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IDENTIFICATION AND ESTIMATION OF TRIANGULAR MODELS 
WITH A BINARY TREATMENT 

by Santiago Pereda Fernández* 

Abstract 

I study the identification and estimation of a nonseparable triangular model with an 
endogenous binary treatment. Unlike other studies, I do not impose rank invariance or rank 
similarity on the unobservable of the outcome equation. Instead, I achieve identification using 
continuous variation of the instrument and a shape restriction on the distribution of the 
unobservables, which is modeled with a copula. The latter captures the endogeneity of the 
model and is one of the components of the marginal treatment effect, making it informative 
about the effects of extending the treatment to untreated individuals. The estimation is a 
multi-step procedure based on rotated quantile regression. Finally, I use the estimator to 
revisit the effects of Work First Job Placements on future earnings. 

JEL Classification: C31, C36. 
Keywords: copula, endogeneity, policy analysis, quantile regression, unconditional 
distributional effects. 

Contents 

1. Introduction ......................................................................................................................... 5 
2. The model ............................................................................................................................ 9 

2.1 Identification of the structural functions .....................................................................12 
2.2 Difference in means decomposition ............................................................................16 
2.3 Marginal Treatment Effect ......................................................................................... 17 

3. Estimation .......................................................................................................................... 19 
4. Extensions .......................................................................................................................... 22 

4.1 Nonparametric first stage ........................................................................................... 22 
4.2 Bernstein copula ......................................................................................................... 23 
4.3 Fréchet-Hoeffding bounds .......................................................................................... 24 
4.4 Multivalued treatment ................................................................................................ 25 

5. Empirical application......................................................................................................... 25 
6. Conclusion ......................................................................................................................... 36 
References .............................................................................................................................. 37 
Appendix ................................................................................................................................ 42 

_______________________________________ 
* Bank of Italy, Structural Economic Analysis Directorate.





1 Introduction*

One of the most relevant settings in empirical works is a triangular model with a binary

treatment. Allowing for heterogeneous effects in this framework is important for several

reasons. First, policies are often targeted at some specific subpopulations for which the

effects could be different than for those already treated. For instance, they could vary with

respect to individual characteristics such as gender or age, so understanding who benefits

most from the treatment is crucial for effective policy design. Moreover, many effects of

interest require knowledge of the whole distribution of potential outcomes, such as when

one analyzes inequality. In those cases it is often important to allow the treatment to have

a different impact on individuals with the same observable characteristics. The credibility

of these counterfactual distributions of potential outcomes crucially depends on modeling

heterogeneous effects appropriately (Heckman et al., 1997; Bisbee et al., 2017).

Hence, the workhorse linear model has been superseded by nonparametric, nonseparable

models that display different kinds of heterogeneous effects. However, identification often

requires assumptions that restrict the degree of heterogeneity. Notably, many results rely

on either rank invariance or rank similarity. These two are assumptions on the relation

between the treatment and the disturbance term in the outcome equation. Rank invariance

implies that an individual’s rank in the distribution of potential outcomes is the same under

both treatment status. Rank similarity is weaker, as it allows this disturbance term to differ

depending on the treatment status, but the correlation between the treatment and each

rank is the same. As such, if those more likely to be treated rank relatively high when

treated, they also rank relatively high when they are not. On the other hand, under rank

dissimilarity the correlation between the treatment and each disturbance term is allowed to

differ. In other words, the amount of self selection, or endogeneity, can vary for the treated
*Banca d’Italia, Via Nazionale 91, 00184 Roma, Italy. This paper has greatly benefited from discussions

with Stéphane Bonhomme. I would also like to thank Manuel Arellano, Domenico Depalo, Bryan Graham,
Christian Hansen, Giovanni Mellace, Magne Mogstad, Quang Vuong, Paolo Zacchia, and seminar participants
at CEMFI, the 8th ICEEE Conference and the 5th Conference of the IAAE for their helpful comments and
discussion. All remaining errors are my own. The views presented in this paper do not necessarily reflect
those of the Banca d’Italia. I can be reached via email at santiago.pereda@bancaditalia.it.
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and the untreated.

Moreover, even when the identified model can display a large degree of heterogeneity

in the effects, existing estimators often rely on substantially stronger assumptions to be

tractable. On top of rank similarity, estimators often require additive separability of the

unobservables or that the treatment variable be the same for people with different observed

characteristics. The first one places restrictions on the Marginal Treatment Effect (MTE,

Björklund and Moffitt, 1987) and the quantile curves: their shape does not vary with

covariates, so changes in the covariates result in parallel shifts. The other could result

in the effect being overestimated for some subpopulations and underestimated for others.

In this paper, I make the following contributions. First, I show that it is possible to

fully identify a nonseparable model without imposing rank similarity if the instrument is

continuously distributed and the distribution of the unobservables is sufficiently smooth.

Second, I analyze how rank similarity affects the mean outcome difference between the

treated and the untreated and the shape of the MTE, proposing a decomposition for each.

Third, I propose an estimator based on Rotated Quantile Regression (RQR, Arellano and

Bonhomme, 2017) that can capture a rich amount of heterogeneous effects.

I model self selection into treatment with copulas, one for each treatment group. Hence,

the amount of self selection into treatment can differ for each of them. Furthermore, the

unobservables are interpretable in terms of the conditional quantiles, or ranks, of the latent

distribution of potential outcomes. This makes the distributional analysis intuitive, and it

points to quantile regression methods for the estimation.

The identification of the model is based on a combination of continuous variation of the

instrument and a smoothness assumption on the copula. In particular, I assume that the

copula is real analytic, which allows to extrapolate the identification region from the support

of the propensity score to the whole unit interval. Most parametric copulas are real analytic,

including Bernstein copulas, a flexible family of copulas that can arbitrarily approximate

any continuous copula when its order is high enough. This assumption nests several shape

restrictions on the treatment effects that have already been considered in the literature, and
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it is possible to do partial identification analysis when this assumption is dropped.

The amount of self selection has traditionally received little attention. However, both the

distribution of observed outcomes and the MTE can be expressed in terms of the copula. It

is possible to show that under rank dissimilarity the difference in the mean outcome between

the treated and the untreated can be decomposed into three terms, which reflect differences

in the covariates, differences in the returns to the treatment, and differences in the amount

of self selection. The first two correspond to the endowments and coefficients components

in the Oaxaca-Blinder decomposition. The third term reflects the fact that ability is not

unidimensional, and some individuals perform relatively better when treated and relatively

worse when not. Similarly, the MTE can be decomposed into a term that equals the MTE

under rank similarity, and another that reflects differences in the amount of self selection.

Building on the identification result, I propose a multi-step estimator based on RQR,

similar to the one proposed in Arellano and Bonhomme (2017) for sample selection models.

It consists on the estimation of the propensity score, the copula of the unobservables, and the

structural quantile process of the outcome equation. Intuitively, because of the endogeneity,

the conditional quantile of an individual with a given treatment status does not coincide with

the quantile of the distribution of potential outcomes for the whole population. However,

the mapping between these two variables is a known function of the copula, so it is possible

to estimate the conditional quantile function by appropriately rotating the check function

that is used in standard quantile regression (Koenker and Bassett, 1978).

The estimator has several desirable properties: (i) it imposes neither rank similarity

nor additive separability; (ii) it includes all interactions between the treatment and the

covariates by default; (iii) its asymptotic distribution is Gaussian and converges at the
√
n

rate. On the other hand, the estimation of the copula is computationally expensive, and the

baseline estimator hinges on parametric assumptions.1 These issues are explicitly addressed

in extensions that relax the parametric assumptions and discuss their implementation.
1Parametric copulas have been used to model latent variables in a variety of setups: quantile selection

models (Arellano and Bonhomme, 2017), bivariate probit models with dummy endogenous regressors (Han
and Vytlacil, 2017), triangular models with continuous endogenous variables (Pereda Fernández, 2016), and
both linear and non-linear panel data Prokhorov and Schmidt (2009); Pereda-Fernández (2017).
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There is a vast literature on the identification and estimation of triangular models

with a binary treatment.2 Das (2005) showed the identification of an additively separable

model. Subsequently, Instrumental Variables Quantile Regression (IVQR, Chernozhukov

and Hansen, 2005, 2006) set an important milestone in the literature, defining a quantile

treatment effect framework based on a nonseparable model. Other recent works include Feng

et al. (2016) and Vuong and Xu (2017). In contrast with the approach in this paper, these

papers required either rank invariance or similarity for identification.

A method that does not require rank similarity is Local Instrumental Variables (LIV,

Heckman and Vytlacil, 1999, 2005). Carneiro and Lee (2009) extended earlier works by

showing identification of the quantile treatment effects, although it required a large amount

of variation in the instrument: it should take some values such that the individuals are

always treated, and others such that they are never treated. In this paper I show that it is

possible to identify the entire distributions of potential outcomes with a smaller amount of

variation of the instrument.

Finally, a series of papers have studied the identification of the effects on compliers when

the instrument is binary. The early focus was on the Local Average Treatment Effect (LATE,

Imbens and Angrist, 1994), and later on the Local Quantile Treatment Effect (LQTE, Abadie

et al., 2002) for the linear model. Frandsen et al. (2012) considered distributional treatment

effects in a regression discontinuity design, and Frölich and Melly (2013) focused on the

estimation of unconditional quantile treatment effects under minimal assumptions. More

recently, a series of papers have considered the extrapolation of these local effects to the

rest of the population, such as Angrist and Fernandez-Val (2013), Kowalski (2016), Brinch

et al. (2017) or Mogstad et al. (2017). Some of these use the MTE for their extrapolation,

imposing shape assumptions on the distribution of the unobservables that implicitly require

the copula to be real analytic.

The estimation method presented in this paper is applied to the estimation of the effect
2For triangular systems of equations with a continuous treatment see e.g. Chesher (2003), Newey and

Powell (2003), Horowitz and Lee (2007), Lee (2007), Imbens and Newey (2009), Jun (2009), D’Haultfœuille
and Février (2015), or Torgovitsky (2015).
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of Work First Job Placements on earnings. This public employment program focused on

quickly finding a job for unemployed low-skilled workers. Autor and Houseman (2010) and

Autor et al. (2017) found that temporary-help jobs had a negative effect on earnings at high

quantiles, and null for the rest of the distribution, whereas direct-hire placements led to an

increase in earnings for more than half of the distribution.

I extend their results by looking at the effects on the unconditional distribution of

earnings, and using a model that allows for a larger degree of heterogeneity. I test the

rank similarity assumption, finding strong evidence against it. I also estimate a positive

effect for most of the distribution of future earnings for both types of placements. However,

the MTE takes negative values for a proportion of the population. These findings can be

reconciled with the rank dissimilarity assumption, as the excess selection in the treatment

groups relative to the control group is responsible for the majority of the heterogeneity

captured by the MTE. Consequently, extending the treatment to all individuals would not

improve the distribution of earnings at all quantiles.

The rest of the paper is organized as follows: Section 2 introduces the model and presents

the identification result. Section 3 describes the estimation method, and some extensions

are considered in Section 4. The methods presented in this paper are illustrated with an

empirical application in Section 5. Finally, Section 6 concludes. All proofs are shown in

Appendix A.

2 The Model

Consider the following triangular system of equations:3

Y = gD (X,UD) (1)

D = 1 (π (Z)− V > 0) (2)

3Throughout the paper I use upper case letters to denote random variables and lower case to denote
their realizations.
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where Y is the continuous outcome, D is the binary treatment, X is the vector of covariates,

and Z is the vector with the variables used in the selection equation, that typically include

an instrument (Z1) and the covariates, i.e. Z ≡ (Z1, X
′)′.4 Equation 1 is the Structural

Quantile Function (SQF), which models the outcome as a function of the treatment, the

covariates, and a univariate unobservable UD. The latter is uniformly distributed over the

unit interval, and I refer to it as the rank of the SQF.5 Equation 2 is the selection equation.

Following Heckman and Vytlacil (2005), the treatment is determined by the propensity score,

π (Z), and a uniformly distributed unobserved random variable V . As shown by Vytlacil

(2002), this is equivalent to the monotonicity condition in Imbens and Angrist (1994).

Equations 1-2 can be derived from a generalized Roy model with imperfect information in

which individuals are uncertain about the exact value of the outcome under each treatment

status. However, they can form themselves an expectation based on the information they

have available. Whenever the expected net surplus of being treated is positive, they choose

to receive it. This model is presented in Appendix C.

Under endogeneity, the disturbance terms of the SQF and the selection equation are

correlated. A convenient way to model it is using copulas.6 The joint distribution of the

unobservables is therefore given by U0, U1, V |X ∼ CX (U0, U1, V |X).7 However, it is possible

to observe only one of the two treatment status for each individual, so the structural relation

between U0 and U1 is not identified.8

Consequently, the focus lies on the bivariate copulas between Ud and V , conditional on
4An extension to multivalued treatment is considered in Section 4.4.
5This is known as the Skorohod representation.
6A copula is a multivariate cdf whose arguments are the ranks of the individual effects. Formally, given

a vector of random variables W1, ...,WN , with marginal distributions F1 (w1),...,FN (wN ), the copula is
defined as C (F1 (w1) , ..., FN (wN )) ≡ P (W1 ≤ w1, ...,WN ≤ wN ). Sklar (1959) showed that any continuous
multivariate distribution can be written in terms of a copula whose arguments are the ranks of the individual
components.

7Even though this setting allows for heterogeneous effects, even for individuals with the same treatment
and covariates, the dimensionality of the unobservables places some restrictions on the amount of
heterogeneity, e.g. it rules out non-monotonic models such as random coefficients. A richer model would
consider unobservables of higher dimension, although this type of models are in general not point-identified
(Hahn and Ridder, 2011; Kasy, 2011; Hoderlein et al., 2017; Masten, 2017).

8This is akin to the identification of the distribution of the treatment effect, which is not point identified,
but can be bounded (Firpo and Ridder, 2008; Fan and Park, 2010).
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X, which are denoted by Cd,X (Ud, V ), for d = 0, 1. Much of the literature has focused on

the rank invariance (U0 = U1) or rank similarity cases (C0,X = C1,X). The first assumption

implies that unobserved ability is unidimensional, so more able individuals would perform

relatively well under either treatment status. Rank similarity is more general, as it allows

ability to be bidimensional, but it is still the case that those who perform well when

untreated also tend to perform well when treated. In contrast, I allow for rank dissimilarity

(C0,X 6= C1,X). Under this assumption, those who perform relatively well when they are

treated are not necessarily those who perform relatively well when they are not.

The following example clarifies the different implications of each assumption. Denote

earnings by Y , the possession of a college degree by D, and U1 and U0 be measures of

intelligence and physical prowess, respectively. Moreover, assume that the productivity

at work depends on intelligence when one has a college degree, and on physical prowess

otherwise. Under rank invariance, both unobserved characteristics are perfectly correlated,

so each individual’s rank is the same in the distribution of potential earnings with and without

a college degree. Rank similarity allows for differences in the level of intelligence and physical

prowess. However, the correlation between holding a college degree and intelligence is the

same as the correlation between holding a college degree and physical prowess. Hence, those

who are likely to be top earners with a college degree, are also likely to be top earners without

it. Finally, under rank dissimilarity, those with a high propensity to have a college degree

are on average more intelligent, but they do not necessarily have a high level of physical

prowess. In fact, it is possible that those less likely to have a college degree have higher level

of physical prowess and have higher earnings without the college degree.

This example highlights the usefulness of the copula for policy making: it is informative

about the potential effects of extending the treatment to the untreated by acknowledging

how they are selected. For example, consider two types of individuals: one with a high

propensity score, and another with a low one. If none of them were treated, we would expect

a larger value of the unobserved variable V for the first individual. If the copula displayed a

negative degree of correlation, then the first individual would be expected to rank lower than
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the second individual in the distribution of treated individuals. On the other hand, if the

copula displayed no correlation, then both individuals would be expected to rank similarly.

In other words, it is important to account for differences in self selection to appropriately

assess the extending the treatment.

2.1 Identification of the Structural Functions

The distribution of the outcome variable conditional on Z = z can be decomposed into the

weighted sum of two distributions, one for the treated and another one for the untreated:

FY |Z (y|z) = FY |D=0,Z (y|z) (1− π (z)) + FY |D=1,Z (y|z) π (z)

These two distributions are conditional on the treatment status, so the focus lies on

the conditional copula. Formally, HX (τ, π (z)) ≡ C1,X(τ,π(z))
π(z) = P (U1 ≤ τ |D = 1, z) for the

treated, and GX (τ, π (z)) ≡ τ−C0,X(τ,π(z))
1−π(z) = P (U0 ≤ τ |D = 0, z) for the untreated. The

distribution of the outcome, conditional on being treated is therefore given by

FY |D=1,Z (y|z) =
ˆ 1

0
1 (g1 (x, u1) ≤ y) dHX (u1, π (z)) (3)

where 1 (·) denotes the indicator function. Evaluating Equation 3 at y = g1 (τ, x) yields

FY |D=1,Z (g1 (x, τ) |z) = HX (τ, π (z)). Similarly, the distribution for the untreated equals

FY |D=0,Z (y|z) =
ˆ 1

0
1 (g0 (x, u0) ≤ y) dGX (u0, π (z)) (4)

and evaluating Equation 4 at y = g0 (τ, x) yields FY |D=0,Z (g0 (x, τ) |z) = GX (τ, π (z)).

Therefore, FY |Z depends on three components: the SQF of Y , the propensity score, and

the copulas C0,X and C1,X . Consider the following assumptions:

Assumption 1. (U0, U1, V ) are jointly statistically independent of Z1 given X = x.

Assumption 2. The bivariate distributions (U0, V ) and (U1, V ), conditional on X = x, are
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absolutely continuous with respect to the Lebesgue measure. Moreover, U0, U1, and V are

uniformly distributed on the unit interval.

Assumption 3. FY |D=0,Z (y|z), FY |D=1,Z (y|z), and their inverses are strictly increasing.

Assumption 4. Denote the support of π (Z) conditional on X = x by Px. ∀x ∈ X , Px ∈

[0, 1] is an open interval.

Assumption 1 is the exclusion restriction, which imposes the independence of the ranks of

the selection equation and the SQF. In terms of the copula, it can vary with X, but not with

Z1. Assumptions 2 and 3 imply that the SQF and the propensity score display continuous

variation with respect to the unobservables, ruling out jumps. Moreover, they allow the

system (1)-(2) to represent the conditional quantile function of the potential outcomes Y ∗d :

by normalizing the marginal distributions of the ranks to be uniform, their joint distribution

is a well-defined copula. Assumption 4 is a support assumption on the instrument, which is

required to display some continuous variation that maps into the propensity score.

Denote the support of X by X , and the support of Z1 given X = x by Zx. Then, the

following two restrictions on the copula hold:

Lemma 1. Let x ∈ X . Then, under assumptions 1 to 4:

FY |D=1,Z
(
F−1
Y |D=1,Z (τ |z′) |z

)
= HX

(
H−1
X (τ, π (z′)) , π (z)

)
∀ (z, z′) ∈ Zx ×Zx (5)

FY |D=0,Z
(
F−1
Y |D=0,Z (τ |z′) |z

)
= GX

(
G−1
X (τ, π (z′)) , π (z)

)
∀ (z, z′) ∈ Zx ×Zx (6)

Moreover, for any HX and GX satisfying Equations 5 and 6, one can find distribution

functions FY ∗1 |X (y|x) and FY ∗0 |X (y|x) such that HX

(
FY ∗1 |X (y|x) , π (z)

)
= FY |D=1,Z (y|z)

and GX

(
FY ∗0 |X (y|x) , π (z)

)
= FY |D=0,Z (y|z) for all (z, y) in the support of (Z, Y ) given

X = x, where Y ∗1 and Y ∗0 are the potential outcomes of individuals when they are respectively

untreated or treated.
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Equations 5-6 require the instrument to come from a non-degenerate distribution for

them to be informative about the copulas. Intuitively, variations in the propensity score due

to the instrument do not affect the SQF. As a result, the change induced in the distribution

of observed outcomes operates entirely through differences in self selection.

The second part of the lemma indicates the existence of potential outcomes that would

be observed if the treatment was randomly allocated. These potential outcomes are related

to the observed ones through a bijection determined by the copula. The two distributions

coincide when the copula is independent, i.e. when the treatment is exogenous. Because the

support of both distributions is the same, one can map the τ -th quantile of the distribution of

potential outcomes to a specific quantile of the distribution of observed outcomes, as shown

in Figure 1. This constitutes the basis for using RQR in the estimation.

Figure 1: Distributions of observed and potential outcomes

y
0

G (τ, π)
τ

1

FY ∗

0 |X

FY |D=0,Z

y
0

τ̃

H (τ̃ , π)

1

FY ∗

1 |X

FY |D=1,Z

Notes: G (τ, π) and H (τ̃ , π) are shorthands for GX (τ, π (z)) and HX (τ̃ , π (z)), respectively.

Equations 5-6 hold true for all values of τ . However, they are only well defined for values

of the propensity score in Px. As a result, when the instrument displays so much variation

that the support of the propensity score (conditional on X = x) equals the unit interval, it

is immediate to show that the copula and the SQF are fully identified. This case is known as

identification at infinity (Heckman and Vytlacil, 2007), but in the vast majority of datasets

the variation of the instrument is smaller. A way to achieve identification is by making a
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smoothness assumption on the copula:9

Assumption 5. ∀τ ∈ (0, 1), the functions π → C0,X (τ, π) and π → C1,X (τ, π) are real

analytic on the unit interval.10

Assumption 5 is a shape restriction, and it implies that both copulas, as well as all their

derivatives are continuous. Most parametric copulas are based on analytic functions, such as

polynomials, power functions or exponentials, and therefore real analytic.11 A particularly

relevant one is the Bernstein copula, which depends on Bernstein polynomials.12 Bernstein

(1912) showed that these polynomials can arbitrarily approximate any bounded continuous

function on the unit interval, a result known as Stone-Weierstrass approximation theorem.

Lemma 1 in Sancetta and Satchell (2004) strengthened it by showing that the set of Bernstein

polynomials is dense in the space of bounded continuous functions in the k-dimensional

hypercube [0, 1]k. This formal argument implies that Bernstein copulas can approximate

any arbitrary continuous copula that has a well-defined density.13 Hence, Assumption 5 can

be seen as a parametric assumption for a large, flexible family of copulas.

Combining this assumption with Lemma 1 yields the main identification result:

Proposition 1. Let Assumptions 1 to 5 hold, and x ∈ X . Then, the functions (τ, π) →

HX (τ, π), (τ, π)→ GX (τ, π), and τ → gd (x, τ) for d = 0, 1 are nonparametrically identified.

Although Proposition 1 establishes the identification even if the support of the propensity

score is small, the performance of an estimator depends largely on the its size. Because

Assumption 5 extrapolates the identification from Px to the unit interval, the larger the
9Other alternatives considered in the literature include parametric assumptions or using variation in the

covariates.
10A function f (x) is real analytic at x0 if ∀x in a neighborhood around x0 one can write f (x) =∑∞
j=0 aj (x− x0)j , where aj , j = 0, ... are the polynomial coefficients. In words, the function f can be

expressed as a power convergence series. If f (x) is real analytic at all x ∈ X , where X is an open interval,
then the function is real analytic on X .

11See, e.g. Nadarajah et al. (2017).
12A Bernstein polynomial is given by

∑M
m=0 am,M

(
M
m

)
xm (1− x)M−m, where am,M , m = 0, ...,M are

the polynomial coefficients.
13Note that the Bernstein copulas are not the most appropriate to model extreme tail behavior. As shown

in Sancetta and Satchell (2004), the Bernstein copula and its approximand converge to an arbitrary limit at
a different speeds. In any case, it can capture increasing dependence as one moves to the tails.
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support, the smaller the extrapolation.14 This problem is akin to what happens to other

methods that achieve identification using parametric or shape restrictions: the extrapolation

is more plausible in a neighborhood of the observed support of the propensity score, but it

becomes an increasingly stronger assumption as the distance increases.

Some copulas do not satisfy Assumption 5, such as the Fréchet-Hoeffding bounds, which

correspond to perfect positive and negative correlation. They are not real analytic because

they are piecewise defined, so their first derivative are not continuous and they do not have

a well defined density. In such cases, it is still possible to study partial identification of

the SQF, as shown in Section 4.3.15 Alternatively, one could study which sets are identified

using two popular approaches in the literature: LIV and IVQR. See Appendix D for further

details.

2.2 Difference in Means Decomposition

Consider the mean outcome value for each treatment group. This quantity depends on three

components: the distribution of the covariates, the copula, and the SQF. Define the following

counterfactual mean outcomes when one or two of these components are exchanged with the

other groups’ counterparts:

E [Y (j,H, k)] ≡
ˆ
Z

ˆ 1

0
gj (x, u) dHX (u, π (z)) dF (k)

Z (z)

E [Y (j,G, k)] ≡
ˆ
Z

ˆ 1

0
gj (x, u) dGX (u, π (z)) dF (k)

Z (z)

where j = 0, 1 refers to the treatment group of the SQF and F
(k)
Z is the distribution of

the observables of treatment group k = 0, 1. Note that the mean outcome for those that

are treated and untreated are respectively given by E [Y (1, H, 1)] and E [Y (0, G, 0)]. The

difference between these two can be attributed to differences in each of the three individual
14The simulations in Appendix F support this claim.
15Partial identification based of the triangular model under weak assumptions has also been studied by

Chesher (2005) and Jun et al. (2011).

16



components. Hence, the following decomposition follows

E [Y |D = 1]− E [Y |D = 0] = E [Y (1, H, 1)]− E [Y (1, H, 0)] (7)

+ E [Y (1, H, 0)]− E [Y (1, G, 0)] (8)

+ E [Y (1, G, 0)]− E [Y (0, G, 0)] (9)

Hence, Equations 7-9 respectively reflect differences in the distribution of the observables,

differences in the amount of self selection, and differences in the distribution of potential

outcomes. The first and third terms are the equivalent to the endowments and coefficients

effects in the Oaxaca-Blinder decomposition. The endowments effect reflects the fact that

individuals with some characteristics are more likely to be treated. On the other hand, the

coefficients effect captures differences in the distribution of potential outcomes for the whole

population, which in a linear framework correspond to the slope coefficients.

This analysis extends the Oaxaca-Blinder decomposition by adding the excess selection

term, represented by differences in the copula between the treated and the untreated. When

the copula is independent, i.e. under exogeneity, the average value of the rank equals 0.5 for

both treatment groups, and Equation 8 equals 0. If there is (positive) sample selection but

the copulas are the same (rank invariance or similarity), then the average rank is higher than

0.5, but it is still the same for both groups, so Equation 8 is also equal to 0. In contrast,

with rank dissimilarity, the average rank is different for the treated and the untreated, and

this translates into a non-zero excess selection effect.

2.3 Marginal Treatment Effect

A similar result holds true for the MTE which. For comparability with other studies, we

focus on the conditional MTE, which can be expressed as

∆MTE (x, v) =
ˆ 1

0
g1 (x, u) dC1,X (u|v)−

ˆ 1

0
g0 (x, u) dC0,X (u|v) (10)

17



Under rank dissimilarity, the following decomposition holds:16

∆MTE (x, v) =
ˆ 1

0
[g1 (x, u)− g0 (x, u)] dC1,X (u|v) +

ˆ 1

0
g0 (x, u0) d [C1,X (u|v)− C0,X (u|v)]

≡ ∆RIMTE (x, v) + ∆ESME (x, v) (11)

The first term is denoted as the rank invariant marginal treatment effect (RIMTE), i.e.

the expected gain for the marginal individual, when his unobservables are equally correlated

with each treatment status. This effect depends on the difference between the two SQF

weighted by the copula. On the other hand, the second term is denoted as the excess

selection marginal effect (ESME), and it reflects rank dissimilarity. This effect captures the

difference in the amount of selection between the two treatment status.

Hence, even if the SQF was the same for treated and untreated individuals, the MTE

would be positive because the marginal individual would, on average, have a higher value

of the rank of the SQF when treated, i.e. they are more positively selected. Conversely, the

ESME vanishes under either rank invariance or similarity. A property of the ESME is that

the average across all values of v is equal to zero, i.e. some individuals are positively selected,

and some are negatively selected. This is shown in the following lemma:

Lemma 2. Let the copula CD,X (u, v) have a well-defined density for D = 0, 1. Then,
´ 1

0 ∆ESME (x, v) dv = 0 and
´ 1

0 ∆MTE (x, v) dv =
´ 1

0 ∆RIMTE (x, v) dv.

The MTE is the building block for several treatment effects of interest, such as the

average treatment effect (ATE), the average treatment effect on the treated (TT), or on the

untreated (TUT). Hence, they can also be expressed in terms of the SQF and the copula, as

shown in Appendix E. Finally, note that the quantile treatment effect (QTE) only requires

knowledge of the SQF. Thus, for a given quantile τ , it can be expressed as the difference

between the SQF of each treatment group but not on the copula.
16Note that there is an alternative decomposition of the MTE:

´ 1
0 [g1 (x, u)− g0 (x, u)] dC0,X (u|v) +´ 1

0 g1 (x, u0) d [C1,X (u|v)− C0,X (u|v)].
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3 Estimation

For the estimation I consider the following set of assumptions:

Assumption 6. (Yi, Di, Z
′
i)
′ are iid for i = 1, ..., n, defined on the probability space (Ω,F ,P)

and take values in a compact set.

Assumption 7. gD (x, τ) = x′βD (τ) for D = 0, 1, where βD is continuous and such that

gD (x, τ) is increasing in its last argument.

Assumption 8. Let β (τ) ≡
(
β1 (τ)′ , β0 (τ)′

)′
and θ ≡ (θ′1, θ′0)′. For all τ ,

(
β (τ)′ , θ′, γ′

)′
∈

intB ×Θ× G, where B ×Θ× G is compact and convex.

Assumption 9. Y has conditional density that is bounded from above and away from zero,

a.s. on compact set Y. The density is given by fY |D,Z (y) for D = 0, 1.

Assumption 10. Matrices of derivatives of the moments J0 (τ), J̃0 (τ), J1 (τ), J̃1 (τ), P01 (τ),

P̃01 (τ), P02 (τ), P̃02 (τ), P11 (τ), P̃11 (τ), P12 (τ), P̃12 (τ), as defined in Appendix A, are

continuous and have full rank, uniformly over B ×Θ× Γ× T .

Assumption 11. π (Z) ≡ π (Z; γ), with dim (γ) <∞. π (Z; γ) is continuously differentiable

with respect to γ. Moreover, there exists an asymptotically linear estimator γ̂ that admits

the following representation: γ̂ − γ = −B−1 1
n

∑n
i=1 s (di, zi; γ) + oP

(
1√
n

)
.

Assumption 12. Let CD|X (u, v) ≡ CD|X (u, v; θD), with dim (θD) < ∞ for D = 0, 1.

CD|X (u, v; θD) is uniformly continuous and differentiable with respect to its arguments a.e..

Its density, cD|X (u, v; θD), is well-defined and finite.

Assumption 6 describes the sampling process of the data. The linear quantile model

imposed by Assumption 7 is standard in the literature and convenient from a computational

point of view.17 Note however, that it would be possible to relax this assumption, allowing

for nonlinear quantile functions as long as the resulting SQF is continuous and increasing in

τ . Assumption 8 is a regularity condition. Assumption 9 restricts the analysis to dependent
17See, e.g. Koenker and Bassett (1978), Chernozhukov and Hansen (2005), or Angrist et al. (2006).
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variables that have a well-defined and finite conditional density. Assumption 10 requires the

existence of moments and their full rank in order to derive the asymptotic variance of the

estimator.

Assumption 11 is made for simplicity, and it is satisfied by several estimation methods,

including maximum likelihood. This assumption could be relaxed to allow the propensity

score to be nonparametrically estimated. This extension is considered in Section 4.1.

Similarly, Assumption 12 is imposed for convenience, and it is satisfied by most common

choices of copulas, including the Gaussian or the Clayton.18 Alternatively, the dependence

on a finite number of parameters could be relaxed. Proposition 1 is satisfied when the copula

is real analytic, making the Bernstein copula the natural choice to consider. This extension

is explored in Section 4.2.

The estimation is done in three steps. The first one is the most straightforward, and it

consists in the estimation of the propensity score: π̂ (zi) ≡ π (zi, γ̂). The second step consists

in the estimation of the copula parameters: θ1 and θ0. Given some t ∈ Θ, define β̂1 (τ ; t) as

β̂1 (τ ; t) ≡ arg min
b∈B

N∑
i=1

diρĤX,i,τ (yi − x′ib) (12)

where ρu (x) ≡ xu1 (x ≥ 0) − (1− u)x1 (x < 0) denotes the check function, and ĤX,i,τ ≡

HX

(
τ, π̂ (zi) ; θ̂1

)
. The estimated copula parameter is given by:

θ̂1 ≡ arg min
t∈Θ

∥∥∥∥∥
N∑
i=1

ˆ 1

0
diϕ (τ, zi)

[
1
(
yi ≤ x′iβ̂1 (τ ; t)

)
−HX (τ, π̂ (zi) ; t)

]
dτ

∥∥∥∥∥ (13)

where ϕ (τ, zi) is an instrument function.19 Similarly, β0 (τ ; t) and θ0 are estimated by

β̂0 (τ ; t) ≡ arg min
b∈B

N∑
i=1

(1− di) ρĜX,i,τ (yi − x′ib) (14)

18It is possible to allow the copula to depend on the covariates. For example, if the covariates are discrete,
one could specify a different copula for each value of the covariates. Alternatively, one could use a more
parsimonious approach with continuous covariates. E.g., one could let ρ (x) = exp

(
x′γ
)
− 1/exp

(
x′γ
)

+ 1 for
the Gaussian copula. Variations of this can be used to accommodate copulas whose correlation parameter
has a different support.

19For example, a polynomial of the propensity score. See Arellano and Bonhomme (2017).
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θ̂0 ≡ arg min
t∈Θ

∥∥∥∥∥
N∑
i=1

ˆ 1

0
(1− di)ϕ (τ, zi)

[
1
(
yi ≤ x′iβ̂0 (τ ; t)

)
−GX (τ, π̂ (zi) ; t)

]
dτ

∥∥∥∥∥ (15)

where ĜX,i,τ ≡ GX

(
τ, π̂ (zi) ; θ̂0

)
. Finally, the slope parameters are estimated in the third

step by β̂1 (τ) ≡ β̂1
(
τ ; θ̂1

)
and β̂0 (τ) ≡ β̂0

(
τ ; θ̂0

)
.

Such an estimator is asymptotically Gaussian and converges at the parametric rate, as

shown by the following theorem:

Theorem 1. Let ϑ̂ (τ) ≡
(
β̂1 (τ)′ , β̂0 (τ)′ , θ̂′1, θ̂′0, γ̂′

)′
, where β̂d (τ) and θ̂d for d = 0, 1 be

the estimators defined above. Under Assumptions 1-12, their joint asymptotic distribution

is given by
√
n
(
ϑ̂ (·)− ϑ (·)

)
⇒ S (·), where S (·) is a zero-mean Gaussian process with

covariance function ΣS (τ, τ ′), which is defined in the proof.

Remark 1. The estimator has several desirable features: it imposes neither rank similarity

nor additive separability of the unobservables, and it achieves the
√
n convergence rate.

Remark 2. Even though the SQF is assumed to be linear in quantiles, the resulting MTE

is not linear in general. Thus, the estimator displays a rich amount of heterogeneity across

both the observed covariates and the propensity score, and it is tractable. From a policy

perspective, this can allow to better identify which groups of individuals benefit the most from

the treatment.

Remark 3. From an implementation standpoint, equations 12 and 14 can be solved with

standard quantile regression techniques by rotating the loss function. On the other hand,

equations 13 and 15 involve non-convex optimization. When the number of parameters is

small, an appealing method is grid search.

Estimation of the MTE is straightforward using the sample analog and substituting the

propensity score, the copula parameters, and the SQF by those presented above:

∆̂MTE (xi, v) =
ˆ 1

0
x′iβ̂1 (τ) dĈ1,xi,τ,v −

ˆ 1

0
x′iβ̂0 (τ) dĈ0,xi,τ,v

where Ĉd,xi,τ,v ≡ Cd,xi
(
τ, v; θ̂d

)
for d = 0, 1.
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4 Extensions

4.1 Nonparametric First Stage

Under Assumption 11, the propensity score depends on a finite number of parameters, ruling

out nonparametric estimators of the propensity score, such as Klein and Spady (1993) or

the Nadaraya-Watson estimator. In principle, one could plug-in such estimators into the

estimating Equations 12 and 14. Under certain conditions on the propensity score estimator,

it is possible to show that the slope parameters admit an asymptotically linear representation

(Newey, 1994; Ichimura and Newey, 2017). Recently, Chernozhukov et al. (2016) have

proposed the construction of locally robust moment functions. Using these moments, a

nonparametric estimator of the propensity score would not affect the influence function of

the slope parameters, which would allow them to retain the asymptotic normality at the
√
n

convergence rate. See Chernozhukov et al. (2016) for further details.

4.2 Bernstein Copula

A way to relax assumption 12 would be to use Bernstein copulas. The cumulative distribution

of this copula is given by

C (u, v) =
M∑

mu=0

M∑
mv=0

α
(
mu

M
,
mv

M

)
Pmu,M (u)Pmv ,M (v)

where M is the order of the copula, and Pm,M (u) =
(
M
m

)
um (1− u)M−m. The density of

this copula has a similar form, making it is very convenient to implement.20 Because the

Pm,M terms are known, the estimation of the copula amounts to the estimation of the α

coefficients. Let Aj denote the matrix that stacks the α
(
mu
M
, mv
M

)
parameters for j = 0, 1.

The RQR estimator is the same as the one presented in Section 3, substituting θj by Aj.21

20For completeness, define η
(
mu

M , mv

M

)
= α

(
mu+1
M , mv+1

M

)
−α

(
mu+1
M , mv

M

)
−α

(
mu

M , mv+1
M

)
+α

(
mu

M , mv

M

)
.

The density is given by c (u, v) =
∑M−1
mu=0

∑M−1
mv=0 η

(
mu

M , mv

M

)
Pmu,M (u)Pmv,M (v)M2.

21Sancetta and Satchell (2004) propose a way to estimate the copula using the realizations of the copula.
However, these are not observed in the data, and even then, V can only be bounded using the propensity
score: either V ≤ π (Z) if D = 1, or V ≥ π (Z) if D = 0.
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The implementation of the estimator is more complicated than in the parametric case:

the number of parameters equals (M − 1)2, so it grows at a faster rate than the order of the

copula. Hence, grid search methods are subject to the curse of dimensionality. An alternative

to these is a sequential random search using a property of Bernstein copulas that allows to

express any Bernstein copula of order M1 as a Bernstein copula of order M2 > M1.22 The

algorithm is as follows:

1. Given an order M , fix one value of the copula, denoted by A0
M .

2. Compute the objective function at randomly chosen point in the neighborhood of A0
M ,

A∗M .23

3. If the objective function decreases, repeat step 2 replacing A0
M by A∗M ; otherwise,

repeat step 2 until a value of A that decreases the objective function is found, or the

maximum number of iterations without an improvement is reached.

4. Denote the estimated copula by ÂM . Then, for the copula of orderM +1, use A0
M+1 ≡

AM+1 = PM+1C
−1
M P

′
M+1 as the starting initial value of the parameter for the copula

of order M + 1.

5. Stop when the one obtains the estimates of the highest order copula considered.

This is a sequential estimator that requires solving the linear programme once per

iteration. This estimator has two main advantages: it can combine the fast grid search

over [0, 0.5] for the copula of order 2, and the initial candidate for the optimum makes

increasing the order not excessively burdensome. However, the amount of correlation that

the Bernstein copula can display is limited by the order. Hence, if the correlation of the
22In particular, let C1 denote the copula of order M1, A2 denote the matrix with the α parameters of the

copula of order M2, and P 2 ≡
(
Pm,M2

(
0

M2+1

)
, ..., Pm,M2

(
M2+1
M2+1

))′
. Then, A2 = P 2C

−1
1 P

′
2.

23In particular, the point is selected with a Markov chain sampling for doubly stochastic matrices. Define
B as the (M + 1)× (M + 1) matrix whose (i, j) element is given by η

(
i
M , jM

)
. First, pick two columns and

two rows at random and denote the matrix formed by their intersection by B. Draw a random number, ε,
uniformly from

(
−b, b

)
, where b denotes the minimum element of B. Add ε to the diagonal elements and

subtract it from the off-diagonal elements, replacing the elements originally selected from matrix B. Apply
the inverse mapping from B to A, obtaining the randomly chosen neighbor of the original A matrix.
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unobservables is high in absolute value, starting with a copula of a relatively high order may

be advisable.24 Finally, one should bear in mind that the random search algorithm does not

guarantee that the estimator is the minimizer of the objective function.25

4.3 Fréchet-Hoeffding Bounds

Whenever the researcher is not willing to impose Assumption 5, it is possible to use the

Fréchet-Hoeffding bounds on a bivariate copula, max {u+ v − 1, 0} ≤ C (u, v) ≤ min {u, v},

to attain partial identification on the SQF defined in Equation 1. To do so, first notice that

the HX and GX functions are bounded:

max
{
τ + π (z)− 1

π (z) , 0
}
≤ HX (τ, π (z)) ≤ min

{
τ

π (z) , 1
}

(16)

max
{
τ − π (z)
1− π (z) , 0

}
≤ GX (τ, π (z)) ≤ min

{
τ

1− π (z) , 1
}

(17)

Combining Equations 16 and 17 with Equations 3 and 4, respectively, yields

sup
z∈ZX

F−1
Y |D=1,Z

(
max

{
τ + π (z)− 1

π (z) , 0
}
|z
)
≤ g1 (x, τ) ≤ inf

z∈ZX
F−1
Y |D=1,Z

(
min

{
τ

π (z) , 1
}
|z
)

sup
z∈ZX

F−1
Y |D=0,Z

(
max

{
0, τ − π (z)

1− π (z)

}
|z
)
≤ g0 (x, τ) ≤ inf

z∈ZX
F−1
Y |D=0,Z

(
min

{
1, τ

1− π (z)

}
|z
)

Thus, even if the copula is not analytic, or if the instrument does not have continuous

variation, it is possible to set-identify gD for D = 0, 1 and estimate those bounds. Moreover,

notice that when π (z) = 1, the upper and lower bound of g1 (x, τ) coincide, and similarly

for g0 (x, τ) when π (z) = 0. This is the identification at infinity case, which indicates that
24An initial value of the parameter can be obtained by doing a grid search that interpolates the value of

all parameters of the Bernstein copulas of a given order with the minimum and maximum possible amount
of correlation for that order.

25As such, the properties of the estimator obtained with this algorithm may be slightly different from
those presented in Section 3. Studying the properties of this estimator are beyond the scope of this paper.
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the potential bias of assuming real analyticity is smaller as the variation induced by the

instrument increases.

4.4 Multivalued Treatment

Suppose that the treatment variable D can take on values {0, 1, ..., J}. The model is now

given by:

Y = gD (X,UD)

D =
M−1∑
j=0

1

 j∑
h=0

πh (Z)− V > 0


where πj is the propensity score of treatment j = 0, ..., J − 1 and π0 = 1 −∑J
j=1 πj. This

corresponds to an ordered choice model, and the vector of unobservables has the same

dimension as the number of distinct treatment status. Let π (Z) ≡ [π1 (Z) , ..., πJ (Z)]′.

Then, the conditional copulas GX and Hj,X , j = 1, ..., J , are given by

GX (τ, π (z)) =
C0,X

(
τ, 1−∑J

h=1 πh (z)
)

1−∑J
h=1 πh (z)

Hj,X (τ, π (z)) =
Cj,X

(
τ,
∑J
h=j πh (z)

)
− Cj,X

(
τ,
∑J
h=j+1 πh (z)

)
πj (z)

Using these equations, it is straightforward to adapt the estimation method presented

in Section 3, by firstly estimating the propensity score for each treatment status, and then

applying RQR using the conditional copulas GX and Hj,X .

5 Empirical Application

The estimation method presented in Section 3 is applied to the estimation of the effect of

Work First Job Placements on the distribution of future earnings. This is a welfare-to-work
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program in Detroit that consisted in quickly finding an employment for low-skilled workers,

with the aim of improving their future earnings. Following a week-long orientation period,

workers were randomly assigned to a contractor, whose role was to help them find a job

during the following weeks. Successful workers found either a direct-hire placement (DHP)

or a temporary-help placement (THP), each of which could have a potentially different effect

on future earnings. On the other hand, some workers found no job placement (NP) at all.

The latter constitute the control group, whereas the former are the two treatment groups.

Overall, the number of individuals in the DHP, THP, and NP categories amounted to 11583,

2762, and 16177, respectively.

Since both treatments were endogenously determined, estimation of the effects of interest

requires the exogenous variation coming from an instrument. This dataset was originally

studied by Autor and Houseman (2010), who proposed to use contractor assignments as an

instrument: since placement practices vary by contractor, the assignment of each contractor

would lead to a different probability of obtaining a DHP or a THP. The authors construct a

variable that uses variation across contractors within periods and districts, which they use to

estimate the effects of each type of placement on future earnings. For a detailed description

on the dataset and how the instrument is constructed, see Autor and Houseman (2010).

Autor and Houseman (2010) found a positive and significant mean effect of DHP on

earnings during the following 7 quarters, whereas the mean effect of THP was negative,

though not significant. Subsequently, Autor et al. (2017) studied the distributional effects

using IVQR, finding a substantial amount of heterogeneity of the effects. In particular,

either type of placement had a small and not significant effect on the lower tail of the

earnings distribution. On the other hand, the effect on the upper tail was substantially

large and positive for DHP, while it was negative and significant for THP. However, Autor

et al. (2017) stated that they could not test the rank similarity assumption. Moreover, they

highlighted the difficulty of translating the estimates of the effects of the job placements on

the conditional distribution of earnings into the unconditional distribution of earnings.

Note that Autor et al. (2017) focused on the estimation of the distribution of conditional
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(on X) effects, not on the effect on the unconditional distribution. This is important, as

the latter may be more relevant from a policy perspective, and consequently I focus the

attention on it. Hence, rather than reporting the coefficients on the treatment status from

the IVQR estimates, I report the estimates of the unconditional quantile function for the

whole population under each treatment status following Chernozhukov et al. (2013).26 An

additional difference with respect to Autor et al. (2017) is the number of parameters of the

model: I include all the interactions between the treatment status and the covariates. In

other words, I compute the RQR estimator for each group separately.

I compute the RQR for each group using different copulas. In particular, I consider the

Gaussian copula and the Bernstein copula of orders 2 through 6. Among the latter, I present

the estimates from the model selected using 5-fold cross validation. The propensity score is

estimated with ordered multinomial logit. Finally, to assess the sensibility of the results to

the rank similarity assumption I consider an additional specification with a Gaussian copula

constrained to be the same for all three groups.

Figure 2 reports the distribution of the propensity score to be in each group for the

people in each treatment group. The three histograms reveal a substantial overlap for the

people in the three groups. However, the central histogram indicates that there is a little

amount of variability for the propensity to receive a THP. Consequently, the estimates for

this group require a large degree of extrapolation with any estimation method, making them

less reliable than the estimates for the other two groups.

Figure 3 compares the baseline estimates of the quantile function of future earnings

with the observed empirical distribution.27 There are two relevant findings in this figure.

First, the observed distribution and the one estimated with RQR largely coincide for the

two treatment groups. Second, the observed distribution for the NP group lies above the

estimated potential distribution, regardless of the copula. These two results suggest that

the rank similarity assumption is unlikely to hold. More formally, I test the null hypothesis
26The results of the coefficients not reported in the paper are available upon request.
27For the Bernstein copula, the selected orders were 2, 4, and 2 for the DHP, THP, and NP groups,

respectively.
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Figure 2: Histograms of the Estimated Propensity Scores
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Notes: histograms with the distribution of the propensity to be in the DHP group (left panel), in the THP
group (central panel), and in the NP group (right panel), split by the actual treatment received.

of rank similarity with the test proposed in Frandsen and Lefgren (2018) using the IVQR

estimates. The test statistic equals 213.3, whereas the critical value for a test size of 5% is

67.5.28 Hence, this test strongly rejects the hypothesis of rank similarity.

The shape of the estimated copulas is shown in Figure 4. I report the Kendall’s τ

correlation coefficient in Table 1 to give a comparable measure of correlation intensity. These

numbers provide additional evidence against the rank similarity assumption. In particular,

they reflect a tiny amount of correlation between the unobservables of the selection equation

and the rank of the SQF for treated individuals, and a moderate degree of correlation for

those in the NP group. Note that the negative correlation between U0 and V implies that

those individuals less likely to be treated (i.e. those with high values of V ) would rank

relatively low in the distribution of potential outcomes when D = 0 (i.e. low values of U0).

The results for the Bernstein copula are similar to those found for the Gaussian copula,
28The IVQR estimates in this paper were obtained using Smoothed Estimating Equations (Kaplan and

Sun, 2017) rather than the more common Inverse Quantile Regression (IQR; Chernozhukov and Hansen,
2006). The former is convenient from a computational standpoint, particularly to obtain standard errors of
functionals based on the IVQR estimator using the bootstrap. The estimates using IQR, which are available
upon request, were similar with the exception of the tails, where they displayed an erratic behavior. The
test statistic using the IQR implementation equals 218.8.
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Figure 3: Estimated Potential Quantile Functions
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Notes: in each panel, the solid blue line represents the quantile function of the RQR estimator with the
Gaussian copula, the dashed green line represents the quantile function of the RQR estimator with the
Bernstein copula, the dashed red line represents the quantile function of the IVQR estimator, and the
dotted-dashed purple line represents the empirical distribution. The scale of the Y axis is in logarithm.

although there is a slight increase in the amount of correlation for the two treatment groups

as the order increases.

Table 1: Kendall’s τ Statistic of the Estimated Copulas
Copula Gau Con Ber(2) Ber(3) Ber(4) Ber(5) Ber(6)
DHP 0.00 0.06 -0.01 0.02 0.06 0.06 0.07
THP 0.04 0.06 0.02 0.02 0.04 0.05 0.05
NP 0.13 0.06 0.16 0.14 0.15 0.14 0.14

Notes: DHP, THP, NP, Gau, Con, and Ber(X) respectively stand for
direct-hire placement, temporary-help placement, no placement, Gaussian
copula, Gaussian copula constrained to be the same for all three groups, and
Bernstein copula of order X.

The estimates of the unconditional QTE based on RQR (Table 2) indicate that receiving

any kind of treatment versus not being treated increases future earnings at most quantiles of

the distribution, with the only exception of those close to the extremes of the distribution, for

which the effect is negligible and not significantly different from zero. Moreover, both QTE

have an increasing profile for most of the distribution, peaking around the 80th percentile

and rapidly decreasing thereafter, as shown in Figure 5. The largest gain comes from the
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Figure 4: Estimated Copula Densities
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DHP, whereas the gain from THP is substantially smaller for all quantiles, specially at the

top of the distribution. On average, these gains are estimated to equal $340 and $225 with

the Gaussian copula, and $340 and $245 with the Bernstein copula.29

Table 2: Quantile Treatment Effect Estimates
u

0.15 0.25 0.5 0.75 0.85 Mean
RQR(DHP,NP ;Gau) 33.0 126.3 398.9 641.9 653.2 340.2

(15.0) (42.4) (124.4) (225.7) (274.4) (138.4)
RQR(THP,NP ;Gau) 28.4 94.7 267.4 410.3 428.5 227.4

(7.3) (21.2) (79.7) (168.5) (224.0) (102.9)
RQR(DHP, THP ;Gau) 4.6 31.6 131.5 231.6 224.6 112.8

(16.5) (41.4) (107.0) (169.0) (185.1) (101.1)
RQR(DHP,NP ;Ber) 26.0 114.4 378.6 637.5 678.3 338.8

(15.7) (43.6) (118.9) (199.4) (224.2) (116.2)
RQR(THP,NP ;Ber) 29.6 102.7 280.6 428.4 465.7 245.1

(7.4) (17.9) (55.6) (109.6) (141.0) (62.7)
RQR(DHP, THP ;Ber) -3.6 11.8 98.0 209.1 212.6 93.7

(17.5) (45.4) (119.6) (192.6) (208.9) (111.4)
RQR(DHP,NP ;Con) 20.7 110.1 398.7 702.8 775.8 377.3

(11.8) (41.0) (126.6) (223.3) (260.1) (381.9)
RQR(THP,NP ;Con) 28.5 114.4 360.9 620.5 711.7 356.0

(6.6) (18.2) (58.5) (112.0) (139.6) (358.9)
RQR(DHP, THP ;Con) -7.8 -4.3 37.8 82.3 64.2 21.2

(11.0) (31.1) (84.5) (142.2) (161.9) (23.0)
IV QR(DHP,NP ) 102.7 195.2 390.4 691.7 1038.1 483.6

(38.6) (63.9) (139.0) (272.3) (411.4) (177.3)
IV QR(THP,NP ) 0.1 5.1 -25.7 -217.7 -337.0 -115.0

(45.0) (71.4) (153.9) (223.3) (260.6) (148.1)
IV QR(DHP, THP ) 102.6 190.1 416.1 909.4 1375.1 598.6

(75.0) (117.9) (250.6) (402.1) (534.0) (273.6)
Notes: DHP, THP, NP, Gau, Con, and Ber respectively stand for direct-hire placement,
temporary-help placement, no placement, Gaussian copula, Gaussian copula constrained to be
the same for all three groups, and the selected Bernstein copula; u denotes the quantile; mean
denotes the average across all quantiles in the estimation grid; boostrapped standard errors in
parenthesis.

Relative to the findings in Autor et al. (2017), the estimated unconditional QTE for DHP

is larger for the lower and central parts of the distribution, and smaller for the upper part.
29The orders of the Bernstein copulas selected through cross validation were 3, 2 and 5 for the DHP, THP

and NP groups, respectively.
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Figure 5: Quantile Treatment Effect Estimates
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Notes: in each panel, the solid blue line represents the QTE of the RQR estimator with the Gaussian copula,
the dashed green line represents the QTE of the RQR estimator with the Bernstein copula, and the dashed
red line represents the QTE of the IVQR estimator; DHP, THP, and NP respectively stand for direct-hire
placement, temporary-help placement, and no placement.

Indeed, the estimates based on IVQR predict that the gains for the right tail would be large

and increasing, whereas the estimates based on RQR indicate that the gain would be small

and decreasing. The estimates for THP are positive at almost every quantile, although not

as large as those of the other treatment group. In contrast, the estimates based on IVQR are

negative for the majority of the quantiles. Consequently, the difference between DHP and

THP shows a gain for DHP with both estimators, but the magnitude is remarkably different:

for the estimator based on RQR, the difference is on average between $110 and $90, whereas

for the estimator based on IVQR this difference is about $600 on average.

These estimates suggest that the differences in self-selection into each treatment status

can explain a substantial amount of the difference between the treatment groups and the

control group. This is confirmed by the estimated self-selection effect of the means decomposition

(Table 3): it explains roughly 40% of the difference between the mean earnings of those in

the DHP group and the NP group, and slightly more when one compares the earnings of the

THP group with the control group. In contrast, this difference vanishes when one looks at

the mean difference between the DHP and THP groups, which is almost entirely explained
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by the coefficients effects. Note that because the sample is very homogeneous with respect

to the covariates, the endowments effect is negligible in all cases.

Table 3: Means decomposition
Gaussian copula Bernstein copula

DHP,NP DHP,NP DHP, THP DHP,NP DHP,NP DHP, THP
Total 486.1 383.6 102.5 491.4 388.0 103.4
effect (25.1) (35.1) (36.3) (20.6) (33.2) (36.1)

Endowments 0.0 -7.9 0.0 1.6 -7.1 -0.5
effect (6.3) (16.3) (1.7) (7.9) (19.9) (2.2)

Self-selection 186.6 188.2 -6.8 192.9 175.7 13.2
effect (124.5) (87.6) (82.4) (107.0) (57.5) (95.3)

Coefficients 299.5 203.3 109.3 297.0 219.4 90.7
effect (139.1) (102.2) (100.9) (112.3) (61.2) (111.4)

Notes: DHP, THP, and respectively stand for direct-hire placement, temporary-help placement, and no placement;
boostrapped standard errors in parenthesis.

Similarly, the MTE also reflects a large amount of heterogeneity in the effects, as shown

in Tables 4-5 and Figure 6. If one considers the RIMTE, it has the usual decreasing shape (in

v), although the slope is almost flat. In contrast, the ESME has a positive and steep slope.

This implies that those individuals more likely to be treated (i.e. those with a small value

of v) are those with the expected lowest gain from the treatment. The reason behind this is

the difference in the amount of selection, reflected on the copulas. Because the correlation

is more negative for the NP group, it means that individuals with a small value of v would

tend to rank higher in the distribution of potential outcomes of the NP (i.e. u0 > u1). Even

though for a given quantile there is a gain from being treated, the excess selection reduces

the expected gain.

Moreover, the estimates of the MTE with the Gaussian copula are negative for roughly

V ≤ 0.1. Hence, even if the distributions of potential outcomes for each of the two treatments

dominate the distribution of no placement, there would be a minority of workers who would

have less future earnings, had all of them received one of the two treatments. Interpreting

this result through the lenses of the generalized Roy model with imperfect information leads

to the conclusion that the expected cost of being treated is increasing in V : for the selection

equation to be represented as in equation 2, the net surplus needs to be decreasing in V ,
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and because the MTE is decreasing in V , the opposite must hold for the expected cost of

being treated.

Table 4: Marginal Treatment Effect Estimates
v

Treatment 0.15 0.25 0.5 0.75 0.85 Mean
RQR(DHP,NP ;Gau) 90.2 182.0 344.0 493.7 568.6 331.6

(231.5) (183.8) (131.6) (153.1) (185.2) (138.8)
RQR(THP,NP ;Gau) 42.4 112.1 233.4 343.0 396.7 221.6

(263.7) (196.1) (94.4) (101.8) (146.3) (103.6)
RQR(DHP, THP ;Gau) 47.8 69.9 110.6 150.7 171.9 110.0

(121.0) (84.3) (102.4) (186.8) (236.5) (101.3)
RQR(DHP,NP ;Ber) 145.6 159.2 269.6 469.9 571.0 328.9

(133.8) (119.3) (126.9) (183.8) (229.8) (116.2)
RQR(THP,NP ;Ber) 86.5 73.6 148.8 358.5 475.9 237.3

(181.7) (143.2) (65.4) (122.4) (163.0) (63.1)
RQR(DHP, THP ;Ber) 59.1 85.7 120.8 111.4 95.1 91.7

(124.5) (91.4) (122.2) (224.9) (282.9) (111.5)
RQR(DHP,NP ;Con) 386.7 380.8 369.7 358.7 352.9 369.8

(126.6) (129.8) (136.1) (142.5) (146.0) (374.7)
RQR(THP,NP ;Con) 366.0 360.9 351.5 342.1 337.0 351.5

(60.3) (62.4) (66.8) (71.7) (74.5) (353.5)
RQR(DHP, THP ;Con) 20.7 19.8 18.2 16.6 15.8 18.3

(83.9) (84.0) (84.2) (84.3) (84.3) (21.3)
Notes: DHP, THP, NP, Gau, Con, and Ber respectively stand for direct-hire placement,
temporary-help placement, no placement, Gaussian copula, Gaussian copula constrained to be the
same for all three groups, and the selected Bernstein copula; v denotes the conditioned value of
the unobservable of the selection equation; mean denotes the average across all v in the estimation
grid; boostrapped standard errors in parenthesis.

These results do not support the rank similarity hypothesis. Therefore, it is pertinent

to study the estimates for the constrained model and compare them with those that are

unconstrained. First, the amount of correlation lies in between those of the DHP and

THP groups on the one hand, and that of the NP group (Table 1). Second, the estimated

unconditional QTE for the DHP group relative to the NP group is slightly larger, but for

the THP group it is much larger (Table 2). Consequently, the QTE for the DHP relative to

the THP group becomes a small fraction of the unrestricted estimate. These results do not

coincide with the IVQR estimates, in fact they go on the opposite direction. This suggests
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Table 5: Marginal Treatment Effect Decomposition Estimates
v

Treatment 0.15 0.25 0.5 0.75 0.85 Mean

RIMTE

RQR(DHP,NP ;Gau) 330.6 330.6 330.6 330.6 330.6 330.6
(130.0) (133.0) (139.3) (146.1) (150.0) (139.3)

RQR(DHP,NP ;Gau) 226.2 224.3 220.8 217.2 215.3 220.7
(110.0) (107.6) (104.1) (101.8) (101.2) (104.3)

RQR(THP,NP ;Gau) 109.9 109.9 109.9 109.9 109.9 109.9
(95.2) (97.3) (101.3) (105.3) (107.5) (101.2)

RQR(DHP,NP ;Ber) 334.2 336.7 336.5 327.1 320.8 330.5
(98.1) (103.5) (117.3) (130.5) (136.6) (139.3)

RQR(DHP,NP ;Ber) 244.7 243.1 239.2 235.3 233.7 239.2
(64.6) (63.9) (63.4) (64.8) (65.9) (104.3)

RQR(THP,NP ;Ber) 92.4 93.3 93.3 90.0 87.7 91.2
(101.2) (104.9) (113.1) (119.3) (121.6) (101.2)

ESME

RQR(THP,NP ;Gau) -240.4 -148.6 13.4 163.0 238.0 1.0
(148.7) (91.4) (11.3) (101.3) (146.7) (0.7)

RQR(DHP, THP ;Gau) -183.8 -112.2 12.7 125.8 181.5 0.9
(173.4) (106.4) (12.7) (118.3) (171.1) (0.8)

RQR(DHP, THP ;Gau) -62.1 -40.0 0.7 40.8 62.0 0.1
(154.7) (98.7) (5.1) (102.5) (154.0) (0.4)

RQR(THP,NP ;Ber) -188.5 -177.4 -66.8 142.8 250.3 -1.5
(119.9) (95.8) (66.8) (92.6) (128.2) (1.3)

RQR(DHP, THP ;Ber) -158.2 -169.6 -90.4 123.2 242.2 -2.0
(146.5) (109.9) (42.0) (110.4) (144.4) (0.8)

RQR(DHP, THP ;Ber) -33.3 -7.7 27.5 21.4 7.4 0.5
(174.0) (129.5) (58.3) (124.6) (183.5) (1.1)

Notes: DHP, THP, NP, Gau, Con, and Ber respectively stand for direct-hire placement, temporary-help
placement, no placement, Gaussian copula, Gaussian copula constrained to be the same for all three groups,
and the selected Bernstein copula; v denotes the conditioned value of the unobservable of the selection equation;
mean denotes the average across all v in the estimation grid; boostrapped standard errors in parenthesis.
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Figure 6: Marginal Treatment Effect Estimates
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Notes: in each panel, the solid blue line represents the MTE, the dashed green line represents the RIMTE,
and the dashed red line represents the ESME. The first row shows the estimates with the Gaussian copula;
the second row shows the estimates with the selected Bernstein copula; DHP, THP, and NP respectively
stand for direct-hire placement, temporary-help placement, and no placement.

that the difference between the RQR and IVQR estimates is due to both the rank similarity

assumption and the interaction effect between the treatments and the covariates.

In terms of the MTE (Table 4), the results are markedly different. In particular, the

MTE of the constrained estimator has a slightly downward slope for both treatment status,

and they are roughly the same size. Moreover, they are positive for the entire distribution,

hiding the negative mean effects for those with a high enough value of V .

6 Conclusion

In this paper I study the identification of a nonseparable triangular model with a binary

endogenous treatment. Nonparametric identification is achieved by using local variation of

the instrument combined with a shape restriction on the distribution of the unobservables.
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The distribution of the unobservables is modeled with copulas, allowing for rank dissimilarity.

I show how it can capture differences in the mean outcome between the treated and the

untreated, and how the shape of the MTE is influenced by it. This is complemented by

proposing two decompositions: one for the mean difference between the treated and the

untreated that extends the Oaxaca-Blinder decomposition by adding the self-selection term;

another for the MTE, that is split into the sum of the MTE under rank invariance and a

term that captures the excess selection of individuals into each treatment status.

The proposed estimator is a three-step quantile regression estimator. It estimates the

SQF, the copula of the unobservables, and the propensity score. The baseline estimator uses

a parametric copula, but in an extension I consider using Bernstein copulas, which are a

flexible family that can approximate any well-defined continuous copula.

Finally, the estimation methods presented are applied to the Work First Job Placements

data. In contrast with what had been found in the literature, the estimates reveal that both

types of placements had a positive effect on the distribution of earnings, particularly on the

upper half of the distribution. Moreover, I find evidence that the rank similarity assumption

was not satisfied in the data. The difference in the amount of self-selection for each treatment

status was responsible for a substantial amount of the difference in outcomes between the

treated and the untreated. Moreover, the shape of the MTE was severely affected by it, and

it identified a share of the population whose earnings would have been higher if they had

not received the treatment.
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A Mathematical proofs

Let W ≡ (Y,D,Z). The following notation is used throughout the Appendix:30

r (W,β, θ, γ, τ) ≡



XDζHX(τ,π(Z;γ),θ1) (Y −X ′β1)

X (1−D) ζGX(τ,π(Z;γ),θ0) (Y −X ′β0)
´ 1

0 ϕ (u, Z)DζHX(τ,π(Z;γ),θ1) (Y −X ′β1) du
´ 1

0 ϕ (u, Z) (1−D) ζGX(τ,π(Z;γ),θ0) (Y −X ′β0) du

s (D,Z; γ)



q (W,β, θ, γ, τ) ≡



XDρHX(τ,π(Z;γ),θ1) (Y −X ′β1)

X (1−D) ρGX(τ,π(Z;γ),θ0) (Y −X ′β0)
´ 1

0 ϕ (u, Z)DρHX(τ,π(Z;γ),θ1) (Y −X ′β1) du
´ 1

0 ϕ (u, Z) (1−D) ρGX(τ,π(Z;γ),θ0) (Y −X ′β0) du

s (D,Z; γ)



f 7→ En [f (W )] ≡ 1
n

∑n
i=1 f (W ), f 7→ Gn [f (W )] ≡ 1√

n

∑n
i=1 f (W )−E (f (W )), Qn (β, θ, γ, τ) ≡

En [q (W,β, θ, γ, τ)], and Q (β, θ, γ, τ) ≡ E [q (W,β, θ, γ, τ)], where ρτ (u) ≡ (τ − 1 (u < 0))u,

ζτ (u) ≡ (1 (u < 0)− τ), εD (τ) ≡ Y − X ′βD (τ), and ε̂D (τ) ≡ Y − X ′β̂D (τ), ϑ (τ) ≡(
β (τ)′ , θ′, γ′

)′
.

A.1 Proof of Lemma 1

By Assumption 3 and Equations 3 and 4, the first part of the lemma follows immediately.

Let x ∈ X , and GX satisfy Equation 6. Pick a zx ∈ Zx, and define FY ∗0 |X (y|x) ≡
30Some of this notation is standard in the literature of empirical processes. See, e.g. van der Vaart (2000).
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G−1
X

(
FY |D=0,Z (y|zx) , π (zx)

)
. For all (z, y) in the support of (Z, Y ) given X = x, we have:

GX

(
FY ∗0 |X (y|x) , π (z)

)
= GX

(
G−1
X

(
FY |D=0,Z (y|zx) , π (zx)

)
, π (z)

)
= FY |D=0,Z

(
F−1
Y |D=0,Z

(
FY |D=0,Z (y|zx) |zx

)
|z
)

= FY |D=0,Z (y|z)

By a parallel argument, for HX satisfying Equation 5, one can get that for all (z, y) in

the support of (Z, Y ) given X = x, we have HX

(
FY ∗1 |X (y|x) , π (z)

)
= FY |D=1,Z (y|z).

A.2 Proof of Lemma 2

ˆ 1

0
∆ESME (x, v) dv =

ˆ 1

0

ˆ 1

0
g1 (x, u) d [C1,X (u|v)− C0,X (u|v)] dv

=
ˆ 1

0
g1 (x, u)

ˆ 1

0
[c1,X (u, v)− c0,X (u, v)] dvdu

=
ˆ 1

0
g1 (x, u) [C1,X (v|u)− C0,X (v|u)]10 du

=
ˆ 1

0
g1 (x, u) [u− u]10 du = 0

The second part of the lemma follows trivially.

A.3 Proof of Proposition 1

Let GX and G̃X satisfy Equation 4, and π1, π2 ∈ Px. Then,

GX

(
G−1
X (τ, π2) , π1

)
− G̃X

(
G̃−1
X (τ, π2) , π1

)
= 0∀ (π1, π2) ∈ Px × Px

Hence, ∀τ ∈ (0, 1), (π1, π2) → GX

(
G−1
X (τ, π2) , π1

)
− G̃X

(
G̃−1
X (τ, π2) , π1

)
. C0,X is real

analytic by Assumption 5, so GX is also real analytic, and therefore the composition is

real analytic. Hence, because it is zero on a product of two open neighborhoods, it is zero
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everywhere on (0, 1)× (0, 1). Taking limits at π2 = 0 yields

lim
π2→0

GX

(
G−1
X (τ, π2) , π1

)
− G̃X

(
G̃−1
X (τ, π2) , π1

)
= GX (τ, π1)− G̃X (τ, π1) = 0∀π1 ∈ (0, 1)

Hence, GX (τ, π1) and G̃X (τ, π1) coincide on (0, 1)×(0, 1). Consequently, GX is identified,

and so are C0,X and g0 (x, u). By a parallel argument, using Equation 3 and taking limits at

π2 = 1, HX , C1,X , and g1 (x, u) are identified.

A.4 Proof of Theorem 1

First I show consistency of the estimator. By Assumptions 7, 9, 11, and 12, Q (β, θ, γ, τ) is

continuous over B×Θ×Γ×T . By Lemma 6, sup(β,θ,γ)∈B×Θ×Γ ‖Qn (β, θ, γ, τ)−Q (β, θ, γ, τ)‖ P→

0. Thus, by Lemma 5, supτ∈T
∥∥∥ϑ̂ (τ)− ϑ (τ)

∥∥∥ P→ 0.

Second, I show the asymptotic distribution. By Theorem 3 in Koenker and Bassett

(1978), it is possible to show that

O

(
1√
n

)
=
√
nEn

[
DXζHX(τ,π(Z;γ̂),θ̂1) (ε̂1 (τ))

]

By Lemma 6 and Assumption 10, the following expansion holds in `∞ (T ):

O

(
1√
n

)
= Gn

[
DXζHX(τ,π(Z;γ̂);θ̂1) (ε̂1 (τ))

]
+
√
nE

[
DXζHX(τ,π(Z;γ̂);θ̂1) (ε̂1 (τ))

]

= Gn

[
DXζHX(τ,π(Z;γ);θ1) (ε1 (τ))

]
+ oP (1) +

√
nE

[
DXζHX(τ,π(Z;γ̂);θ̂1) (ε̂1 (τ))

]
= Gn

[
DXζHX(τ,π(Z;γ);θ1) (ε1 (τ))

]
+ J1 (τ)

√
n
(
β̂1 (τ)− β1 (τ)

)
− P11 (τ)

√
n (γ̂ − γ)− P12 (τ)

√
n
(
θ̂1 − θ1

)
+ oP (1)

where

J1 (τ) ≡
∂E

[
DXζHX(τ,π(Z;γ);θ1) (ε1 (τ))

]
∂β1
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P11 (τ) ≡ −
∂E

[
DXζHX(τ,π(Z;γ);θ1) (ε1 (τ))

]
∂γ

P12 (τ) ≡ −
∂E

[
DXζHX(τ,π(Z;γ);θ1) (ε1 (τ))

]
∂θ1

Rearranging and solving for
√
n
(
β̂1 (τ)− β1 (τ)

)
,

√
n
(
β̂1 (τ)− β1 (τ)

)
= −J1 (τ)−1

{
Gn

[
DXζHX(τ,π(Z;γ);θ1) (ε1 (τ))

]
−P11 (τ)

√
n (γ̂ − γ)− P12 (τ)

√
n
(
θ̂1 − θ1

)}
+ oP (1) (18)

in `∞ (T ). By a parallel argument, it can be shown that

√
n
(
β̂0 (τ)− β0 (τ)

)
= −J0 (τ)−1

{
Gn

[
(1−D)XζGX(τ,π(Z;γ);θ0) (ε0 (τ))

]
−P01 (τ)

√
n (γ̂ − γ)− P02 (τ)

√
n
(
θ̂0 − θ0

)}
+ oP (1) (19)

in `∞ (T ), where

J0 (τ) ≡
∂E

[
(1−D)XζGX(τ,π(Z;γ);θ0) (ε0 (τ))

]
∂β0

P01 (τ) ≡ −
∂E

[
(1−D)XζGX(τ,π(Z;γ);θ0) (ε0 (τ))

]
∂γ

P02 (τ) ≡ −
∂E

[
(1−D)XζGX(τ,π(Z;γ);θ0) (ε0 (τ))

]
∂θ0

Using Theorem 3 in Koenker and Bassett (1978) again, it is possible to show that

O

(
1√
n

)
=
√
nEn

[ˆ 1

0
Dϕ (u, Z) ζHX(u,π(Z;γ̂);θ̂1) (ε1 (u)) du

]
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By Lemma 6 and Assumption 10, the following expansion holds:

O

(
1√
n

)
= Gn

[ˆ 1

0
Dϕ (u, Z) ζHX(u,π(Z;γ̂);θ̂1) (ε̂1 (u)) du

]

+
√
n

ˆ 1

0
E
[
Dϕ (u, Z) ζHX(u,π(Z;γ̂);θ̂1) (ε̂1 (u))

]
du

= Gn

[ˆ 1

0
Dϕ (u, Z) ζHX(u,π(Z;γ);θ1) (ε1 (u)) du

]
+ oP (1)

+
√
n

ˆ 1

0
E
[
Dϕ (u, Z) ζHX(u,π(Z;γ̂);θ̂1) (ε̂1 (u))

]
du

= Gn

[ˆ 1

0
Dϕ (u, Z) ζHX(u,π(Z;γ);θ1) (ε1 (u)) du

]
+
√
n

ˆ 1

0
J̃1 (u)

(
β̂1 (u)− β1 (u)

)
du

−
√
n

ˆ 1

0
P̃12 (u) du

(
θ̂1 − θ1

)
−
√
n

ˆ 1

0
P̃11 (u) du (γ̂ − γ) + oP (1)

where

J̃1 (τ) ≡
∂E

[
Dϕ (τ, Z) ζHX(τ,π(Z;γ);θ1) (ε1 (τ))

]
∂β1

P̃11 (τ) ≡ −
∂E

[
Dϕ (τ, Z) ζHX(τ,π(Z;γ);θ1) (ε1 (τ))

]
∂γ

P̃12 (τ) ≡ −
∂E

[
Dϕ (τ, Z) ζHX(τ,π(Z;γ);θ1) (ε1 (τ))

]
∂θ1

Rearranging and solving for
√
n
(
θ̂1 − θ1

)
,

√
n
(
θ̂1 − θ1

)
=
[ˆ 1

0
P̃12 (u) du

]−1 {
Gn

[ˆ 1

0
Dϕ (u, Z) ζHX(u,π(Z;γ);θ1) (ε1 (u)) du

]

+
√
n

ˆ 1

0
J̃1 (u)

(
β̂1 (u)− β1 (u)

)
du−

√
n

ˆ 1

0
P̃11 (u) du (γ̂ − γ)

}
+ oP (1)

(20)
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By a parallel argument, it can be shown that

√
n
(
θ̂0 − θ0

)
=
[ˆ 1

0
P̃02 (u) du

]−1 {
Gn

[ˆ 1

0
(1−D)ϕ (u, Z) ζGX(u,π(Z;γ);θ0) (ε0 (u)) du

]

+
√
n

ˆ 1

0
J̃0 (u)

(
β̂0 (u)− β0 (u)

)
du−

√
n

ˆ 1

0
P̃01 (u) du (γ̂ − γ)

}
+ oP (1)

(21)

where

J̃0 (τ) ≡
∂E

[
(1−D)ϕ (τ, Z) ζGX(τ,π(Z;γ);θ0) (ε0 (τ))

]
∂β0

P̃01 (τ) ≡ −
∂E

[
(1−D)ϕ (τ, Z) ζGX(τ,π(Z;γ);θ0) (ε0 (τ))

]
∂γ

P̃02 (τ) ≡ −
∂E

[
(1−D)ϕ (τ, Z) ζGX(τ,π(Z;γ);θ0) (ε0 (τ))

]
∂θ0

Now define

A (τ) ≡ ϑ̂ (τ)− ϑ (τ)

C (τ) ≡



−J1 (τ)−1 0 0 0 0

0 −J0 (τ)−1 0 0 0

0 0
[´ 1

0 P̃12 (u) du
]−1

0 0

0 0 0
[´ 1

0 P̃02 (u) du
]−1

0

0 0 0 0 −B−1


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D (τ) ≡



0 0 0 0 0

0 0 0 0 0[´ 1
0 P̃12 (u) du

]−1
J̃1 (τ) 0 0 0 −

[´ 1
0 P̃12 (u) du

]−1
P̃11 (τ)

0
[´ 1

0 P̃02 (u) du
]−1

J̃0 (τ) 0 0 −
[´ 1

0 P̃02 (u) du
]−1

P̃01 (τ)

0 0 0 0 0



F (τ) ≡



0 0 J1 (τ)−1 P12 (τ) 0 J1 (τ)−1 P11 (τ)

0 0 0 J0 (τ)−1 P02 (τ) J0 (τ)−1 P01 (τ)

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0



ψ (τ) ≡ r (W,β (τ) , θ, γ, τ)

Combining Equations 18, 19, 20, and 21 yields

A (τ) = F (τ)A (τ) +
ˆ 1

0
D (u)A (u) du+ C (τ) 1√

n
Gnψ (τ) + oP

(
1√
n

)
(22)

in `∞ (T ). Equation 22 is a particular case of a Fredholm integral equation of the second

kind. The solution to this type of equations is a Liouville-Neumann series. By Lemma 4,

the solution to this equation is given by:

√
nA (τ) = F I (τ)

(
I −
ˆ 1

0
D (u)F I (u) du

)−1 ˆ 1

0
D (u)F I (u)C (u)Gnψ (u) du

+ F I (τ)C (τ)Gnψ (τ) + oP (1) (23)

in `∞ (T ), where F I (τ) ≡ (I − F (τ))−1 = I + F (τ). Using the Functional Delta Method
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and Lemmas 3 and 5, it follows that
√
n
(
ϑ̂ (τ)− ϑ (τ)

)
⇒ S (τ), where

S (τ) ≡ F I (τ)
C (τ) +

(
I −
ˆ 1

0
D (u)F I (u) du

)−1 ˆ 1

0
D (u)F I (u)C (u) du

R (τ)

which is a zero-mean Gaussian process with covariance ΣS (τ, τ ′), where

ΣS (τ, τ ′) = F I (τ)
C (τ) +

(
I −
ˆ 1

0
D (u)F I (u) du

)−1 ˆ 1

0
D (u)F I (u)C (u) du

ΣR (τ, τ ′)
F I (τ ′)

C (τ ′) +
(
I −
ˆ 1

0
D (u)F I (u) du

)−1 ˆ 1

0
D (u)F I (u)C (u) du


′

and ΣR (τ, τ ′) is defined in Lemma 6.

B Auxiliary Lemmas

B.1 Hadamard Derivative

Lemma 3. Let the operator κ : `∞ (T ) → R defined by κ (ν (·)) =
´ 1

0 λ (·) ν (·) d·. Define

λ (ht) ≡
´ 1

0 λ (u) (ν (u) + tht (u)) du. As t→ 0,

Dht (t) =
´ 1

0 λ (u) (ν (u) + tht (u)) du−
´ 1

0 λ (u) ν (u) du
t

→ Dh

where Dh ≡
´ 1

0 λ (u)h (u) du. The convergence holds uniformly in any compact subset of T

for any ht : ‖ht − h‖∞ → 0, where ht ∈ `∞ (T ) and h ∈ C (T ).

Proof.

Dht (ht) =
´ 1

0 λ (u) (ν (u) + tht (u)) du−
´ 1

0 λ (u) ν (u) du
t

= 1
t

ˆ 1

0
λ (u) tht (u) du→ Dh
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B.2 Solution to the Fredholm Integral Equation

Lemma 4. Let L (τ) = M1 (τ)L (τ) + M2 (τ) +
´ 1

0 M3 (u)L (u) du be a Fredholm integral

equation of the second kind. Moreover, define M̃2 (τ) ≡ (I −M1 (τ))−1M2 (τ) and M̃3 (τ) ≡

M3 (τ) (I −M1 (τ))−1. Let

(i) I −M1 (τ) is invertible ∀τ ∈ [0, 1]

(ii) limn→∞
[´ 1

0 M̃3 (u) du
]n

= 0

Under (i)-(ii), the solution to this equation is given by

L (τ) = M̃2 (τ) + (I −M1 (τ))−1
(
I −
ˆ 1

0
M̃3 (u) du

)−1 ˆ 1

0
M̃3 (u)M2 (u) du

Proof.

L (τ) = M1 (τ)L (τ) +M2 (τ) +
ˆ 1

0
M3 (u)L (u) du

= M̃2 (τ) + (I −M1 (τ))−1
ˆ 1

0
M3 (u)L (u) du

= M̃2 (τ) + (I −M1 (τ))−1
∞∑
n=0

[ˆ 1

0
M̃3 (u) du

]n ˆ 1

0
M̃3 (u)M2 (u) du

+ lim
n→∞

(I −M1 (τ))−1
[ˆ 1

0
M̃3 (u) du

]n ˆ 1

0
M3 (u)L (u) du

= M̃2 (τ) + (I −M1 (τ))−1
(
I −
ˆ 1

0
M̃3 (u) du

)−1 ˆ 1

0
M̃3 (u)M2 (u) du

where the second equality follows by (i), the third one by iteratively substituting L (u)

inside the integral, and the fourth one by (ii) and the following result: define S ≡ ∑∞n=0C
n,

and A, B and C be square matrices. Then, ASB − ACSB = A (I − C)SB = AB. If

I − C is invertible, then S = (I − C)−1. Premultiply both sides of the equation by A and

postmultiply them by B to obtain the desired result.
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B.3 Argmax Process

Lemma 5. (Chernozhukov and Hansen, 2006) Suppose that uniformly in π in a compact set

Π and for a compact set K (i) Zn (π) is s.t. Qn (Zn (π) |π) ≥ supz∈K Qn (z|π) − εn, ε ↘ 0;

Zn (π) ∈ K wp → 1, (ii) Z∞ (π) ≡ arg supz∈K Q∞ (z|π) is a uniquely defined continuous

process in `∞ (Π), (iii) Qn (τ |τ) p→ Q∞ (τ |τ) in `∞ (K × Π), where Q∞ (τ |τ) is continuous.

Then Zn (τ) = Z∞ (τ) + oP (1) in `∞ (Π)

Proof. See Chernozhukov and Hansen (2006).

B.4 Stochastic Expansion

Lemma 6. Under Assumptions 6-12, the following statements hold:

1. sup(β,θ,γ,τ)∈B×Θ×Γ×T |En [q (W,β, θ, γ, τ)]− E [q (W,β, θ, γ, τ)]| = oP (1)

2. Gnr (W,β (τ) , θ, γ, τ)⇒ R (τ) in `∞ (T ), where R (τ) is a zero-mean Gaussian process

with covariance ΣR (τ, τ ′) defined below in the proof. Moreover, for any ϑ̂ (τ) such that

supτ∈T
∥∥∥ϑ̂ (τ)− ϑ (τ)

∥∥∥ = oP (1), the following holds:

sup
τ∈T

∥∥∥Gnr
(
W, β̂ (τ) , θ̂, γ̂, τ

)
−Gnr (W,β (τ) , θ, γ, τ)

∥∥∥ = oP (1)

Proof. Let F be the class of uniformly smooth functions in z with the uniform smoothness

order ω > dim(d,z)
2 and ‖f (τ ′, z)− f (τ, z)‖ < K (τ − τ ′)a for K > 0, a > 0, ∀ (z, τ, τ ′)∀f ∈

F . The bracketing number of F , by Corollary 2.7.4 in van der Vaart and Wellner (1996)

satisfies

logN[·] (ε,F , L2 (P )) = O
(
ε−

dim(z)
ω

)
= O

(
ε−2−δ

)

for some δ < 0. Therefore, F is Donsker with a constant envelope. By Corollary 2.7.4, the
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bracketing number of

Dj ≡ {βj 7→ X ′βj, βj ∈ Bj}

satisfies

logN[·] (ε,Dj, L2 (P )) = O
(
ε−

dim(d,x)
ω

)
= O

(
ε−2−δ′

)

for some δ′ < 0 and j = 0, 1. Since the indicator function is bounded and monotone, and

the density functions fj (y|x) are bounded by Assumption 9, the bracketing number of

Ej ≡ {βj 7→ 1 (Y < X ′βj) , βj ∈ Bj}

satisfies

logN[·] (ε, Ej, L2 (P )) = O
(
ε−2−δ′

)

Since Ej has a constant envelope, it is Donsker. Now consider the functions GX and HX .

By Assumptions 4 and 12, the mean value theorem can be applied to show

‖GX (τ, π (z, γ) ; θ0)−GX (τ ′, π (z, γ) ; θ0)‖ = ‖τ − τ ′‖
∥∥∥∥∥ ∂∂τ GX (τ ′′, 1− π (z, γ) ; θ0)

∥∥∥∥∥
for some τ ′′ between τ and τ ′. By Assumptions 4 and 12, the second term is bounded ∀z, τ ′′,

so it follows that GX ∈ F .31 Using a parallel argument, it can be shown that HX ∈ F . Let

T ≡ {τ 7→ τ} and define

H ≡{h = (β, θ, γ, τ) 7→ r (W,β, θ, γ, τ) , (β, θ, γ) ∈ B ×Θ× Γ}

31To see this, notice that both ∂
∂τC0,X (τ, π) ∈ [0, 1] and π (τ) ∈ [0, 1]. Hence, it suffices to show that

limπ→1
∂
∂τG (τ, π) = limπ→1 C0,X (τ, π) < ∞, where I have used L’Hôpital rule. Since the derivative is

bounded by Assumption 12, the result follows.
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The first subvector of H is E1 × F − T × F , the second subvector is E0 × F − T × F ,

the third subvector is E1 × F − T × F , the fourth subvector is E0 × F − T × F , and the

fifth subvector is F .32 Since H is Lipschitz over (T ,F , E0, E1), it follows that it is Donsker

by Theorem 2.10.6 in van der Vaart and Wellner (1996). Define

h ≡ (β, θ, γ, τ) 7→ Gnr (W,β, θ, γ, τ)

h is Donsker in `∞ (H). Consider the process

τ 7→ Gnr (W,β, θ, γ, τ)

By the uniform Hölder continuity of τ 7→ (τ, β (τ)) in τ with respect to the supremum

norm, it is also Donsker in `∞ (T ). Hence,

Gnr (W,β (·) , θ, γ, ·)⇒ R (τ)

with covariate function

ΣR (τ, τ ′) ≡ E
[
R (τ)R (τ ′)′

]
=



Σ11
R (τ, τ ′) 0 Σ13

R (τ ′)′ 0 0

0 Σ22
R (τ, τ ′) 0 Σ24

R (τ ′)′ 0

Σ13
R (τ) 0 Σ33

R 0 0

0 Σ24
R (τ) 0 Σ44

R 0

0 0 0 0 Σ55



where

Σ11
R (τ, τ ′) = E [di (HX,τ∧τ ′ −HX,τHX,τ ′)XX ′]

32Note that it is immediate to check that xd and x (1− d) ∈ F .
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Σ22
R (τ, τ ′) = E [(1−D) (GX,τ∧τ ′ −GX,τGX,τ ′)XX ′]

Σ13
R (τ) = E

[
D

ˆ 1

0
Xϕ (u, Z)′ [HX,τ∧u −HX,τHX,u] du

]

Σ24
R (τ) = E

[
(1−D)

ˆ 1

0
Xϕ (u, Z)′ [GX,τ∧u −GX,τGX,u] du

]

Σ33
R = E

[
D

ˆ 1

0

ˆ 1

0
ϕ (u, Z)ϕ (v, Z)′ [HX,u∧v −HX,uHX,v] dvdu

]

Σ44
R = E

[
(1−D)

ˆ 1

0

ˆ 1

0
ϕ (u, Z)ϕ (v, Z)′ [GX,u∧v −GX,uGX,v] dvdu

]

Σ55
R = E

[
s (D,Z; γ) s (D,Z; γ)′

]

where ∧ denotes the minimum between two variables, ĤX,τ ≡ HX (τ, π (Z) ; θ1), and ĜX,τ ≡

GX (τ, π (Z) ; θ0). Define ξ as the L2 (P ) pseudometric on H:

ξ
(
h̃, h

)
≡
√
E
∥∥∥r (W, β̃, θ̃, γ̃, τ̃)− r (W,β, θ, γ, τ)

∥∥∥2

Define δn ≡ supτ∈T ξ
(
h̃ (τ) , h (τ)

)∣∣∣
h̃(τ)=ĥ(τ)

. Since ϑ̂ (τ) p→ ϑ (τ) uniformly in τ , by

Assumption 9, δn
p→ 0. Therefore, as δn

p→ 0,

sup
τ∈T

∥∥∥Gnr
(
W, β̂, θ̂, γ̂, τ

)
−Gnr (W,β, θ, γ, τ)

∥∥∥
≤ sup

ξ(h̃,h)≤δn
h̃,h∈H

∥∥∥Gnr
(
W, β̂, θ̂, γ̂, τ

)
−Gnr (W,β, θ, γ, τ)

∥∥∥ = oP (1)
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by stochastic equicontinuity of h 7→ Gnr (W,β, θ, γ, τ), which proves claim 2. To prove claim

1, define

A ≡ {(β, θ, γ, τ) 7→ q (W,β, θ, γ, τ)}

By Assumption 6, A is bounded, and it is also uniformly Lipschitz over B×Θ×Γ×T , so

by Theorem 2.10.6 in van der Vaart and Wellner (1996), A is Donsker. Hence, the following

ULLN holds:

sup
h∈H
|Enq (W,β, θ, γ, τ)− Eq (W,β, θ, γ, τ)| p→ 0

which gives

sup
(β,θ,γ,τ)∈B×Θ×Γ×T

|Enq (W,β, θ, γ, τ)− Eq (W,β, θ, γ, τ)| p→ 0

which implies claim 1.

C AGeneralized RoyModel with Imperfect Information

Let the outcome of an individual be determined by the switching model Y = (Y1 − Y0)D +

Y0, where Yd is the potential outcome under treatment status d as defined by equation 1.

Individuals also face a cost for being treated, equal to K ≡ k (Z)+UK , where Z is the vector

of instruments that includes the covariates X. The cost function is linearly separable in the

error term. When individuals know these variables with certainty, they choose to be treated

if their net surplus is positive, i.e. if S ≡ Y1 − Y0 − K ≥ 0. This model is known as the

generalized Roy model with perfect information.

Instead, assume that individuals do not know exactly the value of the outcome under

each treatment nor its cost. Their information set is composed of the vector of instruments Z

and a variable V that is correlated with all the other unobservable variables (U1, U0, UK). V

55



is not observed by the econometrician and is normalized to be uniformly distributed on the

unit interval. In this setting, individuals would consider the expected net surplus to decide

whether or not to receive the treatment:

E [S|Z, V ] = E [g1 (X,U1)− g0 (X,U0) |Z, V ]− k (Z)− E [UK |Z, V ]

If the net surplus is positive, then the individual would choose to be treated. Defining

µd (X, V ) ≡ E [gd (X,Ud) |Z, V ] for d = 0, 1, the selection equation can be written as

D = 1 (µ1 (X, V )− µ0 (X, V )− k (Z)− E [Uk|Z, V ] ≥ 0)

In general, this selection rule cannot be written in terms of the propensity score. In that

case, the method of instrumental variables does not identify all the relevant effects (Heckman

and Vytlacil, 2005, 2007). However, if the expected net surplus is monotone in V , then it is

possible to rewrite the selection equation in terms of the propensity score as

D = 1 (V ≤ π (Z))

where π (Z) ≡ {p : µ1 (X, p)− µ0 (X, p)− k (Z)− E [Uk|Z, p] = 0}. Note that the net surplus

in this case depends on two terms, the MTE, µ1 (X, V )− µ0 (X, V ), and the expected cost,

k (Z) + E [Uk|Z, V ]. Thus, the decision to be treated depends on which of these two terms

is the largest.

To get some insight, consider the case in which the net surplus is decreasing in V . An

individual with a small value of V would predict that the expected net surplus from being

treated is large, and would choose to be treated. As V decreases, one would eventually

attain the value that makes the net surplus zero, i.e. when V equals the propensity score.

An individual with such value of V would be indifferent between being treated or not, and if

it were smaller than the propensity score, the expected net surplus would be negative, and

the individual would choose not to be treated.
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This covers several interesting cases. For example, when the treatment has an expected

positive effect for all values of X and there is either rank invariance or rank similarity. In

other words, the distribution of potential outcomes for the treated dominates the distribution

of potential outcomes for the untreated, conditional on any value of the covariates, and the

expected value of the unobservables U1 and U0 conditional on V is the same. Alternatively,

even if g1 (X, u) − g0 (X, u) = 0 for all possible values of u, it is possible to obtain a net

surplus from the treatment if the difference between the expected value of U1 and U0 given

V , is large enough.

This framework highlights the advantages of using copulas to model the treatment effect

and shows how the rank invariance assumption can mask some effects of interest. The copula

Cd,X reflects the amount of information that an individual has about its potential outcome

under treatment d. A negative correlation between Ud and V implies that the individual

would rank higher in the distribution of potential outcomes under treatment d, the lower the

value of V is. A more negative correlation of the copula under treatment status d relative to

d′ implies that individuals with low values of V would tend to rank higher in the distribution

of potential outcomes of treatment d.

D Comparison with Alternative Identification Conditions

An important benchmark in the literature of triangular models with a binary treatment is

LIV. Recent works (Carneiro and Lee, 2009; Jun et al., 2016) have studied the identification

of distributional effects, extending the original contributions that focused on the mean effect

(Heckman and Vytlacil, 1999). The model defined by Equations 1-2 is closely related to

the model in Carneiro and Lee (2009), and its identification conditions can be represented

in terms of the copula and the distribution of potential outcomes. In particular, the two
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equations of Theorem 1 in Carneiro and Lee (2009) can be written as

∂

∂p
C0,X

(
FY ∗0 (y|x) , p

)∣∣∣
p=π(z)

= FY |D=0,Z (y|z)− (1− π (z)) ∂

∂π (z)FY |D=0,Z (y|z) (24)

∂

∂p
C1,X

(
FY ∗1 (y|x) , p

)∣∣∣
p=π(z)

= FY |D=1,Z (y|z) + π (z) ∂

∂π (z)FY |D=1,Z (y|z) (25)

Without extra assumptions, LIV identifies the left had side of Equations 24-25 only over

the support Px. Thus, it is not possible to separately identify the copula and the distribution

of potential outcomes. To achieve that identification result, one would need to invoke the

identification at infinity argument, i.e. Px = [0, 1]. The key difference with respect to the

identification result in Proposition 1 is Assumption 5, which allows the extrapolation of the

identification region from Px to the whole unit interval.

The literature has already considered a variety of alternative assumptions that achieve

this extrapolation, some of which are stronger than Assumption 5. For example, if the

disturbances have a known parametric distribution, then the shape of the MTE depends

on these distributions, allowing the extrapolation from Px to the unit interval.33 Another

possibility is to relax Assumption 1 to allow for full independence between the unobservables

and both the instrument and the covariates. Then, one could use variation in X as a source

of identification. This assumption, however, imposes severe restrictions on the amount of

heterogeneity that can be displayed by the model. In particular, if the SQF was additively

separable between UD and X, the MTE would also be additively separable, and its shape

would be constant up to the intercept with respect to the covariates.34

More recently, shape restrictions have been directly imposed on the MTE. For example,

Brinch et al. (2017) consider a separable model in which the term of the MTE that depends

on the unobservables can be expressed as a linear combination of parameters. Similarly,

Mogstad et al. (2017) consider a nonseparable model in which the MTE can be expressed

as a linear basis. They propose two kinds of basis: one consisting of Bernstein polynomials,
33See e.g. Cornelissen et al. (2017) for the normally distributed model (Heckman, 1976).
34This assumption is strong enough to achieve identification of the MTE even when the instrument is

binary. See Kitagawa (2009) for further discussion on the identified sets when both the instrument and the
treatment are binary.
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and another one piece-wise constant. The former model and the latter with the Bernstein

polynomial basis are real analytic with respect to the propensity score. Hence, because real

analyticity is maintained under the integral sign, the underlying copula is also real analytic,

making them particular cases of the model considered in this paper.

A different approach is considered in the IVQR model (Chernozhukov and Hansen, 2005,

2006). Importantly, the IVQR model is general enough to allow the treatment to be either

discrete or continuous.35 However, the identification result of the IVQR requires either rank

invariance or rank similarity to hold. When this assumption is dropped, and using this

paper’s notation, equation 2.6 from Theorem 1 in Chernozhukov and Hansen (2005) can be

written as:

P (Y ≤ gD (X, τ) |Z) = τ − C0,X
(
FY ∗0 (g0 (X, τ)) , π (Z)

)
+ C1,X

(
FY ∗1 (g1 (X, τ)) , π (Z)

)
(26)

Hence, under rank dissimilarity, the moment P (Y ≤ gD (X, τ) |Z) 6= τ , and therefore it

does not point identify the SQF process. The cost of not requiring rank similarity is the

specification of the selection equation (Equation 2) and the copula. Nevertheless, it is still

possible to combine Equation 26 with Frechét-Hoeffding bounds to obtain set identification:

τ + min
{
FY ∗0 (g0 (X, τ)) , π (Z)

}
−max

{
FY ∗1 (g1 (X, τ))− π (Z) , 0

}
≤

P (Y ≤ gD (X, τ) |Z) ≤

τ + min
{
FY ∗1 (g1 (X, τ)) , π (Z)

}
−max

{
FY ∗0 (g0 (X, τ))− π (Z) , 0

}
(27)

35When the instrument is binary, the IVQR estimator is closely connected with the LQTE estimator. See
Wüthrich (2016) for further details.
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E Additional Treatment Effects

Using Equation 10, it is possible to express the TUT and the TT in terms of the SQF and

the copula:

∆TUT (z) =
ˆ 1

0
g1 (x, u1) dG′X (u1, π (z))−

ˆ 1

0
g0 (x, u0) dGX (u0, π (z))

∆TT (z) =
ˆ 1

0
g1 (x, u1) dHX (u1, π (z))−

ˆ 1

0
g0 (x, u0) dH ′X (u0, π (z))

where G′X (τ, π (z)) ≡ P (U1 ≤ τ |D = 0, z), and H ′X (τ, π (z)) ≡ P (U0 ≤ τ |D = 1, z). These

two quantities, along with the propensity score, determine the ATE:

∆ATE (z) = ∆TUT (z) (1− π (z)) + ∆TT (z) π (z) =
ˆ 1

0
(g1 (x, u)− g0 (x, u)) du

To obtain the unconditional counterparts of these treatment effects, simply integrate

them over the distribution of Z: ATE =
´
Z ATE (z) dFZ (z), TUT =

´
Z TUT (z) dFZ (z),

and TT =
´
Z TT (z) dFZ (z). Regarding their estimation, one just needs to replace the SQF,

the copula, and the propensity score by their estimated counterparts:

∆̂TUT (zi) =
ˆ 1

0
x′iβ̂1 (τ) dĜ′X,i,τ −

ˆ 1

0
x′iβ̂0 (τ) dĜX,i,τ (28)

∆̂TT (zi) =
ˆ 1

0
x′iβ̂1 (τ) dĤX,i,τ −

ˆ 1

0
x′iβ̂0 (τ) dĤ ′X,i,τ (29)

∆̂ATE (zi) =
ˆ 1

0
x′i
(
β̂1 (τ)− β̂0 (τ)

)
dτ (30)

where Ĝ′X,i,τ ≡ G′X
(
τ, π̂ (zi) ; θ̂0

)
and Ĥ ′X,i,τ ≡ H ′X

(
τ, π̂ (zi) ; θ̂1

)
. Finally, the unconditional

treatment effects can be obtained by taking the average over i = 1, ..., N .
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F Monte Carlo

The finite sample performance of the estimator is shown in the following Monte Carlo

exercise. The data generating process is as follows:

yi = βdi,1 (τdi,i) + xiβdi,2 (udi,i) (31)

di = 1
(
γ1 + xiγ2 + ziγ3 + Λ−1 (vi) > 0

)
(32)

u0,i, u1,i, vi|zi ∼ Gaussian (Σ) (33)

where β0 (τ) =
[
Φ−1 (τ)− 2, 1 + exp(2τ)

1+τ

]
, β1 (τ) =

[
tan (τ − 0.5) + Φ−1 (τ) + 2, exp(2τ)+1

1+τ + 2τ
]
,

γ = (−2, 0.4, 2)′, Σ is a symmetric correlation matrix with unit diagonal, and off diagonal

Σ12 = 0, Σ13 = 0.5, and Σ23 = 0.25 elements, xi ∼ U (1, 2), zi ∼ U (0, 1), Φ (·) is the cdf

of the standard normal distribution, and Λ (·) is the cdf of the logistic distribution. The

experiment consists of R = 500 repetitions, with a sample size of N = 2000.

I compute the estimates of the two quantile processes using the method described in this

paper using a variety of copulas: the correctly specified copula (Gaussian), a misspecified

copula (Clayton), Bernstein copulas of orders 2 through 6, and the true copula, i.e. as if the

true copula was known. On top of those, I compute the estimates of the IVQR estimator.

Table 6 reports the values of the objective function for each specification of the RQR

estimator. Among those that depend on one parameter, the lowest value corresponds to

the correctly specified copula. For the estimator based on the Bernstein copula to achieve

a smaller value of the objective function, the order needs to be increased to 6 and 3 for

the treatment and control groups, respectively. Hence, the number of free parameters of

the copula equals 16 and 4, respectively. For a given sample size, increasing the order of

the Bernstein copula results in overfitting of the objective function. This can be seen in

Table 7, which displays the average distance across repetitions between the true copula and

the estimated ones. As expected, both the mean and maximum distance is smallest for the

correctly specified copula. Moreover, note that the Bernstein copula does a better job than

the Clayton copula even if its order is small.
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Table 6: Objective Function, Baseline
Copula Gau Cla Ber(2) Ber(3) Ber(4) Ber(5) Ber(6)
Eq (16) 0.101 0.114 1.317 0.590 0.291 0.155 0.089
Eq (18) 0.110 0.121 0.188 0.049 0.013 0.004 0.002

Notes: Gau, Cla and Ber(X) stand for Gaussian, Clayton and Bernstein copula of
order X.

Table 7: Estimated Copula, Baseline
Copula Gau Cla Ber(2) Ber(5) Ber(8) Ber(5) Ber(6)

Mean (C1) 0.008 0.014 0.013 0.009 0.008 0.009 0.009
Sup (C1) 0.018 0.036 0.024 0.022 0.023 0.024 0.025
Mean (C0) 0.010 0.014 0.008 0.009 0.009 0.009 0.009
Sup (C0) 0.020 0.036 0.018 0.021 0.021 0.022 0.022

Notes: Gau, Cla and Ber(X) stand for Gaussian, Clayton and Bernstein copula of
order X; mean (CD) and sup (CD) respectively denote the mean and supremum
distance across quantiles between the estimated copula and the true copula, averaged
across repetitions, for D = 0, 1.

The difference in the precision of the estimation of the copula is reflected in the estimates

of β (Table 8): with the misspecified parametric copula, the RQR estimates display a small

bias, and with the Bernstein copula, this bias diminishes as the order increases. Despite

that, even the RQR estimates with a incorrectly specified copula perform better than IVQR,

which suffers from two sources of misspecification: the rank similarity assumption, and the

interaction effect between the treatment and the covariate.36

In terms of the dispersion of the estimates, the results are the opposite, as the IVQR

estimates have the smallest interquantile range (IQR). This is explained by the the number

of parameters, which is almost twice as large for the RQR estimator: the slope coefficients

of the IVQR estimator use information from all observations, whereas the coefficient of the

RQR estimator uses the information from the observations of one of the treatment status.

Hence, the IQR of the RQR estimator is smaller, and its magnitude is similar regardless of

the copula.
36Although the IVQR estimator allows for such interactions, the standard approach is to use the

basic linear-in-parameters model, which depends on dim (X) + dim (D) parameters. Because of the grid
search algorithm employed by the estimator, this is convenient from a computational point of view. See
Chernozhukov and Hansen (2006) for further details.
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Table 8: Quantile Regression Coefficients, Baseline
β1,1 β0,1

τ τ
0.1 0.25 0.5 0.75 0.9 Mean 0.1 0.25 0.5 0.75 0.9 Mean

MD

Gau -0.03 -0.05 -0.02 0.00 -0.01 0.02 0.04 0.06 0.01 0.02 -0.01 0.04
Cla -0.05 -0.13 -0.20 -0.32 -0.31 0.19 0.08 0.06 -0.12 -0.39 -0.55 0.24

Ber(2) -0.01 -0.04 -0.10 -0.23 -0.18 0.11 -0.22 -0.28 -0.35 -0.33 -0.46 0.33
Ber(3) -0.01 -0.05 -0.04 -0.15 -0.19 0.08 -0.13 -0.10 -0.13 -0.18 -0.34 0.16
Ber(4) -0.01 -0.05 -0.05 -0.13 -0.19 0.08 -0.12 -0.06 -0.06 -0.09 -0.25 0.11
Ber(5) -0.01 -0.04 -0.05 -0.14 -0.19 0.08 -0.09 -0.03 -0.04 -0.07 -0.26 0.10
Ber(6) -0.01 -0.04 -0.04 -0.14 -0.21 0.08 -0.08 -0.03 -0.03 -0.09 -0.26 0.09
True -0.01 -0.04 0.03 0.05 0.02 0.02 0.03 0.07 0.00 -0.05 -0.01 0.04
IVQR -0.78 -1.00 -1.53 -2.06 -2.49 1.56 0.01 1.18 1.78 2.57 4.10 1.87

IQR

Gau 1.31 1.72 2.54 2.90 3.37 2.41 2.13 2.61 3.70 4.64 5.04 3.70
Cla 1.36 1.72 2.30 2.54 2.83 2.23 2.09 2.64 3.56 3.99 4.40 3.40

Ber(2) 1.22 1.54 2.21 2.68 2.96 2.19 1.83 2.35 3.18 3.97 4.64 3.24
Ber(3) 1.26 1.62 2.39 2.94 2.92 2.29 1.94 2.40 3.45 4.08 4.80 3.39
Ber(4) 1.26 1.70 2.37 2.84 2.94 2.31 2.00 2.54 3.60 4.13 4.88 3.44
Ber(5) 1.26 1.70 2.43 2.81 2.94 2.32 1.96 2.51 3.65 4.22 4.96 3.48
Ber(6) 1.25 1.69 2.45 2.84 2.94 2.33 2.00 2.55 3.70 4.20 4.91 3.50
True 1.25 1.67 2.37 2.82 3.06 2.35 1.85 2.46 3.51 4.04 4.59 3.48
IVQR 0.82 0.90 1.09 1.31 1.47 1.18 1.83 1.87 2.65 3.60 5.16 3.02

β1.2 β0.2
τ τ

0.1 0.25 0.5 0.75 0.9 Mean 0.1 0.25 0.5 0.75 0.9 Mean

MD

Gau 0.00 -0.02 -0.03 -0.03 -0.01 0.02 0.01 0.03 0.01 0.03 0.02 0.03
Cla -0.05 -0.10 -0.10 -0.03 0.02 0.07 -0.17 -0.11 -0.02 0.00 -0.02 0.07

Ber(2) 0.01 -0.01 -0.02 0.01 0.04 0.02 0.06 0.05 0.02 0.01 -0.03 0.04
Ber(3) 0.01 -0.02 -0.02 -0.01 0.03 0.02 0.06 0.05 0.03 0.03 -0.02 0.04
Ber(4) 0.00 -0.02 -0.03 -0.01 0.03 0.02 0.07 0.04 0.03 0.04 0.00 0.04
Ber(5) 0.00 -0.02 -0.03 -0.01 0.03 0.02 0.07 0.04 0.03 0.03 0.00 0.04
Ber(6) 0.00 -0.03 -0.03 -0.01 0.02 0.02 0.07 0.04 0.03 0.03 0.01 0.04
True -0.01 -0.03 -0.03 -0.03 -0.02 0.02 0.01 0.05 0.04 0.02 0.02 0.03
IVQR 0.43 0.50 0.47 0.44 0.31 0.44 -0.63 -0.89 -0.86 -0.75 -0.42 0.75

IQR

Gau 1.06 1.09 1.24 1.48 1.43 2.41 1.45 1.44 1.65 1.97 1.93 3.70
Cla 1.15 1.09 1.27 1.50 1.46 2.23 1.81 1.43 1.68 1.96 2.02 3.40

Ber(2) 1.02 1.07 1.25 1.49 1.45 2.19 1.39 1.42 1.66 2.08 1.97 3.24
Ber(3) 1.01 1.06 1.23 1.50 1.44 2.29 1.38 1.43 1.62 2.08 1.99 3.39
Ber(4) 1.03 1.06 1.25 1.50 1.45 2.31 1.39 1.40 1.61 2.06 2.04 3.44
Ber(5) 1.04 1.07 1.24 1.48 1.45 2.32 1.39 1.41 1.63 2.06 2.04 3.48
Ber(6) 1.04 1.07 1.26 1.48 1.45 2.33 1.39 1.43 1.63 2.06 2.02 3.50
True 1.00 0.96 1.17 1.39 1.37 2.35 1.46 1.35 1.70 2.14 1.97 3.48
IVQR 0.83 0.91 1.12 1.34 1.48 1.20 1.45 1.52 1.65 1.83 2.04 1.76

Notes: Gau, Cla and Ber(X) stand for Gaussian, Clayton and Bernstein copula of order X; MD denotes the mean distance
in absolute value between the estimated and true parameters; IQR denotes the 95% interquantile range of the estimated
parameters. 63



F.1 Support of the Propensity Score

Another experiment compares the performance of the estimator that uses a correctly specified

Bernstein copula of order 2 (α (0.5, 0.5) = 0.375), when the support of the propensity score

changes. Since the shape assumption helps extending the identification argument from the

observed interval to the unit line, it is pertinent to assess the performance of the estimator

for different sizes of the observed interval. For a number of different supports, I draw the

actual propensity score uniformly.37 In other words, the first step in the implementation of

the RQR estimator is not required.

Increasing the support of the propensity score improves the performance of the estimator:

the RQR estimates are also more precise, as their bias tends to diminish (Table 9), and the

distance between the estimated copula and its true value is smaller (Table 10). On the

other hand, the IQR across repetitions of the RQR estimator is very stable and increases

only slightly as the support of the propensity score diminishes. Thus, even if the model

is identified with small variation of the propensity score, the performance of the estimator

greatly depends on the amount of exogenous variation reflected by the propensity score.

F.2 Non-Analytical Copula

The identification result presented in this paper relies on the copula being analytic. The

following simulation assesses the performance of the RQR estimator when the true copula

is not analytic. In particular, it is a mixture between the lower Fréchet copula and the

independence copula, with proportions (0.25, 0.75) for the treated, and (0.5, 0.5) for the

untreated.

As shown in Table 11, the distance between the estimated copula and the true one is

similar to the distance found when the copula was analytic. Note that the distance slightly

increases as the order increases, although it is roughly stable across different orders. On the

other hand, increasing order of the Bernstein copula reduces the bias of the RQR estimates,
37In particular, I consider the following sets of support: [0.1, 0.9], [0.15, 0.85], [0.2, 0.8], [0.25, 0.75],

[0.3, 0.7], [0.35, 0.65], [0.4, 0.5], and [0.45, 0.55].
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Table 9: Quantile Regression Coefficients, Varying Support
β1,1 β0,1

τ τ
0.1 0.25 0.5 0.75 0.9 Mean 0.1 0.25 0.5 0.75 0.9 Mean

MD

(1) -0.03 0.00 -0.01 -0.01 -0.02 0.02 0.00 0.00 0.00 -0.02 -0.04 0.01
(2) 0.00 -0.02 0.02 0.02 -0.02 0.02 -0.02 -0.01 0.01 0.00 -0.05 0.02
(3) -0.04 -0.01 0.00 -0.02 -0.03 0.02 -0.02 -0.01 0.01 -0.05 -0.01 0.01
(4) -0.07 -0.03 0.00 0.00 -0.03 0.03 0.01 0.01 -0.01 0.00 0.00 0.01
(5) -0.04 0.00 0.06 -0.02 0.00 0.02 -0.01 0.00 0.01 0.00 -0.02 0.01
(6) -0.05 -0.02 0.01 -0.03 -0.02 0.02 0.00 -0.02 0.00 -0.03 -0.04 0.02
(7) -0.01 0.02 0.06 0.04 0.02 0.02 -0.02 -0.04 -0.07 -0.11 -0.04 0.05
(8) 0.03 0.08 0.15 0.10 0.07 0.08 -0.03 -0.04 -0.11 -0.15 -0.11 0.08

IQR

(1) 1.66 1.76 2.06 2.38 2.13 2.01 0.92 0.97 1.25 1.71 1.85 1.37
(2) 1.65 1.89 2.18 2.21 1.98 2.02 0.88 0.92 1.33 1.65 1.96 1.34
(3) 1.67 1.75 2.21 2.09 1.96 1.99 0.90 0.95 1.34 1.75 1.81 1.37
(4) 1.66 1.79 2.21 2.33 2.01 2.02 0.88 0.94 1.35 1.76 1.92 1.40
(5) 1.60 1.91 2.38 2.30 2.11 2.07 0.84 0.97 1.33 1.72 1.85 1.39
(6) 1.78 2.05 2.22 2.26 2.03 2.09 0.89 0.96 1.39 1.83 1.97 1.41
(7) 1.70 2.04 2.50 2.32 1.94 2.17 0.87 0.94 1.39 1.84 1.81 1.42
(8) 1.95 2.14 2.71 2.49 2.11 2.32 0.88 0.96 1.46 1.87 1.91 1.44

β1.2 β0.2
τ τ

0.1 0.25 0.5 0.75 0.9 Mean 0.1 0.25 0.5 0.75 0.9 Mean

MD

(1) 0.04 0.01 -0.03 0.02 0.06 0.03 0.01 0.01 0.00 0.01 0.09 0.02
(2) 0.03 0.00 -0.01 -0.01 0.08 0.03 0.02 0.00 0.00 0.01 0.07 0.02
(3) 0.04 0.01 0.02 0.08 0.10 0.04 0.01 0.00 -0.02 0.03 0.00 0.01
(4) 0.11 0.09 0.05 0.03 0.07 0.05 0.01 -0.02 -0.01 0.00 0.01 0.02
(5) 0.05 0.02 0.02 0.07 0.07 0.05 0.00 -0.01 -0.06 -0.02 0.00 0.02
(6) 0.08 0.03 0.06 0.09 0.06 0.07 -0.03 -0.05 -0.07 -0.03 0.03 0.04
(7) 0.08 0.09 0.09 0.06 0.06 0.09 -0.03 -0.06 -0.08 -0.03 -0.05 0.06
(8) 0.13 0.09 0.10 0.19 0.13 0.14 -0.09 -0.14 -0.15 -0.09 -0.04 0.12

IQR

(1) 2.52 2.62 3.12 3.34 3.05 2.92 1.35 1.45 1.98 2.64 2.62 2.06
(2) 2.49 2.64 3.07 3.25 2.83 2.94 1.28 1.30 1.94 2.36 2.77 1.95
(3) 2.54 2.58 3.02 3.00 2.88 2.89 1.32 1.47 2.00 2.54 2.46 2.00
(4) 2.57 2.76 3.00 3.14 2.81 2.89 1.37 1.42 1.91 2.62 2.65 2.02
(5) 2.64 2.80 3.24 3.28 2.83 2.98 1.28 1.60 2.00 2.54 2.85 2.05
(6) 2.80 2.72 3.19 3.27 2.85 3.01 1.39 1.48 1.92 2.57 2.89 2.03
(7) 2.70 2.85 3.23 3.13 2.85 3.03 1.43 1.56 2.01 2.44 2.71 2.05
(8) 2.82 2.97 3.31 3.39 3.02 3.13 1.66 1.68 1.99 2.58 2.80 2.13

Notes: rows (1)-(8) denote the the different support of the propensity score used in each specification, in decreasing
order; MD denotes the mean distance in absolute value between the estimated and true parameters; IQR denotes the
95% interquantile range of the estimated parameters.
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Table 10: Estimated Copula, Varying Support
Propensity (1) (2) (3) (4) (5) (6) (7) (8)
Mean (C1) 0.006 0.007 0.007 0.008 0.010 0.012 0.016 0.020
Sup (C1) 0.013 0.014 0.016 0.018 0.022 0.026 0.034 0.045
Mean (C0) 0.006 0.006 0.007 0.008 0.010 0.013 0.017 0.022
Sup (C0) 0.013 0.014 0.016 0.019 0.022 0.028 0.037 0.048

Notes: columns (1)-(8) denote the the different support of the propensity score used in
each specification, in decreasing order; mean (CD) and sup (CD) respectively denote
the mean and supremum distance across quantiles between the estimated copula and
the true copula, averaged across repetitions, for D = 0, 1.

as shown in Table 12.

Table 11: Estimated Copula, Non-Analytical Copula
Copula Ber(2) Ber(3) Ber(4) Ber(5) Ber(6)

Mean (C1) 0.010 0.011 0.011 0.011 0.011
Sup (C1) 0.029 0.033 0.034 0.034 0.034
Mean (C0) 0.016 0.012 0.011 0.011 0.012
Sup (C0) 0.063 0.048 0.045 0.043 0.043

Notes: Ber(X) stands for Bernstein copula of order X; mean (CD)
and sup (CD) respectively denote the mean and supremum distance
across quantiles between the estimated copula and the true copula,
averaged across repetitions, for D = 0, 1.
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Table 12: Quantile Regression Coefficients, Non-Analytical Copula

1,1 0,1τ τ
0.1 0.25 0.5 0.75 0.9 Mean 0.1 0.25 0.5 0.75 0.9 Mean

MD

Ber(2) 0.08 0.08 0.09 -0.07 -0.11 0.07
Ber(3) 0.06 0.09 0.09 -0.07 -0.11 0.07
Ber(4) 0.05 0.06 0.09 -0.10 -0.11 0.07
Ber(5) 0.04 0.07 0.09 -0.11 -0.10 0.07
Ber(6) 0.04 0.07 0.09 -0.11 -0.10 0.07

-0.28 -0.25 0.06 0.26 0.21 0.16
-0.29 -0.29 0.03 0.24 0.19 0.16
-0.28 -0.30 0.02 0.25 0.16 0.16
-0.28 -0.29 0.00 0.24 0.16 0.16
-0.28 -0.29 -0.01 0.24 0.16 0.16

True -0.02 -0.01 0.02 0.02 -0.02 0.02 0.02 0.04 0.00 -0.01 0.04 0.03

IQR

Ber(2) 2.03 2.51 2.50 2.09 1.88 2.30 3.14 3.84 4.11 3.27 2.93 3.57
Ber(3) 1.98 2.49 2.67 2.20 1.90 2.30 3.12 3.94 4.19 3.27 2.86 3.63
Ber(4) 1.99 2.50 2.67 2.25 1.88 2.31 3.17 3.96 4.37 3.19 2.78 3.64
Ber(5) 1.96 2.49 2.65 2.26 1.89 2.31 3.20 4.02 4.35 3.25 2.75 3.64
Ber(6) 1.96 2.45 2.69 2.26 1.89 2.31 3.20 4.03 4.40 3.25 2.78 3.64
True 2.10 2.44 2.59 2.21 1.92 2.29 3.17 3.61 3.97 3.20 2.91 3.44

1.2 0.2τ τ
0.1 0.25 0.5 0.75 0.9 Mean 0.1 0.25 0.5 0.75 0.9 Mean

MD

Ber(2) -0.02 -0.10 -0.23 -0.29 -0.03 0.16 0.04 0.09 0.02 -0.19 -0.37 0.11
Ber(3) 0.00 -0.06 -0.14 -0.08 0.12 0.09 0.06 0.10 0.05 -0.20 -0.34 0.13
Ber(4) 0.00 -0.04 -0.12 -0.03 0.17 0.08 0.07 0.10 0.03 -0.20 -0.33 0.13
Ber(5) 0.00 -0.04 -0.09 -0.01 0.21 0.07 0.08 0.10 0.03 -0.22 -0.31 0.13
Ber(6) 0.00 -0.04 -0.09 0.02 0.21 0.07 0.08 0.11 0.03 -0.24 -0.34 0.13
True 0.00 -0.02 -0.01 -0.05 -0.03 0.03 -0.01 0.03 0.01 0.06 0.04 0.04

IQR

Ber(2) 0.81 0.79 0.98 1.48 2.24 2.30 1.14 1.18 1.46 2.21 3.19 3.57
Ber(3) 0.81 0.76 1.07 1.70 2.22 2.30 1.15 1.19 1.43 2.41 3.08 3.63
Ber(4) 0.77 0.77 1.06 1.77 2.15 2.31 1.15 1.16 1.46 2.45 3.17 3.64
Ber(5) 0.77 0.78 1.10 1.87 2.16 2.31 1.16 1.17 1.43 2.52 3.10 3.64
Ber(6) 0.77 0.78 1.12 1.88 2.16 2.31 1.15 1.16 1.47 2.50 3.07 3.64
True 0.81 0.78 1.07 1.85 2.19 2.29 1.15 1.17 1.57 2.61 3.14 3.44

Notes: Ber(X) stands Bernstein copula of order X; MD denotes the mean distance in absolute value between the estimated 
and true parameters; IQR denotes the 95% interquantile range of the estimated parameters.
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