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Abstract 

We propose a general method for the Bayesian estimation of nonlinear no-arbitrage 
term structure models. The main innovations we introduce are: 1) a computationally efficient 
method, based on deep learning techniques, for approximating no-arbitrage model-implied 
bond yields to any desired degree of accuracy; and 2) computational graph optimizations for 
accelerating the MCMC sampling of the model parameters and of the unobservable state 
variables that drive the short-term interest rate. We apply the proposed techniques for 
estimating a shadow rate model with a time-varying lower bound, in which the shadow rate 
can be driven by both spanned unobservable factors and unspanned macroeconomic factors.  
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1 Introduction

In recent years no-arbitrage term structure models have become an essential tool in the

toolbox of financial economists and central bankers. These models are routinely used to gauge

market participants’views about future interest rate developments and to understand how

the risk premia embedded in long-term interest rates evolve and interact with macroeconomic

variables (see, e.g., Adrian et al. 2013, Ang and Piazzesi 2003, Hamilton and Wu 2012a and

2012b, Joslin et al 2014, Rudebusch and Wu 2008). However, unprecedented developments

in the conduct of monetary policy and in bond markets across the world have created the

need for increasingly complex models, whose estimation often poses econometric challenges

that are diffi cult to surmount. For example, it has become evident that Gaussian affi ne

term structure models, which were widely used in applied work thanks to their tractability

and ease of estimation, can provide misleading indications1 when policy rates are near their

lower bound, as they have been for many currencies in recent years (e.g., Kim and Singleton

2012, Krippner 2013). Alternatives, such as shadow rate models (first introduced by Black

1995), have been proposed to deal with the problems posed by near-zero interest rates (e.g.,

Christensen and Rudebusch 2014). However, these alternative models are often diffi cult to

estimate because they are highly non-linear and, in general, they lack analytic formulae for

computing bond prices and for recovering pricing factors from the term structure of interest

rates. In the specific case of shadow rate models, several approximations of the bond pricing

function have been proposed (see Section 3 for a review), but as yet there seems to be no

consensus on the best approximation strategy.

In this paper, we propose a general method for the Bayesian estimation of nonlinear

no-arbitrage term structure models, aimed at circumventing the above diffi culties.

1Gaussian affi ne models are typically unable to reproduce the stylized fact that policy rates tend to
remain near their lower bound for prolonged periods of time once they reach it. Furthermore, when policy
rates are near the lower bound, these models tend to assign high probability to future scenarios where policy
rates decrease further and become significantly negative, which contradicts the very existence of a lower
bound. Because of these unrealistic features, Gaussian term structure models produce flawed estimates of
the expected future policy rates and the term premia embedded in the yield curve.
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First, we propose to approximate the bond pricing function of non-linear models with a

deep neural network. By appropriately choosing the architecture of the network (number of

layers and number of neurons), the root mean squared approximation error (RMSE) can be

made arbitrarily small (e.g., less than 1 basis points). The resulting approximation is not only

nearly exact but it is also computationally inexpensive. Furthermore, it can be performed in

any model in which the trajectories of the pricing factors under the risk-neutral measure can

be simulated by Monte Carlo methods so as to obtain consistent estimators of bond prices.

All of the most popular non-linear models, including shadow rate, quadratic (e.g., Ahn et

al. 2002, Leippold and Wu 2002, Realdon 2006), and autoregressive gamma (e.g., Monfort

et al. 2014) models satisfy this requirement.

Second, we propose an algorithm for the acceleration of the MCMC sampling of the model

parameters and of the pricing factors that drive the short-term rate. The latter are treated

as unobservable variables to be estimated. The only requirement is that the pricing factors

follow a Markov process with known transition probability density. Also this requirement is

satisfied by most existing models. The main intuition behind the MCMC acceleration tech-

nique, which falls within the broader class of computational graph optimization techniques

(see, e.g., Theano Development Team 2016), is that at every transition of the Markov Chain

only few of the calculations needed to compute the posterior density are actually performed,

while the majority of computations can be "recycled" from previous transitions.

We apply the proposed techniques to the estimation of a shadow rate model with time-

varying lower bound. The model, which is estimated with data on euro-denominated risk-

free rates, has three latent pricing factors and two unspanned observable factors, namely

Consensus Economics forecasts of inflation and GDP growth over a 1-year horizon.

We use the model to: 1) estimate how the perceived lower bound changed between the

2008 crisis and today; 2) carry out a decomposition of 10-year rates into expected rates

and term premia, in order to understand how these components evolved in recent years;

3) predict future developments of the short-term (policy rate), by also performing scenario
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analyses in which predictions are made conditional on inflation scenarios.

While a detailed analysis of the empirical results can be found in Section 10, the main

highlights are as follows: 1) we find evidence of a marked decrease in the perceived lower

bound, from 0.6% before the financial crisis to about -0.5% at the end of 2017; 2) the

estimated term premium has been on a decreasing trend since the financial crisis; its value

was negative (around -0.5%) in 2017, in line with the evidence provided by other researchers;

3) the predictions about lift-off probabilities are consistent with survey evidence at the end

of the sample; the timing of the rise would anyway be highly dependent on the evolution of

expected inflation and GDP growth.

The rest of the paper is organized as follows: Section 2 describes the class of non-linear

models that can be estimated with our methodology; Section 3 explains how the bond pricing

function can be approximated with deep neural networks; Section 4 derives formulae for the

posterior distribution of model parameters; Section 5 briefly describes the MCMC algorithm

used to perform draws from the posterior distribution; Section 6 explains how to optimize the

computational graph of the MCMC sampler; Section 7 introduces the shadow rate model;

Section 8 presents the data used in the estimation of the model; Section 9 provides more

details about the estimation methodology; Section 10 comments on the empirical evidence

from the model; Section 11 concludes.

2 The model

This section describes the class of term structure models that can be estimated with the

methodology proposed in this paper.

Time is discrete and is indexed by t = 1, . . . , T . We assume that the short-term rate rt

(i.e., the interest rate on 1-period loans) is a known function

rt = g (Xt, θr) (1)
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of a vector Xt of pricing factors and of a vector of parameters θr.

The factors Xt follow a first-order discrete-time Markov process whose transition proba-

bility density

f (Xt |Xt−1, θP ) (2)

under the physical (or real-world) measure P is also a known function, depending on a vector

of parameters θP.

The vast majority of term-structure models satisfies assumptions (1) and (2). For exam-

ple,

• in the classical GATSM (Gaussian Affi ne Term Structure Model), the short-term rate

is an affi ne function of the factors:

rt = a+ bXt (3)

with parameter θr = (a, b), and Xt follows a first-order vector autoregression

Xt = µ+ ρXt−1 + Σεt (4)

where εt is Gaussian noise and θP = (µ, ρ,Σ).

• in QTSM (Quadratic Term Structure Models), the law of motion of the factors is

specified by (4), but the short term rate is a quadratic function of the factors:

rt = a+ bXt +X>t CXt (5)

with parameter θr = (a, b, C)

• in SRTSM (Shadow Rate Term Structure Models), the law of motion of the factors is
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specified by (4), but the short term rate is a non-linear function of the factors:

rt = max
(
r, a+ bXt +X>t CXt

)
(6)

where r is a lower bound for the short-term rate and θr = (r, a, b, C).

• in autoregressive Gamma and extended autoregressive Gamma models, the conditional

distribution of Xt is a mixture of Gamma distributions whose parameters depend on

Xt−1.

The third assumption we make is that Xt is a first-order Markov process also under the

risk-neutral pricing measure Q. Its transition probability density under Q is denoted by

h (Xt |Xt−1, θQ ) (7)

where θQ is a vector of unknown parameters.

Furthermore, we assume discrete compounding, so that the price of a zero-coupon bond

expiring in n periods is

P n
t = EQ

[
1∏n−1

j=0 (1 + rt+j)

∣∣∣∣∣Xt

]
(8)

and its yield is

ynt =

(
1

P n
t

)1/n
− 1 (9)

Finally, we assume that trajectories of Xt under Q can be simulated by Monte Carlo

methods so as to obtain consistent estimators of bond prices. In particular, we assume that

it is possible to generate double sequences {Xt,s} such that, for every n ∈ N

plim
S→∞

1

S

S∑
s=1

1∏n−1
j=0 (1 + g (Xt+j,s, θr))

= P n
t (θr, θQ, Xt) (10)

where plim denotes a limit in probability and P n
t depends not only on θr, but also on
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the parameter θQ used to generate {Xt,s} and on the initial value Xt of the state variables,

which is used to recursively generate the trajectories {Xt+j,s}, by starting from the transition

density

h (Xt+1 |Xt, θQ ) (11)

The above assumptions about the dynamics of Q are satisfied by virtually all existing

dynamic term structure models. In particular, affi ne, quadratic and shadow rate models

where Xt follows the dynamics (4) under P usually have a pricing kernel such that Xt

follows a first-order VAR also under Q:

Xt = µ+ ρXt−1 + Σηt (12)

where the parameters µ and ρ can be different from the parameters µ and ρ in eq. (4)

and ηt is multivariate normal. In these cases, the trajectories of the pricing factors are

computed by extracting double sequences of Gaussian error terms
{
ηt,s
}
and computing

{Xt+j,s} recursively.

Let n1, . . . , nM be M maturities of interest. Assume they are in increasing order, so that

nM is the largest bond maturity. Denote by

yt =

[
yn1t yn2t . . . ynMt

]>
(13)

the vector of yields. When the dependence of the vector of yields on model parameters and

pricing factors needs to be emphasized, we will write

yt = y (θr, θQ, Xt) (14)

where the function y does not depend explicitly on t because the Markov property implies

that all the information at time t is summarized by the value of the vector Xt.
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We assume that the yields are observed with error, so that the observed yields are

yot = yt + vt (15)

where {vt} is a sequence of IID pricing errors having known density

f (vt |θv ) (16)

where θv is a vector of parameters. In most of the term structure models proposed in the

literature, vt is assumed to have a multivariate normal distribution with zero mean. In this

case, the parameter θv is the covariance matrix of the pricing errors.

3 Pricing function approximation

When an analytical expression for the pricing function y (θr, θQ, Xt) is not available, it is

usually approximated in order to perform model estimation. For example, in the context

of SRTSM estimation, the following approximation methods have been proposed: i) lattices

(Ichiue and Ueno 2007); ii) finite-difference methods (Kim and Singleton 2012); iii) approxi-

mation with a finite state space constructed with antithetic sampling (Bauer and Rudebusch

2016); iv) option pricing approximations (Krippner 2013 and Christensen and Rudebusch

2014); v) approximations that ignore Jensen inequality corrections so as to exploit analytical

results on truncated normal distributions (Ichiue and Ueno 2013); vi) perturbations and Tay-

lor series expansions around a deterministic steady state (Andreasen and Meldrum 2013);

vi) approximations of forward rates (Wu and Xia 2016).

In this paper, we propose to use neural networks (NN) to approximate the pricing func-

tion. As proved, for example, by Hornik (1991), NN are universal approximators, in the

sense that a suitably parametrized NN can approximate any given function to any desired

degree of accuracy provided that it contains a suffi cient amount of neurons. In recent years,
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the popularity of NN approximation has increased for several reasons.

First, both theoretical and empirical studies have shown that deep networks (i.e., NN

with many layers) are parsimonious approximators of complicated functions (e.g., Delalleau

and Bengio 2011). These studies have given rise to so-called deep learning, a set of statistical

methods related to the use of deep NN that have been fruitfully applied in disparate fields

of engineering and artificial intelligence (LeCun et al. 2015).

Second, computer micro-architectures (both CPUs and GPUs) and numerical software

have become increasingly more rapid and effi cient in performing the kind of calculations

involved in the estimation and computation of NN2 (e.g., NVIDIA 2016).

Third, research on NN has progressed at a very rapid pace and has substantially improved

the optimization algorithms that are used to estimate the parameters of NN (see Ruder 2016

for a review), as well as the symbolic computational engines that are used to implement the

algorithms (Bahrampour et al. 2015).

Denote by

θ = (θr, θQ, Xt) (17)

the triplet of inputs (i.e., arguments) to the pricing function, so that the notation

y = y
(
θ
)

(18)

can be used interchangeably with the notation in eq. (14).

Abstracting from details that will be further discussed in Section 9, the procedure we

use to construct and train a neural network to approximate the pricing function for a given

model is as follows:

1. we randomly extract P values θ1, . . . , θP from the set of all admissible values of θ;

2Roughly speaking, the majority of floating point operations performed by a computer in the process
of computing or estimating a neural network are typically done while multiplying matrices (of weights and
neuron activations). Matrix multiplication, being highly parallelizable, has become increasingly rapid in
recent years thanks to the increase in the number of computational cores in CPUs and GPUs and to the
introduction of parallel instructions (such as AVX) in modern CPUs.
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2. for each θp (p = 1, . . . , P ), we compute an approximation

ỹp = ỹ
(
θp
)

(19)

of the bond yields by Monte Carlo integration as in equation (10), that is, we compute

ỹnjp =

(
1

S

S∑
s=1

1∏nj−1
j=0 (1 + g (Xt+j,s, θr))

)−1/nj
− 1 (20)

for j = 1, . . . ,M ; the number S of random trajectories of Xt+j,s is chosen in such

a way that the mean squared error of the Monte Carlo approximation is less than a

pre-specified threshold TMC ;

3. we subdivide the sample of couples
(
θp, ỹp

)
obtained in step 1) and 2) into a training

sample of Ptrain < P couples, a validation sample of
⌊
1
2

(P − Ptrain)
⌋
couples and a test

sample comprising the remaining couples;

4. we use the training set to train a sequence of increasingly complex (i.e., endowed with

more neurons or more hidden layers) neural networks

ŷ = ŷ
(
θ
)

(21)

that take a vector of parameters θ as input and produce an approximation ŷ to the

vector of yields as output; for each network, we use the validation sample to determine

when to stop training based on the out-of-sample accuracy of the predictions of the

network (by checking the generalization loss; e.g., Prechelt 1998); we stop increasing

the complexity of the neural network when the mean squared error of its predictions

on the validation sample is less than a pre-specified threshold TNN ; finally, we use the

test sample to check that the accuracy of the network, as estimated on the validation

sample, has not been biased by repeated use of the validation sample.
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In other words, we use Monte Carlo integration to construct a sample of examples of the

mapping from pricing factors and parameters to bond yields, and then we train a neural

network to reproduce the mapping with high accuracy (also for examples it has never seen).

Once the neural network ŷ
(
θ
)
has been estimated (or trained, in machine learning par-

lance), it can be used to approximate the pricing function y
(
θ
)
whenever the latter needs to

be computed. Note that the training of the network (including the Monte Carlo simulations

that are used to construct the training sample) is performed only once, before the estimation

of the term structure model. Then, the trained network is repeatedly used in the estimation

of the term structure model (see Section 6). For example, when new data becomes available,

the term-structure model can be re-estimated without re-training the neural network.

4 The posterior distribution of parameters

In this section, we derive the posterior distribution of model parameters and pricing factors,

based on the assumptions made in Section 2.

We first deal with the simpler case in which all factors Xt are unobservable and we

then analyze the more complex case in which some of the factors in Xt are observable but

unspanned.

4.1 Only unobservable factors

Denote the matrix of observed yields by

Y o =

[
yo1 yo2 . . . yoT

]
(22)

the matrix of theoretical yields by

Y =

[
y1 y2 . . . yT

]
(23)
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and the matrix of pricing factors by

X =

[
X1 X2 . . . XT

]
(24)

We estimate quantities of interest by simulating from the posterior distribution of the

parameters and of the latent states:

f (θP, θr, θQ, θv, X |Y o ) ∝ f (Y o |θP, θr, θQ, θv, X ) f (θP, θr, θQ, θv, X) (25)

Prices P n
t and yields y

n
t depend only on the risk neutral dynamics and on the functional

relation between the factors and the short-term rate. Therefore3,

f (Y o |θP, θr, θQ, θv, X ) = f (Y o |θr, θQ, θv, X ) (26)

Furthermore, we have that

f (θP, θr, θQ, θv, X) = f (X |θP, θr, θQ, θv ) f (θP, θr, θQ, θv) (27)

= f (X |θP ) f (θP, θr, θQ, θv)

because the density of X depends only on the physical dynamics of the factors.

We assume that the prior on the parameters is uniform improper on the set of admissible

values

f (θP, θr, θQ, θv) ∝ 1A (θP, θr, θQ, θv) (28)

where 1A is the indicator of the set A of admissible values for the parameters (which depends

3For the sake of simplicity, we are assuming that θP and θQ have no shared entries. This assumption
can be relaxed, at the cost of significantly increasing the complexity of the notation used in what follows.
Furthermore, the restriction that θP and θQ have no shared entries can be usually imposed as an identification
restriction, in order to uniquely pin down the likelihood of the pricing errors of the term structure model.
For example, in Section 7, we present a shadow rate model where the pricing factors follow a VAR both
under P and under Q, and the error terms of the two VARs have the same covariance matrix. However, the
covariance matrix can be restricted to be equal to the identity matrix, so as to identify the model, and it
thus disappears from the vectors of parameters to be estimated.
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on the specific model being analyzed).

By putting together equations (25), (26), (27) and (28), we obtain the posterior density

f (θP, θr, θQ, θv, X |Y o ) ∝ f (Y o |θr, θQ, θv, X ) f (X |θP ) 1A (θP, θr, θQ, θv) (29)

The three terms in the above product are straightforward to compute. The first term is

the likelihood of the pricing errors and can be expanded as follows:

f (Y o |θr, θQ, θv, X ) =

T∏
t=1

f (yot − ŷ (θr, θQ, Xt) |θv ) (30)

The second term is the likelihood of the pricing factors and can be written as

f (X |θP ) =
T∏
t=1

f (Xt |Xt−1, θP ) (31)

thanks to the Markov property of Xt.

Finally, the third term

1A (θP, θr, θQ, θv) (32)

is an indicator that takes value 1 on the parameter space and 0 elsewhere.

4.2 Unobservable and observable unspanned factors

We now relax the assumption that all the factors are unobserved and we allow for some

observable but unspanned factors (see Joslin et al. 2014 for a definition of unspanned fac-

tors). For notational simplicity, we keep denoting the unobservable factors by Xt, while

the unspanned observable factors are denoted by Xo
t (by X

o when they are stacked into a

matrix).

In this case, the posterior distribution of the parameters and the latent states is

f (θP, θr, θQ, θv, X |Y o, Xo ) ∝ f (Y o, Xo |θP, θr, θQ, θv, X ) f (θP, θr, θQ, θv, X) (33)
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The fact that Xo is unspanned implies that Y o and Xo are independent conditional on

X. Therefore,

f (Y o, Xo |θP, θr, θQ, θv, X ) = f (Y o |θP, θr, θQ, θv, X ) f (Xo |θP, θr, θQ, θv, X ) (34)

and

f (θP, θr, θQ, θv, X |Y o, Xo ) ∝ f (Y o |θP, θr, θQ, θv, X ) f (θP, θr, θQ, θv, X,X
o) (35)

From the previous section, we know that

f (Y o |θP, θr, θQ, θv, X ) = f (Y o |θr, θQ, θv, X ) (36)

Furthermore, we have that

f (θP, θr, θQ, θv, X,X
o) = f (X,Xo |θP, θr, θQ, θv ) f (θP, θr, θQ, θv) (37)

= f (X,Xo |θP ) f (θP, θr, θQ, θv)

because the joint density of X and Xo depends only on the physical dynamics of the factors.

By putting the above equations together, we have that

f (θP, θr, θQ, θv, X |Y o, Xo ) ∝ f (Y o |θr, θQ, θv, X ) f (X,Xo |θP ) f (θP, θr, θQ, θv) (38)

Therefore, the only difference with respect to (29) is that the likelihood of the pricing fac-

tors needs to be substituted with the joint likelihood of the pricing factors and the unspanned

observable factors.
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5 The MCMC baseline algorithm

The MCMC algorithm used to generate draws from the posterior distributions of the parame-

ters is the random walk Metropolis-Hastings algorithm4 with block structure (e.g., Bagasheva

et al. 2008). Each parameter (including the individual entries of X) is treated as a sepa-

rate block. While the algorithm is standard, we briefly describe it in this section, in order

to set out the notation that will be used in the next section, where we propose a set of

computational graph optimizations aimed at making the algorithm more effi cient.

Stack all the parameters θP, θr, θQ, θv and X in a vector θ (by merging parameters that

are shared by θP and θQ if necessary), and denote its entries by θ1, . . . , θN (each entry

constitutes a block).

The vector of parameters is randomly drawn JB + JK times and the first JB draws are

discarded (they are a so-called burn-in sample, also used for tuning the transition density of

the chain). The last JK draws are instead kept and constitute a sample of serially dependent

draws (following a Markov chain) from the posterior distribution of θ. The value of θ at the

j-th iteration of the Markov Chain is denoted by θj and its i-th entry by θji .

The posterior density of a generic draw θj, denoted by f
(
θj |Y o

)
, is known up to a

constant of proportionality that does not depend on θj.

Define a N × 1 vector κ of standard deviations of the random-walk increments that will

be adaptively adjusted during the burn-in phase in order to target a given acceptance rate.

The chain starts from an admissible value θ0. The j-th iteration is made up of the

following steps:

1. set l = j −N bj/Nc where N bj/Nc denotes the floor of j/N ;

2. draw a random number zj from a standard normal distribution;

4Gibbs sampling could be performed on some blocks of parameters, but not on those entering the pricing
function, as the latter is non-linear in the parameters (as a consequence their full conditional distributions
cannot be derived analytically). As the computational cost of the non-linear part dominates that of the
linear part of the model, performing Gibbs sampling with Metropolis steps does not afford any significant
computational advantage, also in view of the graph optimizations presented in the next section.
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3. build a new N × 1 vector η such that ηi = θj−1i for i 6= l and ηi = θj−1i + κizj for i = l;

4. compute the acceptance probability aj as follows:

aj = min

(
1,
f (η |Y o )

f
(
θj |Y o

)) (39)

5. draw a random number uj from the uniform distribution on [0, 1];

6. if uj ≤ aj then set θ
j = η; otherwise, set θj = θj−1;

7. if j ≤ JB, adjust kl 5;

8. if j = JB + JK end the algorithm, otherwise go back to step 1.

6 Computational graph optimizations

A naive implementation of the MCMC algorithm described in the previous section is pro-

hibitively computationally expensive, as it requires T evaluations of the pricing function ŷ for

each iteration of the chain. However, it is possible to drastically cut down the computational

burden by optimizing the computational graph of the algorithm.

At the j-th iteration of the algorithm, the computation of the numerator and denominator

of the ratio
f (η |Y o )

f
(
θj |Y o

) (40)

can be decomposed into a number of inter-dependent computations each of which may depend

only on a subset of the parameter vector. Since only one entry of η (i.e., ηl) is different from

5For example, in the application presented below, the adjustment targets an acceptance rate between
7.5 and 15 per cent. We initially set ki = 0.0001 for all i. Then, at each iteration, if an exponentially
weighted moving average (with forgetting factor equal to 0.99) of past acceptance indicators (1 in case of
acceptance and 0 otherwise) is below 7.5 per cent for the parameter θi, we decrease κi by a factor of 0.99; if
the same moving average is above 15 per cent, we increase κi by a factor of 1.01. This choice of parameters
for adjusting κ, although admittedly arbitrary, maintained the acceptance rate broadly on target in several
MCMC simulations for different models.
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the corresponding entry of θj (i.e., θjl ) and all the other entries are equal (i.e., ηi = θj−1i for

i 6= l), we need to perform only the computations that depend directly or indirectly on ηl.

In more formal terms, f (η |Y o ) can be written as

f (η |Y o ) = λC
(
λC−1,1, . . . , λC−1,RC−1 , subC(η), Y o

)
(41)

where there are C ∈ N layers of computation, Rc ∈ N computations in layer c (for c =

1, . . . , C), and the computations λc,r (r = 1, . . . , Rc) recursively depend on the computations

in the previous layer:

λc,r
(
λc−1,1, . . . , λc−1,Rc−1 , subc,r(η), Y o

)
(42)

Furthermore, a given computation λc,r depends on a subset of the entries of η that is de-

noted by subc,r(η), and computations in the first layer (c = 1) do not depend on previous

computations:

λ1,r (sub1,r(η), Y o) (43)

Note that a computation λc,r needs to be performed only if there exist integers k ≤ c

and s ≤ Rk such that ηl ∈ subk,s(η). On the contrary, if λc,r does not depend directly or

indirectly on ηl, then λc,r does not need to be computed again and it takes the same value

that it took when f
(
θj |Y o

)
was computed (we call λc,r a "recycled computation").

By avoiding redundant computations, the cost of the MCMC algorithm can decrease by

some orders of magnitude (about two in the example presented below).

Which computations can be recycled depends on the specifics of the term structure

model6. However, there are some computations that can be recycled in all models belonging

to the general class of models described in Section 2. The following is a list of the most

important ones:

6Although the recycling strategy outlined above is completely general. In particular, it can be applied to
any state space model in which the unobservable states are drawn as separate blocks in a Metropolis step.
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1. when ηl is one of the entries of Xt, then only the likelihood

f (yot − ŷ (θr, θQ, Xt) |θv ) (44)

of the pricing errors at time t needs to be computed in order to compute (30), while

the computation of the likelihoods

f (yos − ŷ (θr, θQ, Xs) |θv ) (45)

for s 6= t can be recycled from the previous iteration of the MCMC algorithm. Fur-

thermore, in order to compute (31), we need to re-calculate only the likelihoods

f (Xt |Xt−1, θP ) (46)

and

f (Xt+1 |Xt, θP ) (47)

of the pricing factors at times t and t+1 while the likelihoods at all other times remain

unchanged. Finally, the prior (32) on the parameters does not depend on Xt and does

not need to be re-computed.

2. when ηl is one of the entries of θP, the likelihood of the pricing errors (30) remains

unchanged (its computation is recycled) and only the likelihood of the pricing factors

(31) and the prior (32) need to be computed7.

3. when ηl is one of the entries of θQ or of θr, the likelihood of the pricing errors (30) and

the prior (32) need to be re-computed, while the likelihood of the pricing factors (31)

remains unchanged.

4. when ηl is one of the entries of θν , not only the likelihood of the pricing factors (31)

7But see the comments on shared entries in Section 4.
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remains unchanged, but also some of the computations involved in the calculation of

the likelihood of the pricing errors (30) can be recycled: for all t, we need to re-compute

f (yot − ŷ (θr, θQ, Xt) |θv ) (48)

but the value of yot − ŷ (θr, θQ, Xt) is left unchanged from the previous MCMC step.

Further recycling may be possible in specific model settings. For example,

1. if Xt follows a VAR under P, i.e.,

Xt = µ+ ρXt−1 + Σεt (49)

and ηl is one of the entries of µ, then we do not need to re-compute the products ρXt−1

in order to calculate (31);

2. if the pricing errors have a Gaussian density and ηl is one of the entries of θQ, θr or Xt,

then the likelihood of the pricing errors (30) depends on the determinant and on the

inverse of the covariance matrix of the errors, which do not need to be re-computed

because θv has not changed from the previous MCMC iteration;

3. if the priors on the parameters θP, θr, θQ, θv are independent, then (32) can be decom-

posed into four factors, and only one of them needs to be recomputed at each iteration

of the MCMC algorithm.

7 A shadow rate model

This section describes the SRTSM that we estimate to exemplify the methodology illus-

trated in the previous sections. The model has three unobservable pricing factors and two

unspanned observable factors.

22



The short term rate rt, that is, the interest rate on risk-free bonds expiring in one-period,

is equal to the lower bound rt (which can be time-varying) or to the shadow rate st, whichever

is larger:

rt = max
(
rt, st

)
(50)

The shadow rate is an affi ne function of a 3× 1 vector Xt of unobservable pricing factors

st = a+ bXt (51)

where a is a scalar and b is a 1× 3 vector of factor loadings.

Denote by Xo
t the 2× 1 vector of unspanned observable factors. We assume that Xt and

Xo
t jointly follow a first order vector autoregression under the real-world measure P:

 Xt

Xo
t

 = µ+ ρ

 Xt−1

Xo
t−1

+ Sεt (52)

where µ is a 5 × 1 drift vector, ρ is a 5 × 5 autoregression matrix, S is a 5 × 5 volatility

matrix and εt is a sequence of IID standard multivariate normal 5× 1 random vectors.

Under standard assumptions on the functional form of the pricing kernel, the dynamics

of Xt under the risk-neutral pricing measure Q are

Xt = µ+ ρXt−1 + Σηt (53)

where µ is a 3 × 1 drift vector and ρ is a 3 × 3 autoregression matrix. Furthermore, the

volatility matrix Σ is equal to the 3× 3 upper left block of S and the sequence of errors ηt

is also IID standard multivariate normal.

We impose the following restrictions on the parameters of the model:

1. Σ = I;
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2. µ = 0;

3. ρii ≥ ρjj if i > j;

4. b ≥ 0;

5. ρ is diagonal;

While restrictions 1-4 are necessary for identification, restriction 5 is over-identifying and

could be replaced by the weaker requirement that ρ be an upper diagonal matrix satisfying

the real Schur property (see Pericoli and Taboga 2012). Also note that restriction 1 implies

that the upper left block of S is equal to the identity matrix and that θP and θQ have no

elements in common.

The time-varying lower bound rt is modeled as an exogenous smooth function of time.

In particular, we assume that rt can be interpolated by a truncated radial basis function

network:

rt = w0 +
D∑
i=1

wiϕ

(
(t− ti)+

qi

)
(54)

where D is the number of kernels in the network, ϕ is the probability density function of a

standard normal distribution, wi are the network weights and ti and qi are the locations and

bandwidths of the kernels.

The assumption that rt is exogenous means that the possibility of future changes in rt

is not priced into bond yields. In other words, at any point in time, investors take rt as

given and they do not expect it to be revised. Arguably, this is a semantically coherent

assumption: a bound is not really a bound if agents expect that it can be moved downwards

at any time. In this respect, our point of view is different from that of Wu and Xia (2017),

who argue that "A model with a time-varying lower bound would be internally inconsistent

if agents in the model were naive, never updated their beliefs, and always thought the lower

bound would stay where it currently was even after seeing it move repeatedly". See Section

10 for further remarks about the concept of lower bound.
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The distribution of the pricing errors is assumed to be multivariate normal with zero

mean and diagonal covariance matrix V .

We assume that the prior on the parameters is uniform improper on the set of admissible

values

f (a, b, µ, ρ, ρ, S, V ) ∝ 1A (a, b, µ, ρ, ρ, S, V ) (55)

where 1A is the indicator of the set A of admissible values for the parameters. The specifi-

cation of A can be found in the Appendix.

8 The data

We use end-of-quarter data on the term-structure of euro-denominated Overnight Indexed

Swap (OIS) rates. OIS are swap contracts where one counterparty receives a variable pay-

ment indexed to the interest rate on overnight unsecured interbank deposits between prime

banks, and the other counterparty receives the fixed OIS rate. Because overnight interbank

deposits between prime banks are considered virtually risk free, OIS rates are deemed a very

good proxy for risk free rates8 (e.g., Morini 2009, Mercurio 2009, Ejsing et al. 2012, Taboga

2014). Given the timing of the payments of OIS contracts, a simple recursive calculation

allows to extract a term structure of zero-coupon spot rates from the term-structure of OIS

rates. We use the 3-month and 6-month maturities as well as all the yearly maturities from

1 to 10 years. OIS rates, downloaded from Bloomberg, are available for all maturities since

2005. We backfill the dataset back to 1999 with zero-coupon German government bond rates.

The last observations refer to the beginning of December 2017 (when we last updated our

dataset), which is used in the estimation and treated as if it was the end of the last quarter

of 2017.

The two observable unspanned factors in our model are expected inflation and GDP

growth 1-year forward derived from Consensus Economics forecasts data. In particular, the

8By risk free we mean free of credit and liquidity risk. Of course, long-term OIS rates are subject to
interest rate risk.
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1-year expectation is a weighted average of the median forecast for the current and next

years, with weights equal to the proportions of the next 12 months belonging to each of the

two years (so, for example, the 1-year forecast made in September 2015 is a weighted average

of the forecasts for 2015 and 2016 with weights 3/12 and 9/12 respectively).

9 Estimation

Since only the three spanned factors enter the pricing function of the shadow rate model

described in Section 7, the vector of yields is a function

y = y
(
a, b, ρ,Xt, rt

)
(56)

of 11 parameters (b, ρ and Xt have dimension 3, while a and rt have dimension 1). Further-

more, the vector y has 12 components, as we use all the maturities in our sample to estimate

the models. Thus, the pricing function is y : R11 → R12.

The training sample for the neural network that approximates the pricing function y is

made up of one million uniform draws of the parameters from their support (see the Appendix

for details). For each of these draws, a Monte Carlo approximation ỹ of the no-arbitrage

yields is computed by generating 500, 000 trajectories of Xt, which are then doubled by

antithetic sampling. This gives rise to an estimated standard deviation of the Monte Carlo

approximation error below 1 basis point (across maturities and samples of parameters). The

sample of parameters and approximated prices is then split into a training set of 800, 000

units and a validation and test set of 100, 000 units each.

Starting from simpler network architectures and progressively increasing their complexity,

we stop when we find an architecture that gives a root mean squared error of less than one

basis point on the validation set. This is achieved with a 6-layer network (the input and

output layer, and 4 intermediate layers). All the intermediate layers have 30 neurons and the

absolute value as the non-linear activation function (i.e., a leaky rectified linear unit with
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parameter −1), while the last layer is linear. The layers are fully connected by conformable

weight matrices and vectors of biases.

The training of the network is carried out by using stochastic gradient descent with

Nesterov momentum, batch size equal to 500, and decreasing learning rate (linearly from

0.01 to 0.0001 over 500, 000 iterations). The final mean squared error is 0.7 basis points on

the test set (that is, on the sample set that was not used for training and validating the

neural network). In separate experiments with affi ne models where the prices are known

analytically, we noted that the error of the network tends to be highly negatively correlated

with the approximation error of the Monte Carlo simulations used to generate the sample,

thus providing evidence of good generalization and of the ability of the proposed procedure

to approximate the true pricing function almost perfectly.

Table 1 compares the computational burden of the neural net approximation thus ob-

tained with that of approximations based on discretization of the state space and antithetic

sampling (e.g., Bauer and Rudebusch 2016, Pericoli and Taboga 2015). The neural net is

more than 100,000 times faster than an antithetic sampling scheme having a comparable

accuracy (around 1 basis point RMSE).

In the MCMC simulation we perform 2,000,000 draws for each entry of the parameter

vector (the first 1,000,000 draws are used as a burn-in sample and discarded). Raftery and

Lewis’(1995) run length control diagnostic9 indicates that the sample size is more than 20

times the minimum required size.

At each draw of the parameter vector from the posterior distribution, we compute the

value of the shadow rate st for each date in the sample (t = 1 . . . , T ), as well as simulated

trajectories 40 quarters ahead for each date: s(t)t+1, . . . , s
(t)
t+40 where the superscript (t) indicates

a simulation started at time t. We use the simulated trajectories to compute risk-neutral

yields10 and risk premia. The risk-neutral yields are obtained by using the empirical P -

9The parameters of the diagnostic are set in such a way that the minimum required size allows to estimate
the 2.5% quantile of the posterior distribution of each entry of the parameter vector with an error <1% with
probability 95%.
10By risk-neutral yields we mean yields that would prevail if risk premia were nil.
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measure given by the simulated trajectories instead of the Q-measure in equations (8) and

(9)11. The risk premia are calculated as differences between observed and risk-neutral yields.

10 Results

Figure 1 displays the posterior median and the first and last deciles of the lower bound rt.

Note that rt is not interpreted here as a physical limit, depending on the cost of making

arbitrages between cash and bonds. It is rather thought of as the market’s perception of the

level beyond which the central bank is not willing to let the short rate go, also on the basis

of considerations about factors linked to strategy, culture and communication (see Grisse et

al. 2017 for a review of these factors and a discussion of the perceived lower bound).

We find that until 2007 the posterior median of rt was around 0.6%. Such a number would

be justified, for example, if the market expected that the ECB 1) would not let its deposit

facility rate (DFR) go below 0.1% (so as to keep it positive), 2) would keep a corridor of

about 50 basis points between the deposit facility rate and the rate on the main refinancing

operations (MRO), 3) would remain able (by not allowing for excess liquidity) to keep the

short-term rate aligned with the MRO rate.

Since 2008 the posterior median of rt started decreasing and kept decreasing until 2017,

when it touched a minimum of about -0.5%. We interpret this as a gradual revision of the

market’s beliefs about the ECB’s willingness to lower the minimum level of the short term

rate, determined by: 1) the switch to a regime of excess liquidity in which the short-term

rate stays closer to the DFR because the ECB is no longer able to keep it in line with the

MRO rate; 2) the renouncement of a strictly positive DFR (and the multiple reductions in

the DFR below zero carried out by the ECB).

Figure 2 displays the median and the first and last deciles of the posterior distribution

of the shadow rate st. The standard deviation of the posterior distribution of st amounts to

11The simulated trajectories of st are converted into simulated trajectories of rt, which are then used to
compute the plug-in estimator of the expected value in equation (8).
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few basis points in the periods when the short-term rate is above the lower bound rt because

in these periods rt and st coincide, and the pricing errors and the uncertainty about the

exact location of rt are the only sources of randomness that prevent st from being exactly

observable. On the contrary, when st is below the lower bound, the standard deviation of its

posterior distribution is in several cases larger than 50 basis points, due to the fact that the

value of st cannot be recovered from observed factors (not even in the case of zero pricing

errors).

The median shadow rate decreased from positive values in 2008 to significantly12 negative

values (below 5 per cent13) in 2016. The decrease was not steady, as temporary uptrends

were observed in more than one occasion. For example, the shadow rate increased signifi-

cantly in the first half of 2013. This behavior might reflect the fact that, even if the ECB

undertook significant expansionary measures during 2012 (a rate cut, the institution of the

Outright Monetary Transactions, a relaxation of collateral rules), the balance sheet of the

ECB started to shrink significantly since the beginning of 2013 due to the early repayment

of a considerable portion of the funds lent to banks through the 3-year Longer Term Re-

financing Operations; this reduction might have been perceived by market participants as

tantamount to a monetary restriction. Furthermore, we observe a temporary increase in the

shadow rate also in 2015, around the so-called "Bund tantrum" episode, when long-term

rates increased significantly. While the causes of the latter episode are still unclear, some

commentators have hypothesized that the increase in interest rates might have been triggered

by a short-lived uptick in inflation expectations and by expectations that the real effects of

the ECB’s quantitative easing could be seen sooner than previously thought. Finally, the

posterior median of the shadow rate increases markedly at the end of our sample (to about

-3.2% in Q4 2017). This movement reflects a moderate increase in the expectations 1-year

12According to most of the literature on shadow rate term structure models, it seems doubtful that a
negative value of the shadow rate can literally be interpreted as the interest rate that would prevail in the
absence of a lower bound; it is probably more correct to interpret it as a summary statistic of the stance of
monetary policy that provides a measure of the distance from the lift-off (i.e., the date of the first increase
in policy rates).
13Our estimate of the value of the shadow rate in 2016 is in line with that provided by Wu and Xia (2017).
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forward about inflation and GDP growth, accompanied by a pick-up in long-term rates. By

forecasting the shadow rate from Q4 2017 onwards, we find that the probability of a signif-

icant rise in short-term (policy) rates becomes non-negligible only starting from Q1 2019.

This is consistent with survey evidence provided by Bloomberg at the time we estimated our

model. The timing of the rise is anyway highly dependent on the evolution of expected infla-

tion and GDP growth. Based on a scenario analysis carried out with the model, if expected

inflation 1-year forward were to remain steadily below 2 per cent over the coming years, the

first rise in policy rates would likely be carried out after 2020.

Figures 3 and 4 display the estimated decomposition of 10-year rates into expectations

and risk premia. According to these estimates, the fall in 10-year rates observed since 2008

has been due both to a decline in expectations about the future path of short-term rates

and to a marked decrease in risk premia, which were estimated to be negative at the end of

the sample. This is in line with the evidence provided by other studies (see, e.g., Hördahl

et al. 2016 for a review)14. Some frequently cited explanations for the low or negative

level of risk premia are: 1) the low uncertainty about the evolution of policy rates (e.g.,

Bernanke 2015); 2) the strong negative correlation between bond and stock prices (note

that in a CAPM framework, if long-term bonds have a negative beta, they must have a

negative risk premium; e.g., Campbell et al. 2016); 3) the increasing relative importance

of demand shocks (with respect to supply shocks), which determines a positive correlation

between economic growth and inflation shocks (in a consumption-CAPM framework, this

implies that if inflation shocks have a negative impact on nominal bond prices, then risk

premia must be negative; e.g., Gourio and Ngo 2016). Explanations 1) and 3) would also

help to explain why risk premia increased in 2017: as the end of the ECB’s asset purchases

becomes nearer, there is growing uncertainty about the ECB’s next steps; there is evidence

that the negative correlation between bond and stock prices is weakening.

14On the contrary, the estimates of the risk premium from Wu and Xia’s (2017) shadow rate model for
the same period are mostly positive.
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11 Conclusions

We have proposed a general method for the Bayesian estimation of nonlinear no-arbitrage

term structure models. There are two main innovations in our method. The first one is the

approximation of bond pricing functionals with deep neural networks. The approximation

can not only be made very precise (e.g., by requiring an approximation error of less than

1 basis point), but it is also very effi cient from a computational viewpoint. The second

innovation is a computational recycling technique that dramatically accelerates the MCMC

sampling of the model parameters and of the unobservable state variables that drive the

short-term rate.

We have used the proposed techniques to estimate a richly specified shadow rate model

with data on euro-denominated risk-free rates. The model has a time-varying lower bound

for the short-term interest rate and the shadow rate is driven by three spanned unobservable

factors and by two unspanned macroeconomic factors (Consensus Economics forecasts of

inflation and GDP growth over a 1-year horizon).

We have found evidence of significant time-variation in the perceived lower bound for the

short-term rate. This corroborates the evidence provided by other recent studies that advo-

cate the importance of including a time-varying lower bound in no-arbitrage term structure

models.

We have used the model to carry out a decomposition of 10-year rates into expectations

and term premia. We have found that the estimated term premium has been on a decreasing

trend since the financial crisis and its value is now negative (around -1.5%). This in line with

the evidence provided by other researchers and can be rationalized in different theoretical

frameworks.

We have used the model to predict the evolution of short-term policy rates from Q4 2017

(the last quarter in our sample) onwards. We have found that the probability of a significant

rise in these rates becomes non-negligible only starting from Q1 2019, consistently with the

survey evidence available when we estimated our model. The timing of the rise would anyway
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be highly dependent on the evolution of expected inflation and GDP growth.
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Appendix

The admissible set

This section describes the specification of the admissible set.

We impose some restrictions beyond those that are necessary for identification. This is

motivated by the observation that, unless some over-identifying constraints are imposed on

the parameters, shadow rate models tend to produce implied volatilities of the shadow rate

that are an order of magnitude higher than the historical volatilities of the short-term rate, as

well as estimated trajectories of the shadow rate that are characterized by implausibly large

negative values (the latter drawback has been found in the majority of studies on shadow

rate models).

A vector of parameters belongs to the admissible set A (i.e., 1A (a, b, µ, ρ, ρ, V ) = 1) if

and only if:

• all the identification restrictions are satisfied;

• all the eigenvalues of ρ are between 0 and 0.99 (this corresponds to an upper bound of

approximately 17 years on the half-life of the shocks);

• all the diagonal elements of ρ are between 0 and 0.99 (as a consequence, we put an

upper bound on the half-life of the shocks also under the pricing measure);

• D is such that all the standard deviations of the pricing errors are less than 20 ba-

sis points (in other words, we assume that on average all maturities are priced at a

reasonable level of accuracy);

• the conditional standard deviation of the one-period-ahead forecast errors of the shadow

rate, that is, √
Var [st+1 |Xt ] = ‖a‖ (57)
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is between 25 and 100 basis points15 (to broadly match the sample standard deviation

of the first differences of the short term rate, which is equal to 0.42 for the euro and

to 0.50 for the US dollar);

• the unconditional mean of the shadow rate under Q, which is equal to a, is between 1

and 6 per cent;

• the unconditional mean of the shadow rate under P , which is equal to

a+ b (I − ρ)−1 µ (58)

is between 1 and 4 per cent;

• the unconditional mean of the shadow rate under Q is greater than the unconditional

mean of the shadow rate under P (which implies that on average bond risk premia are

positive), but the positive difference between the two means cannot exceed 200 basis

points (based on the empirical evidence that the expectations hypothesis is, at least

unconditionally, diffi cult to reject and, therefore, large deviations from the expectations

hypothesis are, unconditionally, deemed implausible).

15Note that quarterly compounded rates need to be multiplied by 400 in order to be expressed in percentage
points on an annual basis.
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Tables and figures

Table 1 - Computational intensity of the neural net approximation and of competing
approximations16

Time (ms) Estimated RMSE (bp)
Discrete state space (500 trajectories + antithetic) 152 9.3
Discrete state space (5,000 trajectories + antithetic) 1,430 3.1
Discrete state space (50,000 trajectories + antithetic) 16,950 1.1
Discrete state space (500,000 trajectories + antithetic) 233,960 0.4
Neural net (6-layers - 30 neurons per intermediate layer) 0.12 0.9

16The computer employed has an Intel dual core i5-4300U @ 1.9GHz processor and 8GB RAM. The time,
in milliseconds, is the time required to compute no-arbitrage bond yields up to the 10-year maturity for 100
different parameter vectors. The estimated RMSE, in basis points, is an average across maturities.
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Figure 1 - The short-term rate and the time-varying lower bound17

17The violet line is the 3-month OIS rate. The red line is the posterior median of the lower bound for
interest rates (blue and yellow are the first and last deciles of the posterior distribution).
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Figure 2 - The shadow rate18

18The red line is the posterior median of the shadow rate. The blue and yellow lines are the first and ninth
decile of the posterior distribution of the shadow rate, respectively.
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Figure 3 - Observed and risk-adjusted 10-year yields19

19The red line is the 10-year zero-coupon rate. The blue line is the posterior median of the expectations
component of the 10-year zero-coupon rate.
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Figure 4 - 10-year risk premia20

20The red line is the posterior median of the risk premium embedded in the 10-year zero coupon rate.
The blue and yellow lines are the first and ninth decile of the posterior distribution of the risk premium,
respectively.
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