Credit Frictions and Optimal Monetary Policy

Vasco Cúrdia Michael Woodford
FRB New York
Columbia University

Conference, "DSGE Models in the Policy Environment" Rome, June 2008

Motivation

- "New Keynesian" monetary models often abstract entirely from financial intermediation and hence from financial frictions

Motivation

- "New Keynesian" monetary models often abstract entirely from financial intermediation and hence from financial frictions
- Representative household
- Complete (frictionless) financial markets
- Single interest rate (which is also the policy rate) relevant for all decisions

Motivation

- "New Keynesian" monetary models often abstract entirely from financial intermediation and hence from financial frictions
- Representative household
- Complete (frictionless) financial markets
- Single interest rate (which is also the policy rate) relevant for all decisions
- But in actual economies (even financially sophisticated), there are different interest rates, that do not move perfectly together

Spreads
(Sources: FRB, IMF/IFS)

USD LIBOR-OIS Spreads
(Source: Bloomberg)

LIBOR 1m vs FFR target
(source: Bloomberg and Federal Reserve Board)

Motivation

Questions:

- How much is monetary policy analysis changed by recognizing existence of spreads between different interest rates?
- How should policy respond to "financial shocks" that disrupt financial intermediation, dramatically widening spreads?

The Model

- Generalizes basic (representative household) NK model to include

The Model

- Generalizes basic (representative household) NK model to include
- heterogeneity in spending opportunities
- costly financial intermediation

The Model: Heterogeneity

- Each household has a type $\tau_{t}(i) \in\{b, s\}$, determining preferences (opportunities for spending, productive work)
- varies exogenously, remaining same each period with probability $\delta<1$

The Model: Heterogeneity

- Each household has a type $\tau_{t}(i) \in\{b, s\}$, determining preferences (opportunities for spending, productive work) - varies exogenously, remaining same each period with probability $\delta<1$
- Aggregation simplified by assuming intermittent access to an "insurance agency"

The Model: Heterogeneity

- Each household has a type $\tau_{t}(i) \in\{b, s\}$, determining preferences (opportunities for spending, productive work) - varies exogenously, remaining same each period with probability $\delta<1$
- Aggregation simplified by assuming intermittent access to an "insurance agency"
- State-contingent contracts enforceable only on those occasions
- Other times, can borrow or lend only through intermediaries, at a one-period, riskless nominal rate, different for savers and borrowers

The Model: Heterogeneity

- Each household has a type $\tau_{t}(i) \in\{b, s\}$, determining preferences (opportunities for spending, productive work)
- varies exogenously, remaining same each period with probability $\delta<1$
- Aggregation simplified by assuming intermittent access to an "insurance agency"
- State-contingent contracts enforceable only on those occasions
- Other times, can borrow or lend only through intermediaries, at a one-period, riskless nominal rate, different for savers and borrowers
- Consequence: long-run marginal utility of income same for all households, regardless of history of spending opportunities

The Model: Credit Frictions

- Financial intermediation technology: in order to supply loans in (real) quantity b_{t}, must obtain (real) deposits

$$
d_{t}=b_{t}+\Xi_{t}\left(b_{t}\right)
$$

The Model: Credit Frictions

- Financial intermediation technology: in order to supply loans in (real) quantity b_{t}, must obtain (real) deposits

$$
d_{t}=b_{t}+\Xi_{t}\left(b_{t}\right)
$$

- Competitive banking sector would then imply equilibrium credit spread

$$
\omega_{t}\left(b_{t}\right)=\Xi_{b t}\left(b_{t}\right)
$$

The Model: Credit Frictions

- Financial intermediation technology: in order to supply loans in (real) quantity b_{t}, must obtain (real) deposits

$$
d_{t}=b_{t}+\Xi_{t}\left(b_{t}\right)
$$

- Competitive banking sector would then imply equilibrium credit spread

$$
\omega_{t}\left(b_{t}\right)=\Xi_{b t}\left(b_{t}\right)
$$

- More generally, we allow

$$
1+\omega_{t}\left(b_{t}\right)=\mu_{t}^{b}\left(b_{t}\right)\left(1+\Xi_{b t}\left(b_{t}\right)\right)
$$

where $\left\{\mu_{t}^{b}\right\}$ is a markup in the banking sector (perhaps a risk premium)

Log-Linear Equations

- Intertemporal IS relation:

$$
\hat{Y}_{t}=E_{t} \hat{Y}_{t+1}-\bar{\sigma}\left[\hat{\imath}_{t}^{\text {avg }}-\pi_{t+1}\right]-E_{t}\left[\Delta g_{t+1}+\Delta \hat{\Xi}_{t+1}-\bar{\sigma} s_{\Omega} \Delta \hat{\Omega}_{t+1}\right]
$$

where

$$
\hat{\imath}_{t}^{a v g} \equiv \pi_{b} \hat{i}_{t}^{b}+\pi_{s} \hat{\imath}_{t}^{d},
$$

Log-Linear Equations

- Intertemporal IS relation:

$$
\hat{Y}_{t}=E_{t} \hat{Y}_{t+1}-\bar{\sigma}\left[\hat{\imath}_{t}^{\text {avg }}-\pi_{t+1}\right]-E_{t}\left[\Delta g_{t+1}+\Delta \hat{\Xi}_{t+1}-\bar{\sigma} s_{\Omega} \Delta \hat{\Omega}_{t+1}\right]
$$

where

$$
\hat{\imath}_{t}^{a v g} \equiv \pi_{b} \hat{i}_{t}^{b}+\pi_{s} \hat{\imath}_{t}^{d},
$$

- Variation in marginal-utility gap $\hat{\Omega}_{t}$:

$$
\hat{\Omega}_{t}=\hat{\omega}_{t}+\delta E_{t} \hat{\Omega}_{t+1}
$$

where $\hat{\omega}_{t}$ is deviation of credit spread from its steady-state value

Log-Linear Equations

- Monetary policy: central bank can effectively control deposit rate i_{t}^{d}, which in the present model is equivalent to the policy rate (interbank funding rate)

Log-Linear Equations

- Monetary policy: central bank can effectively control deposit rate i_{t}^{d}, which in the present model is equivalent to the policy rate (interbank funding rate)
- Lending rate then determined by the $\omega_{t}\left(b_{t}\right)$: in log-linear approximation,

$$
\hat{\imath}_{t}^{b}=\hat{\imath}_{t}^{d}+\hat{\omega}_{t}
$$

Log-Linear Equations

- Monetary policy: central bank can effectively control deposit rate i_{t}^{d}, which in the present model is equivalent to the policy rate (interbank funding rate)
- Lending rate then determined by the $\omega_{t}\left(b_{t}\right)$: in log-linear approximation,

$$
\hat{\imath}_{t}^{b}=\hat{\imath}_{t}^{d}+\hat{\omega}_{t}
$$

- Hence the rate $\hat{\imath}_{t}^{\text {avg }}$ that appears in IS relation is determined by

$$
\hat{\imath}_{t}^{a v g}=\hat{\imath}_{t}^{d}+\pi_{b} \hat{\omega}_{t}
$$

Log-Linear Equations

- Log-linear AS relation: generalizes NKPC:

$$
\begin{gathered}
\pi_{t}=\kappa\left(\hat{Y}_{t}-\hat{Y}_{t}^{n}\right)+u_{t}+\xi\left(s_{\Omega}+\pi_{b}-\gamma_{b}\right) \hat{\Omega}_{t}-\xi \bar{\sigma}^{-1} \hat{\Xi}_{t} \\
\\
+\beta E_{t} \pi_{t+1}
\end{gathered}
$$

Log-Linear Equations

- Log-linear AS relation: generalizes NKPC:

$$
\begin{aligned}
\pi_{t}=\kappa\left(\hat{Y}_{t}-\hat{Y}_{t}^{n}\right)+ & u_{t}+\xi\left(s_{\Omega}+\pi_{b}-\gamma_{b}\right) \hat{\Omega}_{t}-\xi \bar{\sigma}^{-1} \hat{\Xi}_{t} \\
& +\beta E_{t} \pi_{t+1}
\end{aligned}
$$

where definition of natural rate \hat{Y}_{t}^{n}, cost-push shock u_{t}, are same as in basic NK model

What Difference Do Frictions Make?

- A simple special case: credit spread $\left\{\omega_{t}\right\}$ evolves exogenously, and intermediation uses no resources (i.e., spread is a pure markup)

What Difference Do Frictions Make?

- A simple special case: credit spread $\left\{\omega_{t}\right\}$ evolves exogenously, and intermediation uses no resources (i.e., spread is a pure markup)

What Difference Do Frictions Make?

- A simple special case: credit spread $\left\{\omega_{t}\right\}$ evolves exogenously, and intermediation uses no resources (i.e., spread is a pure markup)
- Then the usual 3-equation model suffices to determine paths of $\left\{\hat{Y}_{t}, \pi_{t}, \hat{i}_{t}^{\text {avg }}\right\}$:
- AS relation
- IS relation
- MP relation (written in terms of implication for $\hat{\imath}_{t}^{\text {avg }}$, given exogenous spread)

What Difference Do Frictions Make?

- Responses of output, inflation, interest rates to non-financial shocks (under a given monetary policy rule, e.g. Taylor rule) are identical to those predicted by basic NK model
- hence no change in conclusions about desirability of a given rule, from standpoint of stabilizing in response to those disturbances

What Difference Do Frictions Make?

- Responses of output, inflation, interest rates to non-financial shocks (under a given monetary policy rule, e.g. Taylor rule) are identical to those predicted by basic NK model
- hence no change in conclusions about desirability of a given rule, from standpoint of stabilizing in response to those disturbances
- But how robust this conclusion? For more general credit frictions, we resort to numerical solution of calibrated examples

Calibrated Model

- Calibration of preference heterogeneity: assume equal probability of two types, $\pi_{b}=\pi_{s}=0.5$, and $\delta=0.975$ (average time that type persists $=10$ years)

Calibrated Model

- Calibration of preference heterogeneity: assume equal probability of two types, $\pi_{b}=\pi_{s}=0.5$, and $\delta=0.975$ (average time that type persists $=10$ years)
- Assume $C^{b} / C^{s}=3.65$ in steady state (given $G / Y=0.3$, this implies $\left.C^{s} / Y \approx 0.3, C^{b} / Y \approx 1.1\right)$
— implied steady-state debt: $\bar{b} / \bar{Y}=0.5-0.6$

Calibrated Model

- Calibration of preference heterogeneity: assume equal probability of two types, $\pi_{b}=\pi_{s}=0.5$, and $\delta=0.975$ (average time that type persists $=10$ years)
- Assume $C^{b} / C^{s}=3.65$ in steady state (given $G / Y=0.3$, this implies $C^{s} / Y \approx 0.3, C^{b} / Y \approx 1.1$)
— implied steady-state debt: $\bar{b} / \bar{Y}=0.5-0.6$
- Assume $\sigma_{b} / \sigma_{s}=5$
- implies credit contracts in response to monetary policy tightening (consistent with VAR evidence)

Calibrated Model

Calibration of financial frictions: Resource costs $\Xi_{t}(b)=\tilde{\Xi}_{t} b^{\eta}$, exogenous markup μ_{t}^{b}

Calibrated Model

Calibration of financial frictions: Resource costs $\Xi_{t}(b)=\tilde{\Xi}_{t} b^{\eta}$, exogenous markup μ_{t}^{b}

- Zero steady-state markup; resource costs imply steady-state credit spread $\bar{\omega}=2.0$ percent per annum (median spread between FRB C\&I loan rate and FF rate)
—implies $\bar{\lambda}^{b} / \bar{\lambda}^{s}=1.22$

Calibrated Model

Calibration of financial frictions: Resource costs $\Xi_{t}(b)=\tilde{\Xi}_{t} b^{\eta}$, exogenous markup μ_{t}^{b}

- Zero steady-state markup; resource costs imply steady-state credit spread $\bar{\omega}=2.0$ percent per annum (median spread between FRB C\&I loan rate and FF rate)
— implies $\bar{\lambda}^{b} / \bar{\lambda}^{s}=1.22$
- Calibrate η so that 1 percent increase in volume of bank credit raises credit spread by .10 percent [relative VAR responses of credit, spread]
— requires $\eta=6.06$

Numerical Results: Taylor Rule

- Let monetary policy be specified by

$$
\hat{\imath}_{t}^{d}=\phi_{\pi} \pi_{t}+\phi_{y} \hat{Y}_{t}+\epsilon_{t}^{m}
$$

Numerical Results: Taylor Rule

- Let monetary policy be specified by

$$
\hat{\imath}_{t}^{d}=\phi_{\pi} \pi_{t}+\phi_{y} \hat{Y}_{t}+\epsilon_{t}^{m}
$$

- Compare the predicted effects of policy for 3 alternative model specifications:
- FF model: model with heterogeneity and credit frictions, as above
- No FF model: same heterogeneity, but $\omega_{t}=\Xi_{t}=0$ at all times
- RepHH model: representative household with intertemporal elasticity $\bar{\sigma}$

Numerical Results: Taylor Rule

Responses to monetary policy shock: convex technology

Numerical Results: Taylor Rule

Responses to technology shock: convex technology

Numerical Results: Taylor Rule

Responses to wage markup shock: convex technology

Numerical Results: Taylor Rule

Responses to shock to government purchases: convex technology

Numerical Results: Taylor Rule

$$
\begin{array}{|c|}
\hline- \text { FF } \\
--- \text { NoFF } \\
-+- \text { RepHH } \\
\hline
\end{array}
$$

Responses to shock to government debt: convex technology

Numerical Results: Taylor Rule

$$
\begin{aligned}
& -\quad \text { FF } \\
& -- \text { - NoFF } \\
& -+- \text { RepHH }
\end{aligned}
$$

Responses to shock to demand of savers: convex technology

Optimal Policy: LQ Approximation

- Compute a quadratic approximation to this welfare measure, in the case of small fluctuations around the optimal steady state

Optimal Policy: LQ Approximation

- Compute a quadratic approximation to this welfare measure, in the case of small fluctuations around the optimal steady state
- Results especially simple in special case:
- No steady-state distortion to level of output ($P=M C$, W/P = MRS) (Rotemberg-Woodford, 1997)
- No steady-state credit frictions: $\bar{\omega}=\bar{\Xi}=\bar{\Xi}_{b}=0$

Optimal Policy: LQ Approximation

- Compute a quadratic approximation to this welfare measure, in the case of small fluctuations around the optimal steady state
- Results especially simple in special case:
- No steady-state distortion to level of output ($P=M C$, W/P $=$ MRS) (Rotemberg-Woodford, 1997)
- No steady-state credit frictions: $\bar{\omega}=\overline{\bar{\Xi}}=\bar{\Xi}_{b}=0$
-Note, however, that we do allow for shocks to the size of credit frictions

Optimal Policy: LQ Approximation

- Approximate objective: max of expected utility equivalent (to 2d order) to minimization of quadratic loss function

$$
\sum_{t=0}^{\infty} \beta^{t}\left[\pi_{t}^{2}+\lambda_{y}\left(\hat{Y}_{t}-\hat{Y}_{t}^{n}\right)^{2}+\lambda_{\Omega} \hat{\Omega}_{t}^{2}+\lambda_{\Xi} \Xi_{b t} \hat{b}_{t}\right]
$$

Optimal Policy: LQ Approximation

- Approximate objective: max of expected utility equivalent (to 2d order) to minimization of quadratic loss function

$$
\sum_{t=0}^{\infty} \beta^{t}\left[\pi_{t}^{2}+\lambda_{y}\left(\hat{Y}_{t}-\hat{Y}_{t}^{n}\right)^{2}+\lambda_{\Omega} \hat{\Omega}_{t}^{2}+\lambda_{\Xi} \Xi_{b t} \hat{b}_{t}\right]
$$

- Weight $\lambda_{y}>0$, definition of "natural rate" \hat{Y}_{t}^{n} same as in basic NK model

Optimal Policy: LQ Approximation

- Approximate objective: max of expected utility equivalent (to 2d order) to minimization of quadratic loss function

$$
\sum_{t=0}^{\infty} \beta^{t}\left[\pi_{t}^{2}+\lambda_{y}\left(\hat{Y}_{t}-\hat{Y}_{t}^{n}\right)^{2}+\lambda_{\Omega} \hat{\Omega}_{t}^{2}+\lambda_{\Xi} \Xi_{b t} \hat{b}_{t}\right]
$$

- Weight $\lambda_{y}>0$, definition of "natural rate" \hat{Y}_{t}^{n} same as in basic NK model
- New weights $\lambda_{\Omega}, \lambda_{\Xi}>0$

Optimal Policy: LQ Approximation

- Approximate objective: max of expected utility equivalent (to 2d order) to minimization of quadratic loss function

$$
\sum_{t=0}^{\infty} \beta^{t}\left[\pi_{t}^{2}+\lambda_{y}\left(\hat{Y}_{t}-\hat{Y}_{t}^{n}\right)^{2}+\lambda_{\Omega} \hat{\Omega}_{t}^{2}+\lambda_{\Xi} \Xi_{b t} \hat{b}_{t}\right]
$$

- Weight $\lambda_{y}>0$, definition of "natural rate" \hat{Y}_{t}^{n} same as in basic NK model
- New weights $\lambda_{\Omega}, \lambda_{\Xi}>0$
- LQ problem: minimize loss function subject to log-linear constraints: AS relation, IS relation, law of motion for \hat{b}_{t}, relation between $\hat{\Omega}_{t}$ and expected credit spreads

Optimal Policy: LQ Approximation

- Consider special case:
- No resources used in intermediation $\left(\Xi_{t}(b)=0\right)$
- Financial markup $\left\{\mu_{t}^{b}\right\}$ an exogenous process
- Result: optimal policy is characterized by the same target criterion as in basic NK model:

Optimal Policy: LQ Approximation

- Consider special case:
- No resources used in intermediation $\left(\Xi_{t}(b)=0\right)$
- Financial markup $\left\{\mu_{t}^{b}\right\}$ an exogenous process
- Result: optimal policy is characterized by the same target criterion as in basic NK model:

$$
\pi_{t}+\left(\lambda_{y} / \kappa\right)\left(x_{t}-x_{t-1}\right)=0
$$

("flexible inflation targeting")

Optimal Policy: LQ Approximation

- Consider special case:
- No resources used in intermediation $\left(\Xi_{t}(b)=0\right)$
- Financial markup $\left\{\mu_{t}^{b}\right\}$ an exogenous process
- Result: optimal policy is characterized by the same target criterion as in basic NK model:

$$
\pi_{t}+\left(\lambda_{y} / \kappa\right)\left(x_{t}-x_{t-1}\right)=0
$$

("flexible inflation targeting")

- However, state-contingent path of policy rate required to implement the target criterion is not the same

Optimal Policy: LQ Approximation

- This is no longer an exact characterization of optimal policy, in more general case in which ω_{t} and/or Ξ_{t} depend on the evolution of b_{t}

Optimal Policy: LQ Approximation

- This is no longer an exact characterization of optimal policy, in more general case in which ω_{t} and/or Ξ_{t} depend on the evolution of b_{t}
- But numerical results suggest still a fairly good approximation to optimal policy

Numerical Results: Optimal Policy

- Optimal
--- PiStab
-+- Taylor
$-*-$ FlexTarget

Responses to technology shock, under 4 monetary policies

Numerical Results: Optimal Policy

- Optimal
--- PiStab
-+- Taylor
$-*-$ FlexTarget

Responses to wage markup shock, under 4 monetary policies

Numerical Results: Optimal Policy

- Optimal
--- PiStab
-+- Taylor
$-*-$ FlexTarget

Responses to shock to government purchases, under 4 monetary policies

Numerical Results: Optimal Policy

$$
\begin{aligned}
& - \text { Optimal } \\
& --- \text { PiStab } \\
& -+- \text { Taylor } \\
& -*-\text { FlexTarget } \\
& \hline
\end{aligned}
$$

Responses to shock to demand of savers, under 4 monetary policies

Numerical Results: Optimal Policy

$$
\begin{array}{|c|}
\hline- \text { Optimal } \\
--- \text { PiStab } \\
-+- \text { Taylor } \\
-*-\text { FlexTarget } \\
\hline
\end{array}
$$

Responses to financial shock, under 4 monetary policies

Spread-Adjusted Taylor Rule

- Rule of thumb suggested by various authors (McCulley and Toloui, 2008; Taylor, 2008): adjust the intercept of the Taylor rule in proportion to changes in spreads:

$$
\hat{\imath}_{t}^{d}=\phi_{\pi} \pi_{t}+\pi_{y} \hat{Y}_{t}-\phi_{\omega} \hat{\omega}_{t}
$$

Spread-Adjusted Taylor Rule

- Rule of thumb suggested by various authors (McCulley and Toloui, 2008; Taylor, 2008): adjust the intercept of the Taylor rule in proportion to changes in spreads:

$$
\hat{\imath}_{t}^{d}=\phi_{\pi} \pi_{t}+\pi_{y} \hat{Y}_{t}-\phi_{\omega} \hat{\omega}_{t}
$$

- McCulley-Toloui, Taylor suggest 100 percent adjustment $\left(\phi_{\omega}=1\right)$
- Equivalent to having a Taylor rule for the borrowing rate, rather than the interbank funding rate

Spread-Adjusted Taylor Rule

- Rule of thumb suggested by various authors (McCulley and Toloui, 2008; Taylor, 2008): adjust the intercept of the Taylor rule in proportion to changes in spreads:

$$
\hat{\imath}_{t}^{d}=\phi_{\pi} \pi_{t}+\pi_{y} \hat{Y}_{t}-\phi_{\omega} \hat{\omega}_{t}
$$

- McCulley-Toloui, Taylor suggest 100 percent adjustment $\left(\phi_{\omega}=1\right)$
- Equivalent to having a Taylor rule for the borrowing rate, rather than the interbank funding rate
- We allow for other possible values of ϕ_{ω}

Numerical Results: Spread-Adjusted Taylor Rules

$$
\begin{aligned}
& \hline- \text { Optimal } \\
& --- \text { Taylor } \\
& -+- \text { Taylor }+25 \\
& -*-\text { Taylor }+50 \\
& -*-\text { Taylor }+75 \\
& -- \text { Taylor }+100 \\
& \hline
\end{aligned}
$$

Responses to financial shock, under alternative spread adjustments

Numerical Results: Spread-Adjusted Taylor Rules

$$
\begin{aligned}
& - \text { Optimal } \\
& --- \text { Taylor } \\
& -+- \text { Taylor }+25 \\
& -*-\text { Taylor }+50 \\
& --- \text { Taylor }+75 \\
& -=- \text { Taylor }+100
\end{aligned}
$$

Responses to a shock to government debt

Numerical Results: Spread-Adjusted Taylor Rules

$$
\begin{aligned}
& - \text { Optimal } \\
& --- \text { Taylor } \\
& -+- \text { Taylor }+25 \\
& -*-\text { Taylor }+50 \\
& -\quad-\text { Taylor }+75 \\
& -\quad-\text { Taylor }+100
\end{aligned}
$$

Responses to a shock to the demand of savers

Numerical Results: Spread-Adjusted Taylor Rules

Responses to a shock to government purchases

Numerical Results: Spread-Adjusted Taylor Rules

$$
\begin{aligned}
& - \text { Optimal } \\
& --- \text { Taylor } \\
& -+- \text { Taylor }+25 \\
& -*-\text { Taylor }+50 \\
& -*-\text { Taylor }+75 \\
& -- \text { Taylor }+100 \\
& \hline
\end{aligned}
$$

Responses to a shock to the demand of borrowers

Numerical Results: Spread-Adjusted Taylor Rules

Responses to a technology shock

Responding to Credit

- Often suggested that credit frictions make it desirable for monetary policy to respond to variation in aggregate credit

Responding to Credit

- Often suggested that credit frictions make it desirable for monetary policy to respond to variation in aggregate credit
- Christiano et al. (2007) suggest modified Taylor rule

$$
\hat{\imath}_{t}^{d}=\phi_{\pi} \pi_{t}+\pi_{y} \hat{Y}_{t}+\phi_{b} \hat{b}_{t}
$$

with $\phi_{b}>0$

Responding to Credit

- Often suggested that credit frictions make it desirable for monetary policy to respond to variation in aggregate credit
- Christiano et al. (2007) suggest modified Taylor rule

$$
\hat{\imath}_{t}^{d}=\phi_{\pi} \pi_{t}+\pi_{y} \hat{Y}_{t}+\phi_{b} \hat{b}_{t}
$$

with $\phi_{b}>0$

- We consider this family of rules, allowing also for $\phi_{b}<0$

Numerical Results: Responding to Credit

$$
\begin{aligned}
& \hline- \text { Optimal } \\
& --- \text { Taylor-050 } \\
& -+- \text { Taylor-025 } \\
& -*-\text { Taylor } \\
& -- \text { Taylor }+025 \\
& -=- \text { Taylor }+050 \\
& \hline
\end{aligned}
$$

Responses to a "financial shock"

Numerical Results: Responding to Credit

$$
\begin{aligned}
& - \text { Optimal } \\
& - \text { - Taylor-050 } \\
& -+- \text { Taylor-025 } \\
& -* \text { - Taylor } \\
& - \text { - Taylor }+025
\end{aligned}
$$

Responses to a shock to government purchases

Numerical Results: Responding to Credit

Responses to a technology shock

Provisional Conclusions

- Time-varying credit spreads do not require fundamental modification of one's view of monetary transmission mechanism

Provisional Conclusions

- Time-varying credit spreads do not require fundamental modification of one's view of monetary transmission mechanism
- In a special case: the same "3-equation model" continues to apply, simply with additional disturbance terms

Provisional Conclusions

- Time-varying credit spreads do not require fundamental modification of one's view of monetary transmission mechanism
- In a special case: the same "3-equation model" continues to apply, simply with additional disturbance terms
- More generally, a generalization of basic NK model that retains many qualitative features of that model of the transmission mechanism

Provisional Conclusions

- Time-varying credit spreads do not require fundamental modification of one's view of monetary transmission mechanism
- In a special case: the same "3-equation model" continues to apply, simply with additional disturbance terms
- More generally, a generalization of basic NK model that retains many qualitative features of that model of the transmission mechanism
- Quantitatively, basic NK model remains a good approximation, esp. if little endogeneity of credit spreads

Provisional Conclusions

- Recognizing importance of credit frictions does not require reconsideration of the de-emphasis of monetary aggregates in NK models

Provisional Conclusions

- Recognizing importance of credit frictions does not require reconsideration of the de-emphasis of monetary aggregates in NK models
- Here, a model with credit frictions in which no reference to money whatsoever

Provisional Conclusions

- Recognizing importance of credit frictions does not require reconsideration of the de-emphasis of monetary aggregates in NK models
- Here, a model with credit frictions in which no reference to money whatsoever
- Credit a more important state variable than money

Provisional Conclusions

- Recognizing importance of credit frictions does not require reconsideration of the de-emphasis of monetary aggregates in NK models
- Here, a model with credit frictions in which no reference to money whatsoever
- Credit a more important state variable than money
- However, interest-rate spreads really what matter more than variations in quantity of credit

Provisional Conclusions

- Spread-adjusted Taylor rule can improve upon standard Taylor rule

Provisional Conclusions

- Spread-adjusted Taylor rule can improve upon standard Taylor rule
- However, optimal degree of adjustment not same for all shocks

Provisional Conclusions

- Spread-adjusted Taylor rule can improve upon standard Taylor rule
- However, optimal degree of adjustment not same for all shocks
- And such a rule inferior to commitment to a target criterion

Provisional Conclusions

- Spread-adjusted Taylor rule can improve upon standard Taylor rule
- However, optimal degree of adjustment not same for all shocks
- And such a rule inferior to commitment to a target criterion
- Guideline for policy: base policy decisions on a target criterion relating inflation to output gap (optimal in absence of credit frictions)
- Take account of credit frictions only in model used to determine policy action required to fulfill target criterion

