014 0.599
Inflation 0.056 0.012 0.007 0.015 0.044 0.146 0.720
Wages 0.874 0.005 0.002 0.010 0.008 0.030 0.071
interest rate 0.080 0.132 0.034 0.076 0.064 0.019 0.594

100 Output 0.670 0.029 0.028 0.034 0.019 0.006 0.212
Consumption 0.600 0.044 0.013 0.009 0.021 0.005 0.308
Investment 0.563 0.006 0.059 0.199 0.009 0.003 0.160
Hours 0.078 0.086 0.095 0.091 0.053 0.013 0.584
Inflation 0.060 0.012 0.007 0.015 0.042 0.140 0.725
Wages 0.895 0.004 0.002 0.009 0.006 0.024 0.060
interest rate 0.098 0.122 0.033 0.071 0.059 0.018 0.600

Note: Based on the posterior mode of θ reported in Smets and Wouters (2007). δ = .025, λw = 1.5 and
gy = .18 are fixed.
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Table G.5: Variance Decomposition: MLE1 1966:1-1979:2

product- risk exog. invest- monetary price wage
qrt ivity premium spend. ment policy markup markup

1 Output 0.403 0.252 0.225 0.037 0.068 0.014 0.001
Consumption 0.267 0.562 0.011 0.005 0.120 0.032 0.004
Investment 0.039 0.166 0.041 0.660 0.084 0.001 0.008
Hours 0.102 0.380 0.345 0.057 0.102 0.013 0.001
Inflation 0.160 0.006 0.001 0.000 0.033 0.421 0.379
Wages 0.188 0.007 0.000 0.000 0.001 0.121 0.683
interest rate 0.089 0.527 0.030 0.004 0.299 0.000 0.050

2 Output 0.473 0.239 0.152 0.040 0.085 0.009 0.001
Consumption 0.371 0.449 0.015 0.005 0.123 0.026 0.012
Investment 0.065 0.150 0.058 0.616 0.102 0.001 0.007
Hours 0.057 0.424 0.277 0.072 0.151 0.015 0.004
Inflation 0.151 0.006 0.001 0.001 0.039 0.392 0.411
Wages 0.306 0.013 0.000 0.000 0.005 0.108 0.567
interest rate 0.089 0.589 0.032 0.009 0.194 0.008 0.078

4 Output 0.603 0.167 0.093 0.034 0.091 0.005 0.006
Consumption 0.543 0.274 0.018 0.005 0.107 0.013 0.039
Investment 0.134 0.116 0.096 0.516 0.123 0.010 0.004
Hours 0.041 0.396 0.228 0.081 0.213 0.011 0.029
Inflation 0.118 0.006 0.001 0.001 0.043 0.419 0.413
Wages 0.465 0.016 0.001 0.001 0.013 0.129 0.376
interest rate 0.084 0.570 0.032 0.016 0.119 0.038 0.140

10 Output 0.745 0.068 0.040 0.016 0.054 0.027 0.050
Consumption 0.698 0.099 0.015 0.003 0.050 0.015 0.121
Investment 0.336 0.052 0.153 0.274 0.100 0.072 0.014
Hours 0.058 0.245 0.153 0.057 0.186 0.076 0.225
Inflation 0.091 0.005 0.001 0.000 0.052 0.342 0.509
Wages 0.724 0.008 0.000 0.001 0.017 0.101 0.150
interest rate 0.068 0.453 0.028 0.020 0.085 0.053 0.293

40 Output 0.787 0.025 0.015 0.006 0.020 0.015 0.130
Consumption 0.746 0.027 0.007 0.001 0.014 0.006 0.198
Investment 0.636 0.019 0.100 0.099 0.037 0.046 0.064
Hours 0.063 0.109 0.072 0.026 0.083 0.050 0.596
Inflation 0.064 0.003 0.000 0.000 0.039 0.242 0.652
Wages 0.928 0.002 0.000 0.000 0.005 0.032 0.033
interest rate 0.045 0.297 0.019 0.013 0.057 0.037 0.531

100 Output 0.710 0.012 0.007 0.003 0.010 0.007 0.250
Consumption 0.669 0.009 0.003 0.000 0.004 0.002 0.313
Investment 0.749 0.008 0.045 0.044 0.017 0.021 0.116
Hours 0.123 0.038 0.026 0.009 0.029 0.018 0.757
Inflation 0.030 0.002 0.000 0.000 0.018 0.112 0.839
Wages 0.971 0.001 0.000 0.000 0.002 0.013 0.013
interest rate 0.024 0.125 0.008 0.006 0.024 0.016 0.797

Note: δ = .025, λw = 1.5 and gy = .18 are fixed.
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Table G.6: Variance Decomposition: MLE2 1966:1-1979:2

product- risk exog. invest- monetary price wage
qrt ivity premium spend. ment policy markup markup

1 Output 0.434 0.250 0.190 0.047 0.062 0.015 0.001
Consumption 0.275 0.558 0.014 0.007 0.109 0.034 0.004
Investment 0.032 0.180 0.038 0.666 0.078 0.002 0.005
Hours 0.069 0.413 0.319 0.079 0.103 0.016 0.001
Inflation 0.176 0.006 0.001 0.001 0.028 0.410 0.378
Wages 0.191 0.006 0.000 0.000 0.001 0.118 0.685
interest rate 0.095 0.547 0.028 0.007 0.270 0.000 0.052

2 Output 0.498 0.238 0.127 0.050 0.078 0.009 0.001
Consumption 0.380 0.445 0.018 0.008 0.111 0.027 0.012
Investment 0.054 0.166 0.055 0.625 0.094 0.001 0.004
Hours 0.035 0.452 0.248 0.095 0.148 0.016 0.005
Inflation 0.163 0.006 0.001 0.001 0.032 0.400 0.398
Wages 0.307 0.011 0.000 0.001 0.004 0.106 0.571
interest rate 0.092 0.606 0.029 0.013 0.172 0.009 0.078

4 Output 0.621 0.167 0.076 0.041 0.082 0.006 0.006
Consumption 0.552 0.272 0.022 0.007 0.095 0.014 0.038
Investment 0.115 0.133 0.093 0.532 0.117 0.008 0.002
Hours 0.035 0.418 0.199 0.102 0.203 0.012 0.031
Inflation 0.129 0.006 0.001 0.001 0.035 0.429 0.400
Wages 0.467 0.013 0.000 0.001 0.010 0.127 0.381
interest rate 0.084 0.588 0.027 0.022 0.104 0.041 0.134

10 Output 0.758 0.068 0.033 0.019 0.049 0.027 0.046
Consumption 0.710 0.099 0.019 0.003 0.044 0.015 0.110
Investment 0.300 0.064 0.156 0.291 0.097 0.071 0.021
Hours 0.074 0.256 0.133 0.069 0.174 0.076 0.219
Inflation 0.102 0.005 0.001 0.000 0.043 0.358 0.492
Wages 0.725 0.007 0.000 0.001 0.013 0.102 0.151
interest rate 0.069 0.480 0.024 0.025 0.076 0.056 0.271

40 Output 0.807 0.026 0.013 0.007 0.019 0.015 0.113
Consumption 0.773 0.027 0.010 0.002 0.012 0.006 0.170
Investment 0.582 0.024 0.112 0.110 0.038 0.048 0.085
Hours 0.068 0.123 0.070 0.034 0.084 0.054 0.567
Inflation 0.073 0.003 0.000 0.000 0.033 0.259 0.631
Wages 0.929 0.001 0.000 0.000 0.004 0.032 0.032
interest rate 0.049 0.335 0.017 0.018 0.055 0.041 0.486

100 Output 0.794 0.013 0.007 0.004 0.010 0.008 0.165
Consumption 0.772 0.009 0.004 0.001 0.004 0.002 0.208
Investment 0.738 0.011 0.051 0.049 0.017 0.021 0.113
Hours 0.165 0.057 0.033 0.016 0.039 0.025 0.665
Inflation 0.044 0.002 0.000 0.000 0.019 0.154 0.780
Wages 0.972 0.001 0.000 0.000 0.001 0.013 0.013
interest rate 0.034 0.189 0.010 0.010 0.031 0.023 0.702

Note: δ, λw, and gy are estimated.
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Table G.7: Variance Decomposition: Bayesian 1984:1-2004:4

product- risk exog. invest- monetary price wage
qrt ivity premium spend. ment policy markup markup

1 Output 0.082 0.237 0.390 0.222 0.057 0.011 0.000
Consumption 0.005 0.844 0.006 0.001 0.129 0.010 0.005
Investment 0.019 0.024 0.004 0.918 0.026 0.008 0.001
Hours 0.271 0.187 0.314 0.174 0.044 0.005 0.005
Inflation 0.027 0.002 0.005 0.014 0.024 0.756 0.172
Wages 0.002 0.004 0.001 0.009 0.006 0.127 0.851
interest rate 0.119 0.192 0.036 0.052 0.476 0.088 0.035

2 Output 0.095 0.182 0.294 0.317 0.090 0.021 0.001
Consumption 0.013 0.703 0.014 0.008 0.218 0.025 0.018
Investment 0.025 0.013 0.006 0.913 0.029 0.011 0.002
Hours 0.210 0.162 0.269 0.258 0.077 0.012 0.012
Inflation 0.040 0.003 0.008 0.022 0.039 0.617 0.270
Wages 0.003 0.005 0.001 0.017 0.012 0.108 0.854
interest rate 0.142 0.153 0.045 0.103 0.403 0.092 0.062

4 Output 0.124 0.109 0.196 0.396 0.124 0.038 0.013
Consumption 0.038 0.451 0.032 0.033 0.316 0.060 0.070
Investment 0.041 0.007 0.010 0.885 0.034 0.016 0.007
Hours 0.139 0.114 0.215 0.341 0.122 0.029 0.039
Inflation 0.049 0.005 0.012 0.032 0.060 0.470 0.371
Wages 0.006 0.006 0.002 0.035 0.023 0.100 0.830
interest rate 0.160 0.110 0.054 0.201 0.279 0.083 0.113

10 Output 0.208 0.050 0.110 0.364 0.121 0.057 0.089
Consumption 0.092 0.166 0.072 0.091 0.245 0.083 0.251
Investment 0.098 0.003 0.027 0.769 0.039 0.026 0.038
Hours 0.077 0.067 0.162 0.319 0.142 0.056 0.178
Inflation 0.052 0.005 0.018 0.038 0.085 0.380 0.422
Wages 0.025 0.006 0.002 0.079 0.045 0.112 0.733
interest rate 0.153 0.075 0.061 0.299 0.176 0.057 0.179

40 Output 0.324 0.032 0.075 0.270 0.085 0.044 0.170
Consumption 0.150 0.070 0.170 0.150 0.117 0.045 0.299
Investment 0.167 0.003 0.077 0.620 0.033 0.023 0.077
Hours 0.062 0.052 0.160 0.265 0.118 0.050 0.293
Inflation 0.053 0.005 0.026 0.047 0.087 0.371 0.410
Wages 0.109 0.005 0.006 0.117 0.052 0.113 0.598
interest rate 0.152 0.067 0.085 0.306 0.161 0.053 0.175

100 Output 0.331 0.031 0.075 0.268 0.084 0.044 0.168
Consumption 0.153 0.063 0.209 0.154 0.105 0.041 0.274
Investment 0.167 0.003 0.082 0.617 0.033 0.023 0.076
Hours 0.063 0.051 0.170 0.264 0.116 0.049 0.288
Inflation 0.054 0.005 0.030 0.049 0.087 0.367 0.407
Wages 0.117 0.005 0.012 0.118 0.051 0.111 0.587
interest rate 0.154 0.065 0.099 0.305 0.155 0.052 0.171

Note: Based on the posterior mode of θ reported in Smets and Wouters (2007). δ = .025, λw = 1.5 and
gy = .18 are fixed.
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Table G.8: Variance Decomposition: MLE1 1984:1-2004:4

product- risk exog. invest- monetary price wage
qrt ivity premium spend. ment policy markup markup

1 Output 0.103 0.222 0.394 0.234 0.032 0.011 0.005
Consumption 0.027 0.832 0.004 0.017 0.088 0.016 0.017
Investment 0.009 0.006 0.002 0.968 0.007 0.009 0.000
Hours 0.340 0.163 0.290 0.172 0.023 0.008 0.003
Inflation 0.031 0.000 0.001 0.001 0.001 0.819 0.147
Wages 0.004 0.000 0.000 0.001 0.000 0.110 0.885
interest rate 0.085 0.190 0.027 0.031 0.537 0.116 0.015

2 Output 0.115 0.156 0.290 0.356 0.050 0.021 0.011
Consumption 0.058 0.651 0.008 0.049 0.154 0.038 0.042
Investment 0.012 0.003 0.002 0.963 0.008 0.012 0.000
Hours 0.274 0.137 0.256 0.261 0.044 0.018 0.009
Inflation 0.045 0.000 0.002 0.002 0.002 0.729 0.221
Wages 0.006 0.000 0.000 0.001 0.000 0.093 0.900
interest rate 0.118 0.150 0.037 0.066 0.481 0.120 0.028

4 Output 0.135 0.083 0.177 0.468 0.069 0.042 0.025
Consumption 0.113 0.352 0.015 0.131 0.213 0.080 0.096
Investment 0.019 0.001 0.003 0.945 0.010 0.020 0.001
Hours 0.182 0.094 0.204 0.369 0.077 0.046 0.029
Inflation 0.058 0.000 0.003 0.003 0.002 0.633 0.300
Wages 0.010 0.000 0.000 0.003 0.000 0.099 0.888
interest rate 0.151 0.106 0.046 0.138 0.369 0.129 0.059

10 Output 0.181 0.029 0.078 0.470 0.072 0.090 0.080
Consumption 0.163 0.086 0.020 0.250 0.153 0.130 0.197
Investment 0.051 0.001 0.007 0.863 0.016 0.052 0.010
Hours 0.078 0.046 0.130 0.388 0.107 0.127 0.124
Inflation 0.071 0.000 0.005 0.007 0.003 0.526 0.388
Wages 0.029 0.000 0.000 0.011 0.000 0.155 0.804
interest rate 0.166 0.067 0.051 0.215 0.239 0.127 0.134

40 Output 0.296 0.010 0.031 0.302 0.045 0.101 0.214
Consumption 0.230 0.019 0.028 0.245 0.061 0.102 0.315
Investment 0.170 0.001 0.022 0.624 0.018 0.096 0.069
Hours 0.042 0.022 0.088 0.233 0.080 0.154 0.381
Inflation 0.080 0.000 0.009 0.013 0.003 0.474 0.421
Wages 0.157 0.000 0.002 0.058 0.002 0.281 0.501
interest rate 0.176 0.053 0.064 0.220 0.190 0.106 0.191

100 Output 0.325 0.009 0.029 0.281 0.041 0.096 0.219
Consumption 0.260 0.017 0.035 0.225 0.055 0.092 0.315
Investment 0.180 0.001 0.024 0.611 0.018 0.096 0.071
Hours 0.059 0.021 0.090 0.234 0.074 0.157 0.365
Inflation 0.081 0.000 0.010 0.013 0.003 0.473 0.420
Wages 0.238 0.000 0.005 0.064 0.003 0.259 0.430
interest rate 0.191 0.050 0.070 0.226 0.178 0.099 0.187

Note: δ = .025, λw = 1.5 and gy = .18 are fixed.
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Table G.9: Variance Decomposition: MLE2 1984:1-2004:4

product- risk exog. invest- monetary price wage
qrt ivity premium spend. ment policy markup markup

1 Output 0.118 0.237 0.371 0.228 0.032 0.010 0.004
Consumption 0.041 0.834 0.003 0.010 0.084 0.013 0.014
Investment 0.008 0.005 0.002 0.970 0.006 0.008 0.000
Hours 0.345 0.176 0.276 0.169 0.024 0.007 0.003
Inflation 0.031 0.000 0.001 0.001 0.001 0.815 0.150
Wages 0.004 0.000 0.000 0.001 0.000 0.111 0.884
interest rate 0.090 0.225 0.030 0.032 0.497 0.111 0.015

2 Output 0.135 0.168 0.271 0.348 0.050 0.019 0.009
Consumption 0.086 0.661 0.007 0.033 0.148 0.031 0.035
Investment 0.011 0.003 0.002 0.965 0.007 0.011 0.000
Hours 0.277 0.151 0.244 0.259 0.045 0.017 0.008
Inflation 0.045 0.000 0.002 0.002 0.001 0.725 0.225
Wages 0.006 0.000 0.000 0.001 0.000 0.091 0.901
interest rate 0.121 0.180 0.041 0.069 0.444 0.116 0.029

4 Output 0.621 0.167 0.076 0.041 0.082 0.006 0.006
Consumption 0.552 0.272 0.022 0.007 0.095 0.014 0.038
Investment 0.115 0.133 0.093 0.532 0.117 0.008 0.002
Hours 0.035 0.418 0.199 0.102 0.203 0.012 0.031
Inflation 0.129 0.006 0.001 0.001 0.035 0.429 0.400
Wages 0.467 0.013 0.000 0.001 0.010 0.127 0.381
interest rate 0.084 0.588 0.027 0.022 0.104 0.041 0.134

10 Output 0.215 0.030 0.070 0.460 0.070 0.083 0.072
Consumption 0.227 0.091 0.017 0.216 0.150 0.118 0.181
Investment 0.049 0.001 0.008 0.873 0.014 0.048 0.007
Hours 0.080 0.051 0.125 0.392 0.110 0.124 0.119
Inflation 0.071 0.000 0.003 0.008 0.002 0.523 0.392
Wages 0.032 0.000 0.000 0.010 0.000 0.154 0.804
interest rate 0.157 0.080 0.053 0.230 0.220 0.124 0.136

40 Output 0.352 0.010 0.026 0.291 0.042 0.091 0.188
Consumption 0.307 0.020 0.022 0.226 0.058 0.089 0.278
Investment 0.179 0.001 0.022 0.635 0.017 0.089 0.057
Hours 0.045 0.025 0.082 0.239 0.084 0.153 0.372
Inflation 0.080 0.000 0.006 0.014 0.003 0.470 0.427
Wages 0.177 0.000 0.002 0.053 0.002 0.275 0.491
interest rate 0.166 0.064 0.061 0.231 0.176 0.104 0.197

100 Output 0.395 0.009 0.024 0.264 0.038 0.084 0.186
Consumption 0.358 0.017 0.026 0.203 0.050 0.078 0.268
Investment 0.197 0.001 0.023 0.617 0.016 0.088 0.058
Hours 0.069 0.023 0.081 0.239 0.077 0.156 0.354
Inflation 0.081 0.000 0.006 0.014 0.003 0.469 0.427
Wages 0.284 0.000 0.004 0.058 0.002 0.246 0.406
interest rate 0.186 0.060 0.064 0.234 0.165 0.098 0.192

Note: δ, λw, and gy are estimated.
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