$$
\left[\begin{array}{c}
Z_{t+1} \\
\tilde{E} E_{t} z_{t+1}
\end{array}\right]=A\left[\begin{array}{c}
Z_{t} \\
z_{t}
\end{array}\right]+B i_{t}+\left[\begin{array}{c}
u_{t+1} \\
0
\end{array}\right]
$$

Z_{t}
z_{t}

$$
\begin{aligned}
& I_{t}^{p}=\left\{Z_{s}, z_{s}, i_{s}, u_{s}, s \geq t ; \Theta\right\} \\
& X_{t}^{c b}=\Lambda^{c b}\left[\begin{array}{l}
Z_{t} \\
z_{t}
\end{array}\right]+v_{t}
\end{aligned}
$$

$$
I_{t}^{c b}=\left\{X_{s}^{c b}, i_{s}, s \geq t ; \Theta\right\}
$$

$$
\begin{gathered}
{\left[\begin{array}{l}
z_{t} \\
\bar{z}_{t}
\end{array}\right]=D S_{t}} \\
S_{t}=G S_{t-1}+H \epsilon_{t} \\
\bar{z}_{t}=\left[\begin{array}{c}
z_{t} \\
z_{t \mid t}
\end{array}\right], \quad S_{t}=\left[\begin{array}{l}
Z_{t} \\
\Xi_{t-1} \\
Z_{t \mid t} \\
\Xi_{t-1 \mid t}
\end{array}\right], \quad \epsilon_{t}=\left[\begin{array}{c}
u_{t} \\
0 \\
v_{t}
\end{array}\right] \\
S_{t}
\end{gathered}
$$

$$
\begin{gathered}
S_{t}=G S_{t-1}+H \epsilon_{t} \\
X_{t}=\Lambda S_{t}+e_{t} \\
X_{t}=\left[\begin{array}{c}
X_{F, t} \\
X_{S, t}
\end{array}\right], \quad e_{t}=\left[\begin{array}{c}
e_{F, t} \\
e_{S, t}
\end{array}\right], \quad \Lambda=\left[\begin{array}{c}
\Lambda_{F} \Phi \\
\Lambda_{S}
\end{array}\right]
\end{gathered}
$$

$$
X_{F, t}
$$

$$
\begin{gathered}
f_{t}=\rho f_{t-1}+\eta_{t} \\
x_{t}=f_{t}+e_{t}=\frac{1}{1-\rho L} \eta_{t}+e_{t}
\end{gathered}
$$

$$
(1-\rho L) x_{t}=\eta_{t}+(1-\rho L) e_{t}=(1-\tau L) \zeta_{t} .
$$

$$
\begin{aligned}
(1-\rho L) x_{t}= & \eta_{t}+(1-\rho L) e_{t}=(1-\tau L) \zeta_{t} . \\
\rho \sigma_{\eta}^{2} & \sigma_{e}^{2}
\end{aligned}
$$

$$
\rho \neq 0
$$

$$
f_{t}
$$

$$
\begin{array}{r}
x_{t} \quad t=-\infty, \infty \\
f_{t}-\operatorname{Proj}\left(f_{t} \mid x_{\tau}, \tau=-\infty, \infty\right)
\end{array}
$$

$$
x_{t}
$$

$$
\begin{aligned}
& x_{1 t}=f_{t}+e_{1 t} \\
& x_{2 t}=f_{t}+e_{2 t} \\
& x_{n t}=f_{t}+e_{n t}
\end{aligned}
$$

$$
e_{j t}
$$

$$
\frac{1}{n} \sum_{j=1}^{n} x_{j t}=f_{t}+\frac{1}{n} \sum_{j=1}^{n} e_{j t}
$$

$$
\operatorname{var}\left(\frac{1}{n} \sum_{j=1}^{n} e_{j t}\right)=\frac{1}{n^{2}} \sum_{j=1}^{n} \sigma_{j}^{2} \leq \frac{1}{n} \max _{j} \sigma_{j}^{2}
$$

$$
n \rightarrow \infty
$$

$$
\begin{gathered}
\frac{1}{n} \sum_{j=1}^{n} x_{j t}=f_{t}+\frac{1}{n} \sum_{j=1}^{n} e_{j t} \\
f_{t} \quad \operatorname{var}\left(\frac{1}{n} \sum_{j=1}^{n} e_{j t}\right)=\frac{1}{n^{2}} \sum_{j=1}^{n} \sigma_{j}^{2} \leq \frac{1}{n} \max _{j} \sigma_{j}^{2} \\
\quad n \rightarrow \infty
\end{gathered}
$$

$$
\begin{aligned}
S_{t} & =G S_{t-1}+H \epsilon_{t} \\
X_{t} & =\Lambda S_{t}+e_{t} \\
& =B(L)\left[\begin{array}{l}
u_{t} \\
v_{t}
\end{array}\right]+e_{t}
\end{aligned}
$$

u_{t}
v_{t}

$$
\begin{gathered}
S_{t} \\
n \rightarrow \infty
\end{gathered}
$$

$$
\left[u_{t} v_{t}\right]^{\prime}
$$

$$
S_{t}
$$

$$
x_{i t}=a_{i 1} u_{1 t}+a_{i 2} u_{2 t}+e_{i t}
$$

$$
x_{i t}=a_{i 1} u_{1 t}+a_{i 2} u_{2 t}+e_{i t}
$$

S_{t}
$x \quad S_{t}$
$X_{t} \quad X_{F, t}$
X_{t}

