Credit Frictions and Optimal Monetary Policy

Vasco Cúrdia Michael Woodford
FRB New York Columbia University

Conference, “DSGE Models in the Policy Environment”
Rome, June 2008
Motivation

“New Keynesian” monetary models often abstract entirely from financial intermediation and hence from financial frictions.
“New Keynesian” monetary models often abstract entirely from financial intermediation and hence from financial frictions

- Representative household
- Complete (frictionless) financial markets
- Single interest rate (which is also the policy rate) relevant for all decisions
Motivation

• “New Keynesian” monetary models often abstract entirely from financial intermediation and hence from financial frictions
 • Representative household
 • Complete (frictionless) financial markets
 • Single interest rate (which is also the policy rate) relevant for all decisions

• But in actual economies (even financially sophisticated), there are different interest rates, that do not move perfectly together
Spreads
(Sources: FRB, IMF/IFS)
USD LIBOR-OIS Spreads
(Source: Bloomberg)
LIBOR 1m vs FFR target
(source: Bloomberg and Federal Reserve Board)
Motivation

Questions:

- How much is monetary policy analysis changed by recognizing existence of spreads between different interest rates?

- How should policy respond to “financial shocks” that disrupt financial intermediation, dramatically widening spreads?
The Model

- Generalizes basic (representative household) NK model to include
The Model

- Generalizes basic (representative household) NK model to include
 - heterogeneity in spending opportunities
 - costly financial intermediation
The Model: Heterogeneity

- Each household has a type $\tau_t(i) \in \{b, s\}$, determining preferences (opportunities for spending, productive work) — varies exogenously, remaining same each period with probability $\delta < 1$
The Model: Heterogeneity

- Each household has a type \(\tau_t(i) \in \{b, s\} \), determining preferences (opportunities for spending, productive work) — varies exogenously, remaining same each period with probability \(\delta < 1 \)

- **Aggregation** simplified by assuming intermittent access to an “insurance agency”
The Model: Heterogeneity

- Each household has a type $\tau_t(i) \in \{b, s\}$, determining preferences (opportunities for spending, productive work) — varies exogenously, remaining same each period with probability $\delta < 1$

- **Aggregation** simplified by assuming intermittent access to an “insurance agency”
 - State-contingent contracts enforceable only on those occasions
 - Other times, can borrow or lend only through intermediaries, at a one-period, riskless nominal rate, different for savers and borrowers

Cúrdia and Woodford
The Model: Heterogeneity

- Each household has a type $\tau_t(i) \in \{b, s\}$, determining preferences (opportunities for spending, productive work) — varies exogenously, remaining same each period with probability $\delta < 1$

- Aggregation simplified by assuming intermittent access to an “insurance agency”
 - State-contingent contracts enforceable only on those occasions
 - Other times, can borrow or lend only through intermediaries, at a one-period, riskless nominal rate, different for savers and borrowers

- Consequence: long-run marginal utility of income same for all households, regardless of history of spending opportunities
Financial intermediation technology: in order to supply loans in (real) quantity b_t, must obtain (real) deposits

$$d_t = b_t + \Xi_t(b_t),$$
The Model: Credit Frictions

- **Financial intermediation** technology: in order to supply loans in (real) quantity b_t, must obtain (real) deposits

 $$d_t = b_t + \Xi_t(b_t),$$

- **Competitive** banking sector would then imply equilibrium credit spread

 $$\omega_t(b_t) = \Xi_{bt}(b_t)$$
The Model: Credit Frictions

- **Financial intermediation** technology: in order to supply loans in (real) quantity b_t, must obtain (real) deposits
 \[d_t = b_t + \Xi_t(b_t), \]

- **Competitive** banking sector would then imply equilibrium credit spread
 \[\omega_t(b_t) = \Xi_{bt}(b_t) \]

- More generally, we allow
 \[1 + \omega_t(b_t) = \mu^b_t(b_t)(1 + \Xi_{bt}(b_t)), \]
 where $\{\mu^b_t\}$ is a **markup** in the banking sector (perhaps a risk premium)
Intertemporal IS relation:

\[\hat{Y}_t = E_t \hat{Y}_{t+1} - \bar{\sigma} [\hat{i}_{t}^{avg} - \pi_{t+1}] - E_t [\Delta g_{t+1} + \Delta \hat{\Xi}_{t+1} - \bar{\sigma}_s \Omega \Delta \hat{\Omega}_{t+1}] \]

where

\[\hat{i}_{t}^{avg} \equiv \pi_b \hat{i}_t^b + \pi_s \hat{i}_t^d , \]
Log-Linear Equations

- Intertemporal IS relation:

\[
\hat{Y}_t = E_t \hat{Y}_{t+1} - \bar{\sigma} [\hat{i}_{t}^{avg} - \pi_{t+1}] - E_t [\Delta g_{t+1} + \Delta \hat{\Xi}_{t+1} - \bar{\sigma} s_\Omega \Delta \hat{\Omega}_{t+1}]
\]

where

\[
\hat{i}_{t}^{avg} \equiv \pi_b \hat{i}_t^b + \pi_s \hat{i}_t^d,
\]

- Variation in marginal-utility gap \(\hat{\Omega}_t \):

\[
\hat{\Omega}_t = \hat{\omega}_t + \delta E_t \hat{\Omega}_{t+1},
\]

where \(\hat{\omega}_t \) is deviation of credit spread from its steady-state value
Monetary policy: central bank can effectively control deposit rate \(i^d_t \), which in the present model is equivalent to the policy rate (interbank funding rate)
Monetary policy: central bank can effectively control deposit rate \(i^d_t \), which in the present model is equivalent to the policy rate (interbank funding rate).

Lending rate then determined by the \(\omega_t(b_t) \): in log-linear approximation,

\[
\hat{i}^b_t = \hat{i}^d_t + \hat{\omega}_t
\]
Monetary policy: central bank can effectively control deposit rate \(i^d_t\), which in the present model is equivalent to the policy rate (interbank funding rate).

Lending rate then determined by the \(\omega_t(b_t)\): in log-linear approximation,

\[
\hat{i}^b_t = \hat{i}^d_t + \hat{\omega}_t
\]

Hence the rate \(\hat{\iota}^{avg}_t\) that appears in IS relation is determined by

\[
\hat{\iota}^{avg}_t = \hat{i}^d_t + \pi_b\hat{\omega}_t
\]
Log-linear AS relation: generalizes NKPC:

\[\pi_t = \kappa(\hat{Y}_t - \hat{Y}_t^n) + u_t + \zeta(s_\Omega + \pi_b - \gamma_b)\hat{\Omega}_t - \zeta \sigma^{-1}\hat{\xi}_t + \beta E_t \pi_{t+1} \]
Log-linear AS relation: generalizes NKPC:

\[\pi_t = \kappa(\hat{Y}_t - \hat{Y}_t^n) + u_t + \zeta(s_\Omega + \pi_b - \gamma_b)\hat{\Omega}_t - \zeta \sigma^{-1}\hat{\Xi}_t + \beta E_t \pi_{t+1} \]

where definition of natural rate \(\hat{Y}_t^n \), cost-push shock \(u_t \), are same as in basic NK model.
A simple special case: credit spread \(\{ \omega_t \} \) evolves exogenously, and intermediation uses no resources (i.e., spread is a pure markup)
What Difference Do Frictions Make?

- A simple special case: credit spread $\{\omega_t\}$ evolves exogenously, and intermediation uses no resources (i.e., spread is a pure markup)
What Difference Do Frictions Make?

- A simple special case: credit spread \(\{ \omega_t \} \) evolves exogenously, and intermediation uses no resources (i.e., spread is a pure markup).

- Then the usual **3-equation model** suffices to determine paths of \(\{ \hat{Y}_t, \pi_t, \hat{i}^{avg}_t \} \):
 - AS relation
 - IS relation
 - MP relation (written in terms of implication for \(\hat{i}^{avg}_t \), given exogenous spread).
What Difference Do Frictions Make?

- Responses of output, inflation, interest rates to non-financial shocks (under a given monetary policy rule, e.g. Taylor rule) are identical to those predicted by basic NK model

- hence no change in conclusions about desirability of a given rule, from standpoint of stabilizing in response to those disturbances
What Difference Do Frictions Make?

- Responses of output, inflation, interest rates to non-financial shocks (under a given monetary policy rule, e.g. Taylor rule) are identical to those predicted by basic NK model

- hence no change in conclusions about desirability of a given rule, from standpoint of stabilizing in response to those disturbances

- But how robust this conclusion? For more general credit frictions, we resort to numerical solution of calibrated examples
Calibrated Model

- Calibration of **preference heterogeneity**: assume equal probability of two types, $\pi_b = \pi_s = 0.5$, and $\delta = 0.975$ (average time that type persists = 10 years)
Calibrated Model

- Calibration of preference heterogeneity: assume equal probability of two types, $\pi_b = \pi_s = 0.5$, and $\delta = 0.975$ (average time that type persists = 10 years)

- Assume $C^b/C^s = 3.65$ in steady state (given $G/Y = 0.3$, this implies $C^s/Y \approx 0.3$, $C^b/Y \approx 1.1$)

 — implied steady-state debt: $\bar{b}/\bar{Y} = 0.5 - 0.6$
Calibrated Model

- Calibration of preference heterogeneity: assume equal probability of two types, \(\pi_b = \pi_s = 0.5 \), and \(\delta = 0.975 \) (average time that type persists = 10 years)

- Assume \(C^b / C^s = 3.65 \) in steady state (given \(G/Y = 0.3 \), this implies \(C^s / Y \approx 0.3, C^b / Y \approx 1.1 \))

 — implied steady-state debt: \(\bar{b} / \bar{Y} = 0.5 - 0.6 \)

- Assume \(\sigma_b / \sigma_s = 5 \)

 — implies credit contracts in response to monetary policy tightening (consistent with VAR evidence)
Calibrated Model

Calibration of financial frictions: Resource costs $\Xi_t(b) = \tilde{\Xi}_t b^\eta$, exogenous markup μ^b_t.
Calibrated Model

Calibration of financial frictions: Resource costs $\Xi_t(b) = \tilde{\Xi}_t b^\eta$, exogenous markup μ_t^b

- Zero steady-state markup; resource costs imply steady-state credit spread $\bar{\omega} = 2.0$ percent per annum (median spread between FRB C&I loan rate and FF rate)

 — implies $\bar{\lambda}^b/\bar{\lambda}^s = 1.22$
Calibrated Model

Calibration of financial frictions: Resource costs $\Xi_t(b) = \tilde{\Xi}_t b^\eta$, exogenous markup μ_t^b

- Zero steady-state markup; resource costs imply steady-state credit spread $\bar{\omega} = 2.0$ percent per annum (median spread between FRB C&I loan rate and FF rate)

 $\bar{\lambda}^b / \bar{\lambda}^s = 1.22$

- Calibrate η so that 1 percent increase in volume of bank credit raises credit spread by .10 percent [relative VAR responses of credit, spread]

 $\eta = 6.06$
Numerical Results: Taylor Rule

Let monetary policy be specified by

\[\hat{i}_t^d = \phi_{\pi} \pi_t + \phi_y \hat{Y}_t + \epsilon_t^m \]
Numerical Results: Taylor Rule

- Let monetary policy be specified by

\[\hat{i}^d_t = \phi_\pi \pi_t + \phi_y \hat{Y}_t + \epsilon^m_t \]

- Compare the predicted effects of policy for 3 alternative model specifications:
 - **FF model**: model with heterogeneity and credit frictions, as above
 - **No FF model**: same heterogeneity, but \(\omega_t = \Xi_t = 0 \) at all times
 - **RepHH model**: representative household with intertemporal elasticity \(\bar{\sigma} \)
Numerical Results: Taylor Rule

Responses to monetary policy shock: convex technology
Responses to technology shock: convex technology
Responses to wage markup shock: convex technology
Responses to shock to government purchases: convex technology
Responses to shock to government debt: convex technology
Numerical Results: Taylor Rule

Responses to shock to demand of savers: convex technology
Optimal Policy: LQ Approximation

- Compute a **quadratic approximation** to this welfare measure, in the case of small fluctuations around the **optimal steady state**.
Optimal Policy: LQ Approximation

- Compute a quadratic approximation to this welfare measure, in the case of small fluctuations around the optimal steady state.

- Results especially simple in special case:
 - No steady-state distortion to level of output ($P = MC$, $W/P = MRS$) (Rotemberg-Woodford, 1997)
 - No steady-state credit frictions: $\bar{\omega} = \bar{\Xi} = \bar{\Xi}_b = 0$
Optimal Policy: LQ Approximation

- Compute a **quadratic approximation** to this welfare measure, in the case of small fluctuations around the **optimal steady state**

- Results especially simple in special case:
 - No steady-state distortion to level of output \((P = MC, \ W/P = MRS)\) (Rotemberg-Woodford, 1997)
 - No steady-state credit frictions: \(\bar{\omega} = \bar{\Xi} = \bar{\Xi}_b = 0\)

 —Note, however, that we do allow for shocks to the size of credit frictions

Cúrdia and Woodford ()
Optimal Policy: LQ Approximation

- Approximate objective: max of expected utility equivalent (to 2d order) to minimization of quadratic loss function

\[\sum_{t=0}^{\infty} \beta^t \left[\pi_t^2 + \lambda_y (\hat{Y}_t - \hat{Y}_n)^2 + \lambda_\Omega \hat{\Omega}_t^2 + \lambda_\Xi \Xi_{bt} \hat{b}_t \right] \]
Approximate objective: max of expected utility equivalent (to 2d order) to minimization of quadratic loss function

\[\sum_{t=0}^{\infty} \beta^t [\pi_t^2 + \lambda_y (\hat{Y}_t - \hat{Y}_t^n)^2 + \lambda_{\Omega} \hat{\Omega}_t^2 + \lambda_{\Xi} \hat{\Xi}_{bt} \hat{b}_t] \]

Weight \(\lambda_y > 0 \), definition of “natural rate” \(\hat{Y}_t^n \) same as in basic NK model
Optimal Policy: LQ Approximation

- Approximate objective: max of expected utility equivalent (to 2d order) to minimization of quadratic loss function

\[
\sum_{t=0}^{\infty} \beta^t [\pi_t^2 + \lambda_y (\hat{Y}_t - \hat{Y}_n^t)^2 + \lambda_\Omega \hat{\Omega}_t^2 + \lambda_\Xi \hat{\Xi}_b t \hat{b}_t]
\]

- Weight \(\lambda_y > 0 \), definition of “natural rate” \(\hat{Y}_n^t \) same as in basic NK model
- New weights \(\lambda_\Omega, \lambda_\Xi > 0 \)
Optimal Policy: LQ Approximation

- Approximate objective: max of expected utility equivalent (to 2d order) to minimization of quadratic loss function

\[\sum_{t=0}^{\infty} \beta^t [\pi_t^2 + \lambda_y (\hat{Y}_t - \hat{Y}_n) + \lambda_\Omega \hat{\Omega}_t + \lambda_\Xi \hat{\Xi}_t \hat{b}_t] \]

- Weight \(\lambda_y > 0 \), definition of “natural rate” \(\hat{Y}_n \) same as in basic NK model
- New weights \(\lambda_\Omega, \lambda_\Xi > 0 \)

- LQ problem: minimize loss function subject to log-linear constraints: AS relation, IS relation, law of motion for \(\hat{b}_t \), relation between \(\hat{\Omega}_t \) and expected credit spreads
Consider special case:

- No resources used in intermediation ($\Xi_t(b) = 0$)
- Financial markup $\{\mu_t^b\}$ an exogenous process

Result: optimal policy is characterized by the same target criterion as in basic NK model:

$$\pi_t + \left(\frac{\lambda y}{\kappa} \right) (x_t - x_{t-1}) = 0$$

(“flexible inflation targeting”)
Consider special case:

- **No resources** used in intermediation ($\Xi_t(b) = 0$)
- Financial markup $\{\mu_t^b\}$ an **exogenous** process

Result: optimal policy is characterized by the same **target criterion** as in basic NK model:

$$\pi_t + \frac{\lambda_y}{\kappa}(x_t - x_{t-1}) = 0$$

(“flexible inflation targeting”)
Consider special case:
- No resources used in intermediation ($\Xi_t(b) = 0$)
- Financial markup $\{\mu_t^b\}$ an exogenous process

Result: optimal policy is characterized by the same target criterion as in basic NK model:

$$\pi_t + \left(\frac{\lambda_y}{\kappa}\right)(x_t - x_{t-1}) = 0$$

("flexible inflation targeting")

However, state-contingent path of policy rate required to implement the target criterion is not the same.
This is no longer an exact characterization of optimal policy, in more general case in which ω_t and/or Ξ_t depend on the evolution of b_t.
This is no longer an \textit{exact} characterization of optimal policy, in more general case in which ω_t and/or Ξ_t depend on the evolution of b_t

But numerical results suggest still a fairly good \textit{approximation} to optimal policy
Numerical Results: Optimal Policy

Responses to technology shock, under 4 monetary policies
Numerical Results: Optimal Policy

Responses to wage markup shock, under 4 monetary policies
Numerical Results: Optimal Policy

Responses to shock to government purchases, under 4 monetary policies

Cúrdia and Woodford ()
Credit Frictions
Bdl 2008 27 / 43
Numerical Results: Optimal Policy

Responses to shock to demand of savers, under 4 monetary policies
Numerical Results: Optimal Policy

Responses to financial shock, under 4 monetary policies
Rule of thumb suggested by various authors (McCulley and Toloui, 2008; Taylor, 2008): adjust the intercept of the Taylor rule in proportion to changes in spreads:

\[\hat{i}_t^d = \phi \pi_t + \pi_y \hat{Y}_t - \phi \omega \hat{\omega}_t \]
Spread-Adjusted Taylor Rule

- Rule of thumb suggested by various authors (McCulley and Toloui, 2008; Taylor, 2008): adjust the intercept of the Taylor rule in proportion to changes in spreads:

\[\hat{i}_t^d = \phi \pi_t + \pi_y \hat{Y}_t - \phi \omega \hat{\omega}_t \]

- McCulley-Toloui, Taylor suggest 100 percent adjustment (\(\phi \omega = 1 \))
 - Equivalent to having a Taylor rule for the borrowing rate, rather than the interbank funding rate
Spread-Adjusted Taylor Rule

- Rule of thumb suggested by various authors (McCulley and Toloui, 2008; Taylor, 2008): adjust the intercept of the Taylor rule in proportion to changes in spreads:

\[\hat{i}_t^d = \phi \pi_t + \pi_y \hat{Y}_t - \phi \omega \hat{\omega}_t \]

- McCulley-Toloui, Taylor suggest 100 percent adjustment ($\phi \omega = 1$)
 - Equivalent to having a Taylor rule for the borrowing rate, rather than the interbank funding rate

- We allow for other possible values of $\phi \omega$
Responses to financial shock, under alternative spread adjustments
Numerical Results: Spread-Adjusted Taylor Rules

Responses to a shock to government debt
Numerical Results: Spread-Adjusted Taylor Rules

Responses to a shock to the demand of savers
Numerical Results: Spread-Adjusted Taylor Rules

Responses to a shock to government purchases
Numerical Results: Spread-Adjusted Taylor Rules

Responses to a shock to the demand of borrowers
Numerical Results: Spread-Adjusted Taylor Rules

Responses to a technology shock
Often suggested that credit frictions make it desirable for monetary policy to respond to variation in aggregate credit.
Responding to Credit

- Often suggested that credit frictions make it desirable for monetary policy to respond to variation in aggregate credit.

- Christiano et al. (2007) suggest modified Taylor rule:

\[\hat{i}_t^d = \phi \pi_t + \pi_y \hat{Y}_t + \phi_b \hat{b}_t \]

with \(\phi_b > 0 \)
Responding to Credit

- Often suggested that credit frictions make it desirable for monetary policy to respond to variation in aggregate credit.

- Christiano et al. (2007) suggest modified Taylor rule

\[\hat{i}_t^d = \phi_{\pi} \pi_t + \pi_y \hat{Y}_t + \phi_b \hat{b}_t \]

with \(\phi_b > 0 \)

- We consider this family of rules, allowing also for \(\phi_b < 0 \)
Numerical Results: Responding to Credit

Responses to a “financial shock”
Numerical Results: Responding to Credit

Responses to a shock to government purchases
Responses to a technology shock
Provisional Conclusions

- Time-varying credit spreads do not require fundamental modification of one’s view of monetary transmission mechanism.
Provisional Conclusions

- Time-varying credit spreads do not require fundamental modification of one’s view of monetary transmission mechanism.

- In a special case: the same “3-equation model” continues to apply, simply with additional disturbance terms.
Provisional Conclusions

- Time-varying credit spreads do not require fundamental modification of one’s view of monetary transmission mechanism.

- In a special case: the same “3-equation model” continues to apply, simply with additional disturbance terms.

- More generally, a generalization of basic NK model that retains many qualitative features of that model of the transmission mechanism.
Provisional Conclusions

- Time-varying credit spreads do not require fundamental modification of one’s view of monetary transmission mechanism.

- In a special case: the same “3-equation model” continues to apply, simply with additional disturbance terms.

- More generally, a generalization of basic NK model that retains many qualitative features of that model of the transmission mechanism.

- Quantitatively, basic NK model remains a good approximation, esp. if little endogeneity of credit spreads.
Recognizing importance of credit frictions does not require reconsideration of the **de-emphasis of monetary aggregates** in NK models.
Recognizing importance of credit frictions does not require reconsideration of the de-emphasis of monetary aggregates in NK models.

Here, a model with credit frictions in which no reference to money whatsoever...
Provisional Conclusions

- Recognizing importance of credit frictions does not require reconsideration of the **de-emphasis of monetary aggregates** in NK models.

- Here, a model with credit frictions in which **no reference to money whatsoever**

- **Credit** a more important state variable than **money**
Provisional Conclusions

- Recognizing importance of credit frictions does not require reconsideration of the **de-emphasis of monetary aggregates** in NK models.

- Here, a model with credit frictions in which **no reference to money whatsoever**

- **Credit** a more important state variable than **money**

- However, **interest-rate spreads** really what matter more than variations in **quantity of credit**
Provisional Conclusions

- Spread-adjusted Taylor rule can improve upon standard Taylor rule

Cúrdia and Woodford ()
Credit Frictions
Bdl 2008 43 / 43
Provisional Conclusions

- **Spread-adjusted Taylor rule** can improve upon standard Taylor rule

- However, optimal **degree of adjustment** not same for all shocks
Provisional Conclusions

- **Spread-adjusted Taylor rule** can improve upon standard Taylor rule

 - However, optimal **degree of adjustment** not same for all shocks

 - And such a rule inferior to **commitment to a target criterion**
Provisional Conclusions

- **Spread-adjusted Taylor rule** can improve upon standard Taylor rule
 - However, optimal **degree of adjustment** not same for all shocks
 - And such a rule inferior to **commitment to a target criterion**

- Guideline for policy: base policy decisions on a **target criterion** relating **inflation to output gap** (optimal in absence of credit frictions)
 - Take account of credit frictions only in **model** used to determine policy action required to **fulfill target criterion**