
THE MISSING CYCLE IN THE HP FILTER AND THE MEASUREMENT 
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Matthias Mohr* 

The HP filter suffers from a pro-cyclical bias in end-of-sample trend 
estimates. This paper argues that this feature is related to the ”missing cycle” in the 
stochastic model of the filter. The paper suggest an extensions of the HP filter by 
including a stochastic cycle component in the underlying model of the filter. As a 
consequence, the derived trend and cyclical components are more consistent with 
the underlying filter model, and the end-point behavior improves significantly 
because the pro-cyclical bias in end-of-sample trend estimates is virtually removed. 

 

1. Introduction 

The decomposition of macroeconomic time series into trend and cyclical 
components is crucial to many macroeconomic concepts such as potential output, 
p-star, or the natural interest rate, and derived indicators such as cyclically adjusted 
budget balances. All these concepts imply that short- and long-term movements can 
be separated. Typically, the components are theoretical concepts and therefore not 
observable. Rather, they have to be identified on the basis of a theoretical model or 
plausible ad hoc assumptions. 

Several tools for trend extraction have been developed in the literature.1 Some 
of them allow building multivariate economic models and adjusting the model 
parameters to the data such as models with unobserved components (UC), others are 
are purely mechanical transformations of the original data such as the Baxter-King 
filter (Baxter and King, 1999) and the Hodrick-Prescott filter (Hodrick and Prescott, 
1997). From a theoretical perspective, complex unobserved components models are 
clearly superior to the simpler methods. From a more practical point of view, the 
estimation of unobserved component models – which is usually carried out using 
recursive estimation methods such as the Kalman filter – can be difficult: The results 
depend on well specified initial conditions for unobserved variables and their 
variances. The final model chosen is usually the outcome of a relatively elaborate 
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procedure of model selection.2 Furthermore, in some cases the Kalman filter 
approach may not work with annual data. 

While simple trend extraction methods are more convenient to use, the 
economic interpretation of their results may pose problems. This is mainly because it 
is not possible to adjust the filter to properties of the time series to be filtered. Such 
mechanical approaches may also give rise to “spurious cycles” (Harvey and Jäger, 
1993; Jäger, 1994; Cogley and Nason, 1995) which reflect more the properties of the 
filter used rather than those of the time series. An additional problem, which all 
approaches – including UC models – have in common, concerns the instability of 
trend estimations at the end of the data sample. The trend values of the last sample 
periods can change significantly when the sample is extended with the arrival of new 
data.3 

This paper follows an approach between the two polar methods of trend 
extraction – UC models on the one hand and mechanical filters on the other. The 
well known Hodrick-Prescott filter (HP filter) is extended by an explicit stochastic 
models for both the trend and the cycle. The resulting “trend-cycle filter” (TC filter) 
allows for the simultaneous extraction of the trend and the cyclical process. 

Compared with the HP filter as well as other common univariate filters, the 
TC filter has several advantages: first, it has better real time properties than other 
common univariate filters, as for instance the HP filter. Second, as both, trend and 
cyclical component, are explicitly modelled, it has a better foundation in the time 
domain than common univariate filters. Third, it can to some extent be adjusted to 
the data. Fourth, it can be easily extended to incorporate structural breaks. Finally, it 
is more convenient to use than unobserved components models. 

The paper proceeds as follows. Section 2 discusses general properties of the 
HP filter. In Section 3, the trend-cycle filter is developed by generalising the 
underlying trend model of the HP filter and by adding an explicit stochastic model 
for the cycle. Section 4 discusses the instability of trend/cycle estimations at the end 
of the sample – the so-called “end-point problem” of filters. Second, it assesses the 
end-point reliability of the TC filter empirically by applying it to real GDP in 
selected countries and the euro area. Section 5 concludes. 

————— 
2 As Planas and Rossi (2004, p. 130) note in an investigation of the real time reliability of UC Phillips curve 

models: 
 “...recursive estimation requires a close monitoring of the parameter values, as sudden jumps can strongly 

increase the revisions. For instance, we found that the proper handling of the Kalman filter starting 
conditions is critical to the stability of model parameter estimates over time”. 

3 The trend also changes if past data are revised ex post. Empirically, the instability due to the revision of 
past data is less problematic than the instability stemming from new data (Döpke, 2004; Rünstler, 2002). 
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2. The HP Filter 

The HP filter is obtained by minimising the objective function: 
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for  xt . It is convenient to express the objective function in matrix form: 

 TTTT XXXXXX 2'2')()'( ∇∇+−− λ  (2) 

where  X  and  X T  are  N×1  vectors of the original data and the trend and  ∇ 2  
denotes the 2nd difference matrix.4 The solution5 of this optimisation problem 
follows from the first order conditions in matrix form: 

 XIX T 12'2 )( −∇∇+= λ  (3) 

 TC XXX −=  

 

2.1 The stochastic model of the HP Filter 

For a more general interpretation of the HP filter one may start with the 
implicit stochastic trend model, a second order random walk. Let us write the model 
in matrix notation: 

0 =−− CT XXX  

Nnntt
T IENtEEX 2222 )'(,...1)(0)(, σηησηηη ==∀===∇  

Ntt
C IENtEEX 222 )'(,...1)(0)(, ζζ σζζσζζζ ==∀===  

NE 0)'( =ηζ  

The residuals  η  and  ζ  are typically referred to as signal and noise. We 
assume that these processes have a zero-mean and that their variances exist. 
Furthermore, they are assumed to be mutually uncorrelated. The signal variable  η  is 
a white noise error term, whereas  ζ  may follow an unspecified stationary ARMA-
process. 

When inspecting the stochastic model of the filter and the definition of the 
trend in equation (4), several points are worth mentioning. First, the objective 
function in equation (2) is a weighted sum of the inner products of the residuals 
ζ’ζ + λ η’η  with the weight parameter  λ. 

————— 
4 Lag and difference operators in matrix form are explained in Appendix 1. 
5 For a more detailed derivation of the solution see for instance Danthine and Girardin, 1989. 

(4) 
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Second, the stochastic model of the trend process as a second order random 
walk is a prior which may or may not be appropriate, depending on the properties of 
the series being filtered.6 

Third, the cyclical component generated with an HP is proportional to the 
fourth difference of the HP filter trend, shifted forwards by two periods (see Reeves 
et al., 1996, p. 4) – a highly implausible property. 

Fourth, the trend and the cycle add up to the original series, meaning that 
there is no residual component capturing non-cyclical random impacts. According to 
the time domain representation of the filter in equation (4), the cycle is not explicitly 
modelled. Rather, it is defined as a residual process so that an additional residual 
component cannot be identified. 

Finally, under the additional assumptions that the cycle process  ζ  is white 
noise and that  η  and  ζ  are distributed normally, maximising  ζ’ ζ + λ η’η  gives an 
optimal filter for the underlying stochastic process7 if the parameter λ is set equal to 
the inverse signal-to-noise variance ratio:  22 / ηζ σσλ = . This interpretation is also 
consistent with an unobserved components model in which the parameter  λ  would 
be estimated as the inverse signal-to-noise variance ratio. These additional 
assumptions are usually not met in practice. In addition, the choice of the value of  λ  
is based on prior assumptions and not on the concept of an optimal filter. Therefore, 
the HP filter is in general not an optimal filter in practical applications.8 
Furthermore, the cyclical component obtained from filtering is not a white noise 
process but follows some auto-correlated process, the properties of which depend 
on  λ. 

 

2.2 The value of  λ 

Since the parameter  λ  is key for the properties of the HP filter, much has 
been written about the proper value without, however, providing clear indications as 
to how to choose the appropriate value of  λ. Ideally, the choice of  λ  should be 
adjusted so that it reflects prior knowledge on the length of the cycle. However, the 
smoothing parameter does not only affect the cycle but the volatility of trend growth 
as well – a consequence of the fact that the HP filter does not contain an explicit 
model of the cycle. Therefore, many practitioners tend to choose high values for  λ 
when filtering annual data because they feel that lower values – as suggested in the 

————— 
6 Many macroeconomic time series are assumed to be  I(1)  which contradicts the local linear trend model 

underlying the HP filter. 
7 Whittle (1983). A filter is optimal if the sum of squared differences between the true and the estimated 

cyclical component take a minimum. 
8 It follows also that the fixed value of  λ  is unequal to the observed inverse signal-to-noise variance ratio: 
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econometrics literature – would give rise to implausibly volatile trend growth rates. 
Thus, the value of  λ  is often based on a prior assumption of an acceptable trend 
volatility. 

Values of 1600 for quarterly data and of 100 for annual data are commonly 
used. Ravn and Uhlig (2002) argue on the basis of frequency domain considerations 
that  λ = 1600  for quarterly data is inconsistent with  λ = 100  but would rather 
correspond to  λ = 6.5  for annual data. Kaiser and Maravall (1999) propose a value 
of 8 for annual data, and Pedersen (2001) argues for a value of 1000 for quarterly 
data and for 3-5 for annual data. In Bouthevillain et al. (2001) the filter is applied 
with  λ = 30  and in Mohr (2001) with  λ = 20  to annual data. 

The impact of the value of  λ  can be best demonstrated in the frequency 
domain. As the gain functions of the trend and the cyclical component for different 
λ-values in Figure 1 show, low frequency components are allocated to the trend 
while high frequency components are allocated to the cycle. Higher values of  λ  
shift the gain function of the trend to the left so that the trend contains less of the 
higher frequencies, thereby becoming smoother. If  λ→∞, the extracted trend 
approaches a linear trend. With lower values of the smoothing parameter, the trend 
becomes more volatile as it contains a larger part of the high-frequency spectrum. In 
the extreme case of  λ = 0, the trend is equal to the original series.9 

The frequency domain characteristics of the HP filter have well-known 
implications: 
• First, the volatility of the cycle is controlled by the smoothing parameter  λ. 

However, as  λ  defines the trend-volatility as well, there is no way to model the 
trend and the cycle independently from each other. Extracting shorter cycles 
comes automatically at the cost of a more volatile trend. 

• Second, the missing model for the cyclical component has important 
consequences when additional, new data at the end of the sample are processed. 
There is no other choice than to allocate the information contained in a new data 
either to the trend or to the cycle, even though it may represent an outlier not 
generated by the data generating process underlying the HP filter.  

• Finally, the HP filter is often used as an approximation to an ideal filter. 
Suppose, for instance, that the objective is to filter out a cycle of 8 or less 
periods length implying an ideal filter as shown in Figure 1: all frequencies 
below the critical frequency of        are cut off. By adjusting  λ, the HP filter can 
approximate the desired ideal filter to some extent. However, there is a trade off 
in the choice of  λ: while decreasing  λ  gives a better approximation to the ideal 
filter in the low frequency range, it worsens the approximation in the higher 
range. Therefore, either the trend contains frequencies which ideally should be  

————— 
9 It is possible to translate the value of  λ  into a corresponding critical frequency ωc, determined 

by  5.0.),(/ 1 =− λω HPc G . In this way, the filter can be characterised by a reference cycle of frequency  ωc. 
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Figure 1 

Gain Function of the Trend and the Cyclical Component of the HP Filter 
for Different Values for  λ 

 
 

 

 

 

 

 

 

 
 

 
fully captured in the cycle and is therefore overly volatile, or longer waves which – 
according to the ideal filter – belong to the trend have too much weight in the cycle. 

In short, a third component capturing irregular random influences is missing 
in the HP filter model. This tends to increase the instability of the trend estimate in 
real time as random influences are partly forced to contribute to the trend variability. 
This issue will be discussed further in Section 4.1. 

 

3. The TC filter 

This section extends the HP filter first by allowing for stochastic trends of 
arbitrary order and second by adding a stochastic model for the cycle to the filter. 
The resulting trend-cycle filter provides simultaneous, model-based estimates of the 
trend and the cyclical component. 

 

3.1 A general stochastic trend model 

In the HP filter model, the stochastic trend is restricted to a second order 
random walk. We generalise the trend model to a stochastic trend of any order. In 
this way, the order of the stochastic trend can be adjusted to the original series. For 
instance, many economic time series are  I(1)  and a first order stochastic trend – 
possibly with a deterministic drift – would be more appropriate than the second 
order trend embodied in the HP filter. 
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The generalised trend model in matrix form can be described as: 

 η=−∇∇ − )(1
b

Td UX  (5) 

where  U  denotes the  (T × 1)  vector  [0,1,…,1]’,  b  stands for the drift parameter 
to be determined endogenously, and  d  denotes the order of the trend. The 
expression  Ub  accounts for a deterministic drift if the trend is of first order  (d = 1). 
For a higher order trend  (d > 1), the drift term vanishes as  01 =∇ −

b
d U . 

Replacing the second line in equation (4) by equation (5) leads to the 
following objective function of the generalised trend filter in matrix form: 

 [ ] [ ])(')()()'( 11
b

Td
b

TdTT UXUXXXXX −∇∇−∇∇+−− −−λ  (6) 

In the case of the first order random walk with drift the objective function has 
to be maximised for both the trend vector  X T  and the drift parameter  b, yielding: 

 0')'( =∇+∇∇+− b
T UXIX λ   

 TXUUUb ∇= − ')'( 1  

Thus, the drift term is computed as the average change in the trend: 
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Note, however, that the drift term  b  and the trend  XT  are determined 
simultaneously. Another interpretation of the solution for  b  in equation (7) is that it 
represents the parameter of a regression of  ∇

  
X

T
  on the vector U. This allows us to 

define the residual projection matrix  W = I – U(U’U)
–1
U’  of this regression and to 

merge the solutions for  b  and  X
T
  to yield: 

 XWIX T 1)'( −∇∇+= λ  d = 1 (8) 

The solution for  d > 1  is straightforward, as in this case the trend reduces to 
a d-th order stochastic trend  ∇ d

  
X

 T 
= η, and the solution is similar to that of the 

original HP filter in equation (3): 

 XIX ddT 1' )( −∇∇+= λ  d ≥ 2 (9) 

The solution in equation (9) can also be applied to a first order random walk 
with drift if the linear trend is removed from the time series before filtering. The 
result should not differ too much from the trend as given in equation (8), in which 
the deterministic and the stochastic trend components are simultaneously 
determined. 

The generalisation of the trend order is well known in the literature. The case 
of  d = 1  without simultaneous determination of the deterministic drift is known as 

(7) 
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“exponential smoothing” and was used by Lucas (1980) in an empirical analysis of 
the quantity theory of money. The simultaneous determination of the drift was first 
proposed in Tödter (2002) as the Extended Exponential Smoothing (EES). 
Furthermore, the Butterworth filter, which is primarily known in the engineering 
literature, depicts the general case of a stochastic trend of order  d  (Gomez, 2001). 

For macroeconomic time series, stochastic trends of order higher than two do 
not make much sense. In the following sections, we will therefore concentrate on the 
EES, the HP filter and on TC filters with first- and second-order stochastic trends. 

 

3.2 A stochastic model for the cycle 

In this subsection, the stochastic model for the HP filter is extended by an 
explicit model for the cycle. The cyclical process is now assumed to follow a 
stationary ARMA-process, which is not left implicit as in the HP filter. Thus, we 
amend the stochastic model in equation (7) with the equation  AX C

 = Bζ, in which 
the elements of the matrices  A  and  B  are determined by the parameters of an 
appropriately specified stationary ARMA process. 

A convenient approach to model cyclical movements are stochastic cycles as 
suggested in Harvey (1989) or in Harvey and Jäger (1993). The original stochastic 
cycle approach in Harvey (1989) was extended towards stochastic cycles of order c 
in Harvey and Trimbur (2003). A stochastic cycle of order 2 is a stochastic cycle of 
order 1 with an error process that itself follows a stochastic cycle. Stochastic cycles 
of higher order are defined respectively. Stochastic cycles of order c give rise to 
ARMA(2c, c) processes as shown in Harvey and Trimbur (2003). 

The model for the c-th order stochastic cycle can be specified in state-space 
form as: 
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 i = 2 ... c 

where            is an auxiliary variable needed to write the model in state space form. 

The properties of the cycle are obtained by writing: 
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from which one obtains: 
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The parameter  ρ  should be chosen from the open interval  ]0, 1[. It dampens 
the cycle, and  ρ < 1  ensures that the cyclical process is stationary. In practice,  ρ 
will be assigned a value close to 1, for instance  ρ = 0.975. The parameter  µ, which 
defines the “critical” frequency that dominates the stochastic cycle, is more 
important. As with the value for  ρ, the parameter  µ  can be determined on the basis 
of prior knowledge on the length of the cycle.10 

By iterative substitution, one obtains: 

 (1 – 2ρ cos(µ)L + ρ
2

L
2

)c C
tcx ,  = (1 – ρ cos(µ)L)c ζt (12) 

for the c-th order stochastic cycle which we will incorporate in the TC filter: 
C

tc
C
t xx ,= . 

The stochastic cycle model can be easily transformed to its matrix form 
AX C = Bζ  where  A  and  B  denote  (N – 2c) × N  matrices representing the AR and 
the MA process, respectively: 

A 

a2c … a1 1 0 … 0

0 a2c … a1 1 0 … 0

 a2c … a1 1 

0 … a2c … a1 1

B 

↓
colum n c1

0 … 0 bc … b1 1 0 … 0

  0 bc … b1 1 0 … 0

   bc … b1 1 

0 … 0 … bc … b1 1

 

The first  c  columns of  B  are set equal to 0, and the  ai’s  and  bi’s  are 
determined by  α(L)c  and  β(L)c  in equation (12). 

 
3.3 Putting it all together: The TC filter 

Combining the trend and the cycle model in matrix form gives the model of 
the TC filter: 

————— 
10 Alternatively, the parameters  ρ  and  µ  can be estimated from the data in an iterative procedure as shown 

in (?). 
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We assume that  ζ  and  η  are white noise error terms. Furthermore, we 
assume  E(ε) = 0, that the variance  σε  exists and that  ε  is uncorrelated with the 
other residuals.  ε  could follow any stationary ARMA process fulfilling these 
requirements and is not necessarily a white noise process. 

As with the HP filter or the EES, the objective function for this problem is 
constructed as the sum of the inner products of the residuals  ε′ε + η′η + ζ′ ζ. 
Different from the one-component filters, however, there is no smoothing parameter 
(such as  λ  in the HP filter or the EES), and it will be explained below why this is 
so. This gives the following optimisation problem:11 
 
 
 
 
 

  (14) 
 
 
 
 
 
 

The solutions to this problem for the trend and the cyclical processes are 
obtained by minimising the objective function for  X T,  X C , and also for  b  if the 
trend is assumed to follow a first-order random walk with drift  (d = 1). For the sake 
of simplicity, we define the residual projection matrix  W  of a regression on  U  as  
W = I – U(U’U)–1U’  and make use of the following notation: 
 
 
 
 

  (15) 
 
 
 
 
 

We obtain the following system of first order conditions (FOCs): 

 
  (16) 

————— 
11 The last expression with XC in equation (14) can be derived as follows: the objective function involves the 

minimisation of  ζ′ζ. The minimisation can be carried out in two steps: first, minimize  ζ′ζ  for a given XC 
under the constraint that the stochastic cycle model  AXC = Bζ  holds. This gives  ζ = B′κ, with  κ  as 
Lagrange multiplier. By replacing  ζ  in the stochastic cycle model, one obtains  AXC = BB′κ. From that we 
derive  ζ = B′(BB′)–1 AXC  and hence  ζ′ζ = XC′A′(BB′)–1 AXC. 
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To explain the intuition behind the system of FOCs, observe that  MT  is an 
one-component trend filter which transforms any series  X  to a trend series. For 
instance, assuming  d = 2, we obtain the HP filter with  λ = 1. Similarily, the matrix 
MC  transforms any (stationary) series to a cycle series. Indeed, it can be shown 
(Harvey and Trimbur, 2003) that the matrix  MC  defines a band-pass filter with a 
gain function spreading around the critical frequency  µ. If the order of the 
stochastic cycle  c  is increased, the cyclical filter approaches a perfect band-pass 
filter. Thus, the system of FOCs in equation (16), combining the trend and the 
cyclical band-pass filter, can be interpreted as follows: applying the trend filter to a 
series from which the cyclical process has been removed (i.e., on  X – X C ), gives the 
trend  XT  and, similarily, if the band-pass filter is applied to a series from which the 
trend has been removed (i.e., on X – XT), the cyclical process follows. 

From the FOCs we derive the following solutions for the trend and the 
cyclical process: 

XT = (I − MT MC)−1 MT (I − MC) X ⇔ XT = MTCX 

XC = (I – MC MT)−1 MC (I – MT) X ⇔ XC = MCT X 

Equation (17) defines the                     filter with a stochastic trend of order  d, 
a stochastic cycle of order  c, a critical cycle length of      and a dampening 
parameter of  ρ. 

As equation (17) shows, the two-components TC filter can be regarded as a 
combination of the one-component trend and the one-component band-pass filter. 
For instance, using the trend filter to remove the trend in the first step and applying 
the band-pass filter on the residual yields: 

 

as the cyclical component. However, this stepwise approach would neglect the 
simultaneity in the computation of the trend and the cycle and is therefore finally 
corrected by the correction factor  (I – MC MT)–1. In the special case of  MC MT = 0, 
there is no simultaneity error, so that the stepwise application of the trend and the 
cyclical filter would not differ from applying the simultaneous TC filter.12, 13 

As mentioned above, the variance components in the TC filter objective 
function (14) are not weighted. As the TC filter contains two components which are 
modelled (the trend and the cycle), two weighting parameters,  λ1  and  λ2, are 
————— 
12 Technically,  MC MT → 0  means that the intersection of the trend gain with the cycle gain in the frequency 

domain becomes smaller. This implies that the contribution of the trend to identify the cycle (and vice 
versa) becomes smaller and that trend and cycle become increasingly independent from each other. Ceteris 
paribus, the intersection of the gain functions decreases when critical cyclical frequency of the cycle  µ 
becomes higher when the order of the stochastic trend,  d, or of the stochastic cycle,  c, become smaller. 

13 Equation (17) gives consistent results if one component is missing. For instance, assume that there is only 
a trend and no cyclical component, implying  MC = 0. It follows that the two-components trend filter 
collapses to the one-component trend filter: MTC = MT. Respectively, if there is no trend, i.e. if  MT. = 0, it 
follows that  MCT = MC. 

(17) 

d, c, 2
 ,

2


X̃ C  MCI − MTX
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necessary to define the objective function with weights as  ε'ε + λ1 η′η + λ2 ζ′ζ. Under 
certain assumptions in addition to those in equation (13), minimising the weighted 
objective would provide the optimal filter for the process defined in equation (13).14 
However, deriving an optimal filter is not our objective. Instead, we want to extend 
the HP filter with a cyclical model in order to improve certain properties of the HP 
filter and in order to account for prior assumptions on the cyclical process in more 
straightforward manner. 

With the HP filter, prior assumptions about the cyclical process are in 
principle reflected in the choice of the smoothing parameter  λ. However, as 
discussed above, the relationship between the assumed cyclical process and the 
value of lambda is unclear. The TC filter trend can be interpreted as an HP filter 
trend in which the smoothing parameter  λ  is replaced by a more complex 
expression reflecting prior assumptions on the length of the cycle. Rewriting the 
trend in equation (17) as: 

 
reveals that the trend of the TC filter is similar to the HP filter trend in equation (3) 
with  λ  replaced by the matrix expression  I + (A′(BB′)–1A)–1. Since this expression 
depends on  µ, the critical frequency of the cycle, it reflects the prior assumption on 
the average cycle length.15 Thus, by amending the HP filter with a model for the 
cycle, we have replaced the – to a certain extent arbitrary – smoothing parameter  λ 
with a more general model based expression providing a clear-cut relationship 
between the cycle length and the filter parameter  µ. 

 

3.4 Properties of the TC filter in the time domain 

As equation (17) shows, both the stochastic trend and the stochastic cycle 
model affect the trend and cycle solutions. This is so because the trend and the cycle 
are determined simultaneously; prior information on the nature of one component is 
used to identify the other component. 

————— 
14 The additional assumptions are that  ε,  η  and  ζ  are all normally distributed and that the weights are set 

equal to the respective inverse signal-to-noise variance ratios: 

2

2

1
η

ε

σ
σλ =                 

2

2

2
ζ

ε

σ
σλ =  

However, in equation (13) these variance ratios have been implicitly set to 1. This is an important 
difference to the general Kalman filter approach in (Harvey and Trimbur, 2003), in which signal and noise 
variances are estimated simultaneously with the trend and cycle. Like the HP filter, the TC filter is in 
general not an optimal filter. 

15 For instance, assuming a relevant cycle length of eight years,  µ  could be set to  8.0
8

2
≈

π   with annual 

data. 
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The TC filter reproduces deterministic trends up to order16  2d – 1. This can 
easily be shown by rewriting the trend in equation (17) as: 

I  A ′BB′−1 A∇ d ′∇ d X T  A ′BB′−1 AX − X T 
Preserving a deterministic trend implies  X = XT, so that the condition  ∇ d’∇ d X = 0 
follows: the second difference of the trend should vanish. As the 2d-th difference of 
any trend of order  2d – 1  is zero, a trend of order  2d – 1  fulfills the condition. The 
TC filter resembles in this respect the HP filter, which preserves deterministic trends 
of at most third order. 

Unlike the HP filter, however, the TC filter preserves deterministic, stationary 
cycles as well, and its trend is cyclically neutral as long as the cycle in the data is 
consistent with the cyclical model of the filter. This means that applying the TC 
filter on such a process reproduces the input process completely in the cycle and 
yields a zero trend. In order to prove this we set  XC = X  in equation (17) and derive 
the condition: 

I  ∇ d ′∇ d A ′BB′−1 AX  0  
For this condition to hold it is sufficient that  AX = 0. This is the case if  X  is 

generated by  α(L)k X = 0, for  1 ≤ 
 
k ≤ 

 
n  and with  α(L)  defined as in equation (11). 

The cyclical neutrality of the trend follows immediately from equation (17) together 
with the assumption that  AX = 0. 

The cyclical neutrality of the trend is an important improvement over an HP 
filter trend, which is not cyclically neutral: depending on the value of the smoothing 
parameter  λ, the HP filter reproduces harmonic oscillations partly in the trend.17 

The equations of the trend and the cyclical process are symmetrical: the 
matrices  ∇ d  and  A  can be regarded as containers for arbitrary but distinctive 
stochastic processes. It is even possible to include exogenous variables in order to 
identify the trend and the cycle as, for instance, the inflation rate, indicators of 
capacity utilisation or of consumer sentiments. This is similar to the Multivariate HP 
filter as proposed by Laxton and Tetlow (1992).18 

 

3.5 Properties of the TC filter in the frequency domain 

In this subsection we analyse the properties of the trend-cycle filter in the 

————— 
16 A deterministic trend of order  k  is defined as  ∑ =

k

i
i

i ta
0

  with  t  denoting the time index. 

17 This is owing to the fact that the HP filter cannot approximate an ideal filter perfectly, as explained in 
Section 2. The HP filter would give a zero trend only in the limiting case of  λ → ∞. The other polar case 
of  λ = 0  just reproduces the input process. The incorporation of cyclical fluctuations in the HP filter trend 
reflects the leakage effects of the filter explained above. 

18 For a more recent application of the multivariate HP filter, see Gruen et al. (2002) and Boone et al. (2000). 
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frequency domain. We derive the polynomial lag forms and subsequently the 
frequency domain representations – i.e. the Power Transfer Functions (PTFs) – of 
the trend and the cyclical filter in equation (17). 

The matrices  A  and  ∇ d  in equation (17) are matrix-form translations of the 
polynomial lags for the stochastic cycle  γ(L)c = [α(L)/β(L)]c  – with  α(L)  and  β(L)  
defined as in equation (11) – and the stochastic trend, (1 – L)d. The transposes of 
these matrices represent the respective lead-polynomials  γ(L–1)c  and  (1 – L–1)d  in 
matrix form. The polynomial lag forms of the trend and the cyclical filter in (17) can 
therefore easily be derived by replacing ∇ and A with  1 – L  and  γ(L)  and their 
transposes with  1 – L–1  and  γ(L–1), respectively. After simplifying we have: 
 
 
 
 
 
 
 
 
 

The corresponding gain functions,                  and                 , can be obtained 
by replacing the lag operator  L  in equation (18) with  U –iω  with  ω  as the 
frequency in radians. 

As the filters are symmetric, the PTFs are equal to the squared gain functions. 
The impact of the parameters  d,  c,  µ  and  ρ  on the behaviour of the TC filter can 
be best explained by visual inspection of the PTFs as shown in Figure 2 for different 
parameter settings. 

The order of the stochastic cycle,  c, determines the bandwidth of the 
frequency spectrum contained in the cyclical process. The spectrum expands around 
the critical frequency  µ  when  c  becomes larger. Increasing the order of the 
stochastic cycle also shifts the trend spectrum to the lower frequency range. This is a 
consequence of the simultaneous determination of the trend and the cycle. However, 
the impact of changes in  c  on the trend-spectrum is minor. 

The critical frequency  µ  determines the center of gravity in the frequency 
spectrum of the cycle. Changes in  µ  give also rise to unidirectional shifts in the 
position of the trend spectrum, implying that  µ  does not only affect the volatility of 
the cycle but to some extent the trend volatility as well. Again, this feature follows 
from the simultaneous determination of the trend and the cycle. 

An increase in the order of the stochastic trend  d  takes higher frequencies in 
the trend spectrum, implying that the trend becomes more volatile. The impact of 
changes in  d  on the cycle-gain are minor. Thus, by setting the order of the stochastic 
trend, the trend volatility can be manipulated without affecting the cycle too much, 
whereas the properties of the cycle are mainly determined through  µ  and  c. 

The parameter  ρ  is necessary to ensure the stationarity of the cycle and 
should be set close to but less than 1. As Figure 2d shows, the power-transfer 
functions are quite robust against changes in  ρ. 
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Figure 2 

Power-transfer Functions of the Trend and the Cycle of the TC filter 
for Different Parameter Values 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
4. An application to real GDP in selected countries 

Now we apply variants of TC filter to annual real GDP from 1970-2002 in 
Germany (DE), Spain (ES), France (FR), Italy (IT), the euro area (EURO), and in 
the US and compare the results to those obtained with the HP filter and the Extended 
Exponential Smoothing (EES) as suggested by Tödter (2002). The data source is the 
spring 2004 AMECO database of the European Commission. In order to adjust for 
the structural jump in the German and the euro area series owing to the German 
unification, German real GDP was regressed on a constant, a linear trend and a jump 
dummy which takes a value of 1 from 1991 onwards and of 0 before. The estimated 
shift parameter value was then added to real GDP before 1991. 

We choose a value of 7 for the smoothing parameter for the EES, following 
Tödter (2002). We fix the  λ  parameter for the HP filter to 30, as in Bouthevillain 
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et al. (2001). We define an 8 years reference cycle for the TC filters, i.e.             , 
and set the dampening parameter  ρ = 0.975. 

Figure 3 shows the resulting relative cyclical components for the TC(1,2), the 
TC(2,2), the HP(30) filter and the EES(7). The cyclical components are very similar 
to each other in the middle of the sample, with the exception of comparatively large 
TC(1,2) cycles for Spain and the US. More important, however, are the significant 
differences we observe at the sample fringes: The procession of end-of-sample 
information seems to constitute the most distinctive feature. 

Furthermore, the patterns of trend growth generated with a TC filter are less 
smooth than the trend growth pattern derived from the one-component filters 
(Figure 4). In fact, the HP filter has often been criticised for generating an 
implausibly cyclical – even pro-cyclical – pattern in trend growth, which is difficult 
to reconcile with the common assumption that the long run growth path is mainly 
affected by irregular supply shocks. At the first sight, it seems as if the zig-zag like 
movements in the TC filter trend growth rates are more in line with this prior 
assumption than the patterns of the HP filter or the EES trend growth rates. 

In the next sections we analyse the properties of trends and cycles computed 
with the TC filter more thoroughly and compare them with trends and cycles 
generated with the HP filter and the EES. In the first subsection, the issue of the 
so-called end-point problem is investigated from a more theoretical perspective. It is 
argued that the forecasting capability of the stochastic model underlying the filter is 
the main variable triggering the end-of-sample instability. In the second subsection, 
we explore the forecasting performance of the filters empirically. We find that the 
stochastic cycle model improves the forecasting performance of filters considerably. 
Finally, it is shown that some of the assumptions underlying the TC filter can be 
tested and that the TC filter can to some extent be adjusted to the data. 

 

4.1 The end-point problem and the predictive capabilities of filters 

Many trend-cycle decompositions suffer from the so called end-point 
problem. The trend in the final period  N,         , is based on information available up 
to and including period N. It can change significantly if new data for period  N + 1  
become available – irrespective of whether the new data point is driven by cyclical 
or by structural factors. The real-time allocation of the dynamics to structural and 
cyclical forces is necessarily uncertain as information on the future path of the 
economy missing. It is only when new data in future periods become available that 
the trend-cycle decomposition in period  N  becomes more certain and stabilises. 

While the limited amount of real-time information is a general problem for 
any trend-cycle decomposition that relies on past and future periods, trend extraction 
tools differ in the significance of the problem. The problem is less significant, the 
better the model underlying the filter can forecast the original time series. This can 
be illustrated by taking the example of the HP filter stochastic model. 
 

  2
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Figure 3 

Cyclical Components of Real GDP 
(percent of real GDP) 
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Figure 4 

Trend Growth Rates Real GDP 
(percent) 
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The stochastic model of the HP filter can be used to forecast  xN+1  in period 
N, once the trend value in  N  is given. As the trend model is a second order random 
walk and because the cycle is not modelled, it follows that the optimal forecast for  
xN+1  is equal to: 
 
 
 
 

Now extend the original series by            to obtain                             and apply the 
HP filter to the extended series. As a result, the trend series up to period 
                          is identical to the one obtained from filtering the non-extended 
series; the HP filter is consistent with its own forecast (Kaiser and Maravall, 1999). 

From this we can conclude that there is no end-point problem if new data that 
arrive in  N + 1  comply with the implicit forecast of the HP filter. Stating it the 
other way round: an end-point problem exists only insofar as the stochastic model 
underlying the filter is a weak representation of the data generating process. 

As a standard remedy to the end-point problem, time series are sometimes 
extended by forecasts,19 and the filter is applied to the extended series. If the forecast 
turns out correct ex post, there would not be an end-point bias. However, this 
approach comes with other problems. It is unclear how the filter processes forecast 
errors, which translate into errors in the trend estimation. Even if the forecast itself is 
unbiased and the forecast error is a random white noise process, it is unlikely that 
the implied errors in the computation of the trend share this feature because the filter 
model differs from that underlying the forecast. 

As we have seen, the HP filter is consistent with forecasts derived from its 
own time series model. Extending the time series on the basis of a different model 
means that one does not trust the filter model. However, if there are good reasons to 
assume that there exists a model with a better forecasting performance than the filter 
model, the former rather than the latter should be applied for the trend-cycle 
decomposition. 

Thus, rendering the filter model more consistent with the data generating 
process is a more preferable solution to the end-point problem than data extensions 
on the basis of models inconsistent with the filter. It follows that the end-point 
problem should be alleviated by improving the forecast performance of the 
stochastic filter model, i.e. its fit to the actual data. 

The forecast performance of the filter and the possibilities to adjust it to the 
data depend mainly on the complexity of the underlying model. The complexity of 
the stochastic model of the HP filter, for instance, is low: the second order random 
walk property of the trend is the only prior piece of information that can be exploited 

————— 
19 The forecasts are often derived from ARIMA models as for instance in Kaiser and Maravall (1999) and in 

Denis et al. (2002). 
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for forecasting. Furthermore, the HP filter provides practically no means to adjust it 
to the data. Hence, its forecast performance cannot be improved. 

The TC filter on the other hand provides a somewhat richer stochastic model 
as it explicitly accounts for the cycle; but does it give better forecasts and what are 
the empirical implications for the end-of-sample trend-cycle decomposition? 

 

4.2 The forecasting performance of the HP and the TC filter 

We investigate now the iterative one-step-ahead forecasts of the TC and HP 
filters and the EES. Starting with the sample 1970-78, we increase the “last year”s of 
the sample step by step until 2001, apply the filter on each vintage and compute for 
each of the filters a series from 1979-2002 of one-step-ahead forecasts             on the 
basis of the respective stochastic filter model: 
 
 
 
 
 
 
 
 
 

where  s = 1978...2002. The forecasts generated by the TC filter contains two 
components: the trend forecast        generated by the stochastic trend model and 
cycle forecast         derived from the stochastic cycle model. Note that only the AR 
and not the MA part of the stochastic cycle is used to generate the forecast since 
expected forecast errors are assumed to be equal to zero. 

 

 

 

 

 

 
where  c =1,2  and  s = 1978...2001. The quality of the forecasts can be assessed by 
testing for  b = 1  and  const = 0  in the regression: 

  (19) 

In the case of the TC filter, the additional variance explained by stochastic 
cycle forecast can be assessed by comparing the explained variance in equation (19) 
to that in the reduced regression: 

  (20) 

which contains only the trend forecast of the TC filter model. 
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Table 1 – we present only the euro area results of this test because they are 
similar for the other countries – shows the result of the forecast regressions, together 
with some indicators of forecast quality, the root mean square error (RMSE), the 
mean absolute percentage error (MAPE), Theil’s inequality coefficient and the 
coefficient of correlation between the one-step ahead predictions and actual values.20 
The bias and the variance proportion measure the part of the MSE due to differences 
in the mean and the variation between the predicted and the actual series. The 
covariance proportion captures remaining unsystematic forecasting errors. The bias, 
variance and covariance proportion add up to one. Ideally, the bias and variance 
proportions should be small so that most of the bias concentrates on the covariance 
proportion. All filter models predict real GDP growth in the euro area well and are 
unbiased. The correlation between predicted and actual GDP growth rates increases 
considerably with the complexity of the underlying filter model; the TC(1,2) and the 
TC(2,2)-forecast of real GDP growth explain about 80 per cent of actual growth, the 
EES-forecast only 38 per cent. Furthermore, the stochastic cycle model improves the 
fit to the data substantially as compared with the forecasts exclusively based on 
trends. Growth forecasts on the basis of the TC filter variants yield lower RMSE’s, 
lower mean absolute percentage errors and lower Theil inequality statistics than 
forecasts using the stochastic models HP filter and the EES. 

The decomposition of the MSE reveals that it is almost fully explained by the 
non-systematic covariance component in the case of the TC filter, whereas 
considerable contributions to the mean square error (13.8 per cent in the case of the 
HP filter and almost 38 per cent with the EES) derive from differences in variation 
between predicted and actual growth rates when predictions are based on the HP 
filter and the EES models. 

To conclude, the endogenous stochastic cycle seems to improve the fit of the 
stochastic filter model to the actual data.21 Therefore, we expect the TC filter to yield 
more reliable real time trend/cycle estimations than the EES or the HP filter. 

 

4.3 The real time reliability of the TC filter 

In order to assess the end-point reliability of trend-cycle decompositions, we 
generate vintages of trend-cycle estimations by cutting the sample artificially in each 
year s from 1978-2003 and estimating the trend and the cycle for each sample 1970s. 
In this way we obtain for each years between 1978-2003 one end-point trend/cycle 

————— 
20 Theil’s inequality coefficient is defined as:  

∑ ∑+ nxnx
MSE

//ˆ 22
 

 It takes values between 0 and 1, with values closer to unity indicating worse predictors. The indicators 
used here are described – for instance – in Maddala (1977). 

21 It must be kept in mind, though, that an approach with prior parameterisation cannot deliver an optimal fit. 
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estimation based on the sample 1970s, the so-called “real-time” estimations 
               of the trend and the cycle.22 

 

The regression of the real-time cyclical components        on the “final” results 
      of the 2002 vintage: 

  (21) 

indicates in how far the real time cyclical components are related to the “true” (the 
final) ones. 

In Rünstler (2002), the “reverse” regression of final on real time results is 
proposed, which is based on the assumption that deviations of real-time from final 
results are uncorrelated with real-time results. This property of optimal, linear filters 
is a necessary condition for unbiased, mimimum mean square errors of the filter 
components,23 assuming that the underlying stochastic model is correct. Hence, the 
test in Rünstler (2002) is based on the idea that the filter makes optimal use of 
real-time information so that subsequent revisions to initial estimates – once 
additional information comes in – should be orthogonal to the initial estimates. It 
can therefore be understood as a misspecification test of the stochastic model 
underlying the filter. However, as argued above, neither the TC filter, nor the HP 
filter, nor the EES can be regarded as optimal filters for typical economic time 
series. Here, we are more interested in the question whether errors are systematically 
pro-or anti-cyclical when compared to “final” trend deviations and not so much in a 
specification test for the underlying stochastic model. Under the H0 that errors are 
not systematically related to “final” results, they should be orthogonal to “final” 
estimates and the test regression should be specified as in equation (21). 

Thus, end point reliability implies that  b = 1  and  const = 0  in equation (21) 
hold so that real-time cyclical components should be broadly in line with “final” 
cyclical components. Table 2 presents the results of these regressions, together with 
the P-value for the Wald test of the joint H0:  const                       . 

For the HP filter, the H0 must be rejected in all cases. While the constant is 
not significantly different from zero, b is consistently below 1: the HP filter cyclical 
components in real-time underestimate the “true” cycle considerably. In addition, 
the correlations of the real-time with “final” cyclical components are are low; the 
“true” cycle explains at most 38 per cent of the variance24 of the cyclical component 
estimated at real time. 

 

————— 
22 More precisely, these are known as quasi-real time vintages, as the s-th vintage does not consist of the data 

available on period s, but of data available in T. We thus disregard data revisions. 
23 See Priestley (1981), p. 775. 
24 The highest coefficient of correlation amounts to 0.617 (in the case of for IT) so that the explained 

variance would be  ρ2 = 0.38. 
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Table 1 

Regression of Real GDP Growth on One-step-ahead Forecasts for Real GDP Growth for the Euro Area 
 

   Full forecast   Trend forecast  
Filter  Regression§ Forecast error MSE† Regression§§ Forecast error MSE† 

  const b Indicators decomposition const b Indicators decomposition 

Parameter 0.001 0.939 RMSE† 0.007 Bias 0.000 0.000 0.990 RMSE† 0.010 Bias 0.002 
Stdv. 0.004 0.16 MAPE 0.378 Variance 0.072 0.008 0.382 MAPE 0.687 Variance 0.340 
F–test‡ 0.928 Theil 0.156 Covar. 0.928 0.982 Theil 0.223 Covar. 0.658 

TC(1,1) 

  Corr. 0.781    Corr. 0.484   
Parameter 0.002 0.896 RMSE 0.005 Bias 0.000 0.022 –0.083 RMSE 0.013 Bias 0.008 
Stdv. 0.002 0.091 MAPE 0.208 Variance 0.00 0.011 0.497 MAPE 0.900 Variance 0.267 
F–test‡ 0.530 Theil 0.108 Covar. 0.999 0.107 Theil 0.279 Covar. 0.726 

TC(1,2) 

  Corr. 0.902    Corr. –0.035   
Parameter 0.004 0.818 RMSE 0.006 Bias 0.001 0.000 0.980 RMSE 0.006 Bias 0.008 
Stdv. 0.003 0.11 MAPE 0.276 Variance 0.004 0.003 0.137 MAPE 0.418 Variance 0.070 
F–test‡ 0.273 Theil 0.138 Covar. 0.996 0.908 Theil 0.135 Covar. 0.922 

TC(2,1) 

  Corr. 0.846    Corr. 0.837   
Parameter 0.003 0.853 RMSE 0.005 Bias 0.001 0.012 0.363 RMSE 0.013 Bias 0.014 
Stdv. 0.002 0.09 MAPE 0.232 Variance 0.011 0.006 0.231 MAPE 0.987 Variance 0.013 
F–test‡ 0.283 Theil 0.114 Covar. 0.987 0.033# Theil 0.267 Covar. 0.973 

TC(2,2) 

  Corr. 0.896    Corr. 0.317   
Parameter       –0.000 0.987 RMSE 0.008 Bias 0.009 
Stdv.       0.004 0.192 MAPE 0.531 Variance 0.138 
F–test‡      0.901 Theil 0.168 Covar. 0.853 

HP(30) 

       Corr. 0.738   
Parameter       –0.005 1.204 RMSE 0.009 Bias 0.003 
Stdv.       0.007 0.331 MAPE 0.649 Variance 0.379 
F–test‡      0.800 Theil 0.203 Covar. 0.618 

EES(7) 

       Corr. 0.613   
 

§                                                                    §§   
† MSE: mean square error; RMSE: root mean squared error; MAPE: mean absolute percentage error. 
† Theil: Theil inequality measure; Corr: Correlation coefficient. 
‡ P–value of Wald-test of H0: const                                 # H0 rejected at 5 per cent significance level. 

 

Δx t  const  bΔx̂ t|t−1  ut

 0 ∧ b  1

Δx t  const bΔx̂ t |t−1  utT
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The results are slightly better for the EES. Here, the H0 const                      
cannot be rejected except in the cases of Italy and the US.25 The slope parameter is 
closer to 1 than in the case of the HP filter. In two cases (Italy and the US), the 
real-time EES estimates are strongly biased, as the constant is significantly different 
from zero. The coefficient of correlation between the real time and final cyclical 
components varies between 0.60 and 0.84, which is higher than for the HP filter. 

The TC(2, 2) filter turns out best in this exercise. The H0 is never rejected at 
the 5 per cent level.26 The slope parameter  b  is close to one, the constant is not 
significantly different from zero, and the coefficient of correlation varies between 
0.57 and 0.91. Decreasing the order of the cycle while maintaining the order of the 
trend comes at the cost of a considerable decrease in correlation between real-time 
and final cyclical components. Decreasing the order of the trend gives rise to 
rejections of the combined H0 in Spain, France, the euro area and the US. 
Depending on the time series being filtered, the parameters of the TC filter can to 
some extent be chosen to adapt the filter to the data generating process. 

The underestimation of  b  gives rise to a pro-cyclical error in the estimation 
of the trend. This can easily be seen if we approximate the cyclical component by 
             . The regression equation                                                   can be transformed 
 into                                                                       . Values of  b  between  –1  and  1  
and different from zero imply that the trend is underestimated in a recession and 
overestimated in a boom. If  b = 1  there is no relationship between the cycle and the 
error in the trend. 

Figures 5 and 6 in Appendix 2 compares the errors in the real-time trend with 
the final cyclical components for the TC(2,2) and the HP(30) filter and the EES(7). 
As expected, the errors in the real time trend of the TC filter are largely unrelated to 
the cyclical component. For the HP filter, however, this relationship is strong. The 
HP filter real-time trend errors approximate very well the final cyclical component. 
Likewise, the EES induces a pro-cyclical bias in the real-time trend estimations, 
although the bias is less pronounced than in the case of the HP filter. 

An important feature of real-time assessments of the cycle is the behavior 
around business cycle turning points. Errors in the real-time detection of the ”true” 
turning points might lead to a misdiagnosis of the current situation. The extent the 
different approaches to trend-cycle decomposition are prone to errors in the 
detection of turning points can be assessed by the following indices, which rest on 
the classification shown in Table 3. 

————— 
25 For the euro area and Spain, it would be rejected at the 10 per cent level. 
26 It would be rejected at the 10 per cent level in Italy and in the US. 

 0 ∧ b  1

x t − x t
T x t − x̃ t

T  const  bx t − x t
T  ut

x t
T − x̃ t

T  const − 1 − bx t − x t
T  ut
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Table 2 

Regression of the Real-time Cyclical Component 
on the final Cyclical Component and Correlation Between 

the Real-time and theFinal Cyclical Component of Real GDP 
 

Filter Parameter DE ES FR IT EURO US 
c 1.379 1.896 0.209 –1.919 4.913 46.935 

std. err.† 5.746 2.281 2.982 1.482 12.826 22.257 
beta 0.898 0.999 0.91 1.015 0.914 0.93 

std. err.† 0.295 0.253 0.168 0.145 0.17 0.272 
Ftest‡ 0.937 0.703 0.861 0.359 0.861 0.114 

TC(1,1) 

Correlation 0.683 0.572 0.76 0.849 0.74 0.683 
c 8.813 5.007 1.582 –1.29 21.831 118.695 

std. err.† 9.776 2.728 2.891 1.975 15.047 25.542 
beta 1.424 1.297 1.209 1.317 1.29 1.596 

std. err.† 0.406 0.171 0.093 0.132 0.146 0.209 
Ftest‡ 0.436 0.024# 0.025# 0.074 0.047# 0.000# 

TC(1,2) 

Correlation 0.68 0.807
 

0.913
 

0.863 0.849
 

0.86
 

c 0.01 0.125 0.344 –0.703 0.095 3.923 
std. err.† 4.277 1.368 2.567 1.77 10.978 16.373 

beta 0.587 0.637 0.525 0.608 0.538 0.626 
std. err.† 0.24 0.24 0.169 0.186 0.192 0.131 

Ftest‡ 0.005# 0.327 0.008# 0.072 0.008# 0.029# 

TC(2,1) 

Correlation 0.561
 

0.524 0.531
 

0.527 0.52
 

0.615
 

c 1.038 1.463 1.591 0.47 7.37 44.273 
std. err.† 9.299 2.845 4.275 2.443 20.188 21.93 

beta 1.354 1.374 1.077 1.355 1.233 1.372 
std. err.† 0.346 0.331 0.189 0.187 0.229 0.196 

Ftest‡ 0.235 0.302 0.717 0.055 0.181 0.061 

TC(2,2) 

Correlation 0.67 0.662 0.75 0.804 0.727 0.874 
c –1.086 1.042 0.715 –0.795 1.738 18.927 

std. err.† 5.981 2.001 3.216 1.89 13.613 21.055 
beta 0.422 0.332 0.43 0.503 0.431 0.485 

std. err.† 0.177 0.174 0.135 0.11 0.13 0.095 
Ftest‡ 0.005# 0.003# 0.001# 0.000# 0.001# 0.000# 

HP(30) 

Correlation 0.471
 

0.33
 

0.511
 

0.617
 

0.51
 

0.589
 

c 5.208 4.002 0.984 –3.451 13.719 95.813 
std. err.† 6.268 2.501 2.808 1.405 12.906 24.857 

beta 0.695 0.741 0.75 0.766 0.717 0.701 
std. err.† 0.225 0.189 0.127 0.088 0.145 0.162 

Ftest‡ 0.303 0.067 0.146 0.002# 0.078 0.001# 

EES(7) 

Correlation 0.674 0.598 0.765 0.835
 

0.722 0.709
 

 

Equation:  
† Newey-West corrected standard errors. 
‡ P-value of F-test of H0: const                        . 
# H0 rejected at 5 per cent significance level. 

 0 ∧ b  1

t
C
t

C
t ubxconstx ++=~
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Table 3 

Reliability of Signs of Real-time Cyclical Components 
 

  final  

  output gap  

  + – sum 

real time + N+ + N+ – N+ . 

output gap – N– + N– – N– . 

 sum N. + N. – N. . 

 
• The relative share of wrong signs (N[+ −] + N[− +])/N[. .]. 
• The information content defined as I ≡ N[+ +]/N[. +] + N[– –]/N[.–]. This measure 

takes values between  –1  and  1. Values in the range  0 < I ≤ 1  indicate a 
positive information content, and  I = 1  means that the signs of cyclical 
components in real time and final estimates coincide perfectly. If  –1 ≤ I < 0, 
there is a systematic bias in the signs of cyclical components in real time. 

• The cell counts can be compared with the expected ones under the H0 that cell 
counts are random:  E(N[i j]) = N[i.]N[. j]/N[..], i, j ∈{+, –}. The H0 can be tested, 
using the test statistic  Σi, j∈{+, –}[N[i j] – E(N[i j])]2 / E(N[i j] ~ x2(1). 

Results for these indices for cyclical components of the TC filters with a 
second order cycle, the HP filter and the EES are shown in Table 4. There is no 
instance with a negative value for  I  so that the signs of the real-time cyclical 
components cannot be regarded biased. The relative share of sign misdiagnoses 
amounts to roughly 10-25 per cent with the TC filter variants. Signs of cyclical 
components are likewise often wrongly estimated with the EES except in the case of 
the US, where the EES gives the highest share (38 per cent) of instances with wrong 
signs. For the other countries and regions, the HP filter yields the highest shares of 
wrong signs between 35 and 46 per cent. Correspondingly, the HP filter gives the 
lowest value for the information content measure  I, again with the exception of the 
US, where the EES performs worse. For all regions except Germany and France,  I  
is generally closer to unity for the TC filter variants. In Germany the EES 
outperforms both trend variants of the TC filters. In France the EES gives a higher 
value for  I  than the TC(1,2) filter. The H0 that the cell counts are random can never 
be rejected at the 5 per cent level with the HP filter. Only HP filtered real GDP in 
Germany leads to a rejection of the H0 at the 10 per cent level. According to the χ

2 

test, the hypothesis of a random distribution of signs can be rejected at least at the 
5 per cent significance level for cyclical components computed with the TC Filter 
and the EES. All in all, the TC filter generally allows for a more consistent 
determination of signs of cyclical components in real time than the one-component 



 The Missing Cycle in the HP Filter and the Measurement of Cyclically-adjusted Budget Balances 99 

 

Table 4 

Sign Tests of Real-time Cyclical Components of Real GDP 
 

Country Filter 
Wrong

sign 
I 

Test 
statistic 

P- 
value 

Signifi- 
cance† 

TC(1,2)  0.23  0.55 7.80  0.005  ***  

TC(2,2)  0.19  0.62 10.40  0.001  ***  

EES(7)  0.15  0.69 12.76  0.000  ***  
DE  

HP(30)  0.35  0.36 3.31  0.069  *  

TC(1,2)  0.19  0.62 10.40  0.001  ***  

TC(2,2)  0.27  0.45 5.42  0.020  **  

EES(7)  0.31  0.39 3.94  0.047  **  
ES  

HP(30)  0.46  0.08 0.18  0.671   

TC(1,2)  0.08  0.87 19.07  0.000  ***  

TC(2,2)  0.23  0.55 7.72  0.005  ***  

EES(7)  0.15  0.69 12.76  0.000  ***  
FR  

HP(30)  0.35  0.31 2.48  0.116   

TC(1,2)  0.08  0.85 18.62  0.000  ***  

TC(2,2)  0.15  0.69 13.77  0.000  ***  

EES(7)  0.23  0.50 7.10  0.008  ***  
IT  

HP(30)  0.46  0.10 0.25  0.619   

TC(1,2)  0.15  0.70 12.83  0.000  ***  

TC(2,2)  0.19  0.62 10.40  0.001  ***  

EES(7)  0.27  0.46 5.57  0.018  **  
EURO  

HP(30)  0.38  0.24 1.47  0.225   

TC(1,2)  0.19  0.55 10.64  0.001  ***  

TC(2,2)  0.12  0.77 16.25  0.000  ***  

EES(7)  0.38  0.33 4.54  0.033  **  
US  

HP(30)  0.27  0.45 5.42  0.020  **  
 

† *,**,***: significant at 10 per cent, 5 per cent and 1 per cent. 
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filters. The EES performs remarkable well in this test, while results for the HP filter 
are less satisfying. 

The comparatively weak real time properties of the one-component filters –
the HP filter and the EES – derive from the “missing cycle” in these filters. 
Enhancing these filters with stochastic models for the cycle improves the real-time 
reliability significantly and removes the pro-cyclical bias in end-of-sample 
estimates. Obviously, it is not possible to identify the trend at real time in a proper 
way if a model for the cycle is missing. 

 

5. Conclusion 

Univariate trend-cycle decompositions suffer from all too simple implicit 
models of the data generating process, while more elaborated approaches – as for 
instance unobserved components models – are not always easily applicable. This 
paper develops an intermediate approach by generalising the HP filter and 
incorporating a cyclical component in the model representation of the filter in the 
time domain. The resulting trend-cycle filter has better end-of-sample properties 
than the HP filter or the related Extended Exponential Smoothing (EES) procedure. 
In particular, the pro-cyclicality in end-of-sample trend/cycle estimations, 
characterising the one-component filters which are based on an implicit model for 
the trend only with cycle left as a residual from trend-extraction. The incorporation 
of a cycle model turned out crucial for the favourable properties of the TC filter.27 

While the TC filter is based on a more complex stochastic model than the 
EES and the HP filter, its application is almost as simple that of the one-component 
filters. Once the TC filter has been programmed,28 it is straightforward to choose the 
appropriate stochastic trend and cycle models and to obtain the trend-cycle 
decomposition. It is not necessary to experiment with prior variance restrictions and 
start values for unobserved variables as it is sometimes required in unobserved 
components model estimations. 

————— 
27 The trend-cycle filter form cannot be applied to seasonal time series. However, an expansion towards a 

trend-cycle-season filter or incorporating additional components such as structural breaks is 
straightforward, see Mohr (2005). 

28 Implementations in EXCEL, EVIEWS 4.x and MatLaB can be obtained from the ECB Working Papers 
site (http://www.ecb.int/pub/pdf/scpwps/ecbwp499annexes.zip) or from the IDEAS Economics 
bibliographic database (http://econwpa.wustl.edu:80/eps/em/papers/0508/0508005.zip). 
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APPENDIX 1 
LAG AND DIFFERENCE OPERATORS IN MATRIX FORM 

Define the N × N lag matrix L as: 

 

L 

0 0 … 0

1 0 0 … 0

0 1 0 0 … 0

: :

0 … 1 0

0 … 0 1 0
 

The first row of L is zero as in finite samples the d-th lag is not defined for 
the first  d  data points. This makes some adaptations to the usual lag- and difference 
operators necessary. Most of their properties, however, carry over to their matrix 
representations. Lag and difference matrices have the following properties: 
Property 1: The d-th lag in matrix form is defined as  Ld = LLd–1. It holds that  

Ld = Lq Ld–q, for any  q,  0 ≤ q ≤ d. For completeness, define  L0 ≡ 
 
I. 

Property 2: The lead operator in matrix form is equal to the transpose of L, L’. 
Property 3: Denote an N × N identity-matrix in which the first  d  rows are filled 

with zeroes as Id. Then,  L L’ = I1  holds. In general,  Ld Ld’ = Id. Furthermore, it 
holds that  I’d = Id. For any pair (n, m), with  n ≥ m,  In Im = In  holds. 

Property 4: The matrix of first differences ∇ can be defined as  ∇ ≡ I1 (I – L). The 
I1-matrix renders the first row of ∇

 
 zero, accounting for the fact that the lag of 

the first data point is not defined. In general we define the d-th difference matrix 
as  ∇  d ≡ Id∇ ∇  d–1. Again, this is the same as  ∇ ∇  d–1  with the first  d  rows set 
equal to zero as the d-th lag is not defined for the first  d  data points. It holds that 
∇  d = Id ∇  q∇  d–q, for any q, 0 ≤ q ≤ d. For completeness we define ∇  0 ≡ I. 

Property 5: 
 
 
 

Proof: 
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APPENDIX 2 
ADDITIONAL FIGURES 

Figure 5 

Cyclical Components and Real-time Cyclical Components of Real GDP 
(percent of real GDP) 

(a) TC(2,2,8) filter 
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Figure 5 (continued) 

Cyclical Components and Real-time Cyclical Components of Real GDP 
(percent of real GDP) 

(b) HP(30)filter 
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Figure 5 (continued) 

Cyclical Components and Real-time Cyclical Components of Real GDP 
(percent of real GDP) 

(c) EES(7) 
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Figure 6 

Real-time Minus Final Trend and Final Cyclical Component 
(percent of real GDP) 

(a) TC(2,2,8) filter 
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Figure 6 (continued) 

Real-time Minus Final Trend and Final Cyclical Component 
(percent of real GDP) 

(b) HP(30) filter 
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Figure 6 (continued) 

Real-time Minus Final Trend and Final Cyclical Component 
(percent of real GDP) 

(c) EES(7) filter 
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