

Temi di Discussione

(Working Papers)

Large time-varying parameter VARs: a non-parametric approach

by George Kapetanios, Massimiliano Marcellino and Fabrizio Venditti

Temi di discussione

(Working papers)

Large time-varying parameter VARs: a non-parametric approach

by George Kapetanios, Massimiliano Marcellino and Fabrizio Venditti

Number 1122 - June 2017

The purpose of the Temi di discussione series is to promote the circulation of working papers prepared within the Bank of Italy or presented in Bank seminars by outside economists with the aim of stimulating comments and suggestions.

The views expressed in the articles are those of the authors and do not involve the responsibility of the Bank.

Editorial Board: Ines Buono, Marco Casiraghi, Valentina Aprigliano, Nicola Branzoli, Francesco Caprioli, Emanuele Ciani, Vincenzo Cuciniello, Davide Delle Monache, Giuseppe Ilardi, Andrea Linarello, Juho Taneli Makinen, Valerio Nispi Landi, Lucia Paola Maria Rizzica, Massimiliano Stacchini. *Editorial Assistants:* Roberto Marano, Nicoletta Olivanti.

ISSN 1594-7939 (print) ISSN 2281-3950 (online)

Printed by the Printing and Publishing Division of the Bank of Italy

LARGE TIME-VARYING PARAMETER VARS: A NON-PARAMETRIC APPROACH

by George Kapetanios^{*}, Massimiliano Marcellino[†] and Fabrizio Venditti[‡]

Abstract

In this paper we introduce a non-parametric estimation method for a large Vector Autoregression (VAR) with time-varying parameters. The estimators and their asymptotic distributions are available in closed form. This makes the method computationally efficient and capable of handling information sets as large as those typically handled by factor models and Factor Augmented VARs (FAVAR). When applied to the problem of forecasting key macroeconomic variables, the method outperforms constant parameter benchmarks and large (parametric) Bayesian VARs with time-varying parameters. The tool can also be used for structural analysis. As an example, we study the time-varying effects of oil price innovations on sectoral U.S. industrial output. We find that durable consumer goods and durable materials (which together account for slightly more than one fifth of total industrial output) play a key role in explaining the changing interaction between unexpected oil price increases and U.S. business cycle fluctuations.

JEL Classification: C14, C32, C53, C55.

Keywords: large VARs, time-varying parameters, non-parametric estimation, forecasting.

1. Introduction	5
2. Setup of the problem	
3. Model specification	
4. Finite sample properties	
5. Forecast evaluation	
6. Structural analysis	
7. Conclusions	
References	
Tables and figures	
Appendix A	50
Appendix B	53
Appendix C	53
Appendix D	55
Appendix E	55

Contents

^{*} King's College, London.

[†] Bocconi University, IGIER

[‡] Bank of Italy.

1 Introduction

In recent years macro-econometric research has been particularly active on two fronts. First, increasing availability of economic time series has prompted the development of methods capable of handling large dimensional datasets. Second a number of changes in the economic landscape (the Great Recession, unconventional monetary policy in most advanced countries) further stimulated work on models with time-varying parameters.

On the large models front typical solutions include data reduction and parameter shrinkage. Data reduction reduces the data space through linear combinations (factors) of the observed variables. This parsimonious representation of the data typically yields benefits in terms of estimation precision and forecasting. Shrinkage, on the other hand, constraints the parameter space within values that are (a priori) plausible. It therefore reduces estimation uncertainty, providing an alternative solution to the over-fitting problem. In the context of large Vector Autoregressions (VARs), for example, Banbura, Giannone, and Reichlin (2010) show that progressively tightening shrinkage as the cross-sectional dimension of the VAR increases, results in more accurate forecasts than those obtained on the basis of unrestricted VARs. Despite different premises, data reduction and shrinkage go in the same direction since, as shown by De Mol, Giannone, and Reichlin (2008), both methods stabilise OLS estimation by *regularising* the covariance matrix of the regressors.

Turning to time-varying parameters (TVP) models, a prolific line of research has grown in the Bayesian context, starting from the seminal work on VARs with time-varying coefficients and variances by Cogley and Sargent (2005) and Primiceri (2005). The estimation procedure of these models rests on the assumption that the VAR coefficients follow a random walk (or autoregressive) process. The assumed law of motion for the model parameters, coupled with the VAR equations, form a State Space system. Given the presence of time-varying second moments, a combination of Kalman filtering and Metropolis Hasting sampling is then used to deal with such models. The need to use the Kalman filter, however, limits the scale of the models, so that the numerous empirical applications that have followed this approach usually model a relatively small number of time series, see for example Benati and Surico (2008), Canova and Gambetti (2010) and Benati and Mumtaz (2007). Furthermore, in settings where the nature of the structural change is uncertain, methods based on simple data discounting could be more robust than Kalman filter based models.

These motivations are behind a stream of papers that in recent years have explored the performance of non-parametric estimation methods for TVP-models. The viewpoint of this line of research is that the nature of time variation in the co-movement across time series is itself evolving, i.e. large infrequent breaks could coexist with periods of slow gradual time variation. Given this complexity, adaptive methods can deliver good forecasts and an accurate description of the structural relationships among macroeconomic variables at a relatively low computational

cost.¹ In this framework Giraitis, Kapetanios, and Yates (2014) and Giraitis, Kapetanios, and Yates (2015) have developed non-parametric estimators for univariate and multivariate dynamic models. They show that, for a wide class of models in which the coefficients evolve stochastically over time, the path of the parameters can be consistently estimated by suitably discounting distant data and provide details on how to choose the degree of such discounting. Furthermore, being available in closed form, the estimator proposed by Giraitis, Kapetanios, and Yates (2015) in the context of VARs partly addresses the curse of dimensionality, as systems of seven variables are easily handled, see Giraitis, Kapetanios, Theodoridis, and Yates (2014).

The paths traced by the large model literature and by the TVP model literature have seldom crossed. Connections have been established for Factor Augmented VAR (FAVAR) models, see for example Eickmeier, Lemke, and Marcellino (2015) and Mumtaz and Surico (2012), while they are still scant in the VAR literature. A notable exception is represented by the paper by Koop and Korobilis (2013) where the restricted Kalman filter by Raftery, Karny, and Ettler (2010) is used to make a TVP-VAR suitable for large information sets. Specifically, the law of motion for the time-varying parameters is restricted to a particular specification, which reduces the Kalman filter recursions to the forgetting factor (FF) algorithm.² This approach, while solving some issues, presents some shortcomings. First, the curse of dimensionality is only partially addressed since the parametric nature of the model implicitly limits its size. In practice, this framework cannot handle the large information sets employed in factor models (or FAVARs) or the large number of lags that are used when fitting medium-size VARs to monthly data like in Banbura, Giannone, and Reichlin (2010). Second, if the true data generating process is different from the postulated random walk type variation, the robustness of the Kalman filter to model misspecification is an obvious concern.

In this paper we propose an estimator that addresses, in a non-parametric context, both of these problems. Our idea is to start from the non-parametric estimator proposed by Giraitis, Kapetanios, and Yates (2015), and adapt it to handle large information sets. To solve the issue of over fitting that arises when the size of the VAR increases, we recur to the mixed estimator by Theil and Goldberger (1960), which imposes stochastic constraints on the model coefficients, therefore mimicking in a classical context the role of the prior in Bayesian models. The resulting estimator, for which we derive asymptotic properties, mixes sample and non sample information to shrink the model parameters. It can be seen both as a generalisation to a time-varying parameter structure of the model by Banbura, Giannone, and Reichlin (2010) and as a penalised regression version of the estimator by Giraitis, Kapetanios, and Yates (2015). The proposed method is, given its non-parametric nature, robust to changes in the underlying data generating process and for popular shrinkage methods delivers equation by

¹A crucial issue in this framework is how to select the degree of data discounting. The problem is addressed by Giraitis, Kapetanios, and Price (2013), who show how to make this choice data dependent using crossvalidation methods.

²The FF algorithm, which depends only on two parameters, estimates both the drifting coefficients and the time-varying volatility by discounting past observations at exponential rate.

equation estimation. This implies that the estimator can cope with systems as large as those analysed in the FAVAR and factor model literature.

Our estimator depends crucially on two parameters, the tuning constant that regulates the width of the kernel window used to discount past data, and the penalty parameter that determines the severity of the constraints imposed to control over fitting, akin to the prior tightness in Bayesian estimators. In the paper we explore a variety of cross-validation techniques to set these two parameters based on past model performance.³ We also consider model averaging as an alternative strategy to deal with model uncertainty.

We next assess in Monte Carlo experiments the finite sample performance of our estimator, which turns out to be good, and compare it with the parametric estimator for TVP-VARs proposed by Koop and Korobilis (2013). We find that when the data generating process matches exactly the one assumed in the parametric setup, the two estimators give broadly similar results. Yet, as we move away from this assumption, the performance of the parametric estimator deteriorates, while our non-parametric estimator proves quite robust to changes in the underlying data generating process.

After discussing the theoretical and finite sample properties of the non-parametric estimators, we examine their use through a number of applications. First, we explore whether time variation is indeed a necessary feature of the model to successfully forecast key macroeconomic variables using a large panel (up to 78 variables) of U.S. monthly time series. We organise the forecast exercise around three questions that have been central to the forecasting literature in recent years. The first one is whether time variation actually improves forecast accuracy. The second one is whether the performance of *medium-sized* VARs with time-varying parameters can be approximated by that of *large* VARs with *constant coefficients*. This question is motivated by the contrasting findings in Stock and Watson (2012), who find little evidence of parameter changes during the financial crisis in the context of a factor model, and those reported by Aastveit, Carriero, Clark, and Marcellino (2016), who provide substantial evidence of parameter changes in smaller dimensional VARs. This conflicting evidence suggests that parameter time variation can be due, at least partly, to omitted variables, so that enlarging the information set makes parameters' time variation unnecessary. Once we have established that time variation is indeed beneficial to forecast accuracy the third question is whether it pays off to go beyond a medium size system, i.e. if going from a 20 to a 78 TVP-VAR improves forecast accuracy for the small set of key variables that we are interested in.

The analysis indicates that the introduction of time variation in the model parameters yields an improvement in prediction accuracy over models with constant coefficients, in particular when forecast combination is used to pool forecasts obtained with models with different degrees of time variation and shrinkage. Our findings also indicate that, especially at longer horizons,

³The use of data discounting in regression models as a way to handle structural breaks is the focus of a large literature, see in particular Pesaran and Timmermann (2007), Pesaran and Pick (2011), and Rossi, Inoue, and Jin (2014). All these papers, however, are concerned with single equation regressions rather than with large models.

medium-sized TVP-VARs perform better than a VAR with constant parameters that uses a large information set. Finally, we find that, in the context of TVP-VARs, going beyond 20 variables is not beneficial to forecast accuracy, in line with the results for the constant parameter case in studies such as Banbura, Giannone, and Reichlin (2010) and Koop (2013).

Our non-parametric large TVP-VAR is also useful for structural analysis. As an illustration we revisit, in the context of a large information set, the issue of the diminished effects of oil price shocks on economic activity, a question that has spurred a large number of studies in the applied macro literature in recent years, see for example Hooker (1999), Edelstein and Kilian (2009), Kilian and Vigfusson (2011), Kilian and Lewis (2011), Blanchard and Riggi (2013), Kilian and Vigfusson (2014) and Baumeister and Kilian (2017). The use of a large information set allows us to take a more granular view and to uncover some interesting findings on the evolving impact of oil price innovations on the output of different sectors of the U.S. industry. Specifically, we find that the largest changes over time in the response to oil price shocks occur for Durable Consumption goods and for Durable Materials, which together account for around 22% of the overall industrial production index.⁴

The paper is structured as follows. In Section 2 we describe the estimation method and derive its theoretical properties. In Section 3, we discuss cross-validation and model averaging. In Section 4 we assess the finite sample properties of our non-parametric method in Monte Carlo experiments and compare it with available parametric methods. In Section 5 we present the main forecasting exercise. In Section 6 we present an analysis of the time-varying impact of unexpected increases in the price of oil on U.S. industrial production. In Section 7 we summarise our main findings and conclude. Additional details are provided in Appendixes.

2 Setup of the problem

Let us consider a p-order VAR with n variables and time-varying (stochastic) coefficients:

$$\begin{aligned}
y'_{t} &= x'_{t}\Theta_{t} + u'_{t}, \ t = 1, ..., T \\
x'_{t} &= [y'_{t-1}, y'_{t-2,...,} y'_{t-p}, 1] \\
\Theta_{t} &= [\Theta'_{t,1}, \Theta'_{t,2}, ..., \Theta'_{t,p}, A'_{t}]'
\end{aligned} \tag{1}$$

where k = (np + 1) is the number of random coefficients to be estimated in each equation so that at each time t there are nk parameters to be estimated, collected in the matrix Θ_t . For the time being, we assume that u_t is a martingale difference process with finite variance Σ_n .⁵

⁴Durable Consumption goods include automotive products, appliances, computer, video and audio equipment. Durable Materials include metals and plastic products, consumer parts (including for cars), and equipment parts.

⁵The issue of heteroschedasticity is discussed in Section 2.5.

A further crucial assumption is that Θ_t changes rather slowly, i.e., that:

$$\sup_{j \le h} \left\| \Theta_t - \Theta_{t+j} \right\| = O_p\left(\frac{h}{t}\right).$$
(2)

A number of classes of models satisfy (2). For example, one such model is obtained by setting $\Theta_t = [\theta_{ij,t}]$, $\tilde{\Theta}_t = [\tilde{\theta}_{ij,t}]$ and letting $\tilde{\theta}_{ij,t} = \tilde{\theta}_{ij,t-1} + \epsilon_{\tilde{\theta},ij,t}$ and $\theta_{ij,t} = \theta_{ij} \frac{\tilde{\theta}_{ij,t}}{\max_{1 \le i \le t} \tilde{\theta}_{ij,t}}$ for some constants θ_{ij} bounded between 0 and 1 and some set of stochastic processes $\epsilon_{\tilde{\theta},ij,t}$. This is an example of a bounded random walk model. We can allow for a wide variety of processes, $\epsilon_{\tilde{\theta},ij,t}$, making this class suitably wide.

Applying the vec operator to both sides of (1) we obtain:

$$y_t = (I_n \otimes x'_t) \begin{array}{l} \beta_t + u_t \\ n \times nk \end{array}$$
(3)

where $\beta_t = vec(\Theta_t)$. Assuming persistence and boundedness⁶ of the coefficients in Θ_t , Giraitis, Kapetanios, and Yates (2015, henceforth GKY) show that the path of the random coefficients is consistently estimated by the following kernel estimator:

$$\beta_t^{GKY} = \left[I_n \otimes \sum_{j=1}^T w_{j,t}(H) x_j x'_j \right]^{-1} \left[\sum_{j=1}^T w_{j,t}(H) vec\left(x_j y'_j\right) \right],\tag{4}$$

where the generic j^{th} element $w_{j,t}(H)$ is a kernel function with bandwidth H, used to discount distant data. Throughout the paper we use a Gaussian kernel:⁷

$$w_{j,t}(H) = \frac{K_{j,t}(H)}{\sum_{i=1}^{T} K_{j,t}(H)},$$
(6)

$$K_{j,t}(H) = (1/\sqrt{2\pi})exp\left[-\frac{1}{2}\left(\frac{j-t}{H}\right)^2\right].$$
(7)

One appealing feature of the estimator in (4) is that, given the Kronecker structure of the first term, it only requires the inversion of the $k \times k$ matrices $\sum_{j=1}^{T} w_{j,t} x_j x'_j$. In other words, estimation can be performed equation by equation that, as emphasised by Carriero, Clark, and Marcellino (2016) in a Bayesian context, substantially reduces the computing time.

A more compact notation is obtained by introducing the following notation: $X_{w,t} = W_{H,t}X$,

$$K_{j,t}(H) = (1/\sqrt{2\pi})exp\left[-\frac{1}{2}\left(\frac{j-t}{H}\right)^2\right]I(j \le t)$$
(5)

⁶More specifically, writing the VAR in companion form as a VAR(1) model, $Y_t = \Psi_t Y_{t-1}$, GKY assume that the spectral norm (that is the maximum absolute eigenvalue) of Ψ_t is strictly lower than 1.

⁷When forecasting, in order to preserve the pseudo real time nature of the exercise, we introduce an indicator function that assigns zero weight to the out of sample observations, so that only in sample information is used to estimate the parameters:

where $W_{H,t} = diag(w_{1t}^{1/2}(H), ..., w_{Tt}^{1/2}(H))$ and the $T \times k$ matrix X is formed by stacking over t the vectors x'_t . Also, let us define $X_{ww,t} = W_{H,t}X_{w,t}$ and denote with Y the $T \times n$ matrix formed by stacking over t the vectors y'_t . The GKY estimator can now be cast in the following matrix form:

$$\Theta_t^{GKY} = \left[X'_{w,t} X_{w,t} \right]^{-1} \left[X'_{ww,t} Y \right].$$
(8)

2.1 Shrinkage through stochastic constraints

When the dimension of the system grows, it is desirable to impose some shrinkage on the model parameters to avoid an increase in the estimation variance (Hastie, Tibshirani, and Friedman, 2003). While in a Bayesian framework this can be achieved through the prior distribution, in a classical framework shrinkage can be performed by using the mixed estimator of Theil and Goldberger (1960). This is obtained by adding a set of stochastic constraints (i.e., constraints that hold with some degree of uncertainty) to model (3). The constraints are written as linear combinations of the parameter vector β_t plus a vector of noises, where the latter ensures that the constraints do not hold exactly. The complete model can be written as:

$$y_t = (I_n \otimes x'_t) \beta_t + u_t$$

$$(9)$$

$$\sqrt{\lambda} \underset{nk \times 1}{r} = \sqrt{\lambda} \underset{nk \times nk}{R} \underset{nk \times 1}{\beta}_{t} + \underset{nk \times 1}{u}_{t}^{r}.$$
(10)

We assume that the errors u_t^r are a martingale difference process with finite variance and that their variance is proportional to that of the data, that is $var(u_t^r) = I_k \otimes \Sigma_n$. In other words, when the noise in the dynamic relationship between y_t and x_t has high variance, uncertainty about the constraints on the coefficients β_t also increases. As for the expected value of u_t^r , for the moment we leave it unspecified since it plays a crucial role in determining the bias of the estimator, as we show further below. Notice that both sides of equation (10) are pre-multiplied by a constant $\sqrt{\lambda}$. It is easy to see that this constant acts as a scaling factor of the variance of the stochastic constraints u_t^r .⁸ Hence, low values of λ imply that the coefficient vector β_t is left relatively unrestricted; vice versa, high values of λ imply that the constraints in (10) hold relatively more tightly. Regarding the structure of the matrix R, we consider two cases. In the first case we assume that R has a Kronecker structure: $R_{nk\times nk} = (I_n \otimes \overline{R})$. This case is of particular interest for two reasons. First, it holds for a number of popular shrinkage methods, like the Ridge regression and the Litterman prior. Second, it results in an estimator that can be cast in matrix form, hence being very efficient from a computational point of view and directly comparable to its unconstrained counterpart, i.e. the GKY estimator. Next, we consider the more general case where R does not have this particular structure.

⁸Notice that, by multiplying both sides of (10) by $\frac{1}{\sqrt{\lambda}}$ the variance of the noise in (10) becomes $\frac{1}{\lambda}(I_k \otimes \Sigma_n)$.

2.2 Case 1: R has a Kronecker structure

If R has a Kronecker structure, the analysis of the estimator can proceed equation by equation. First, let us state the following definitions: $u_t^r = vec(\overline{u}_t^r)$ and $\underset{k \times n}{r} = vec(\overline{r})$. Also, since $\underset{nk \times nk}{R} = (I_n \otimes \overline{R})$ and $\beta_t = vec(\Theta_t)$, it follows that $R\beta_t = (I_n \otimes \overline{R})vec(\Theta_t) = vec(\overline{R}\Theta_t)$. Hence the joint model in (9) and (10) can be expressed in matrix form as:

$$y'_t = x'_t \Theta_t + u'_t, \tag{11}$$

$$\sqrt{\lambda}_{k \times n} = \sqrt{\lambda}_{k \times k_{k \times n}} \underbrace{\overline{R}}_{k \times k_{k \times n}} \Theta_t + \overline{u}_t^r, \qquad (12)$$

or more compactly:

$$y_t^* = x_j'^* \Theta_t + u_t^*,$$
(13)

where $y_t^* = [y_t, \sqrt{\lambda \overline{r}'}]'$, $x_j'^* = [x_t, \sqrt{\lambda \overline{R}'}]'$, $u_t^* = [u_t, \overline{u}_t'^r]'$, and $var(vec(u_t^*)) = I_{nk+1} \otimes \Sigma_n$. The extended regression model in (13) can be analysed using the GKY estimator, with related properties. The estimator has the form:

$$\widehat{\Theta}_{t}_{k \times n} = \left(\sum_{j=1}^{T} w_{j,t} x_{j}^{*} x_{j}^{*\prime}\right)^{-1} \left(\sum_{j=1}^{T} w_{j,t} x_{j}^{*} y_{j}^{*}\right),$$
(14)

where, for simplicity, we have omitted the dependence of $w_{j,t}$ from the bandwidth H. Separating the contribution of the actual data from that of the constraints, the estimator can equivalently be written as:⁹

$$\widehat{\Theta}_{t}_{k \times n} = \left(\sum_{j=1}^{T} w_{j,t} x_j x'_j + \lambda \overline{R}' \overline{R}\right)^{-1} \left(\sum_{j=1}^{T} w_{j,t} x_j y'_j + \lambda \overline{R}' \overline{r}\right)$$
(15)

$$= \left(X'_{w,t}X_{w,t} + \lambda \overline{R}'\overline{R}\right)^{-1} \left(X'_{ww,t}Y + \lambda \overline{R}'\overline{r}\right).$$
(16)

It is worth making the following observations. First, when $\lambda = 0$ the constrained estimator equals the unconstrained one: $\widehat{\Theta}_{t,GKY} = (X'_{w,t}X_{w,t})^{-1}(X'_{ww,t}Y)$. Second, and vice versa, as $\lambda \to \infty$, $\widehat{\Theta}_t$ converges to the value implied by the constraints, that is $\Theta_t \to \Theta_C = (\overline{R}'\overline{R})^{-1}(\overline{R}'\overline{r})$. Hence, the constant term $\sqrt{\lambda}$ can also be interpreted as the weight of the sample size of the artificial observations (r and R) relative to T, the sample size of the observed data y_t and x_t . It is worth remarking that the value implied by the constraints (Θ_C) is time invariant. This means that the stochastic constraints *anchor* the evolution of Θ_t around a fixed value that is specified ex ante. Third, $\widehat{\Theta}_t$ can be expressed as the weighted sum of its unrestricted and

⁹Notice that
$$\sum_{j=1}^{T} w_{j,t} x_j^* x_j^{*\prime} = \sum_{j=1}^{T} w_{j,t} \begin{bmatrix} x_t & \sqrt{\lambda R'} \end{bmatrix} \begin{bmatrix} x_t' \\ \sqrt{\lambda R} \end{bmatrix}$$
 and $\sum_{j=1}^{T} w_{j,t} x_j^* y_j^* = \sum_{j=1}^{T} w_{j,t} \begin{bmatrix} x_t & \sqrt{\lambda R'} \end{bmatrix} \begin{bmatrix} x_t & \sqrt{\lambda R'} \end{bmatrix} \begin{bmatrix} y_{t'} \\ \sqrt{\lambda R'} \end{bmatrix}$.

restricted versions, $\widehat{\Theta}_{t,GKY}$ and Θ_C . To see this point, re-write (16) as follows:

$$\widehat{\Theta}_{t} = \left(X'_{w,t}X_{w,t} + \lambda \overline{R}'\overline{R}\right)^{-1} \left[(X'_{w,t}X_{w,t})\widehat{\Theta}_{t,GKY} + (\lambda \overline{R}'\overline{R})\Theta_C \right]$$
(17)

$$= S_w^{-1}(X'_{w,t}X_{w,t})\widehat{\Theta}_{t,GKY} + S_w^{-1}(\lambda \overline{R}'\overline{R})\Theta_C,$$
(18)

where $S_w = \left(X'_{w,t}X_{w,t} + \lambda \overline{R}'\overline{R}\right).$

The properties of $\widehat{\Theta}_t$ are derived in the following theorem.

Theorem 1 Let the model be given by (13) where u_t^* is a martingale difference sequence with finite fourth moments. Let (2) hold and $H = o(T^{1/2})$. Let $X_{w,t}^* = W_{H,t}X^*$ where X^* is obtained by stacking over t the vectors $x_t'^*$, $X_{ww,t}^* = W_{H,t}X_{w,t}^*$, $\Gamma_{w,t}^* = p \lim \frac{1}{H}X_{w,t}^{*\prime}X_{w,t}^*$, $\Gamma_{ww,t}^* = p \lim \frac{1}{H}X_{w,t}^{*\prime}X_{w,t}^*$. Then,

$$\left(\Gamma_{w,t}^{*-1}\Gamma_{ww,t}^{**}\Gamma_{w,t}^{*-1}\otimes\Sigma_{n}\right)^{-\frac{1}{2}}\sqrt{H}vec\left(\widehat{\Theta}_{t}^{\prime}-\Theta_{t}^{\prime}-\Theta_{t}^{\prime B}\right)\rightarrow^{d}N\left(0,I\right),$$
(19)

where $\Theta_t^B = p \lim S_w^{-1} \sqrt{\lambda} \overline{R}' \overline{u}_t^r = p \lim S_w^{-1} \lambda \overline{R}' (\overline{r} - \overline{R} \Theta_t)$ and $\Gamma_{ww,t}^{**}$ is defined in (43) in Appendix A.

Proof. See Appendix A.

Notice that the bias term $\Theta_t^B = p \lim S_w^{-1} \sqrt{\lambda R'} \overline{u}_t^r = p \lim S_w^{-1} \lambda \overline{R'} (\overline{r} - \overline{R} \Theta_t)$ depends on the distance between the true parameters Θ_t from the constraints. Since the direction towards which we are shrinking is time-invariant it is possible that at some point in time the constraints $\overline{R}\Theta_t = \overline{r}$ actually hold, but in general they cannot hold at *each* point in time, or Θ_t would be time-invariant, which contradicts one of the assumptions.¹⁰

2.3 Case 2: R does not have a Kronecker structure

Let us now turn to the more general case when R does not have a Kronecker structure. In this case the estimator can be written as:

$$\widehat{\beta}_{t} = \left[\left(\underbrace{I_{n} \otimes \sum_{j=1}^{T} w_{j,t} x_{j} x_{j}'}_{nk \times nk} \right) + \lambda R' R \right]^{-1} \left[\sum_{j=1}^{T} w_{j,t} \left(I_{n} \otimes x_{j} \right) y_{j} + \lambda R' r \right] \\ = \left[\left(I_{n} \otimes \sum_{j=1}^{T} w_{j,t} x_{j} x_{j}' \right) + \lambda R' R \right]^{-1} \left[\sum_{j=1}^{T} w_{j,t} vec(x_{j} y_{j}') + \lambda R' r \right].$$

$$(20)$$

A crucial difference between the estimator in (20) and the one in (16) is that the latter only requires the inversion of k dimensional matrices, which makes it computationally much faster.

¹⁰The estimator could be made consistent by designing a penalty parameter λ that vanishes as T goes to infinity. This point is discussed in a related context in De Mol, Giannone, and Reichlin (2008), Appendix A.

On the other hand, (20) can handle more general constraints. The properties of $\hat{\beta}_t$ are derived in the following theorem.

Theorem 2 Let the model be given by (9) and (10) where u_t is a martingale difference sequence with finite fourth moments. Let (2) hold, $H = o(T^{1/2})$. Let us define $\Phi = \frac{\lambda}{H}R'R$, $\Gamma_{w,t} = p \lim_{t \to T} \frac{1}{H} \sum_{j=1}^{T} w_{j,t}(x_j x'_j)$, $\Gamma_{ww,t} = p \lim_{t \to T} \frac{1}{H} \sum_{j=1}^{T} w_{j,t}^2 x_j x'_j$ and $\beta_t^B = p \lim_{t \to T} \left[\left(I_n \otimes \sum_{j=1}^{T} w_{j,t} x_j x'_j \right) + \lambda R' R \right]^{-1} \lambda R' r$. Then, $\sqrt{H} \left[\left(I_n \otimes \Gamma_{w,t} + \Phi \right)^{-1} \left(\sum_n \otimes \Gamma_{ww,t} + \Phi \right) \left(I_n \otimes \Gamma_{wt} + \Phi \right)^{-1} \right]^{-1/2} \left(\widehat{\beta}_t - \beta_t - \beta_t^B \right) \to^d N(0, I)$ (21)

Proof. See Appendix B.

2.4 Conditional Variance and MSE of the constrained estimator

In this subsection we analyse the effects of stochastic constraints on the variance of the penalised estimator relative to that of the unconstrained one. In particular, we show that the stochastic constraints have the unambiguous effect of lowering the variance of the non-parametric estimator. This is a standard finding in penalised estimators where a bias/variance trade off emerges, but it is a novel result in models with stochastic time varying coefficients. Notice that, since the model coefficients are stochastic, we need to condition the derivation of the variance of the estimators on a given realisation of the whole time series of the true coefficients ($\beta_1, \beta_2, \ldots, \beta_t, \ldots, \beta_T$). Still, the ranking of the conditional variances derived in the theorem is unambiguous for any given realisation of the coefficients and therefore absolutely general.

Theorem 3 Let the model be given by (9) and (10). Let $E = I_n \otimes \sum_{j=1}^T w_{j,t} x_j x'_j$, $F = \lambda R'R$, and $G = \sum_{j=1}^T w_{j,t} \operatorname{vec}(x_j y'_j) = \sum_{j=1}^T w_{j,t} (I_n \otimes x_j) y'_j$. Define a given realisation of the stochastic coefficients $\beta^T = (\beta_1, \beta_2, \ldots, \beta_t, \ldots, \beta_T)$. Then the constrained estimator can be written as

$$\widehat{\beta}_t = [E+F]^{-1} \left[E \widehat{\beta}_{t,GKY} + \lambda R' r \right].$$

Further, we have that $avar(\widehat{\beta}_{t,GKY}|\beta^T) - avar(\widehat{\beta}_t|\beta^T)$ is a positive semi-definite matrix, where the avar(.|.) operator indicates the conditional asymptotic variance.

Proof. See Appendix C. ■

In Appendix C we also discuss the ranking of the conditional Mean Square Error (MSE, given by the sum of the variance and of the squared bias) of the two estimators. We show that the stochastic constraints also lower the conditional MSE as long as there is sufficient collinearity in the dataset.

2.5 Time-varying volatilities

When both the error variances and the VAR coefficients change over time, variations in the parameters and in the variances can be confounded, see Cogley and Sargent (2005). An important implication is that if changes in the variances of the errors are neglected then the importance of variation in the VAR coefficients could be overstated. Giraitis, Kapetanios, and Yates (2014) show that the properties of their estimator are unaffected by the presence of stochastic volatilities as long as standard errors are studentised by an appropriate time-varying covariance matrix for the error terms. When performing structural analysis in a VAR context, GKY suggest to model time variation in the variance of the disturbances with a two-step approach. The method consists of fitting first an homoschedastic VAR, then estimating the time-varying volatilities on the residuals obtained in the first stage via the following kernel estimator:

$$\widehat{\Psi}_t = \sum_{j=1}^T w_{j,t}(H_{\Psi}) u_t u'_t, \qquad (22)$$

where the bandwidth parameter H_{Ψ} is not necessarily the same as the one used to estimate the coefficients. Orthogonalisation of the residuals is then based on the time-varying covariance matrix $\widehat{\Psi}_t$.

Our penalised kernel estimator can be adapted to account for changing volatilities along these lines, using the GLS correction proposed in Theil and Goldberger (1960). In the first step, the VAR coefficients are estimated using (20) and the resulting residuals are used to compute $\widehat{\Psi}_t$ as in (22). In a second step a GLS correction is applied:

$$\beta_t = \left[\sum_{j=1}^T w_{j,t} \left(\widehat{\Psi}_t^{-1} \otimes x_j' x_j\right) + \lambda R' R\right]^{-1} \left[\sum_{j=1}^T w_{j,t} vec \left(x_j' y_j' \widehat{\Psi}_t^{-1}\right) + \lambda R' r\right]$$
(23)

Notice that this GLS correction requires the inversion of potentially large matrices $(nk \times nk)$, which slows down computation and limits the size of the VAR. In the empirical applications and in the Monte Carlo analysis discussed in Sections 5 and 4, where we experiment with relatively large systems, we therefore do not apply this correction. However, in section 5.5 we appraise the merits of this GLS correction in terms of forecasting performance. We find that the estimator that *does not* account for time-varying volatility actually produces more accurate forecasts.

In the next two sub-sections we describe how two popular shrinkage methods can be adapted to our setup. Notice that this is just an illustration of how the method can be used, not an exhaustive list of the constraints that can be applied. As long as the matrix R has column rank nk (i.e. the number of independent constraints is at least as large as the number of parameters of the VAR, but it can also be larger), the matrix R'R appearing in the estimator will regularise estimation.

2.6 Ridge type shrinkage

The Ridge regression penalty shrinks all the parameters uniformly towards zero at a given penalty rate λ . A TVP-VAR with Ridge shrinkage can be obtained by setting $R = I_{nk}$ and r = 0, which consists of imposing the following stochastic constraints at each t:

$$0 = \sqrt{\lambda}\beta_t + u_t^r. \tag{24}$$

where the properties of u_t^r are as defined in Theorem 1.

The resulting estimator takes the form:

$$\beta_t^{Ridge}(\lambda, H) = \left[I_n \otimes \left(\sum_{j=1}^T w_{j,t} x'_j x_j + \lambda I_k \right) \right]^{-1} \left[vec \left(\sum_{j=1}^T w_{j,t} x'_j y'_j \right) \right]$$
(25)

Notice that, given the Kronecker structure of the constraints (as R is an identity matrix), estimation can proceed equation by equation and the estimator can be written in matrix form as:

$$\Theta_t^{Ridge}(\lambda, H) = \left[X'_{w,t}X_{w,t} + \lambda I_k\right]^{-1} \left[X'_{ww,t}Y\right]$$
(26)

2.7 Litterman type shrinkage

Some of the features of the Ridge penalty can be unappealing in the context of VAR models. First, the fact that all the coefficients are shrunk towards zero imposes a structure of serially uncorrelated data, which is at odds with the strong persistence that characterises most macroeconomic time series. Second, the same penalty is imposed on all the coefficients (including the intercept). Yet, having some flexibility in the penalisation of the different parameters could be desirable. A more general set of stochastic constraints, which produce the same effects that the Litterman prior has in a Bayesian framework,¹¹ is given by setting \bar{r} and \bar{R} as follows:

$$\overline{r} = \begin{pmatrix} \operatorname{diag}(\delta_1 \sigma_1, \delta_2 \sigma_2, \delta_3 \sigma_3, \dots, \delta_n \sigma_n) \\ 0_{n(p-1)+1 \times n} \end{pmatrix} \qquad \overline{R} = \begin{pmatrix} \overline{\Sigma} & 0 \\ 0 & \sigma_c^2 \end{pmatrix}, \text{ where}$$

$$\overline{\Sigma} = \operatorname{diag}(1, 2, 3, \dots, p) \otimes \operatorname{diag}(\sigma_1, \sigma_2, \dots, \sigma_n) \qquad (27)$$

Notice that the vector $r = vec(\bar{r})$ towards which the VAR coefficients are driven by the constraints is generally different from zero. In empirical applications, for data in levels, the *n* values δ_i are typically set to 1, so that the model is pushed to behave like a multivariate random walk. Moreover, unlike in Ridge regressions, the precision of the constraints is not uniform across parameters but it is higher for more distant lags, as implied by the decay terms (1, 2, ..., p). The scaling factors $\sigma_1^2, ..., \sigma_n^2$ appearing in $\overline{\Sigma}$ can be obtained by univariate regressions and the

¹¹Karlsson (2012) distinguishes the Litterman prior from the more general Minnesota prior based on the assumptions on the covariance matrix of the VAR residuals, which is assumed to be diagonal in the Litterman prior, full in the more general Minnesota prior, see Kadiyala and Karlsson (1993, 1997).

precision on the intercept σ_c^2 can be set to an arbitrarily small or large value, depending on the application.¹²

Summarising, by appropriately penalising the GKY estimator, some discipline on the VAR coefficients can be imposed through stochastic constraints a la Theil and Goldberger (1960). This makes the GKY method, originally designed for small/medium scale VARs, suitable for handling large n dataset. We have seen that the resulting estimator has a well defined asymptotic distribution under rather mild conditions, and is generally more efficient than the unconstrained GKY estimator. Moreover, for popular shrinkage methods the resulting estimator can be cast in matrix form, with notable computational advantages.

The double nature of the estimator (being both non-parametric and penalised) is captured by its dependence on the two constants: H, the bandwidth parameter that determines the weight that each observation has as a function of its distance from t, and λ , a constant that determines the severity of the penalty. In the next section we discuss alternative solutions to the problem of determining these two parameters in empirical applications.

3 Model specification

The problem of setting appropriate values of λ and H can be tackled in two ways. The first is model selection, which typically rests on the optimisation of a given criterion. We describe two such criteria. The former adapts to our problem the procedure devised by Banbura, Giannone, and Reichlin (2010), and has an "in sample" fit flavour. The latter favours models with better out of sample performance and is inspired by the method proposed by Kapetanios, Labhard, and Price (2008) for assigning weights to different models in the context of forecast averaging. In the remainder of the paper we will refer to these two criteria as L_{fit} and L_{mse} . The second route consists of pooling the results obtained on the basis of a large range of different specifications. We describe each strategy in turn.

3.1 Model selection criteria

3.1.1 The L_{fit} criterion

The first criterion that we consider adapts to our problem the method by Banbura, Giannone, and Reichlin (2010). The intuition of the method is that, when forecasting with large datasets, some variables are more relevant than others. Over fitting should then be penalised up to the point where a large VAR achieves the same fit as that of a smaller VAR that only includes the key variables of interest. We adapt their criterion to the problem of choosing simultaneously λ and H. Formally, the criterion involves the following steps:

¹²For example, in a Bayesian context, Carriero, Kapetanios, and Marcellino (2009) adopt a very tight prior centred around zero on the intercept in a large VAR, favouring a driftless random walk behaviour, to capture the behaviour of a panel of exchange rates.

- 1. Pick a subset of n_1 variables of interest out of the *n* variables in the VAR.
- 2. Compute the in sample fit of a benchmark VAR with constant coefficients that only includes these n_1 variables.
- 3. Select λ and H to minimise the distance between the in sample fit of the large n variate VAR (featuring both time-varying parameters and shrinkage) and the benchmark VAR.

Formally, the loss function to be minimised is the following:

$$L_{fit}(\lambda, H) = \left| \sum_{i=1}^{n_1} \frac{rss_n^i(\lambda, H)}{var(y_{t,i})} - \sum_i^{n_1} \frac{rss_{n_1}^i}{var(y_{t,i})} \right|$$

where the scaling by $var(y_{t,i})$ is needed to account for the different variance of the variables.

3.1.2 The L_{mse} criterion

As an alternative, λ and H can be selected at each point in time based on the predictive performance of the model in the recent past. The method, which has a cross-validation flavour, is similar in spirit to the one used by Kapetanios, Labhard, and Price (2008) to compute model weights in the context of forecast averaging. The necessary steps are the following:

- 1. Pick a subset of n_1 variables of interest out of the *n* variables in the VAR.¹³
- 2. At each step t in the forecast exercise and for each forecast horizon h consider a relatively short window of recent data $t L h, t L h + 1, \ldots, t 1 h$ and compute the h steps ahead Mean Square Error (MSE) $mse_h^i(\lambda, H)$, for each $i \in n_1$.
- 3. Pick the values of λ and H that minimise the sum of these n_1 MSEs.

Formally, the loss function to be minimised is:

$$L_{mse}(\lambda, H) = \sum_{i=1}^{n_1} \frac{mse_h^i(\lambda, H)}{var(y_{t,i})}$$

where, again, the mse_i is scaled by the variance of y_i .

3.1.3 Practical considerations

In principle, standard optimisation algorithms could be used to minimise bot the L_{fit} and the L_{mse} criterion. However, we have often found that the minimum occurs at a kink. A problem of this type could arise because the stochastic constraints shrink the VAR coefficients towards a constant parameter structure but time variation is also affected by the width of the kernel.

¹³Notice that, when using this criterion, we could set $n_1 = n$, that is we could focus on the whole set of variables in the VAR rather than only on a subset.

Since our estimator is easy to compute a feasible solution is represented by a grid search approach, along the lines of Carriero, Kapetanios, and Marcellino (2009) and Koop and Korobilis (2013). More specifically, in the empirical analysis that follows, we experiment with a wide (38 elements) grid for (the reciprocal) of λ , $\varphi = 1/\lambda$.

$$\varphi_{grid} = 10^{-10}, 10^{-5}, 10^{-4}, 10^{-3}, 10^{-2}, 10^{-2} + .3, 10^{-2} + 2 \times .3, 10^{-2} + 3 \times 03, \dots, 1$$
(28)

We suggest the use of a wider grid than the one used, for instance, by Koop and Korobilis (2013) because the stochastic constraints that we apply are binding at each point in time (rather than just at the initial condition like in Kalman filter based estimation methods), so that higher values of φ (i.e. lower values of λ) are needed to allow for meaningful time variation in the VAR coefficients.

Regarding the width of the kernel function $w_{j,t}$, we work with a six points grid for the tuning parameter H:

$$H_{grid} = 0.5, 0.6, 0.7, 0.8, 0.9, 1, \tag{29}$$

consistently with the parameterisation used in Monte Carlo experiments by Giraitis, Kapetanios, and Price (2013).

3.2 Pooling

An alternative strategy to model selection consists of pooling model estimates obtained with different values of λ and H. This could be particularly valuable in the context of forecasting. From a theoretical standpoint, the rationale for forecast pooling in the presence of structural breaks is offered for example by Pesaran and Pick (2011), who show that averaging forecasts over different estimation windows reduces the forecast bias and mean squared forecast errors, provided that breaks are not too small. In empirical applications pooling is typically found to be effective in improving forecast accuracy both in Bayesian (Koop and Korobilis, 2013) and in frequentist (Kapetanios, Labhard, and Price, 2008) settings.¹⁴ In our context, model pooling could be based on relatively sophisticated weighting schemes, based on the selection criteria described in the previous subsections, or on simpler strategies like equal weights averaging.

4 Finite sample properties

To assess the finite sample properties of our estimator we design a Monte Carlo exercise in which we contrast the forecasting performance of the non-parametric estimator with that of a popular parametric alternative.

We consider three alternative DGPs. In the first DGP (DGP-1) we assume that the coeffi-

¹⁴Kuzin, Marcellino, and Schumacher (2013) show that forecast pooling also works well in nowcasting GDP.

cients follow a random walk process:

$$Y_t = \Lambda_t Y_{t-1} + \varepsilon_t$$
$$\Lambda_t = \Lambda_{t-1} + \eta_t$$

We make the stochastic process of the coefficients broadly consistent with a Litterman prior by bounding the first autoregressive parameter to lie between 0.85 and $1.^{15}$ In the second one (DGP-2) we let the coefficients break only occasionally rather than at each time t:

$$\Lambda_t = (1 - I(\tau))\Lambda_{t-1} + I(\tau)\Lambda_{t-1} + \eta_t$$

The probability of the coefficients breaking equals a constant τ that we set to .025, implying that, with quarterly data, we would observe on average a discrete break once every ten years. We also relax the bounds on Λ_t and let them fluctuate randomly between 0 and 1.¹⁶ In the third set of simulations (DGP-3) coefficients evolve as a sine functions and are bounded between -1 and 1:

$$\Lambda_t = \sin(10\pi t/T) + \eta_t$$

In all DGPs we assume $\eta_t \sim N(0, 1)$ and random walk stochastic volatilities for the measurement equations:

$$\varepsilon_{it} = u_{it} \exp(\lambda_{it})$$

 $\lambda_{it} = \lambda_{it-1} + \nu_{it}$

where $u_{it} \sim N(0, 1)$ and $\nu_{it} \sim N(0, \sigma_{\eta})$. We calibrate $\sigma_{\eta} = 0.01$.¹⁷ For the remaining technical details on the design of the Monte Carlo exercise see Appendix D

We assess the performance of our method based on the accuracy of one step ahead forecast errors. As a benchmark, we use the parametric estimator developed by Koop and Korobilis (2013), which we briefly describe in the next sub-section. While the controlled environment provided by the Monte Carlo exercise allows us to evaluate how robust the two methods are to different assumptions on the law of motion of the model parameters, a comparison of the two approaches based on actual data is presented later in section 5.

¹⁵Details on how this is achieved are presented in Appendix D.

¹⁶With tight boundaries (like the 0.85-1 interval imposed in DGP-1) the difference between coefficients that break only occasionally and coefficients that drift slowly, is negligible.

¹⁷Notice that this value for σ_{η} is quite large. Cogley and Sargent (2005) for example, assume that a priori σ_{η} is distributed as an inverse gamma with a single degree of freedom and scale parameter 0.01^2 . Since the scale parameter can be interpreted as the (prior) sum of square residuals, this means that a priori they set the variance of the innovations to the log-volatility to $0.01^2/T$. Assuming T = 100, the prior variance is 10^{-6} , as opposed to our choice of 10^{-2} .

4.1 A parametric estimator

The model specification adopted by Koop and Korobilis (2013) follows closely the literature on (small) TVP-VARs proposed by Cogley and Sargent (2005) and Primiceri (2005) in that it assumes a random walk evolution of the VAR coefficients. The model can then be cast in State Space, where the VAR equations

$$y_t = Z_t \beta_t + \varepsilon_t \tag{30}$$

serve as measurement equations and the unobserved states, the parameters β_t , evolve as driftless random walks:

$$\beta_{t+1} = \beta_t + u_{t+1},\tag{31}$$

with $\varepsilon_t \sim N(0, \Sigma_t)$ and $u_t \sim N(0, Q_t)$. Also ε_t and u_t are independent of one another and serially uncorrelated. Even for medium-sized VARs the estimation algorithms developed by Cogley and Sargent (2005) and Primiceri (2005) become unfeasible due to computational complexity. To overcome these difficulties, following the literature on Adaptive Algorithms, see for example Ljung (1992) and Sargent (1999), Koop and Korobilis (2013) make two simplifying assumptions. The first one involves the matrix Q_t , which is specified as follows:

$$Q_t = \left(\frac{1-\theta}{\theta}\right) P_{t-1/t-1} \tag{32}$$

where $P_{t-1/t-1}$ is the estimated covariance matrix of the unobserved states β_{t-1} conditional on data up to t-1 and θ is a forgetting factor ($0 < \theta < 1$).¹⁸ A similar simplifying assumption on Σ_t ensures that this matrix can be estimated by suitably discounting past squared one step ahead prediction errors:

$$\widehat{\Sigma}_t = \kappa \widehat{\Sigma}_{t-1} + (1-\kappa) v_t v_t' \tag{33}$$

where $v_t = y_t - Z_t \beta_{t/t-1}$. These assumptions make the system matrices Q_t and Σ_t (which are an *input* to the Kalman filter at time t) a function of the t-1 *output* of the Kalman filter itself. This recursive structure implies that, given an initial condition and the two constants θ and κ , an estimate of the coefficients β_t can be obtained through a single Kalman filter pass. Although it is laid out in a Bayesian spirit, the restrictions imposed on the Kalman filter recursions reduce the estimation procedure to a discounted least squares algorithm.

Before moving to the results of the Monte Carlo exercise let us make some remarks on the relative merits of the parametric approach compared to our non-parametric estimator. First, the use of a parametric model, and the simplifications imposed on the model structure to make the estimation feasible, do not come without costs. One potential pitfall is that the model assumes a very specific evolution for the model parameters. If the true data generating process

¹⁸Equation (32) basically states that the amount of time variation of the model parameters at time t is a small fraction of the uncertainty on the unobserved state β_t , so that large uncertainty on the value of the state at time t translates into stronger parameter time variation

(DGP) is very different from the one posited, the model is misspecified and this could result in poor performance. The second issue is that the curse of dimensionality is only partially solved. For 20 variables and 4 lags (a standard application in the large VAR literature with quarterly data) the stacked vector β_t contains 1620 elements. Larger model sizes (arising from a higher number of series in the system or by a higher number of lags, like the 13 lags conventionally used with monthly data in levels) are intractable in this setup. Finally, since the only source of time variation in the model is the prediction error, it can be shown that this forgetting factor algorithm boils down to an exponential smoothing estimator.¹⁹ This means that the effect of the prior on the initial condition β_1 will die out relatively quickly. Also, the longer the sample size, the lower the effect of the prior on the parameter estimates. In contrast, the stochastic constraints that we use to penalise our estimator are effective at each point in time.

4.2 Monte Carlo results

For all the DGPs we fit our non-parametric estimator with Litterman-type stochastic constraints and average forecasts using equal weights across all the possible values of H and λ specified in the grids described in the previous Section. The parametric method also needs a prior on the initial value of the parameters, β_1 to discipline the estimation towards values that are a priori plausible. To keep the comparison with our method as fair as possible we also impose on the initial condition of the parametric model a Litterman type prior. The remaining details of the model specification of the parametric model are quite lengthy and are documented in the Appendix E.

The results of the Monte Carlo exercise are shown in Table 1. The methods are compared in terms of 1 step ahead RMSE (relative to that of the parametric estimator and averaged across the *n* variables using either equal or inverse RMSE weights) for VARs of different sizes (n = 7and n = 15) and for different sample sizes (100, 150 and 200). Throughout the exercise forecasts from our proposed estimator are obtained by equal weights averaging across different values for H and λ . Forecasts are computed on the second half of the sample, i.e. when T=100, forecasts are computed recursively for t=51 to t=100, when T=150 forecasts are computed recursively for t=76 to t=150 and so forth.

In the case of DGP-1 the performance of the two estimation methods is broadly comparable, with the parametric estimator improving slightly (by at most 2%) on the non-parametric one only for VARs of larger sizes. Notice that in this context one would expect the parametric estimator to have an edge, given the tight correspondence between the assumptions made by the model and the actual DGP. The gain attained by this method proves, however, negligible. When we move to DGP-2 and DGP-3 the relative performance of the non-parametric estimator improves steadily, with gains of the order of 15% in the case of DGP-3 and n=15. Although these DGPs are probably less representative of the typical relationship across macroeconomic

¹⁹See Delle Monache and Petrella (2017), Section 2.

time series, they do unveil some fragility of the Kalman filter based method, whose performance rapidly deteriorates when the behaviour of the coefficients moves further and further away from the random walk setting. The non-parametric estimator, on the other hand, not only proves robust to heteroschedastic errors but also to a wide range of different specifications of the coefficients.

Summing up, the results of the Monte Carlo analysis are quite supportive of the nonparametric estimator coupled with stochastic constraints. While this does not constitute conclusive evidence in favour of our non-parametric approach, we believe that its good theoretical and finite sample properties, combined with its computational efficiency, make it a very competitive benchmark for modelling and forecasting with large VARs, taking into consideration the possibility of time variation.

5 Forecast Evaluation

After evaluating the finite sample properties of our estimator by means of simulation experiments, we now explore its performance in the context of an extensive forecast exercise based on U.S. data. We first discuss the set-up of the exercise, next we present the results, evaluate the role of forecast pooling and of model size in the TVP context, and finally consider a comparison with the Koop and Korobilis (2013) approach.

5.1 Set-up of the exercise

Throughout the exercise we use Litterman type constraints, like Banbura, Giannone, and Reichlin (2010). The information set is composed of 78 time series spanning around five decades, from January 1959 to July 2013. Table 2 reports the list of the series used in the exercise together with the value of \bar{r} used for each variable. Following the convention in the Bayesian literature we set to 1 the elements of \bar{r} corresponding to variables that display a trend and to 0 those corresponding to variables that have a stationary behaviour (typically surveys). We examine the performance of VARs of two sizes. A medium sized VAR that includes only the 20 indicators that are highlighted in red in Table 2 and a large VAR that makes use of all the available information.²⁰

We experiment with different model specifications obtained by intersecting various options for setting λ and H as summarised in Table 3. The table is organised in two panels. The top panel refers to model specifications that make use of the L_{fit} criterion, the bottom panel, on the other hand, to specifications based on the L_{mse} criterion. Starting from the top panel, the first set of models (M1 in Table 3) is obtained by fixing H at a given point in the grid and, conditional on this value of H, setting λ optimally at each t at the value that minimises the

²⁰Koop and Korobilis (2013) also look at the performance of trivariate VARs with TVP. We do not pursue this route as over fitting is not an issue in small systems and in those cases the use of the unconstrained GKY estimator is appropriate.

 L_{fit} function. The second set of models (M2) are obtained as variants of M1 by choosing the λ that minimises L_{fit} in the pre-sample and then keeping it fixed for the rest of the exercise. In the third set of models (M3) the function L_{fit} is optimised at each t both with respect to λ and H. The fourth case (M4) is obtained as variant of M3 by choosing λ optimally in the pre-sample and then keeping it fixed for the rest of the exercise. The remaining models (M5 to M8) are obtained by replacing the L_{fit} with the L_{mse} criterion. These different model specifications allow us to assess the importance of the various elements that characterise the proposed estimator.

The subset n_1 of variables of interest on which we focus the forecast evaluation is set to $n_1 = 3$, and we monitor the performance of three indicators of particular interest for monetary policy, i.e. the Fed Fund Rates (FEDFUNDS), the number of non farm payroll employees (PAYEMS) and CPI inflation (CPIAUCSL). We fix the lag length to 13 and retain 10 years of data (120 observations) as the first estimation sample. We then produce 1 to 24 months ahead pseudo real time forecasts with the first estimation sample ending in January 1970 and the last one ending in July 2011, for a total number of 499 forecasts. Finally, in the case of the L_{mse} criterion we need to choose L, that is the width of the short window of data on which to measure the predictive performance of the model. We set L = 36 (corresponding to three years of data). As a benchmark we adopt the large Bayesian VAR (BVAR) with a Litterman prior and constant coefficients, which can be obtained as a restricted version of our estimator by shutting down the time variation in the VAR coefficients.

5.2 Results

As a first piece of evidence, in Figure 1 (for the 20 variables VAR) and Figure 2 (for the 78 variables VAR) we show the behaviour of the penalty parameter λ in the specifications where both λ and H are optimised over time with the L_{fit} criterion (specification M7 in Table 3).²¹ As mentioned, high values of λ imply that the constraints hold more tightly, so that the VAR coefficients are less informed by the data. Starting from Figure 1, three distinct phases can be identified. In the first one λ starts from relatively low values and increases smoothly over time. In the 80s and throughout the Great Moderation it stays relatively constant around this value, to start falling again in the mid 1990s, with a steeper slope at the beginning of the 2000s. These results are broadly in line with those stressed in the literature on the predictability of macro times series before and after the Great Moderation. For example D'Agostino, Giannone, and Surico (2006) find that the predictive content for inflation and economic activity of common factors extracted from large panels weakened significantly during the Great Moderation, while in periods of higher volatility cross-sectional information proved more relevant for forecasting. Given the direct relationship between the relevance of cross sectional information and λ , the

²¹Results obtained using the L_{mse} are qualitatively similar, but for some data points the penalty parameter λ goes to infinity (i.e. the model is driven towards a multivariate random walk) making the visual result less clear.

results in Figure 1 send a similar message, as the contribution of cross-sectional information is progressively penalised by higher values of λ in the 1980s. When the dimension of the VAR increases (Figure 2) the optimal value of λ is higher, confirming the theoretical results in De Mol, Giannone, and Reichlin (2008) on the inverse relationship between the optimal level of shrinkage and cross-sectional dimensions in large panels. An inverse U shaped evolution of λ can be detected also in this case.

To verify that time variation in the coefficients is indeed useful for forecasting, we compare the performance of the 20 variables TVP-VAR with that of its constant coefficient counterpart. The results of this exercise are shown for the various model specifications in Table 4 where we report relative Root Mean Square Forecast Errors (RMSE). Values below 1, which imply that the introduction of time variation through the kernel estimator induces an improvement in prediction accuracy, are highlighted in grey. We assess the statistical significance in forecast accuracy through a Diebold-Mariano test (Diebold and Mariano, 1995) and *underline* the cases in which the null hypothesis can be rejected at the 10% significance. A bird-eye view of the table reveals that in many instances time variation increases forecast accuracy, as the majority of the cells (around 70% of the cases) report values below 1. However, the average improvement appears to be small as in most of the cases the gain is of the order of 5%. As a consequence, most of the differences in forecast accuracy are not significant, according to the Diebold Mariano test. Looking more in detail, three results emerge. First, time variation matters at long horizons for inflation and interest rates, while for employment the improvement is more consistent across different horizons. Second, the specifications that work best are those in which H is fixed at around 0.7 and λ is optimised in real time according to the L_{mse} criterion (M6 in the Table). In this case the TVP-VAR improves on the constant coefficients benchmark by more than 10%at long-horizons. Third, specifications in which both λ and H are optimised in real time (M3) and M8) do not perform well and, in fact, are often outperformed by the benchmark.

5.3 The role of forecast pooling

The substantial heterogeneity observed in the forecasting results across model specifications suggests that the performance of TVP-VAR could be further improved through forecast combination. Since combination schemes based on equal weights are usually found to perform remarkably well, we proceed by pooling forecasts through simple averaging.²²

The results obtained by forecast pooling are summarised in Figure 3. The plots, which show the RMSEs of the combined TVP-VARs relative to the fixed coefficients benchmark, are organised in three panels corresponding to the three different target variables, CPI, Fed Fund Rates and employment. The six bars in each panel correspond to different forecast horizons, from 1 to 24 months ahead. Bars in grey identify the forecast horizons for which a Diebold-Mariano test does not reject the null hypothesis of equal forecast accuracy, while those in red

²²More sophisticated weighting schemes, based on the selection criteria described in Table 3, deliver very similar results. The analysis is available upon request.

denote the cases for which forecast accuracy is significantly different at the 10% confidence level.²³

The forecasts obtained by pooling predictions from the different time-varying model specifications prove to be more accurate than those obtained from the benchmark at basically all horizons. Furthermore, according to the Diebold Mariano test, the improvement is statistically significant at the 10% confidence level, as evident from the large prevalence of red bars. There is also a tendency of the relative RMSEs to fall as the forecast horizon increases, as it was already apparent in the results displayed in Table 4, suggesting that time variation in the VAR coefficients is relatively more important for forecasting at longer than at shorter horizons. In Figure 4 we report the cumulative sum of squared forecast error differentials, computed as

$$CSSED_{t} = \sum_{j=1}^{t} (e_{j,BVAR}^{2} - e_{j,TVP-VAR}^{2}).$$
(34)

This statistics is very useful in revealing the parts of the forecast sample where the TVP-VAR accrues its gains. Positive and increasing values indicate that the TVP model outperforms the benchmark, while negative and decreasing values suggest the opposite. At relatively shorter horizons (top panels) the model with time-varying coefficients performs better than the one with constant parameters around economic downturns, as indicated by the jumps of the CSSED in periods classified by the NBER as recessions (grey shaded areas). At longer horizons (bottom panels), the gain is relatively uniform across the sample for interest rates and employment, while it is relatively concentrated in the 70s-80s for inflation.²⁴

5.4 The role of model size

To answer the question of whether enlarging the information set eliminates the need for time variation in the coefficients, we compare the performance of the 20 variables TVP-VAR with that of a fixed coefficients BVAR with 78 variables. The relative RMSEs reported in Figure 5 show that at shorter horizons (1 to 6 months ahead) the performance of the two models is overall comparable, although the time-varying model is more accurate in tracking interest rates. However, when we move to longer horizons, the performance of the TVP-VAR improves considerably. Looking at Figure 6 we find again that the CSSED tends to jump around recession periods. Hence, the importance of TVP is not (mainly) due to omitted variables.

The next issue that we want to explore is whether, in the context of a TVP-VAR, it pays off to go larger than around 20 variables, provided that the set of variables of interest is small. We tackle this question by comparing the performance of the 20 variables TVP-VAR with

²³The test is two sided so that bars in red and higher than 1 indicate that the forecast of the benchmark model is significantly more accurate.

²⁴A fluctuation test over windows of 120 months based on the method developed by Giacomini and Rossi (2010) shows that for interest rates and employment the gain of using the TVP-VAR is statistically significant over most of the sample. For inflation the test rejects the null of equal predictive accuracy more sporadically.

that of a 78 variables TVP-VAR. We find that, on the whole forecast sample, a medium-sized information set is sufficient to capture the relevant dynamics. The predictive accuracy of the 20 variables VAR is, in fact, typically higher than that of the larger model, especially for interest rates (see Figure 7). The evolution of the CSSED, shown in Figure 8, reveals that the accuracy gains of the 20 variables VAR are actually concentrated in the first part of the sample, and that from the 90s onwards, the performance of the two model sizes is very similar. This is an interesting finding that extends to a time-varying coefficients context the results obtained by Banbura, Giannone, and Reichlin (2010) in the case of constant coefficient VARs and those by Boivin and Ng (2006) in constant coefficient factor models.

5.5 Allowing for time varying volatilities

As a final exercise we contrast the predictive performance of the baseline 20 variables TVP-VAR with that of a TVP-VAR that also includes the GLS correction described in Section 2.5 to account for the presence of stochastic volatility in the data. For both models point forecasts are obtained by pooling predictions obtained on the basis of different values of ϕ and H. The results reported in Figure 9 show that the model that does not consider a GLS correction performs definitely better both at short and at longer horizons. Since the differences in terms of RMSEs are quite large, it is all the more important to understand in which part of the sample these gains are attained. The CSSED shown in Figure 10 reveal that the GLS correction is particularly detrimental for forecast accuracy in the first part of the sample, and in particular in the late Seventies. Still, in the remaining part of the sample, an upward trend in the CSSED is still well visible, implying that the relative performance of the two models is still in favour of the simpler method where no GLS correction is performed.²⁵ One reason for the poor performance of the GLS correction might be related to the fact that the kernel estimation of the covariance matrix can be imprecise for models of this size. To check for this possibility we run the exercise on smaller scale VAR including only seven variables. The results, shown in figures 11 and 12 show that, while in this setting the relative performance of the model with time varying volatilities improves, this GLS correction does not yield any significant gain in forecast accuracy.

5.6 Comparison with Koop and Korobilis (2013)

A comparison of the empirical performance of the non-parametric and parametric TVP-VAR needs to take into account the computational limitations to which the latter is subject. This means that a forecast competition based on monthly VARs with 13 lags, like those employed in the previous subsections, is unfeasible. We therefore proceed by taking quarterly transformations of the variables and specify a 20 variables VAR with 4 lags. The forecast

²⁵Results obtained by evaluating forecasts produced only from the mid Eighties onwards (not reported for brevity but available upon request) confirm this intuition as the simpler model still produces RMSEs that are 25 percent lower than those obtained with the model that allows for a GLS correction.

exercise is similar to the one performed on monthly data, that is we produce 1 to 8 quarters ahead forecasts of the three key variables in our dataset, CPI, the Fed Fund Rates and payroll employment, with an out sample period ranging from 1970:q1 to 2013:q2 (167 data points).

Figure 13 presents the RMSEs of the kernel based estimator relative to those of the parametric one. Again, we use red bars to highlight the cases where a Diebold-Mariano test rejects the null hypothesis of equal forecast accuracy. Visual inspection of the graph reveals that the non-parametric estimator generates significantly better predictions for inflation and employment, while the parametric estimator is more accurate in forecasting short term interest rates. As for the remaining variables, the only case in which the Diebold-Mariano test rejects in favour of the parametric estimator is for the 10 year rate and for M1 at very short horizons, while for the remaining 10 indicators the evidence is either in favour of the non-parametric approach (red bars lower than one) or inconclusive (grey bars).

Summarising, the outcome of this extensive forecasting exercise provides further broad support for our method. Moreover, the fact that the estimator can accommodate a large information set has allowed us to address issues that could not be investigated with existing methods, such as the relationship between the size of the information set and parameters' time variation and the relevance of the model size in the context of models with time-varying parameters.

6 Structural analysis

Our non-parametric estimator can be useful also in the context of structural analysis when time variation in the parameters is considered to be an issue. As an illustration, we use the proposed method to estimate the time-varying responses of industrial production indexes to an unexpected increase in the price of oil.²⁶ The changing response of key macroeconomic variables to unexpected oil price increases has been greatly debated in the past decade. In particular, using structural VARs and different identification assumptions a number of studies have found that oil price increases are associated with smaller losses in U.S. output in more recent years. While some of these studies have used sample-split approaches, like Edelstein and Kilian (2009), Herrera and Pesavento (2009) and Blanchard and Riggi (2013), others have relied on Bayesian VARs with drifting coefficients and volatilities, see for instance Hahn and Mestre (2011). In the latter approach, however, only a small number of variables can be jointly modelled. Allowing for larger information sets, however, could shed some light on the sectorial aspects of time variation in the transmission of oil price shocks.

Where a more granular perspective is taken, special attention is paid to the role of the automotive sector. Indeed as energy price increases reduce purchases of cars, and given that

²⁶Since we are not concerned with forecasting, in the structural analysis presented in this Section we follow Giraitis, Kapetanios, and Yates (2015) and use a two sided Gaussian kernel with smoothing parameter H = 0.5. Furthermore, the penalty parameter λ is chosen over the full sample through the L_{fit} criterion and changing volatilities are accounted for through the GLS correction in equation (23).

the dollar value of these purchases is large relatively to the energy they use, even small energy price shocks can cause large effects. However, the empirical evidence on this issue is subject to debate, as some studies find that the auto sector indeed plays a key role (Edelstein and Kilian, 2009), while others find that the transmission of energy shocks is not working primarily through this channel (Baumeister and Kilian, 2017).²⁷

In this section we revisit this issue by extending the analysis conducted in Edelstein and Kilian (2009), based on a bivariate VAR and on a sample-split approach, to a large TVP-VAR setting in which oil prices²⁸ are modelled jointly with industrial output in different sectors. In particular, we augment our baseline 20 variables VAR with 8 industrial production series split by market destination. The additional series are Business Equipment, Consumer Goods and its two sub-components Durable (half of which is accounted for by automotive products) and Nondurable (Food, Clothing, Chemical and Paper products), Final Product goods (Construction and Business Supplies and Defence and Space equipment), Material goods and its two sub-components Durable (Consumer parts, Equipment parts, Metals and Plastic products) and Nondurable (Textile, Paper and Chemical). A list of the series, together with their weight on the overall index, is reported in Table 5.

While the impact of energy prices on macroeconomic variables has typically been studied in small scale structural VARs, recent papers have investigated the issue in models of larger scale, see Stock and Watson (2016) and Aastveit (2014) for applications that use, respectively, a Structural Dynamic Factor Model and a FAVAR. Neither of these two papers, however, allows for time variation in the coefficients.

The identification of energy price shocks follows Edelstein and Kilian (2009) and Blanchard and Riggi (2013), i.e. we assume that energy price shocks are exogenous relative to contemporaneous movements in the other variables in the system, which implies ordering the price of oil first in a recursive structural VAR. Kilian and Vega (2011) provide a test of this assumption by regressing daily changes in the price of oil to daily news on a wide range of macroeconomic data and find no evidence of feedback from macroeconomic news to energy prices, concluding that energy prices are indeed predetermined with respect to the U.S. macroeconomy.²⁹

Figure 14 shows that in the first part of the sample an innovation to the real price of oil generates a protracted fall in overall industrial output. From the mid-Nineties onwards, on the other hand, oil price innovations do not seem to have a significant impact on industrial output.

²⁷Sectorial aspects of the economic effects of oil price shocks are studied by Davis and Haltiwanger (2001), Herrera and Karaki (2015) with a focus on job creation and destruction. Herrera and Karaki (2015) find that the effects of oil price shocks on job creation and destruction was smaller during the Great Moderation.

 $^{^{28}}$ Oil prices are measured in real terms and are constructed as in Baumeister and Peersman (2013).

 $^{^{29}}$ A shortcoming of this approach is that it does not allow us to separate the source of variation behind oil price shocks, i.e. whether they are driven by supply rather than by demand. In other words, our identified energy price shocks will be a linear combination of demand and supply shocks. However, given that we are interested in identifying the sectors that are central to the propagation of energy price shocks, rather than in determining the determinants of energy price fluctuations, the recursive identification is a valid working assumption as long as the *impact* of global oil supply and demand shocks are not disproportionately different across sectors.

Notice, however that the difference across the two sub-samples is mostly accounted for by the very early Seventies, a finding that cannot be uncovered with the simple sample-split strategy considered in Edelstein and Kilian (2009), and Blanchard and Riggi (2013) and that validates the use of time-varying coefficients models.³⁰

The results for the individual sectors are reported in Figure 15. A number of interesting results emerge. First, in most sectors the effect of an unexpected increase in the real price of oil is generally negative in the first part of the sample. Second, most sectors display an attenuation of the recessionary impact of energy price shocks. In some of them unexpected increases in the real price of oil end up being associated with an expansion in production, consistently with the findings in Kilian (2009) that attribute energy price surprises in the 2000s to increased demand for commodities rather than to supply disruptions.³¹ Third, the sectors where energy price shocks have the sharpest recessionary impact in the first decades, namely Durable Consumption Goods (mostly accounted for by vehicles) and Durable Materials, are also those for which the response of output to these shocks changes the most over time.

To assess the relative importance of each sector in explaining the changing pass-through of energy price shocks to overall industrial activity we proceed by weighing the IRFs in different sectors by their shares in overall industrial output (reported in Table 5). The resulting weighted IRFs are reported in Figure 16 where, for the sake of clarity, we only focus on the responses twelve months after the initial shock. When the relative weight of the various sectors is taken into account, the relevance for overall business cycle fluctuations of developments in the Durable Consumption Goods sector diminishes, due to the low weight that this sector has on overall output. The response of overall industrial output to oil price shocks and its evolution over time mirrors closely that of Durable Material Goods, which includes intermediate goods for a wide range of final products. Although a deeper investigation of the specific features that make these sectors particularly sensitive to oil price shocks is beyond the scope of this study, these findings illustrate the potential usefulness of the econometric method developed in this paper.

7 Conclusions

In this paper we propose an estimator for large dimensional VAR models with flexible parameter structure, capable of accommodating breaks in the relationships among economic time series. Our procedure is based on the mixed estimator by Theil and Goldberger (1960), which imposes stochastic constraints on the model coefficients, and on the non-parametric VAR estimator proposed by Giraitis, Kapetanios, and Yates (2014). The use of stochastic

³⁰This finding is consistent with the view that the U.S. stagflation of the 70s was indeed caused by an oil price shock. For an alternative view on possible reverse causality from other macroeconomic variables to oil see Barsky and Kilian (2004). Ramey and Vine (2011) argue that shortages and price controls had a crucial role in magnifying the recessionary effects of the oil price increases in the 70s.

³¹Blanchard and Gali (2010) also find that oil price innovations are associated with an increase in output after the 80s in France and in Germany, see Figure 7.6 therein.

constraints mimics in a classical context the role of the prior in Bayesian models, allowing to bypass the over-fitting problem that arises in large dimensional models.

We derive the asymptotic distribution of the estimator and evaluate the determinants of its efficiency. We also discuss various aspects of the practical implementation of the estimator, based on two alternative (fit and forecasting) criteria, and assess its finite sample performance in Monte Carlo experiments.

We then use the non-parametric estimator in a forecasting exercise where we model up to 78 U.S. macroeconomic time series. We find that the introduction of time variation in the VAR model parameters yields an improvement in prediction accuracy over models with a constant parameter structure, in particular when forecast combination is used to pool forecasts obtained with models with different degrees of time variation and penalty parameters. We also shed light on an issue that is central to the forecasting literature, namely how the size of the information set interacts with time variation in the model parameters. Specifically, we find that the relevance of time variation is not related to omitted variable problem and that, as in the constant parameter case, a medium-sized TVP-VAR is at least as good as a large TVP-VAR.

In a forecasting context, our non-parametric estimator compares well with the alternative parametric approach by Koop and Korobilis (2013), when using either actual or simulated data, and can handle a larger number of variables.

Finally, to illustrate the use of our method in structural analysis, we analyse the changing effects of oil price shocks on economic activity, a question that has spurred a large number of studies in the applied macro literature in recent years. We find that the declining role of oil prices in shaping U.S. business cycle fluctuations stems from changes related to the production of Durable Consumption and Durable Material Goods.

Overall, we believe that our findings illustrate how the econometric tool that we have proposed opens the door to a number of interesting analyses on forecasting and on the nonlinear transmission of shocks, which have been so far constrained by computational issues.

References

- AASTVEIT, K. A. (2014): "Oil price shocks in a data-rich environment," *Energy Economics*, 45(C), 268–279.
- AASTVEIT, K. A., A. CARRIERO, T. CLARK, AND M. MARCELLINO (2016): "Have Standard VARs Remained Stable Since the Crisis?," CEPR Discussion Papers 11558, C.E.P.R. Discussion Papers.
- ALKHAMISI, M., AND G. SHUKUR (2008): "Developing Ridge Parameters for SUR Model," Communications In Statistics-Theory And Methods, 37(4), 544–564.
- BANBURA, M., D. GIANNONE, AND L. REICHLIN (2010): "Large Bayesian vector auto regressions," *Journal of Applied Econometrics*, 25(1), 71–92.
- BARSKY, R. B., AND L. KILIAN (2004): "Oil and the Macroeconomy Since the 1970s," *Journal* of Economic Perspectives, 18(4), 115–134.
- BAUMEISTER, C., AND L. KILIAN (2017): "Lower oil prices and the U.S. economy: Is this time different?," *Brookings Papers on Economic Activity, forthcoming.*
- BAUMEISTER, C., AND G. PEERSMAN (2013): "Time-Varying Effects of Oil Supply Shocks on the US Economy," *American Economic Journal: Macroeconomics*, 5(4), 1–28.
- BENATI, L., AND H. MUMTAZ (2007): "U.S. evolving macroeconomic dynamics: a structural investigation," Working Paper Series 0746, European Central Bank.
- BENATI, L., AND P. SURICO (2008): "Evolving U.S. Monetary Policy and The Decline of Inflation Predictability," *Journal of the European Economic Association*, 6(2-3), 634–646.
- BLANCHARD, O. J., AND J. GALI (2010): "The Macroeconomic Effects of Oil Price Shocks: Why are the 2000s so different from the 1970s?," in *International Dimensions of Monetary Policy*, NBER Chapters, pp. 373–421. National Bureau of Economic Research, Inc.
- BLANCHARD, O. J., AND M. RIGGI (2013): "Why are the 2000s so different from the 1970s? A structural interpretation of changes in the macroeconomic effects of oil prices," *Journal of the European Economic Association*, 11(5), 1032–1052.
- BOIVIN, J., AND S. NG (2006): "Are more data always better for factor analysis?," *Journal of Econometrics*, 132(1), 169–194.
- CANOVA, F., AND L. GAMBETTI (2010): "Do Expectations Matter? The Great Moderation Revisited," *American Economic Journal: Macroeconomics*, 2(3), 183–205.

- CARRIERO, A., T. CLARK, AND M. MARCELLINO (2016): "Large Vector Autoregressions with asymmetric priors and time-varying volatilities," manuscript, Queen Mary University of London.
- CARRIERO, A., G. KAPETANIOS, AND M. MARCELLINO (2009): "Forecasting exchange rates with a large Bayesian VAR," *International Journal of Forecasting*, 25(2), 400–417.
- COGLEY, T., AND T. J. SARGENT (2005): "Drift and Volatilities: Monetary Policies and Outcomes in the Post WWII U.S," *Review of Economic Dynamics*, 8(2), 262–302.
- D'AGOSTINO, A., D. GIANNONE, AND P. SURICO (2006): "(Un)Predictability and macroeconomic stability," Working Paper Series 0605, European Central Bank.
- DAVIS, S. J., AND J. HALTIWANGER (2001): "Sectoral job creation and destruction responses to oil price changes," *Journal of Monetary Economics*, 48(3), 465–512.
- DE MOL, C., D. GIANNONE, AND L. REICHLIN (2008): "Forecasting using a large number of predictors: Is Bayesian shrinkage a valid alternative to principal components?," *Journal of Econometrics*, 146(2), 318–328.
- DELLE MONACHE, D., AND I. PETRELLA (2017): "Adaptive Models and Heavy Tails," *International Journal of Forecasting*, 33(2), 482–510.
- DIEBOLD, F. X., AND R. S. MARIANO (1995): "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, 13(3), 253–63.
- EDELSTEIN, P., AND L. KILIAN (2009): "How sensitive are consumer expenditures to retail energy prices?," *Journal of Monetary Economics*, 56(6), 766–779.
- EICKMEIER, S., W. LEMKE, AND M. MARCELLINO (2015): "Classical time varying factoraugmented vector auto-regressive models? estimation, forecasting and structural analysis," *Journal of the Royal Statistical Society Series A*, 178(3), 493–533.
- GIACOMINI, R., AND B. ROSSI (2010): "Forecast comparisons in unstable environments," Journal of Applied Econometrics, 25(4), 595–620.
- GIRAITIS, L., G. KAPETANIOS, AND S. PRICE (2013): "Adaptive forecasting in the presence of recent and ongoing structural change," *Journal of Econometrics*, 177(2), 153–170.
- GIRAITIS, L., G. KAPETANIOS, K. THEODORIDIS, AND T. YATES (2014): "Estimating timevarying DSGE models using minimum distance methods," Bank of England working papers 507, Bank of England.
- GIRAITIS, L., G. KAPETANIOS, AND T. YATES (2014): "Inference on stochastic time-varying coefficient models," *Journal of Econometrics*, 179(1), 46–65.

- GIRAITIS, L., G. KAPETANIOS, AND T. YATES (2015): "Inference on Multivariate Heteroscedastic Time Varying Random Coefficient Models," Working Papers 767, Queen Mary University of London, School of Economics and Finance.
- HAHN, E., AND R. MESTRE (2011): "The role of oil prices in the euro area economy since the 1970s," Working Paper Series 1356, European Central Bank.
- HASTIE, T., R. TIBSHIRANI, AND J. FRIEDMAN (2003): The Elements of Statistical Learning: Data Mining, Inference, and Prediction, no. 9780387952840 in Statistics. Springer.
- HERRERA, A. M., AND M. B. KARAKI (2015): "The effects of oil price shocks on job reallocation," *Journal of Economic Dynamics and Control*, 61(C), 95–113.
- HERRERA, A. M., AND E. PESAVENTO (2009): "Oil Price Shocks, Systematic Monetary Policy And The Great Moderation," *Macroeconomic Dynamics*, 13(01), 107–137.
- HOOKER, M. A. (1999): "Oil and the macroeconomy revisited," Discussion paper.
- KAPETANIOS, G., V. LABHARD, AND S. PRICE (2008): "Forecasting Using Bayesian and Information-Theoretic Model Averaging: An Application to U.K. Inflation," *Journal of Busi*ness & Economic Statistics, 26, 33–41.
- KILIAN, L. (2009): "Not All Oil Price Shocks Are Alike: Disentangling Demand and Supply Shocks in the Crude Oil Market," *American Economic Review*, 99(3), 1053–69.
- KILIAN, L., AND L. T. LEWIS (2011): "Does the Fed Respond to Oil Price Shocks?," Economic Journal, 121(555), 1047–1072.
- KILIAN, L., AND C. VEGA (2011): "Do Energy Prices Respond to U.S. Macroeconomic News? A Test of the Hypothesis of Predetermined Energy Prices," *The Review of Economics and Statistics*, 93(2), 660–671.
- KILIAN, L., AND R. J. VIGFUSSON (2011): "Are the responses of the U.S. economy asymmetric in energy price increases and decreases?," *Quantitative Economics*, 2(3), 419–453.
- (2014): "The Role of Oil Price Shocks in Causing U.S. Recessions," International Finance Discussion Papers 1114, Board of Governors of the Federal Reserve System (U.S.).
- KOOP, G., AND D. KOROBILIS (2013): "Large time-varying parameter VARs," *Journal of Econometrics*, 177(2), 185–198.
- KOOP, G. M. (2013): "Forecasting with Medium and Large Bayesian VARS," *Journal of* Applied Econometrics, 28(2), 177–203.

- KUZIN, V., M. MARCELLINO, AND C. SCHUMACHER (2013): "Pooling versus model selection for nowcasting with many predictors: An application to German GDP," *Journal of Applied Econometrics*, 28(3), 392–411.
- LJUNG, L. (1992): "Applications to Adaptive Algorithms,," in *Stochastic Approximations and* Op timization of Random Systems, edited by L. Ljung, Georg Pflug, and Harro Walk, pp. 95–113. Birkhauser.
- MUMTAZ, H., AND P. SURICO (2012): "Evolving International Inflation Dynamics: World And Country-Specific Factors," Journal of the European Economic Association, 10(4), 716–734.
- PESARAN, M. H., AND A. PICK (2011): "Forecast Combination Across Estimation Windows," Journal of Business & Economic Statistics, 29(2), 307–318.
- PESARAN, M. H., AND A. TIMMERMANN (2007): "Selection of estimation window in the presence of breaks," *Journal of Econometrics*, 137(1), 134–161.
- PRIMICERI, G. (2005): "Time Varying Vector Autoregressions and Monetary Policy," The Review of Economic Studies, 1(19), 465–474.
- RAFTERY, P., M. KARNY, AND P. ETTLER (2010): "Online prediction under model uncertainty via dynamic model averaging: Application to a cold rolling mill," *Technometrics*, 52, 52–66.
- RAMEY, V. A., AND D. J. VINE (2011): "Oil, Automobiles, and the U.S. Economy: How Much Have Things Really Changed?," in *NBER Macroeconomics Annual 2010, Volume 25*, NBER Chapters, pp. 333–367. National Bureau of Economic Research, Inc.
- ROSSI, B., A. INOUE, AND L. JIN (2014): "Optimal Window Selection in the Presence of Possible Instabilities," Discussion Paper 10168, CEPR.
- SARGENT, T. J. (1999): The Conquest of American Inflation, Cambridge Books. Princeton University Press.
- STOCK, J. H., AND M. W. WATSON (2012): "Disentangling the Channels of the 2007-09 Recession," *Brookings Papers on Economic Activity*, 44(1, Spring), 81–156.
- (2016): "Factor Models and Structural Vector Autoregressions in Macroeconomics," *Handbook of Macroeconomics*, 2, 415–525.
- THEIL, H., AND A. GOLDBERGER (1960): "On pure and mixed statistical estimation in econometrics," *International Economic Review*, 2, 65–78.

Т	Parametric	Non parametric				
		Inv. RMSE Equal weights				
	DGP-1	(Random walk	dom walk coefficients)			
n=7						
100	1	1.004	1.005			
150	1	0.999	1.000			
200	1	0.997	0.997			
		n=15				
100	1	1.021	1.024			
150	1	1.012	1.013			
200	1	1.006	1.007			
	DGP-2 (Occ	casionally break	king coefficients)			
		n=7				
100	1	0.96	0.96			
150	1	0.96	0.96			
200	1	0.96	0.96			
		n=15				
100	1	0.96	0.96			
150	1	0.95	0.95			
200	1	0.94	0.94			
	DGP-3 (Sine function coefficients)					
		n=7				
100	1	0.95	0.96			
150	1	0.96	0.98			
200	1	0.97	0.99			
		n=15				
100	1	0.87	0.88			
150	1	0.86	0.87			
200	1	0.85	0.86			

Table 1: 1 step ahead, relative RMSEs

Note to Table 1. The table shows the ratio between the one step ahead RMSE attained by, respectively, the nonparametric and the parametric model, averaged across the n variables. Forecasts are computed on the second half of the sample, i.e. when T=100, forecasts are computed recursively for t=51 to t=100, when T=150 forecasts are computed recursively for t=76 to t=150 and when T=200 forecasts are computed recursively for t=101 to t=200.

No.	Acronym (FRED database)	Description	SA	Logs	Prior mean
1	I AAA	Interest rates on AAA bonds	Not Seasonally Adjusted	0	1
2	AHEMAN	Average Hourly Earnings Of Production And Nonsupervisory Employees: Manufacturing	Not Seasonally Adjusted	1	1
-	3 AWHMAN	Average Weekly Hours of Production and Nonsupervisory Employees	Seasonally Adjusted	1	0
		Average weeky hours of rioux data in and winsupervisory Employees.	Concernently Adjusted	1	0
4	AWOTMAN	Average Weekly Overtime Hours of Production and Nonsupervisory	Seasonally Adjusted	1	0
4	5 BAA	Interest rates on BAA bonds	Not Seasonally Adjusted	1	1
6	5 CE16OV	Civilian Employment	Seasonally Adjusted	1	1
-	7 CPIAPPSI	Consumer Price Index for All Urban Consumers: Apparel	Seasonally Adjusted	1	1
	CDIALICSI	Consumer Drice Index for All Union Consumers: All Jerro	Seesenally Adjusted	1	1
	CHAUCSL	Consumer Price index for Air Orban Consumers: Air items	Seasonally Adjusted	1	1
ç) CPILFESL	Consumer Price Index for All Urban Consumers: All Items Less Food &	Seasonally Adjusted	1	1
10) CPIMEDSL	Consumer Price Index for All Urban Consumers: Medical Care	Seasonally Adjusted	1	1
11	CPITRNSL	Consumer Price Index for All Urban Consumers: Transportation	Seasonally Adjusted	1	1
12	CPILI ESI	Consumer Price Index for All Urban Consumers: All Items Less Food	Seasonally Adjusted	1	1
12			Seasonarry Adjusted	1	1
1.	5 DMANEMP	All Employees: Durable goods	Seasonally Adjusted	1	0
14	DSPIC96	Real Disposable Personal Income	Seasonally Adjusted	1	1
15	5 DPCERA3M086SBEA	Real personal consumption expenditures (chain-type quantity index)	Seasonally Adjusted	1	1
16	5 FEDFUNDS	Effective Federal Funds Rate	Not Seasonally Adjusted	0	1
12	7 GS1	1. Vear Treasury Constant Maturity Pate	Not Seasonally Adjusted	Ő	1
10	CS10	10 Vera Tarcourter Constant Maturity Vale	Not Seasonally Adjusted	0	1
10	0310	10- Fear Treasury Constant Maturity Rate	Not Seasonally Adjusted	0	1
19	GS5	5-Year Treasury Constant Maturity Rate	Not Seasonally Adjusted	0	1
20) HOUST	Housing Starts: Total: New Privately Owned Housing Units Started	Seasonally Adjusted Annual Rate	1	0
21	HOUSTMW	Housing Starts in Midwest Census Region	Seasonally Adjusted Annual Rate	1	0
22	HOUSTNE	Housing Starts in Northeast Census Region	Seasonally Adjusted Annual Rate	1	0
22	LOUETE	Housing Starts in Forthcast Census Region	Seasonally Adjusted Annual Date	1	0
23	000313	Housing statis in Soun Census Region	Seasonarry Adjusted Allituar Rate	1	0
24	HOUSTW	Housing Starts in West Census Region	Seasonally Adjusted Annual Rate	1	0
25	5 INDPRO	Industrial Production Index	Seasonally Adjusted	1	1
26	5 IPBUSEQ	Industrial Production: Business Equipment	Seasonally Adjusted	1	1
27	7 IPCONGD	Industrial Production: Consumer Goods	Seasonally Adjusted	1	1
	IPDCONCD	Industrial Declusion Consult Consumer Conde	Seesenally Adjusted	1	1
20	SIPDCONOD	industriar Froduction. Durable Consulter Goods	Seasonally Adjusted	1	1
29	PDMAT	Industrial Production: Durable Materials	Seasonally Adjusted	1	1
30) IPFINAL	Industrial Production: Final Products (Market Group)	Seasonally Adjusted	1	1
31	IPMAT	Industrial Production: Materials	Seasonally Adjusted	1	1
30	P IPNCONGD	Industrial Production: Nondurable Consumer Goods	Seasonally Adjusted	1	1
2	IDNMAT	Industrial Declarion conductor Constraints	Seesenally Adjusted	1	1
53		industrial Production: nondurable Waterials	Seasonarry Adjusted	1	1
34	LOANS	Loans and Leases in Bank Credit, All Commercial Banks	Seasonally Adjusted	1	1
35	5 M1SL	M1 Money Stock	Seasonally Adjusted	1	1
36	5 M2SL	M2 Money Stock	Seasonally Adjusted	1	1
37	7 MANEMP	All Employees: Manufacturing	Seasonally Adjusted	1	0
35	NAPM	ISM Manufacturing: PMI Composite Index	Seasonally Adjusted	0	0
20	NADATE	isin manuacturing, i wir composite index	Concernently Adjusted	0	0
35	7 NAPMEI		Seasonarry Adjusted	0	0
40) NAPMII	U	Not Seasonally Adjusted	0	0
41	NAPMNOI	ISM Manufacturing: New Orders Index	Seasonally Adjusted	0	0
42	2 NAPMPI	Π	Seasonally Adjusted	0	0
43	8 NAPMSDI		Seasonally Adjusted	0	0
4	1 NDMANEMD	u All Employaços Nondurable conde	Seesenally Adjusted	1	0
44	INDMANEMIC	An Employees: Nondurable goods	Seasonarry Adjusted	1	0
43	OILPRICE		Not Seasonally Adjusted	1	1
40	5 PAYEMS	All Employees: Total nonfarm	Seasonally Adjusted	1	1
47	PCEPI	Personal Consumption Expenditures: Chain-type Price Index	Seasonally Adjusted	1	1
48	PERMIT	New Private Housing Units Authorized by Building Permits	Seasonally Adjusted Annual Rate	1	0
10	PERMITMW	New Private Housing Units Authorized by Building Permits in the	Seasonally Adjusted Annual Pate	1	0
		New Hivat Housing Onis Additized by Datiling Fernits in the	Concernelles A directed Annual Date	1	0
50	PERMITNE	New Private Housing Units Authorized by Building Permits in the	Seasonally Adjusted Annual Rate	1	0
51	I PERMITS	New Private Housing Units Authorized by Building Permits in the South	Seasonally Adjusted Annual Rate	1	0
52	2 PERMITW	New Private Housing Units Authorized by Building Permits in the West	Seasonally Adjusted Annual Rate	1	0
53	3 PI	Personal Income	Seasonally Adjusted Annual Rate	1	1
54	1 PPIACO	Producer Price Index: All Commodities	Not Seasonally Adjusted	1	1
54	5 PPICPM	Producer Price Index: Crude Materials for Eurther Processing	Seasonally Adjusted	1	1
5.	PPICKM	Producer Price index. Crude Materials for Future Processing	Seasonarry Adjusted	1	1
50	PPIFCG	Producer Price Index: Finished Consumer Goods	Seasonally Adjusted	1	1
57	7 PPIFGS	Producer Price Index: Finished Goods	Seasonally Adjusted	1	1
58	3 PPIITM	Producer Price Index: Intermediate Materials: Supplies & Components	Seasonally Adjusted	1	1
59	SandP	S&P 500 Stock Price Index		1	1
60	SRVPRD	All Employees: Service Providing Industries	Seasonally Adjusted	1	1
00	TD2MC	2 Merit Tarrenz D'ille Seconder Mediate Det	Net Concernelles A directed	1	1
0.	TBSMS	3-Month Treasury Bill: Secondary Market Kate	Not Seasonally Adjusted	0	1
62	2 TB6MS	6-Month Treasury Bill: Secondary Market Rate	Not Seasonally Adjusted	0	1
63	3 UEMP15OV	Number of Civilians Unemployed for 15 Weeks & Over	Seasonally Adjusted	1	0
64	4 UEMP15T26	Number of Civilians Unemployed for 15 to 26 Weeks	Seasonally Adjusted	1	0
64	5 UEMP27OV	Number of Civilians Unemployed for 27 Weeks and Over	Seasonally Adjusted	1	0
64	LIEMP5TO14	Number of Civilians Unemployed for 5 to 14 Weeks	Seasonally Adjusted	1	ő
00		Number of Cryntalls Offenipioyed for 5 to 14 weeks		1	0
67	UEMPL15	Number of Civilians Unemployed - Less Than 5 Weeks	Seasonally Adjusted	1	0
68	3 UEMPMEAN	Average (Mean) Duration of Unemployment	Seasonally Adjusted	1	0
69	UNRATE	Civilian Unemployment Rate	Seasonally Adjusted	0	0
70) USCONS	All Employees: Construction	Seasonally Adjusted	1	1
7	USEIRE	All Employees: Financial Activities	Seasonally Adjusted	1	1
71		All Employees. Conde Declaring Industries	Seasonally Adjusted	1	1
12		An Employees: Goods-Producing industries	Seasonally Adjusted	1	0
73	3 USGOVT	All Employees: Government	Seasonally Adjusted	1	1
74	4 USMINE	All Employees: Mining and logging	Seasonally Adjusted	1	0
75	5 USPRIV	All Employees: Total Private Industries	Seasonally Adjusted	1	1
74	5 USTPU	All Employees: Trade Transportation & Utilities	Seasonally Adjusted	1	1
7	USTRADE	All Employaes: Retail Trade	Seeconally Adjusted	1	1
	USIKADE	An Employees, Relational and	Seasonany Aujusted	1	1
- 78	S USWIKADE	All Employees: Wholesale Trade	Seasonally Adjusted	1	1

Table 2: Data description

		Н			
			0.5		
			0.6		
	N/1	Optimized at each t	0.7		
	IVIT	Optimized at each t	0.8		
			0.9		
			1		
۱			0.5		
⊾fit			0.6		
	M2	Fixed at pre-sample optimal level	0.7		
	1112		0.8		
			0.9		
			1		
	M3	Optimized at each t	Optimized at each t		
	M4	Fixed at pre-sample optimal level	Optimized at each t		
			0.5		
			0.6		
	M6	Ontimized at each t	0.7		
	1010	optimized di eden i	0.8		
			0.9		
			1		
			0.5		
∟mse			0.6		
	M7	Fixed at pre-sample optimal level	0.7		
			0.8		
			0.9		
			1		
	M8	Optimized at each t	Optimized at each t		
	M9	Fixed at pre-sample optimal level	Optimized at each t		

Table 3: Specifications for the TVP-VARs. The L_{fit} criterion is computed as $L_{fit}(\lambda, H) = \left|\sum_{i=1}^{n_1} \frac{rss_n^i(\lambda, H)}{var(y_{t,i})} - \sum_i^{n_1} \frac{rss_{n_1}^i}{var(y_{t,i})}\right|$ where n_1 is a number of reference variables, rss_{n_1} is the residual sum of squares obtained with an n1 variate VAR, and $rss_{n_1}(\lambda, H)$ is the residual sum of squares obtained with the TVP-VAR. The L_{mse} criterion is computed as $L_{mse}(\lambda, H) = \sum_{i=1}^{n_1} \frac{mse_h^i(\lambda, H)}{var(y_{t,i})}$, where mse_h is the mean square prediction error h steps ahead obtained with the TVP-VAR.

				CPI		Fe	Fed Funds Rates		E	Employment			
Selection													
method λ H		Forecast horizon Forecast horizon		Forecast horizon									
				1 6	12 24	1	6	12	24	1	6	12	24
			0.5	<u>1.17</u> 1.10	1.03 0.9	1.07	0.85	<u>0.84</u>	0.94	1.40	<u>1.33</u>	1.13	0.90
	M1		0.6	<u>1.12</u> 1.01	1.02 0.9	1.02	<u>0.90</u>	0.93	0.96	<u>1.28</u>	<u>1.25</u>	1.12	0.90
		Ontimized	0.7	1.03 0.97	0.99 1.0	0.97	0.97	0.99	0.98	0.96	<u>6 0.93</u>	0.95	0.96
		Optimized	0.8	1.01 0.98	0.99 0.9	0.99	0.97	0.96	0.95	0.9	<u>0.94</u>	<u>0.95</u>	0.95
			0.9	1.02 0.98	0.98 0.9	5 1.00	0.96	0.95	0.94	0.98	<u>0.96</u>	0.97	0.96
			1	1.02 0.98	0.98 0.9	1.00	0.96	0.95	0.93	0.98	<u>8</u> 0.97	0.98	0.96
1			0.5	1.03 1.04	1.08 1.3	0.95	<u>6</u> 0.97	1.03	<u>1.27</u>	0.97	0.94	0.98	0.98
⊾fit			0.6	1.00 0.97	1.03 1.1	0.93	<u>1.02</u>	1.07	1.12	0.97	0.94	0.98	1.04
	N/2	Fixed	0.7	1.00 0.98	1.01 1.0	0.95	<u>6</u> 0.99	1.01	0.99	0.9	<u>0.95</u>	0.98	1.01
	IVIZ	Fixed	0.8	1.01 0.99	0.99 0.9	0.97	0.98	0.97	0.96	0.97	<u>0.96</u>	0.97	0.98
			0.9	1.02 0.99	0.98 0.9	0.98	8 <u>0.97</u>	<u>0.95</u>	<u>0.94</u>	0.98	<u>0.97</u>	0.98	0.98
			1	1.02 0.99	0.98 0.9	0.98	8 <u>0.96</u>	<u>0.95</u>	<u>0.94</u>	0.98	<u>8</u> 0.98	0.99	0.98
	M3	Optimized	ΟΡΤ	1.02 0.99	1.01 1.0	0.99	9 1.01	1.00	0.95	0.96	<u>6 0.93</u>	0.94	0.92
	M4	Fixed	ΟΡΤ	1.01 0.98	1.01 1.0	0.96	<u>5</u> 1.01	1.01	0.96	0.98	3 0.97	1.00	1.02
	M6	Optimized	0.5	<u>1.06</u> 1.09	1.10 1.6	1.01	0.98	0.98	1.49	<u>1.1</u> 6	<u>5</u> 1.09	1.07	1.06
			0.6	<u>1.08</u> 1.00	<u>0.89</u> 0.8	0.99	0.96	<u>0.90</u>	0.98	<u>1.1</u> 2	<u>1.05</u>	0.98	0.93
			0.7	<u>1.12</u> 1.03	0.95 0.8	1.01	0.91	<u>0.87</u>	<u>0.89</u>	<u>1.16</u>	<u>5</u> 1.10	0.99	0.88
			0.8	<u>1.15</u> 1.06	0.98 0.8	1.01	0.88	<u>0.84</u>	<u>0.85</u>	<u>1.18</u>	<u>3</u> 1.13	1.00	0.84
			0.9	<u>1.14</u> 1.07	0.98 0.8	1.02	<u>0.87</u>	<u>0.84</u>	<u>0.86</u>	<u>1.18</u>	<u>3</u> 1.15	1.03	0.88
			1	<u>1.14</u> 1.05	0.98 0.8	1.02	<u>0.87</u>	<u>0.84</u>	<u>0.86</u>	<u>1.19</u>	<u>)</u> 1.16	1.04	0.90
1			0.5	1.01 1.08	1.26 2.1	0.93	1.02	1.16	2.03	0.99	0.97	1.02	1.15
L _{mse}	M7	Fixed	0.6	1.01 0.97	1.02 1.1	0.93	<u>1.00</u>	1.05	1.11	0.97	7 <u>0.93</u>	0.96	1.01
			0.7	1.01 0.97	0.97 0.9	0.95	<u>6</u> 0.97	0.97	0.96	0.96	<u>6 0.93</u>	0.94	0.92
			0.8	1.03 0.98	0.96 0.9	0.98	8 <u>0.94</u>	0.93	0.92	0.98	0.95	0.94	0.89
			0.9	1.03 0.98	0.96 0.9	1.00	0.94 <u>0.94</u>	0.92	0.91	1.00	0.98	0.97	0.92
			1	1.04 0.98	0.95 0.9	1.00	0.93	0.92	0.91	1.00	0.99	0.98	0.92
	M8	Optimized	OPT	<u>1.10</u> 1.10	1.11 1.6	1.01	0.97	0.93	1.42	<u>1.1</u>	<u>5</u> 1.06	1.00	1.02
	M9	Fixed	OPT	0.99 1.04	1.16 2.0	0.95	5 1.00	1.02	1.99	0.99	0.92	0.95	1.10

Table 4: Root Mean Square Forecast Errors: TVP-VARs versus constant coefficients BVAR (20 variables). The tables show the RMSE obtained by models with time varying parameters described in Table 3 relative to those obtained with the benchmark large BVAR with constant parameters. Values below 1 (shaded in grey in the table) imply that the model outperforms the benchmark. Values <u>underlined</u> indicate the cases in which the Diebold Mariano test rejects the null hypothesis of equal forecast accuracy at the 10% confidence level. The RMSE are computed on 499 out-of-sample forecast errors, from January 1970 to July 2013.

Figure 1: Optimal λ - 20 variables TVP-VAR. The figure shows the evolution of the value of λ optimized using the L_{fit} criterion in the TVP-VAR with 20 variables. Shaded areas indicate NBER-dated recessions.

Figure 2: Optimal λ - 78 variables TVP-VAR. The figure shows the evolution of the value of λ optimized using the L_{fit} criterion in the TVP-VAR with 78 variables. Shaded areas indicate NBER-dated recessions.

Figure 3: Root Mean Square Forecast Errors: combined TVP-VARs versus constant coefficients BVAR (20 variables VARs). The bar plots show the RMSE obtained by equal weights forecast combination of models with time varying parameters relative to that obtained with the BVAR with constant coefficients. Values below 1 imply that the TVP model outperforms the benchmark. Bars in grey indicate the forecast horizons for which a Diebold-Mariano test does not reject the null hypothesis of equal forecast accuracy, those in red denote the cases for which forecast accuracy is significantly different at the 10% confidence level.

Figure 4: Cumulative sum of squared forecast error differentials: combined TVP-VARs versus constant coefficients BVAR (20 variables VARs). The figure shows the Cumulative Sum of Squared Forecast Errors Differentials between the equal weights forecast combination of models with time varying parameters and the BVAR with constant coefficients. Positive and increasing values indicate that the TVP model outperforms the benchmark, while negative and decreasing values suggest the opposite. Shaded areas indicated NBER-dated recessions.

Figure 5: Root Mean Square Forecast Errors: 20 variables combined TVP-VARs versus 78 variables constant coefficients BVAR. The bar plots show the RMSE obtained by equal weights forecast combination of 20 variables VARs with time varying parameters relative to that obtained with a 78 variables BVAR with constant coefficients. Values below 1 imply that the TVP model outperforms the benchmark. Bars in grey indicate the forecast horizons for which a Diebold-Mariano test does not reject the null hypothesis of equal forecast accuracy, those in red denote the cases for which forecast accuracy is significantly different at the 10% confidence level.

Figure 6: Cumulative sum of squared forecast error differentials: 20 variables combined TVP-VARs versus 78 variables constant coefficients BVAR. The figure shows the Cumulative Sum of Squared Forecast Errors Differentials between the equal weights forecast combination of 20 variables VARs with time varying parameters and a 78 variables BVAR with constant coefficients. Positive and increasing values indicate that the TVP model outperforms the benchmark, while negative and decreasing values suggest the opposite. Shaded areas indicated NBER-dated recessions.

Figure 7: Root Mean Square Forecast Errors: 20 variables combined TVP-VARs versus 78 variables combined TVP-VARs. The bar plots show the RMSE obtained by equal weights forecast combination of 20 variables VARs with time varying parameters relative to that obtained by equal weights forecast combination of 78 variables VARs with time varying parameters. Values below 1 imply that the TVP model with 20 variables outperforms the benchmark. Bars in grey indicate the forecast horizons for which a Diebold-Mariano test does not reject the null hypothesis of equal forecast accuracy, those in red denote the cases for which forecast accuracy is significantly different at the 10% confidence level.

Figure 8: Cumulative sum of squared forecast error differentials: 20 variables combined TVP-VARs versus 78 variables combined TVP-VARs. The figure shows the Cumulative Sum of Squared Forecast Errors Differentials between the equal weights forecast combination of 20 variables VARs with time varying parameters and equal weights forecast combination of 78 variables VARs with time varying parameters. Positive and increasing values indicate that the TVP model with 20 variables outperforms the benchmark, while negative and decreasing values suggest the opposite. Shaded areas indicated NBER-dated recessions.

Figure 9: Root Mean Square Forecast Errors: 20 variables combined TVP-VARs versus 20 variables combined TVP-VARs with a GLS correction. The bar plots show the RMSE obtained by equal weights forecast combination of 20 variables VARs with time varying parameters relative to that obtained by equal weights forecast combination of 20 variables VARs with time varying parameters and the GLS correction described in Section 2.5. Values below 1 imply that the TVP model with 20 variables without GLS correction outperforms the benchmark. Bars in grey indicate the forecast horizons for which a Diebold-Mariano test does not reject the null hypothesis of equal forecast accuracy, those in red denote the cases for which forecast accuracy is significantly different at the 10% confidence level.

Figure 10: Cumulative sum of squared forecast error differentials: 20 variables combined TVP-VARs versus 20 variables combined TVP-VARs with a GLS correction. The figure shows the Cumulative Sum of Squared Forecast Errors Differentials between the equal weights forecast combination of 20 variables VARs with time varying parameters and equal weights forecast combination of 78 variables VARs with time varying parameters and the GLS correction described in Section 2.5. Positive and increasing values indicate that the TVP model with 20 variables without GLS correction outperforms the benchmark, while negative and decreasing values suggest the opposite. Shaded areas indicated NBER-dated recessions.

Figure 11: Root Mean Square Forecast Errors: 7 variables combined TVP-VARs versus 7 variables combined TVP-VARs with a GLS correction. The bar plots show the RMSE obtained by equal weights forecast combination of 20 variables VARs with time varying parameters relative to that obtained by equal weights forecast combination of 20 variables VARs with time varying parameters and the GLS correction described in Section 2.5. Values below 1 imply that the TVP model with 20 variables without GLS correction outperforms the benchmark. Bars in grey indicate the forecast horizons for which a Diebold-Mariano test does not reject the null hypothesis of equal forecast accuracy, those in red denote the cases for which forecast accuracy is significantly different at the 10% confidence level.

Figure 12: Cumulative sum of squared forecast error differentials: 7 variables combined TVP-VARs versus 7 variables combined TVP-VARs with a GLS correction. The figure shows the Cumulative Sum of Squared Forecast Errors Differentials between the equal weights forecast combination of 20 variables VARs with time varying parameters and equal weights forecast combination of 78 variables VARs with time varying parameters and the GLS correction described in Section 2.5. Positive and increasing values indicate that the TVP model with 20 variables without GLS correction outperforms the benchmark, while negative and decreasing values suggest the opposite. Shaded areas indicated NBER-dated recessions.

Figure 13: Forecast accuracy, nonparametric and parametric estimators

Note to Figure 13. The bar plots show the ratio between the RMSE attained by, respectively, the nonparametric and the parametric model. Values below 1 imply that the nonparametric model outperforms the parametric one. Bars in grey indicate that the Diebold-Mariano test does not reject the null hypothesis of equal forecast accuracy, while those in red denote the cases for which forecast accuracy is significantly different at the 10% confidence level.

Market group	Acronym	Weight
Industrial Production Index	INDPRO	100
Industrial Production: Business Equipment	IPBUSEQ	9.18
Industrial Production: Consumer Goods	IPCONGD	27.2
Industrial Production: Durable Consumer Goods	IPDCONGD	5.59
Industrial Production: Nondurable Consumer Goods	IPNCONGD	21.62
Industrial Production: Final Products (Market Group)	IPFINAL	16.58
Industrial Production: Materials	IPMAT	47.03
Industrial Production: Durable Materials	IPDMAT	17.34
Industrial Production: Nondurable Materials	IPNMAT	11.44

Table 5: Industrial production indexes by market group

Note to Table 5. The shares of market groups refer to 2011 Value added in nominal terms. Nondurable consumer goods includes Consumer Energy products, which account for 5.7% of total IP. We have excluded from the analysis Industrial Production of Energy Materials, which is part of the Materials (IPMAT) group and accounts for 18.3% of overall output. Source http://www.federalreserve.gov/releases/g17/g17tab1.txt

oil

Materials

1974 1978 1982 1986 1990

2006 2010

1994 1998 2002

1.5

1

0.5 、

0 -

-0.5 -1 -1.5 -2

-2.5 -

Figure 15: Response of Industrial production (sectors) to a 1% shock to the real price of oil

Figure 16: Contribution of selected sectors to the response of overall Industrial production (12 months out) to a 1% shock to the real price of oil

A Proof of Theorem 1

Starting from (18), we have:

$$\widehat{\Theta}_t = (S_w^{-1} X'_{w,t} X_{w,t}) \widehat{\Theta}_{t,GKY} + S_w^{-1} (\lambda \overline{R}' \overline{R}) \Theta_C$$
(35)

$$= (S_w^{-1} X'_{w,t} X_{w,t}) \widehat{\Theta}_{t,GKY} + S_w^{-1} (\lambda \overline{R}' \overline{R}) \Theta_t + S_w^{-1} \sqrt{\lambda} \overline{R}' \overline{u}_t^r$$
(36)

where we have used the fact that

$$\Theta_C = (\overline{R}'\overline{R})^{-1}(\overline{R}'\overline{r}) \tag{37}$$

$$= (\overline{R}'\overline{R})^{-1} \left(\overline{R}' \left(\overline{R}\Theta_t + \frac{1}{\sqrt{\lambda}} \overline{u}_t^r \right) \right)$$
(38)

$$= \Theta_t + (\overline{R}'\overline{R})^{-1}\overline{R}'\frac{1}{\sqrt{\lambda}}\overline{u}_t^r$$
(39)

Taking probability limits, recalling that $p \lim \widehat{\Theta}_{t,GKY} = \Theta_t$, and that $S_w = (X'_{w,t}X_{w,t} + \lambda \overline{R}'\overline{R})$ we have that:

$$p \lim \left(S_w^{-1} X'_{w,t} X_{w,t} \right) \widehat{\Theta}_{t,GKY} + S_w^{-1} \left(\lambda \overline{R}' \overline{R} \right) \Theta_t + S_w^{-1} \overline{R}' \lambda \overline{u}_t^r = \Theta_t + \Theta_t^B$$

To determine the normalising factor in (19), let us go back to the representation in (14) and let us take differences from the true parameter matrix Θ_t and from the bias term Θ_t^B . We obtain:

$$\begin{aligned} \widehat{\Theta}_{t} - \Theta_{t} - \Theta_{t}^{B} &= \left(\sum_{j=1}^{T} w_{j,t} x_{j}^{*} x_{j}^{*}\right)^{-1} \left(\sum_{j=1}^{T} w_{j,t} x_{j}^{*} y_{j}^{*}\right) - \Theta_{t} - \Theta_{t}^{B} \\ &= \left(\sum_{j=1}^{T} w_{j,t} x_{j}^{*} x_{j}^{*}\right)^{-1} \left(\sum_{j=1}^{T} w_{j,t} x_{j}^{*} (x_{j}^{*} \Theta_{j} + u_{j}^{*})\right) - \Theta_{t} - \Theta_{t}^{B} \\ &= \left(\sum_{j=1}^{T} w_{j,t} x_{j}^{*} x_{j}^{*}\right)^{-1} \left(\sum_{j=1}^{T} w_{j,t} x_{j}^{*} x_{j}^{*} \Theta_{j}\right) + \\ &+ \left(\sum_{j=1}^{T} w_{j,t} x_{j}^{*} x_{j}^{*}\right)^{-1} \left(\sum_{j=1}^{T} w_{j,t} x_{j}^{*} x_{j}^{*}\right) - \Theta_{t} - \Theta_{t}^{B} \\ &= \left(\sum_{j=1}^{T} w_{j,t} x_{j}^{*} x_{j}^{*}\right)^{-1} \sum_{j=1}^{T} w_{j,t} x_{j}^{*} x_{j}^{*} (\Theta_{j} - \Theta_{t}) + \\ &+ \left(\sum_{j=1}^{T} w_{j,t} x_{j}^{*} x_{j}^{*}\right)^{-1} \left(\sum_{j=1}^{T} w_{j,t} x_{j}^{*} u_{j}^{*} - \sum_{j=1}^{T} w_{j,t} x_{j}^{*} x_{j}^{*} \Theta_{t}^{B}\right). \end{aligned}$$

$$(40)$$

Now, if the bandwidth is $o(T^{1/2})$, then the term $\left(\sum_{j=1}^{T} w_{j,t} x_j^* x_j^{*\prime}\right)^{-1} \sum_{j=1}^{T} w_{j,t} x_j^* x_j^{*\prime} (\Theta_j - \Theta_t)$ is asymptotically negligible and we can focus on the element in (40).

First let us simplify the notation and let us write:

1.
$$\underbrace{X_{w,t}^{*'}X_{w,t}^{*}}_{k\times k} \equiv \sum_{j=1}^{T} w_{jt} \underbrace{x_{j}^{*}}_{k\times (k+1)(k+1)\times k} \underbrace{x_{j}^{*'}}_{k\times k}$$

2. $\underbrace{X_{ww,t}^{*'}}_{\substack{k \times T(k+1) \\ k \times n}} \underbrace{U^*}_{\substack{k \times n \\ k \times n}} \equiv \sum_{j=1}^T w_{j,t} \underbrace{x_j^*}_{\substack{k \times (k+1)(k+1) \times n \\ k \times (k+1)(k+1) \times n}} \underbrace{u_j^*}_{\substack{k \times n \\ k \times n \\ u_t^* \\ (k+1) \times n}}, \text{ where the } T(k+1) \times n \text{ matrix } U^* \text{ is obtained}$

3.
$$\underbrace{\Lambda'}_{k \times k} \equiv (\underbrace{X_{w,t}^{*'} X_{w,t}^{*}}_{k \times k}) \underbrace{S_{w}^{-1}}_{k \times k} \lambda \underbrace{\overline{R'}}_{k \times k}, \text{ which implies that } (X_{w,t}^{*'} X_{w,t}^{*}) \Theta_{t}^{B} = (X_{w,t}^{*'} X_{w,t}^{*}) S_{w}^{-1} \lambda \overline{R'} \overline{u}_{t}^{r} = \Lambda' \overline{u}_{t}^{r}$$

Now, let us multiply the transpose of $\left(\widehat{\Theta}'_t - \Theta'_t - \Theta'^B_t\right)$ by \sqrt{H} , and let us focus on (40):

$$\sqrt{H}\left(\widehat{\Theta}'_t - \Theta'_t - \Theta'^B_t\right) = \left(\frac{1}{\sqrt{H}}\left(U'^* X^*_{ww,t} - \overline{u}'^r_t\Lambda\right)\right) \left(\frac{1}{H} X^{*\prime}_{w,t} X^*_{w,t}\right)^{-1}.$$

Taking *vec* of both sides yields:

$$\sqrt{H}vec\left(\widehat{\Theta}'_{t}-\Theta'_{t}-\Theta'_{t}\right) = \left(H\left(X_{w,t}^{*\prime}X_{w,t}^{*}\right)^{-1}\otimes I_{n}\right)vec\left(\frac{1}{\sqrt{H}}\left(U^{'*}X_{ww,t}^{*}-\overline{u}_{t}^{'r}\Lambda\right)\right).$$
 (41)

The normalizing term that appears in Theorem 1 is the second moment of this expression. While it is easy to see how $\Gamma_{ww,t}^{*-1}$ is obtained, to derive $\Gamma_{ww,t}^{**}$, we need to analyze the asymptotic variance of the second term of (41), that is $\frac{1}{\sqrt{H}}vec\left(U'^*X_{ww,t}^* - \overline{u}_t'^r\Lambda\right)$. First, notice that:

$$\frac{1}{\sqrt{H}}vec\left(U^{'*}X_{ww,t}^{*}-\overline{u}_{t}^{'r}\Lambda\right) = \frac{1}{\sqrt{H}}\underbrace{\left(X_{ww,t}^{'*}\otimes I_{n}\right)}_{kn\times nT(k+1)}\underbrace{vec\left(U^{'*}\right)}_{nT(k+1)\times 1} - \frac{1}{\sqrt{H}}\underbrace{\left(\Lambda^{'}\otimes I_{n}\right)}_{kn\times kn}\underbrace{u_{t}^{r}}_{kn\times 1}$$
(42)

where we have used the fact that $u_t^r = vec(\overline{u}_t^{'r})$.

There are four elements to be considered, namely two variances and two covariances. Defining again *avar* the asymptotic variance and *acov* the asymptotic covariance, we have the following results.

 $\underline{\text{Term } 1}$:

$$\frac{1}{H} \left(X_{ww,t}^{\prime *} \otimes I_n \right) avar \left(vec \left(U^{\prime *} \right) \right) \left(X_{ww,t}^* \otimes I_n \right) = \frac{1}{H} \left(X_{ww,t}^{\prime *} \otimes I_n \right) \left(I_{T(k+1)} \otimes \Sigma_n \right) \left(X_{ww,t}^* \otimes I_n \right) \\
= \frac{1}{H} \left(X_{ww,t}^{\prime *} X_{ww,t}^* \otimes \Sigma_n \right) \\
= \Gamma_{ww,t}^* \otimes \Sigma_n$$

 $\underline{\text{Term } 2}$:

$$\frac{1}{H}\left(\Lambda'\otimes I_n\right)avar(u_t^r)\left(\Lambda\otimes I_n\right) = \frac{1}{H}\left(\Lambda'\otimes I_n\right)\left(I_k\otimes \Sigma_n\right)\left(\Lambda\otimes I_n\right) = \frac{1}{H}(\Lambda'\Lambda\otimes \Sigma_n)$$

 $\underline{\text{Term } 3}$:

$$\frac{1}{H} \left(X_{ww,t}^{\prime *} \otimes I_n \right) acov \left(\underbrace{vec(U^{\prime *})}_{nT(k+1) \times 1}, \underbrace{(u_t^r)'}_{1 \times kn} \right) \left(\Lambda \otimes I_n \right)$$

To analyse this, notice that:

$$vec(U'^*) = \begin{bmatrix} u_1 \\ u_1^r \\ u_2 \\ u_2^r \\ \dots \\ u_t \\ u_t^r \\ \dots \end{bmatrix}$$

This means that the relevant matrix will contain zeros everywhere but in correspondence of the vector u_t^r appearing in $vec(U'^*)$, where it will equal $I_k \otimes \Sigma_n$. Compactly, this can be written as:

$$\underbrace{acov\left(vec(U^{'*}), \left(vec(\overline{u}_t^r)\right)^{\prime}\right)}_{nT(k+1)\times kn} = \begin{bmatrix} 0_{[(t-1)(k+1)+1]\times k} \\ I_k \\ 0_{(T-t)(k+1)\times k} \end{bmatrix} \otimes \Sigma_n \equiv \underbrace{\Xi}_{T(k+1)\times k} \otimes \Sigma_n.$$

Plugging in this term, we have

$$\frac{1}{H} \left(X_{ww,t}^{\prime *} \otimes I_n \right) cov \left(\underbrace{vec(U^{\prime *})}_{nT(k+1) \times 1}, \underbrace{(u_t^r)^{\prime}}_{1 \times kn} \right) (\Lambda \otimes I_n) = \frac{1}{H} \left(X_{ww,t}^{\prime *} \otimes I_n \right) (\Xi \otimes \Sigma_n) (\Lambda \otimes I_n)$$
$$= \frac{1}{H} \left(\underbrace{X_{ww,t}^{\prime *} \Xi \Lambda}_{k \times k} \otimes \Sigma_n \right)$$

<u>Term 4</u>: is simply the transpose of Term 3.

Collecting terms we have that the main normalising term is:

$$\Gamma_{ww,t}^{**} \otimes \Sigma_n = \left(\Gamma_{ww,t}^* \otimes \Sigma_n\right) + \frac{1}{H} \left[\left(\Lambda' \Lambda \otimes \Sigma_n\right) - \left(X_{ww,t}'^* \Xi \Lambda \otimes \Sigma_n\right) - \left(\Lambda' \Xi X_{ww,t}^* \otimes \Sigma_n\right) \right]$$

$$= \frac{1}{H} \left[(H\Gamma_{ww,t}^* + \Lambda'\Lambda - X_{ww,t}'^* \Xi \Lambda - \Lambda' \Xi X_{ww,t}^*) \otimes \Sigma_n \right]$$

From this the proof follows.

B Proof of Theorem 2

Replacing in (20) y_j and r with the processes implied by the model (9)-(10) we have:

$$\widehat{\beta}_t - \beta_t = \left[\sum_{j=1}^T w_{j,t}(I_n \otimes x_j x'_j) + \lambda R' R\right]^{-1} \left[\sum_{j=1}^T w_{j,t}(I_n \otimes x_j x'_j + \lambda R' R)(\beta_j - \beta_t - \beta_t^B)\right] + \left[I_n \otimes \sum_{j=1}^T w_{j,t} x_j x'_j + \lambda R' R\right]^{-1} \left[\sum_{j=1}^T w_{j,t}(I_n \otimes x_j) u_j + \sqrt{\lambda} R' u_t^r)\right]$$

where, again, the term that multiplies $(\beta_j - \beta_t)$ is negligible assuming that the bandwidth is $o_p(T^{1/2})$. The analysis of the estimation bias and the convergence to normality follows trivially as in Theorem 1, so we do not repeat it here.

C Proof of Theorem 3

Let us rewrite the constrained estimator as a linear combination of the unconstrained one and of the constraints. If we define $E = I_n \otimes \sum_{j=1}^T w_{j,t} x_j x'_j$, $F = \lambda R' R$, and $G = \sum_{j=1}^T w_{j,t} \operatorname{vec}(x_j y'_j) = \sum_{j=1}^T w_{j,t} (I_n \otimes x_j) y'_j$, then the unconstrained estimator is $\widehat{\beta}_{t,GKY} = E^{-1}G$. We can therefore write (20) as:

$$\widehat{\beta}_t = [E+F]^{-1} \left[E\widehat{\beta}_{t,GKY} + \lambda R'r \right]$$

Defining $C = avar(\widehat{\beta}_{t,GKY}|\beta^T)$ we have that for any vector q and $w = E[E+F]^{-1}q$

$$\begin{aligned} q'\left(avar(\widehat{\beta}_{t,GKY}|\beta^{T}) - avar(\widehat{\beta}_{t}|\beta^{T})\right) q &= q'(C - [E + F]^{-1} ECE [E + F]^{-1})q \\ &= w'(E^{-1} [E + F] C [E + F] E^{-1} - C)w \\ &= w'([I + E^{-1}F] C [I + FE^{-1}] - C)w \\ &= w'([C + E^{-1}FC] [I + FE^{-1}] - C)w \\ &= w'(C + E^{-1}FC + CFE^{-1} + E^{-1}FCFE^{-1} - C)w \\ &= w'(E^{-1}FC + CFE^{-1} + E^{-1}FCFE^{-1} - C)w \\ &= w'(E^{-1}FC + CFE^{-1} + E^{-1}FCFE^{-1})w \ge 0, \end{aligned}$$

which proves the result.³²

³²This can also be seen intuitively by noticing that $avar\left(\hat{\beta}_t|\beta^T\right)$ has a lower bound at 0, attained when $\lambda \to \infty$, and an upper bound at $avar(\hat{\beta}_{t,GKY}|\beta^T)$, corresponding to $\lambda = 0$. Furthermore $[E+F]^{-1}E$ falls

Next, we turn to a comparison of the (conditional) Mean Squared Error of the constrained and unconstrained non-parametric estimators. We see that the ranking is not clear-cut, unless a certain condition is satisfied.

Following Alkhamisi and Shukur (2008), let us analyse the *canonical*³³ version of model (13). Let Λ and Ψ be the eigenvalues/eigenvectors of $X_{w,t}^{*\prime}X_{w,t}^{*}$, i.e. $X_{w,t}^{*\prime}X_{w,t}^{*} = \Psi\Lambda\Psi'$ and $\Psi\Psi' = I_k$. Defining $\tilde{y}_t = \sqrt{w_{t,t}}y_t$, $\tilde{x}_t = \sqrt{w_{t,t}}x_t$, $\tilde{u}_t = \sqrt{w_{t,t}}u_t$, the *weighted* regression model (in matrix form) is:

$$\begin{split} \widetilde{y}_t' &= \widetilde{x}_t' \Theta_t + \widetilde{u}_t', \\ 1 \times n &= 1 \times kk \times n \\ \sqrt{\lambda} \overline{r} &= \sqrt{\lambda} \overline{R} \Theta_t + \overline{u}^r, \\ k \times n &= k \times k \\ k \times n &= k \times n. \end{split}$$

Using $\Psi \Psi' = I_k$ we can write $\tilde{z}_t' = \tilde{x}_t' \Psi$ and $\Xi_t = \Psi' \Theta_t$, and re-state the model in canonical form as:

$$\begin{split} \widetilde{y}_t' &= \widetilde{z}_t' \, \Xi_t + \widetilde{u}_t', \\ 1 \times n & 1 \times kk \times n + 1 \times n, \\ \sqrt{\lambda} \overline{r} &= \sqrt{\lambda} \overline{R} \, \Theta_t + \overline{u}^r, \\ k \times n & k \times k + k \times n, \end{split}$$

The unconstrained estimator of Ξ_t is then:

$$\begin{split} \Xi^u_t &= (Z^{*\prime}_{w,t} Z^*_{w,t})^{-1} (Z^{*\prime}_{w,t} Y^*_{w,t}) \\ &= \left(\Psi' X^{*\prime}_{w,t} X^*_{w,t} \Psi \right)^{-1} (Z^{*\prime}_{w,t} Y^*_{w,t}) \\ &= \Lambda^{-1} (Z^{*\prime}_{w,t} Y^*_{w,t}), \end{split}$$

We can derive the conditional Mean Square Error of the unconstrained estimator as:

$$MSE(\Xi_t^u|\Xi_t) = V^u = \left(\frac{1}{H}\Lambda\right)^{-1} \left(\frac{1}{H}Z_{w,t}^{*\prime}W_{H,t}Z_{ww,t}^{*\prime}\right) \left(\frac{1}{H}\Lambda\right)^{-1} \otimes \Sigma_n = \overline{V}^u \otimes \Sigma_n.$$
(43)

The constrained estimator is

$$\Xi_t^c = (\Lambda + \lambda \overline{R}' \overline{R})^{-1} (Z_{w,t}^{*\prime} Y_{w,t}^* + \lambda \overline{R}' \overline{r}),$$

The conditional Mean Square Error of the constrained estimator is:

$$MSE(\Xi_t^c|\Xi_t) = V^c = \left(\frac{1}{H}\Lambda + \Phi\right)^{-1} \left(\frac{1}{H}Z_{w,t}^{*\prime}W_{H,t}Z_{ww,t}^{*\prime} + \Phi\right) \left(\frac{1}{H}\Lambda + \Phi\right)^{-1} \otimes \Sigma_n = \overline{V}^c \otimes \Sigma_n, \quad (44)$$

where $\Phi = \frac{\lambda}{H} \overline{R}' \overline{R}$. To study the conditions under which $\overline{V}^u - \overline{V}^c$ is a positive semidefinite matrix, let us consider equivalently the quadratic form:³⁴

$$\beta' \left(\Lambda + \Phi \right) \left[\overline{V}^u - \overline{V}^c \right] \left(\Lambda + \Phi \right) \beta =$$

monotonically as λ increases. It follows that $avar\left(\widehat{\beta}_t|\beta^T\right) \leq avar(\widehat{\beta}_{t,GKY}|\beta^T)$ for every positive value of λ . ³³In the canonical form the regressors are orthogonalised, as clarified below.

³⁴To simplify the notation, in what follows we have set H = 1. This assumption is immaterial, since this term can be factored out.

$$= \beta' (\Lambda + \Phi) \Lambda^{-1} \underbrace{Z_{w,t}^{*\prime} W_{H,t} Z_{ww,t}^{*\prime}}_{\equiv A} \Lambda^{-1} (\Lambda + \Phi) \beta - \beta' \underbrace{Z_{w,t}^{*\prime} W_{H,t} Z_{ww,t}^{*\prime}}_{\equiv A} + \Phi \beta$$
$$= \beta' \left[(I + \Phi \Lambda^{-1}) A (I + \Lambda^{-1} \Phi) - (A + \Phi) \right] \beta$$
$$= \beta' \left[A + A \Lambda^{-1} \Phi + \Phi \Lambda^{-1} A + \Phi \Lambda^{-1} A \Lambda^{-1} \Phi - A - \Phi \right] \beta$$
$$= \beta' \left[A \Lambda^{-1} \Phi + \Phi \Lambda^{-1} A + \Phi \Lambda^{-1} A \Lambda^{-1} \Phi - \Phi \right] \beta.$$

Hence, if the quantity $[A\Lambda^{-1}\Phi + \Phi\Lambda^{-1}A + \Phi\Lambda^{-1}A\Lambda^{-1}\Phi - \Phi]$ is positive semidefinite it follows that $\overline{V}^u - \overline{V}^c$ is indeed a semidefinite positive matrix suggesting such a relationship for the mean square errors of the respective estimators. Notice that the required condition is related to the amount of collinearity among the regressors. Specifically, a high degree of collinearity in the time series collected in the matrix $X_{w,t}^*$ will push some eigenvalues of $X_{w,t}^{*\prime}X_{w,t}^*$ close to 0, therefore making Λ^{-1} tend to ∞ .

D Monte Carlo exercise

In the Monte Carlo exercise the coefficients Λ_t are obtained through the following algorithm.

- 1. First, simulate $n^2 + n$ coefficients according to the chosen DGP, where n is the size of the VAR.
- 2. The coefficients are then bounded by the largest one, so as to be lower or equal to 1 in absolute value.
- 3. At each t the first n^2 coefficients are orthogonalised through the Grahm-Shmidt procedure and used to form an $n \times n$ orthonormal matrix. Call this matrix P_t .
- 4. The last n coefficients are used to form a diagonal matrix of eigenvalues L_t . At each point in time the elements of L_t (call them l_t) are transformed using the following function

$$l_t = 0.5(1 + \theta_L + eps) + 0.5(1 - \theta_L - eps) \arctan(l_t) / \arctan(1) - eps$$

where l_t are the input eigenvalues (that by construction lie between -1 and 1), θ_L is the desired lower bound and *eps* is a small constant that ensures that the upper bound is 1 - eps, that is strictly below 1. The resulting function is relatively smooth, as it can be seen in Figure D.17 where \tilde{l}_t is plotted against the possible values of l_t (on the x axis there are 201 equally spaced points between -1 and 1) and $\theta_L = 0.85$.

5. Construct $\Lambda_t = P_t \widetilde{L}_t P'_t$

E Dynamic model selection

The estimation method of the parametric model suggested by Koop and Korobilis depends on a number of constants, the so called forgetting factor, θ , the prior tightness for the initial conditions λ and the constant κ . To select θ and λ we follow their dynamic model selection (DMS) algorithm. First the forgetting factor θ is made time-varying as follows:

$$\theta_t = \theta_{\min} + (1 - \theta_{\min}) L^{f_t} \tag{45}$$

Figure D.17: Constrained simulated coefficients

where $f_t = -NINT(\hat{\varepsilon}_{t-1}\hat{\varepsilon}_{t-1})$, NINT is the rounding to the nearest integer function, $\hat{\varepsilon}_{t-1}$ are the one step ahead forecast errors, $\theta = 0.96$, L = 1.1 (values calibrated to obtain a forgetting factor between 0.96 and 1). As for the prior tightness we use a grid of J values. Each point in this grid defines a new model. Weights for each model j (defined $\pi_{t/t-1,j}$) are obtained by Koop and Korobilis as a function of the predictive density at time t-1 through the following recursions:

$$\pi_{t/t-1,j} = \frac{\pi_{t-1/t-1,j}^{\alpha}}{\sum_{l=1}^{J} \pi_{t-1/t-1,l}^{\alpha}}$$
(46)

$$\pi_{t/t,j} = \frac{\pi_{t/t-1,j} p_j(y_t | y^{t-1})}{\sum_{l=1}^J \pi_{t/t-1,l} p_l(y_t | y^{t-1})}$$
(47)

where $p_j(y_t|y^{t-1})$ is the predictive likelihood. Since this is a function of the prediction errors and of the prediction errors variance, which are part of the output of the Kalman filter, the model weights can be computed at no cost along with the model parameters estimation. Note that here a new forgetting factor appears, α , which discounts past predictive likelihoods and is set to 0.99. The constant κ is set to 0.96 throughout the exercise. At each point in time, forecast are obtained on the basis of the model with the highest weight $\pi_{t/t-1,j}$.

- N. 1092 Copula-based random effects models for clustered data, by Santiago Pereda Fernández (December 2016).
- N. 1093 *Structural transformation and allocation efficiency in China and India*, by Enrica Di Stefano and Daniela Marconi (December 2016).
- N. 1094 *The bank lending channel of conventional and unconventional monetary policy*, by Ugo Albertazzi, Andrea Nobili and Federico M. Signoretti (December 2016).
- N. 1095 Household debt and income inequality: evidence from Italian survey data, by David Loschiavo (December 2016).
- N. 1096 A goodness-of-fit test for Generalized Error Distribution, by Daniele Coin (February 2017).
- N. 1097 *Banks, firms, and jobs*, by Fabio Berton, Sauro Mocetti, Andrea Presbitero and Matteo Richiardi (February 2017).
- N. 1098 Using the payment system data to forecast the Italian GDP, by Valentina Aprigliano, Guerino Ardizzi and Libero Monteforte (February 2017).
- N. 1099 Informal loans, liquidity constraints and local credit supply: evidence from Italy, by Michele Benvenuti, Luca Casolaro and Emanuele Ciani (February 2017).
- N. 1100 Why did sponsor banks rescue their SIVs?, by Anatoli Segura (February 2017).
- N. 1101 *The effects of tax on bank liability structure*, by Leonardo Gambacorta, Giacomo Ricotti, Suresh Sundaresan and Zhenyu Wang (February 2017).
- N. 1102 *Monetary policy surprises over time*, by Marcello Pericoli and Giovanni Veronese (February 2017).
- N. 1103 An indicator of inflation expectations anchoring, by Filippo Natoli and Laura Sigalotti (February 2017).
- N. 1104 A tale of fragmentation: corporate funding in the euro-area bond market, by Andrea Zaghini (February 2017).
- N. 1105 *Taxation and housing markets with search frictions*, by Danilo Liberati and Michele Loberto (March 2017).
- N. 1106 *I will survive. Pricing strategies of financially distressed firms*, by Ioana A. Duca, José M. Montero, Marianna Riggi and Roberta Zizza (March 2017).
- N. 1107 STEM graduates and secondary school curriculum: does early exposure to science matter?, by Marta De Philippis (March 2017).
- N. 1108 Lending organization and credit supply during the 2008-09 crisis, by Silvia del Prete, Marcello Pagnini, Paola Rossi and Valerio Vacca (April 2017).
- N. 1109 *Bank lending in uncertain times*, by Piergiorgio Alessandri and Margherita Bottero (April 2017).
- N. 1110 Services trade and credit frictions: evidence from matched bank-firm data, by Francesco Bripi, David Loschiavo and Davide Revelli (April 2017).
- N. 1111 Public guarantees on loans to SMEs: an RDD evaluation, by Guido de Blasio, Stefania De Mitri, Alessio D'Ignazio, Paolo Finaldi Russo and Lavina Stoppani (April 2017).
- N.1112 Local labour market heterogeneity in Italy: estimates and simulations using responses to labour demand shocks, by Emanuele Ciani, Francesco David and Guido de Blasio (April 2017).
- N. 1113 Liquidity transformation and financial stability: evidence from the cash management of open-end Italian mutual funds, by Nicola Branzoli and Giovanni Guazzarotti (April 2017).
- N. 1114 Assessing the risks of asset overvaluation: models and challenges, by Sara Cecchetti and Marco Taboga (April 2017).

^(*) Requests for copies should be sent to:

Banca d'Italia – Servizio Studi di struttura economica e finanziaria – Divisione Biblioteca e Archivio storico – Via Nazionale, 91 – 00184 Rome – (fax 0039 06 47922059). They are available on the Internet www.bancaditalia.it.

- ALBERTAZZI U., G. ERAMO, L. GAMBACORTA and C. SALLEO, Asymmetric information in securitization: an empirical assessment, Journal of Monetary Economics, v. 71, pp. 33-49, TD No. 796 (February 2011).
- ALESSANDRI P. and B. NELSON, *Simple banking: profitability and the yield curve,* Journal of Money, Credit and Banking, v. 47, 1, pp. 143-175, **TD No. 945 (January 2014).**
- ANTONIETTI R., R. BRONZINI and G. CAINELLI, *Inward greenfield FDI and innovation*, Economia e Politica Industriale, v. 42, 1, pp. 93-116, **TD No. 1006** (March 2015).
- BARONE G. and G. NARCISO, Organized crime and business subsidies: Where does the money go?, Journal of Urban Economics, v. 86, pp. 98-110, **TD No. 916** (June 2013).
- BRONZINI R., The effects of extensive and intensive margins of FDI on domestic employment: microeconomic evidence from Italy, B.E. Journal of Economic Analysis & Policy, v. 15, 4, pp. 2079-2109, TD No. 769 (July 2010).
- BUGAMELLI M., S. FABIANI and E. SETTE, The age of the dragon: the effect of imports from China on firmlevel prices, Journal of Money, Credit and Banking, v. 47, 6, pp. 1091-1118, TD No. 737 (January 2010).
- BULLIGAN G., M. MARCELLINO and F. VENDITTI, *Forecasting economic activity with targeted predictors,* International Journal of Forecasting, v. 31, 1, pp. 188-206, **TD No. 847 (February 2012).**
- BUSETTI F., On detecting end-of-sample instabilities, in S.J. Koopman, N. Shepard (eds.), Unobserved Components and Time Series Econometrics, Oxford, Oxford University Press, TD No. 881 (September 2012).
- CESARONI T., *Procyclicality of credit rating systems: how to manage it*, Journal of Economics and Business, v. 82. pp. 62-83, **TD No. 1034** (October 2015).
- CIARLONE A., *House price cycles in emerging economies*, Studies in Economics and Finance, v. 32, 1, **TD No. 863 (May 2012).**
- CUCINIELLO V. and F. M. SIGNORETTI, *Large banks,loan rate markup and monetary policy*, International Journal of Central Banking, v. 11, 3, pp. 141-177, **TD No. 987** (November 2014).
- DE BLASIO G., D. FANTINO and G. PELLEGRINI, *Evaluating the impact of innovation incentives: evidence from an unexpected shortage of funds*, Industrial and Corporate Change, v. 24, 6, pp. 1285-1314, **TD No. 792 (February 2011).**
- DEPALO D., R. GIORDANO and E. PAPAPETROU, *Public-private wage differentials in euro area countries:* evidence from quantile decomposition analysis, Empirical Economics, v. 49, 3, pp. 985-1115, **TD No. 907 (April 2013).**
- DI CESARE A., A. P. STORK and C. DE VRIES, *Risk measures for autocorrelated hedge fund returns*, Journal of Financial Econometrics, v. 13, 4, pp. 868-895, **TD No. 831 (October 2011).**
- FANTINO D., A. MORI and D. SCALISE, Collaboration between firms and universities in Italy: the role of a firm's proximity to top-rated departments, Rivista Italiana degli economisti, v. 1, 2, pp. 219-251, TD No. 884 (October 2012).
- FRATZSCHER M., D. RIMEC, L. SARNOB and G. ZINNA, *The scapegoat theory of exchange rates: the first tests*, Journal of Monetary Economics, v. 70, 1, pp. 1-21, **TD No. 991 (November 2014).**
- NOTARPIETRO A. and S. SIVIERO, *Optimal monetary policy rules and house prices: the role of financial frictions,* Journal of Money, Credit and Banking, v. 47, S1, pp. 383-410, **TD No. 993 (November 2014).**
- RIGGI M. and F. VENDITTI, *The time varying effect of oil price shocks on euro-area exports*, Journal of Economic Dynamics and Control, v. 59, pp. 75-94, **TD No. 1035 (October 2015).**
- TANELI M. and B. OHL, *Information acquisition and learning from prices over the business cycle*, Journal of Economic Theory, 158 B, pp. 585–633, **TD No. 946 (January 2014).**

- ALBANESE G., G. DE BLASIO and P. SESTITO, *My parents taught me. evidence on the family transmission of values,* Journal of Population Economics, v. 29, 2, pp. 571-592, **TD No. 955 (March 2014).**
- ANDINI M. and G. DE BLASIO, *Local development that money cannot buy: Italy's Contratti di Programma,* Journal of Economic Geography, v. 16, 2, pp. 365-393, **TD No. 915 (June 2013).**
- BARONE G. and S. MOCETTI, *Inequality and trust: new evidence from panel data*, Economic Inquiry, v. 54, pp. 794-809, **TD No. 973 (October 2014).**
- BELTRATTI A., B. BORTOLOTTI and M. CACCAVAIO, Stock market efficiency in China: evidence from the split-share reform, Quarterly Review of Economics and Finance, v. 60, pp. 125-137, TD No. 969 (October 2014).
- BOLATTO S. and M. SBRACIA, *Deconstructing the gains from trade: selection of industries vs reallocation of workers*, Review of International Economics, v. 24, 2, pp. 344-363, **TD No. 1037 (November 2015).**
- BOLTON P., X. FREIXAS, L. GAMBACORTA and P. E. MISTRULLI, *Relationship and transaction lending in a crisis*, Review of Financial Studies, v. 29, 10, pp. 2643-2676, **TD No. 917 (July 2013).**
- BONACCORSI DI PATTI E. and E. SETTE, Did the securitization market freeze affect bank lending during the financial crisis? Evidence from a credit register, Journal of Financial Intermediation, v. 25, 1, pp. 54-76, TD No. 848 (February 2012).
- BORIN A. and M. MANCINI, Foreign direct investment and firm performance: an empirical analysis of *Italian firms*, Review of World Economics, v. 152, 4, pp. 705-732, **TD No. 1011 (June 2015).**
- BRAGOLI D., M. RIGON and F. ZANETTI, *Optimal inflation weights in the euro area*, International Journal of Central Banking, v. 12, 2, pp. 357-383, **TD No. 1045** (January 2016).
- BRANDOLINI A. and E. VIVIANO, Behind and beyond the (headcount) employment rate, Journal of the Royal Statistical Society: Series A, v. 179, 3, pp. 657-681, TD No. 965 (July 2015).
- BRIPI F., *The role of regulation on entry: evidence from the Italian provinces*, World Bank Economic Review, v. 30, 2, pp. 383-411, **TD No. 932 (September 2013).**
- BRONZINI R. and P. PISELLI, *The impact of R&D subsidies on firm innovation*, Research Policy, v. 45, 2, pp. 442-457, **TD No. 960 (April 2014).**
- BURLON L. and M. VILALTA-BUFI, A new look at technical progress and early retirement, IZA Journal of Labor Policy, v. 5, **TD No. 963 (June 2014).**
- BUSETTI F. and M. CAIVANO, The trend-cycle decomposition of output and the Phillips Curve: bayesian estimates for Italy and the Euro Area, Empirical Economics, V. 50, 4, pp. 1565-1587, TD No. 941 (November 2013).
- CAIVANO M. and A. HARVEY, *Time-series models with an EGB2 conditional distribution*, Journal of Time Series Analysis, v. 35, 6, pp. 558-571, **TD No. 947** (January 2014).
- CALZA A. and A. ZAGHINI, *Shoe-leather costs in the euro area and the foreign demand for euro banknotes,* International Journal of Central Banking, v. 12, 1, pp. 231-246, **TD No. 1039 (December 2015).**
- CIANI E., *Retirement, Pension eligibility and home production*, Labour Economics, v. 38, pp. 106-120, **TD** No. 1056 (March 2016).
- CIARLONE A. and V. MICELI, Escaping financial crises? Macro evidence from sovereign wealth funds' investment behaviour, Emerging Markets Review, v. 27, 2, pp. 169-196, TD No. 972 (October 2014).
- CORNELI F. and E. TARANTINO, *Sovereign debt and reserves with liquidity and productivity crises*, Journal of International Money and Finance, v. 65, pp. 166-194, **TD No. 1012** (June 2015).
- D'AURIZIO L. and D. DEPALO, An evaluation of the policies on repayment of government's trade debt in *Italy*, Italian Economic Journal, v. 2, 2, pp. 167-196, **TD No. 1061 (April 2016).**
- DE BLASIO G., G. MAGIO and C. MENON, Down and out in Italian towns: measuring the impact of economic downturns on crime, Economics Letters, 146, pp. 99-102, TD No. 925 (July 2013).
- DOTTORI D. and M. MANNA, *Strategy and tactics in public debt management*, Journal of Policy Modeling, v. 38, 1, pp. 1-25, **TD No. 1005 (March 2015).**
- ESPOSITO L., A. NOBILI and T. ROPELE, *The management of interest rate risk during the crisis: evidence from Italian banks*, Journal of Banking & Finance, v. 59, pp. 486-504, **TD No. 933 (September 2013).**
- MARCELLINO M., M. PORQUEDDU and F. VENDITTI, *Short-Term GDP forecasting with a mixed frequency dynamic factor model with stochastic volatility*, Journal of Business & Economic Statistics, v. 34, 1, pp. 118-127, **TD No. 896 (January 2013).**

- RODANO G., N. SERRANO-VELARDE and E. TARANTINO, *Bankruptcy law and bank financing*, Journal of Financial Economics, v. 120, 2, pp. 363-382, **TD No. 1013 (June 2015).**
- ZINNA G., *Price pressures on UK real rates: an empirical investigation*, Review of Finance, v. 20, 4, pp. 1587-1630, **TD No. 968 (July 2014).**

2017

- ADAMOPOULOU A. and G.M. TANZI, Academic dropout and the great recession, Journal of Human Capital, V. 11, 1, pp. 35–71, **TD No. 970 (October 2014).**
- ALBERTAZZI U., M. BOTTERO and G. SENE, Information externalities in the credit market and the spell of credit rationing, Journal of Financial Intermediation, v. 30, pp. 61–70, TD No. 980 (November 2014).
- ALESSANDRI P. and H. MUMTAZ, *Financial indicators and density forecasts for US output and inflation*, Review of Economic Dynamics, v. 24, pp. 66-78, **TD No. 977 (November 2014).**
- BRUCHE M. and A. SEGURA, *Debt maturity and the liquidity of secondary debt markets*, Journal of Financial Economics, v. 124, 3, pp. 599-613, **TD No. 1049 (January 2016).**
- DE BLASIO G. and S. POY, *The impact of local minimum wages on employment: evidence from Italy in the* 1950s, Journal of Regional Science, v. 57, 1, pp. 48-74, **TD No. 953 (March 2014).**
- LOBERTO M. and C. PERRICONE, *Does trend inflation make a difference?*, Economic Modelling, v. 61, pp. 351–375, **TD No. 1033 (October 2015).**
- MOCETTI S., M. PAGNINI and E. SETTE, *Information technology and banking organization*, Journal of Journal of Financial Services Research, v. 51, pp. 313-338, **TD No. 752** (March 2010).
- MOCETTI S. and E. VIVIANO, *Looking behind mortgage delinquencies*, Journal of Banking & Finance, v. 75, pp. 53-63, **TD No. 999 (January 2015).**
- PALAZZO F., Search costs and the severity of adverse selection, Research in Economics, v. 71, 1, pp. 171-197, **TD No. 1073 (July 2016).**
- PATACCHINI E., E. RAINONE and Y. ZENOU, *Heterogeneous peer effects in education*, Journal of Economic Behavior & Organization, v. 134, pp. 190–227, **TD No. 1048** (January 2016).

FORTHCOMING

- ADAMOPOULOU A. and E. KAYA, Young Adults living with their parents and the influence of peers, Oxford Bulletin of Economics and Statistics, **TD No. 1038** (November 2015).
- BOFONDI M., L. CARPINELLI and E. SETTE, *Credit supply during a sovereign debt crisis*, Journal of the European Economic Association, **TD No. 909** (April 2013).
- BRONZINI R. and A. D'IGNAZIO, *Bank internationalisation and firm exports: evidence from matched firmbank data*, Review of International Economics, **TD No. 1055 (March 2016).**
- BURLON L., Public expenditure distribution, voting, and growth, Journal of Public Economic Theory, TD No. 961 (April 2014).
- BUSETTI F., *Quantile aggregation of density forecasts*, Oxford Bulletin of Economics and Statistics, **TD No. 979 (November 2014).**
- CESARONI T. and R. DE SANTIS, *Current account "core-periphery dualism" in the EMU*, World Economy, **TD No. 996 (December 2014).**
- CESARONI T. and S. IEZZI, *The predictive content of business survey indicators: evidence from SIGE,* Journal of Business Cycle Research, **TD No. 1031 (October 2015).**
- CONTI P., D. MARELLA and A. NERI, *Statistical matching and uncertainty analysis in combining household income and expenditure data*, Statistical Methods & Applications, **TD No. 1018 (July 2015).**
- D'AMURI F., Monitoring and disincentives in containing paid sick leave, Labour Economics, TD No. 787 (January 2011).
- D'AMURI F. and J. MARCUCCI, *The predictive power of google searches in forecasting unemployment*, International Journal of Forecasting, **TD No. 891 (November 2012).**

- FEDERICO S. and E. TOSTI, *Exporters and importers of services: firm-level evidence on Italy*, The World Economy, **TD No. 877 (September 2012).**
- GIACOMELLI S. and C. MENON, *Does weak contract enforcement affect firm size? Evidence from the neighbour's court,* Journal of Economic Geography, **TD No. 898 (January 2013).**
- MANCINI A.L., C. MONFARDINI and S. PASQUA, *Is a good example the best sermon? Children's imitation of parental reading*, Review of Economics of the Household, **D No. 958 (April 2014).**
- MEEKS R., B. NELSON and P. ALESSANDRI, *Shadow banks and macroeconomic instability*, Journal of Money, Credit and Banking, **TD No. 939** (November 2013).
- MICUCCI G. and P. ROSSI, *Debt restructuring and the role of banks' organizational structure and lending technologies*, Journal of Financial Services Research, **TD No. 763 (June 2010).**
- NATOLI F. and L. SIGALOTTI, *Tail co-movement in inflation expectations as an indicator of anchoring,* International Journal of Central Banking, **TD No. 1025 (July 2015).**
- RIGGI M., Capital destruction, jobless recoveries, and the discipline device role of unemployment, Macroeconomic Dynamics, **TD No. 871 July 2012**).
- SEGURA A., Why did sponsor banks rescue their SIVs?, Review of Finance, TD No. 1100 (February 2017).
- SEGURA A. and J. SUAREZ, *How excessive is banks' maturity transformation?*, Review of Financial Studies, **TD No. 1065 (April 2016).**