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USING THE PAYMENT SYSTEM DATA TO FORECAST THE ITALIAN GDP 

by Valentina Aprigliano*, Guerino Ardizzi** and Libero Monteforte* 

Abstract 

Payment systems track economic transactions and therefore could be considered 
important indicators of economic activity. This paper describes the available monthly data 
on the retail settlement system for Italy and selects some of them for short-term forecasting. 
Using a mixed frequency factor model to predict Italian GDP, we find that payment system 
flows stand out when compared to other standard business cycle indicators. 
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1 Introduction*

Following the global recession the interest for new macroeconomic forecasting tools, especially
those based on monetary and financial information, has been increasing. On the back of the de-
velopments of computational tools for storing and elaborating large-scale datasets, the analysts are
focusing on the search for new timely and reliable information in order to improve the forecasting
ability in real time.

Data on payment instruments (cheques, credit transfers, direct debits, payment cards) could
represent a unique source of information for short-term forecasting of the economic activity, as they
trace economic transactions. This link was already clear at the beginning of the last century, when
Irving Fisher described the seminal equations of the quantitative theory of money writing: “such
elementary equations mean that the money paid in any transaction is the equivalent of the goods
bought at the price of sale” (Fisher, 1912). Moreover the importance of payments, jointly with
banking and asset markets, to understand the functioning of a monetary economics has recently
received a new attention following the body of research called New Monetarist Economics (see
Williamson and Wright 2010 and Schneider and Piazzesi 2015). Nevertheless, the use of payment
data for forecasting purposes has been exploited only recently. Studies for Canada (Galbraith and
Tkacz, 2007), (Galbraith and Tkacz, 2009), Portugal (Esteves, 2009) and Denmark (Carlsen and
Storgaard, 2010) find that payment transactions can help with nowcasting and forecasting private
consumption (and thereby also GDP) on a short-term basis. It is worth noting that this literature
concentrates on payment cards (i.e. ATM/POS transactions as in Esteves 2009 and Carlsen and
Storgaard 2010) or on cheques (Galbraith and Tkacz 2007), thus offering only a partial view of the
economic activity: payments with cards can be related to private consumption but they represent
a small share of the value of payments, especially in Italy.

To the best of our knowledge this paper is the first attempt to assess the ability of retail
payment data to forecast the short-term development of the Italian economic activity. Differently
from the previous literature for other countries, we use a comprehensive set of payment instru-
ments, such as credit transfers, cheques, direct debits and debit cards. This extension allows us to
conduct a more robust forecasting exercise compared to similar studies referred to other countries,
which mainly consider a subset of payment instruments (debit cards or cheques). Such data are
recorded electronically through clearing and settlement circuits managed by the Bank of Italy (for
retail transactions, BI-COMP; for wholesale payments including customer transactions, BI-REL
up to May 2008 and TARGET2-Bank of Italy subsequently) and they are not revised because
they are recorded without errors by construction.1 Another appreciable feature of these data is
their timeliness. Indeed, the payment data are available on a daily basis with a short delay.

We show that there is a close correlation between the retail payment series (PS, onward) and
the main macroeconomic aggregates, such as GDP and its main components. In the empirical

*This paper represents the authors personal opinions and does not reflect the view of the Bank of Italy. Pre-
liminary draft, please do not quote or circulate.
We are grateful to Luca Arciero, Alessandro Barbarino, Claudio Impenna, Massimiliano Marcellino, Antonio Rua,
Roberta Zizza, Francesco Zollino, for useful comments. We also thank the participants to the seminar at the Banca
d’Italia and the partecipants to the CIRET Conference, Copenhagen 2016, Iwcee Conference, Rome 2016, RCEA
Time Series Econometrics Workshop, Rimini 2016.

1Our data are extracted by the payment system infrastructures, while in some structural analysis data are
collected by means of surveys or diaries (see Bagnall et al. 2016).
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application, we develop a mixed frequency dynamic factor model to predict the quarter-on-quarter
growth of the GDP by using a large-scale monthly dataset, which includes standard business cycle
indicators; we perform out of sample forecasting simulations, including and excluding the PS. The
contribution of the PS to the forecasts turns out to be appreciable and promising.

The rest of the paper is organized as follows. Section 2 gives an overview of the payment systems
in Italy. Section 3 introduces the data, providing some descriptive evidence on the relationship
between PS and the main macroeconomic aggregates (3.1) and showing that the Least Absolute
Shrinkage Selector Operator (LASSO, onward) picks the PS amongst the first 13 predictors (out
of the 50 indicators we compiled) to be included in the model (3.2). In Section 4 we describe the
mixed frequency dynamic factor model and in section 5 we look at the forecasting contribution of
the PS. Section 6 draws the conclusions.
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2 Overview of the payment system for the Italian economy

A payment system is the set of instruments, rules, procedures and technologies used to settle
money transfers among economic agents.

We can distinguish between wholesale payments and retail payments. The former typically
involve the banking system handling large-value payments (interbank transactions), more con-
nected with financial markets flows and refinancing operations with national central banks; the
latter refer to transactions within the circuit of individuals and firms and mostly related to the
economic activity (speech by Padoa Schioppa, Seoul May 2004).2

Before the launch of the euro in 1999, the payment system in Europe was highly fragmented.
The Monetary Union posed the problem of harmonizing the infrastructure to transfer money
among economic operators to foster the financial and commercial integration. The broad-based
reorganization of the payment system has been mostly effective for wholesale payments, operated
by two area-wide systems: TARGET2 (Trans-European Automated Real-Time Gross Settlement
Express Transfer System; T2 onward), provided by the Eurosystem, and EURO1, privately owned.
The Bank of Italy, along with Deutsche Bundesbank and Banque de France, contributed to develop
T2, which settles the most part of the wholesale transfers, on a gross-basis in real-time.

As for the retail payments,3 the system is not fully integrated yet. However, since 2014
the Single Euro Payments Area (SEPA, onward) has strongly fostered the standardization and
interoperability among different national clearing and settlement retail systems. The Bank of
Italy manages the BI-Comp clearing system, which works in compliance with the rules of SEPA.
BI-Comp clears the domestic payments on a multilateral net basis. These payments can be settled
both in BI-Comp and in TARGET2. In fact, due to urgency and security reasons, banks may
prefer to settle customers’ payments in TARGET2. This retail branch of TARGET2 is named
TARGET2-retail from here onward (T2-retail for the sake of brevity).

The retail non-cash payments settled through BI-Comp and T2-retail add up to 5 trillion AC
on a yearly basis (about 60% of the total value of retail payments in Italy; 80% if we consider
only electronic payments, excluding postal pre-printed processed and other paper-based credit
transfers), about three times higher than the nominal value of the GDP.4 Although in Italy cash
payment is still the most frequently used instrument of retail payments (about 80% of the number
of retail payments), new information and communication technologies fostered non-cash payments,
mainly those processed through electronic devices, allowing more flexibility and customization. If

2See https://www.ecb.europa.eu/press/key/date/2004/html/sp040513_1.en.html
3The retail payments system generally uses the Clearing and Settlement mechanism (CSM), in which one or more

operators perform clearing (i.e. transmission, matching, confirmation of payments and calculation of a settlement
position) and settlement (completion of the payment).

4Unlike cash payments, which are immediate vis-a-vis transfers of value between the payer and the payee through
banknotes and coins, non-cash payments are exchanges of funds through accounts. Therefore, the relationship
between the payer and the payee is mediated by authorized institutions (such as banks, postal offices), which
actually process the payment before settling the transaction. It follows a crucial distinction depending on the party
submitting the payment order: the credit-based instruments (i.e. credit transfers, card payments), submitted by the
payer, and the debit-based instruments (i.e. direct debits, cheques), submitted by the payee. Credit transfers are
the most common credit-based instrument, while debit-based instruments include direct-debits, card payments and
cheques. For a detailed description of payment instruments see http://www.bancaditalia.it/compiti/
sispaga-mercati/strumenti-pagamento/index.html and Payments, securities and derivatives, and the
role of the Eurosystem, by ECB.
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we consider the value of the transactions, on annual average,5 the share of the cash payments
shrinks to about 45% of the consumer-to-business transactions (for instance, point of sales pur-
chases) and to less than 10% of all transactions, including business-to-business payments. Figure 1
shows the monthly gross flow of retail non-cash payments settled through BI-Comp and T2-retail
in Italy and it also depicts the upward trend in the use of electronic payment instruments (credit
transfer, direct debit, debit cards) against the downtrend of the cheques.

Figure 1: Total payments settled in BI-Comp and TARGET2-retail (values)
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The strong decrease observed in 2014 for credit transfers and for direct debit payments stems from
the changes in the customer payment landscape following the migration to SEPA. Some partic-
ipants reconsidered the routing policies for their customer payments and they ultimately chose
in favour of SEPA-compliant automated clearing houses other than BI-Comp and T2. However,
T2-retail has been less affected, because it meets some specific customers’s demands concerning
urgency and assurance of the payments. The peak reached by direct debits in 2003 is due to
interbank procedural changes and routing policies after the launch of the new domestic real-time

5These data refer to 2014.
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gross settlement system (the so called “New Birel”). As regards cheques payments, the strong in-
crease in 2009 is due to changes to the interbank procedures and to truncation limits for low-value
cheques. More generally, transactions by cheques have been declining over the years because of
the increasing use of electronic payments and the adoption of anti-money laundering restrictions,
which have strongly limited their negotiability between private operators. As regards transactions
by payment cards, the upward jump on July 2001 was caused by the inclusion of point of sale
payments (POS); the peak in 2015 is due to more recent regulatory changes in the card market
and to the inclusion of postal debit card and automated teller machine (ATM) transactions in the
BI-Comp system.

Figure 2 depicts the share of transactions enabled by different payment instruments on the total
gross flows settled in BI-Comp. Credit transfers represent the largest share (almost 55%);6 also
direct debits have a sizeable weight (29%) since they provide a very handy solution to manage
recurrent payments (e.g. utility bills, mortgage payments). Payment cards are far less used,
accounting for only 3% of the total non-cash payments; the agents use payment cards for low-
value transactions (50-100 AC for POS; 100 - 200 AC for ATM).

Figure 2: Total payments settled in BI-COMP
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However, a large share of credit card payments are recorded as direct debits, since credit card
statements are often charged on the payer’s bank current account. Italy is lagging behind for
non-cash payment instruments compared to the other euro area major countries. Although retail
cash transactions are not recorded in the clearing and settlement systems, ATM operations settled
through the interbank procedures in BI-COMP may be a useful proxy of the demand for cash
because there is a strong correlation between the amount of cash acquired at the ATM and the
cash used at the point of sale.

6For business purposes credit transfers are the most popular and suitable payment instrument indeed (they
account for 80% of the total value of the business-to-business transactions; direct debits add up to 10% as well as
cheques).
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3 Data

3.1 Payments data and macroeconomic aggregates

In this section we glance at some descriptive statistics which prove the tight relationship be-
tween the main macroeconomic aggregates (such as GDP, value added in service sector, private
consumption and gross fixed investments) and the payment flows. In our analysis, we focus on
retail payment instruments since they are used to settle commercial transactions as consumer-to-
business and business-to-business payments. We find a strong empirical evidence underpinning
the role of payment time series in tracking the economic activity.

We rely on the systems BI-Comp and T2-retail to collect timely and high-frequency data.
Data are collected by the central bank for the individual transactions of the payment systems.
These systems close each day, therefore the observation error is basically nil. We do not use the
individual payments (that could be eventually relevant for a big data analysis) but the monthly
time series stored in the Banca d’Italia’s database, publicly available.7 The monthly observations
are simply the sum of the nominal value of the individual payments recorded in the month.

Some preliminary adjustments of the time series are needed. Firstly, we take the year-on-year
(y-o-y, onward) growth rate to remove the seasonal pattern characterizing the payment flows8 as
well as the macroeconomic variables and the high-frequency volatility. The breaks observed in
Figure 1 are smoothed out when we consider the aggregated flow of payments. Finally, we divide
the nominal values by the gdp national account deflator in order to obtain a measure of the volume
of transactions.

The annual growth of GDP and of its main components comove closely with the annual growth
of payment flows settled through BI-Comp and T2-retail (see Figure 3). The big drop at the end
of the sample proves that BI-Comp was more affected than T2-retail by the launch of SEPA
as of October 2014.9 Some interesting results come out of the correlation matrix (see Table
1).10 The correlation between the PS and the target variables is valuable and similar to the
one shown by other activity indicators such as industrial production and business confidence,
usually adopted in short-term forecasting. Results in Table 1 are consistent with the picture of
the payment instruments composition in Italy. Credit transfers and direct debits are the most
widespread payment tools; they are also more correlated with target variables than payment cards
and cheques.

7Data are issued on Supplements to the Statistical Bulletin for Payment System, https://www.
bancaditalia.it/pubblicazioni/sistema-pagamenti/index.html.

8Money transfers typically peak during Christmas and summer holidays.
9The launch of SEPA has entailed the switching of all domestic credit transfers and direct debits from BI-COMP

into STEP2, which is the pan-European infrastructure managed by a private body (SIA-Società Interbancaria per
l’Automazione). Information on payment flows in STEP2 are not publicly available.

10We consider the contemporaneous correlation.
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Figure 3: BI-Comp (dashed red line) and T2-retail (bold red line) flows compared with macroe-
conomic aggregates (blue line); y-o-y percentage changes
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(c) Payment flows and value added in service
sector
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3.2 Selection of the targeted predictors

In this section, we use the Least Absolute Shrinkage and Selection Operator (LASSO) to make a
first screening of the variables depending on their ability to anticipate the quarterly GDP growth
(for a review of Lasso estimator see Tibshirani 1996 and Hastie et al. 2009; Bai and Ng 2008 and
Bulligan et al. 2012 for the selection of targeted predictors to make forecasts).

We compiled N = 50 variables providing a quite complete picture of the economic activity.
This large sample (N-sample, onward) included indicators of the industrial and service activity
(industrial production, electricity consumption, freight truck, business confidence), of the house-
holds’ consumption (retail sales of goods and services, consumers’ confidence), financial indexes,
credit flows to firms other than time series from the payment systems T2-retail and BI-Comp.

The monthly indicators are transformed in quarterly variables and then LASSO regression is
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Table 1: Correlation between payment flows and macroeconomic indicators;
y-o-y percentage changes

Payment flowsa GDP
Private

Consumption
Gross Fixed
Investment

Value added
service sector

Cheques -44.4 -2.1 -37.2 -35.6
Cardsb 1.4 -12.3 16.4 4.0
Credit Transfer 59.1 61 65.3 59.5
Direct Debts 52.1 39.4 48.7 54.4
BI-Comp 71.8 70.5 74.3 68.4
T2-retail 79.4 67.7 64 74.3
BI-Comp + T2-retail 90.7 82.5 82.3 85.9

Other indicators
M2 -38.1 -11.5 -20.4 -45.6
Industrial production 92.8 68.7 74.3 79.8
Business Confidencec 68.5 74.9 67.3 64.3
Consumer Confidenced 9.9 40.0 14.3 19.7
a Correlations are computed on the sample 2000.Q1 - 2012.Q4 in order to exclude the

break caused by the new standard SEPA.
b Debit card.
c Economic Sentiment Indicator (ESI) provided by Istat.
d Consumer confidence survey by Istat.

performed. LASSO selects the regressors by solving the minimization problem

min
( t=1∑

T

(yt −
N∑
j=1

βjXjt)
2
)

s.t.
N∑
j=1

|βj| ≤ t (1)

where t is the tuning parameter.
LASSO selects nL targeted variables, among all N collected:

L̂nL = {j ∈ {1, 2, . . . , N} : |β̂Lj| > 0} (2)

including T2-retail along with other business cycle indicators, such as industrial production, elec-
tricity consumption, freight truck, retail sales and many business and consumers confidence in-
dicators (mainly referred to the evolution of the economic situation, saving opportunities and
expected new orders).

The final model În ⊇ L̂nL includes some additional indicators earlier discarded by Lasso, which
contribute to improve forecast accuracy.11 They account for concerns of households about labor
market, firms’ assessment of liquidity constraints and of the current level of production and orders,
in particular for the sectors producing intermediate and investment goods.

We implement a large-scale dynamic factor model on În, which is more suitable when the cross-
section size of the dataset, n, is valuable in respect of the number of observations, T . Working
with large datasets proves convenient to detect whether PS contribute to improve the accuracy

11The additional indicators were selected by minimizing the RMSFE in an out-of-sample forecasting exercise.
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in the estimation of the economic growth. Their role in forecasting stands out when compared to
many other indicators, often used to track the short-term dynamics of the economy.

Table (2) shows a detailed description of the N-sample (first column), as well as of the source
and treatment of the data (second and third column, respectively). The fourth and the last
columns indicate the variables L̂nL picked by Lasso and finally included in our information set,

În.
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Table 2: The N-sample compared to the one selected by LASSO and to the final one

Indicators Source Treatment
Lasso

selected
Added to

Lasso selection

Total electricity consumption Italian Electrical Net Society (1-L)logSA yes yes
Industrial production Istat (1-L)log yes yes
Business Climate Istat SA no no
CCSa - Future General Economic sit. Istat SA no no
CCS - Future Personal Economic sit. Istat SA no no
CCS - Unemployment exp. Istat SA no no
CCS - Saving opportunities, next 12 mth Istat SA yes yes
CCS - Households balance sheet Istat (1-L) yes yes
CCS - Current saving opportunities Istat SA no yes
BCS - Current level of orders (intermediate goods) Istat SA no yes
BCS - Current level of production (int. goods) Istat SA no yes
BCS - Exp. level of production (int. goods) Istat SA no yes
BCS - Exp. level of orders (int. goods) Istat SA yes yes
BCS - Future general economic sit. (int. goods) Istat SA no yes
BCS - Exp. level of liquidity (int. goods) Istat SA no yes
BCS - Current level of liquidity (int. goods) Istat SA no yes
BCS - Current level of orders (investment goods) Istat SA no yes
BCS - Current level of production (inv. goods) Istat SA no no
BCS - Current level of liquidity (inv. goods) Istat SA no no
BCS - Exp. level of orders (inv. goods) Istat SA no no
BCS - Exp. level of production (inv. goods) Istat SA yes yes
BCS - Future General Economic sit. (inv. goods) Istat SA no no
BCS - Exp. level of liquidity (inv. goods) Istat SA no no
BCS - Current level of orders (consumer goods) Istat SA no no
BCS - Current level of production (cons. goods) Istat SA no no
BCS - Exp. level of orders (cons. goods) Istat SA yes yes
BCS - Exp. level of production (cons. goods) Istat SA no no
BCS - Future General Economic sit. (cons. goods) Istat SA yes yes
BCS - Exp. level of liquidity (cons. goods) Istat SA no no
BCS - Current level of liquidity (cons. goods) Istat SA no no
Current accounts deposits (stock) Bank of Italy (1-L)logSA no no
Credit flows to firmsb Bank of Italy (1-L)logSA no no
HICP Istat (1-L)logSA no yes
FTSE Italy (Banks) Datastream (1-L)log no no
FTSE Italy (Insurance) Datastream (1-L)log no no
FTSE Italy (Transport) Datastream (1-L)log no no
PMI Services - Business activity Markit SA no no
PMI Services - New business Markit SA yes yes
PMI Manufacturing - Output Markit SA yes yes
PMI Manufacturing - New orders Markit SA yes yes
PMI Manufacturing - Employment Markit SA no no
PMI Manufacturing - New export orders Markit SA no no
Freight truck ASPIc (1-L)logSA no yes
Retail trade - goods Confcommerciod SA yes yes
Retail trade - services Confcommercio SA no no
BI-COMP Bank of Italy (1-L)logSA no no
TARGET RETAIL Bank of Italy (1-L)logSA yes yes
Payment system-totale Bank of Italy (1-L)logSA no no

a CCS: consumer survey; BCS: business survey.
b Up to 1 mln AC; 1-5 years maturity.
c Italian concessionaire for the construction and management of toll highways.
d Italian General Confederation of Enterprises, Professions and Self-Employment.
e The sum of BI-COMP and T2-retail.

14



4 The model

Let Xt be the n-vector of observable monthly variables earlier selected. They are assumed to be
driven by q common factors, ft = [f1t, . . . , fqt]

′
, and by an idiosyncratic component, ξt. The n× q

matrices Λi, for i = 1 . . . s, are the common-factor loadings. The dynamic factor model

Xt = Λs(L)ft + ξt

= Λ0ft + Λ1ft−1 + Λ2ft−2 + · · ·+ Λsft−s + ξt
(3)

can be mapped to the static model
Xt = DFt + ξt (4)

where Ft = [f
′
t , f

′
t−1, . . . f

′
t−s]

′ has dimension r = q(s + 1) and can be represented as a VAR(l)
process12

Ft = µ+ Ψ1Ft−1 + · · ·+ ΨlFt−l + ut (5)

As stated in Bai and Ng (2007), Ft is driven by q < r common shocks if ut = Rεt, where εt is a
q-vector of mutually orthogonal shocks and the q × r-matrix R has rank q, then E(u

′
tut) = Σu =

RΣεR has reduced rank q. We estimate R as in Marcellino and Schumacher (2010). Given the
OLS estimate Σ̂u and its eigenvalue decomposition MPM′, let M∗ be the r× q-matrix of the first
q eigenvectors and P∗ the diagonal matrix of the corresponding eigenvalues, then R̂ = M∗P

−1/2
∗ .

We follow Bai and Ng (2002) and Bai and Ng (2007) to set the number of static (r = 4) and of
dynamic factors (q = 1) and then we estimate the factors’ space G(Ft) = span(F1t, . . . , Frt) by
principal components extracted from the balanced monthly dataset.
The quarterly growth rate of the real GDP, ytq with tq labeled by a multiple of the last month
of each quarter (i.e. tq = 3, 6, . . . , 3dT/3e), is projected by an unrestricted MIDAS model on the
monthly information (see Ghysels et al. 2004 for an extensive treatment of MIDAS model; we also
refer to Foroni et al. 2015 for the unrestricted MIDAS model). For each quarter tq we have m = 3
values of the monthly regressors, therefore we apply the Lj/m operator to obtain regressors lagged
by j months with respect to the quarter. Put formally:

ytq = c+ β0Ftq + β1Ftq−1/m + · · ·+ βpFtq−p/m + εtq

= c+ β(L1/m)Ftq + εtq
(6)

where the loadings βj, for j = 1, . . . , p have dimension 1 × r. Equations from (4) to (6) are cast
in a state-space form. The state equation is

Xt =
[
D 0n×rl+1

]
·

F∗t
yt

+ ξt (7)

where

F∗t =

{
[F′t,F

′
t−1, . . .F

′
t−l+1]′ if l ≥ p

[F′t,F
′
t−1, . . .F

′
t−p+1]′ otherwise

(8)

12According to Akaike information criteria, we set the order l of the VAR equal to 4.
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and ξt ∼ N(0n×1,Σξ). To include the quarterly GDP growth into the state-space framework we
constructed a monthly series yt where yt ≡ ytq when t ≡ tq and missing otherwise.
If l ≥ p the transition equation is Irl 0rl×1

−β0 01×r(l−1) 1

 ·
F∗t
yt

 =


[
Psi
I∗

]
0rl×1

[
β1 · · · βp

]
01×r(l−p)+1

 ·
F∗t−1

yt−1

+

 µ
0r(l−1)×1

c

+

 ut
0r(l−1)×1

εt

 (9)

where [
Psi
I∗

]
=


Ψ1 Ψ2 · · · Ψl

Ir 0r×r(l−1)
...

0r×r(l−2) Ir 0r×r


while if l < p

Irp 0rp×1

β0 01×r(p−1) 1

 ·
F∗t
yt

 =



[
Psi
I∗

]
0rl×r(p−l)+1

0r(p−l)×rp+1[
β1 · · · βp

]
0

 ·
F∗t−1

yt−1

+

 µ
0rp×1

c

+

 ut
0rp×1

εt

 (10)

We implement the Kalman recursions (Kim and Nelson, 1999) to extract the smoothed state
variable FFt = [F∗

′
t yt]

′. Let Tν be the vintage of the monthly series and h the forecasting
horizon in terms of quarters, then the smoothed state variable is the estimate at time t, for
t = 1, 2, . . . , Tν + 3h, based on information up to T = Tν + 3h + 1, i.e. FFt|T . This is very
appreciable because we use the latest information to make inference on the dynamics of the state
variable. In fact, when t = Tν + 1, ..., Tν + 3h all observations are missing and they are given no
weight by the Kalman filter, which basically forecasts the factors as elaborated in Giannone et al.
(2008). In particular, we are interested in the forecast of the GDP at time Tqν + h, where Tqν is
the quarter corresponding to the month Tν :

yTqν+h = c+ β(L1/m)FTqν+h|T + εTqν+h (11)

One of the most common remarks to factor models concerns the possibility to disentangle the
contribution of the observable variables to the forecasts. The variance of ytq is explained by the
common factors, as shown in (6), which are not definitely given an economic meaning. As showed
in Koopman and Harvey (2003), the output of the Kalman recursions can be used to size the
weights attached to the observable variables in Xj when forecasting ytq , for j = 1, . . . , Tν + 3h+ 1.
The smoothed state vector can be expressed as the weighted sum:

FFt|T =
T∑
j=1

wj(FFt|T )Xj (12)

where the weights wj(·) are function of the state vector. Each month t, the weights are computed by
the backward recursions (for j = t−1, t−2, . . . , 1) and the forward recursions (for j = t, t+1, . . . , T )
introduced in Koopman and Harvey (2003).13

13For a detailed description of the algorithms refer to Koopman and Harvey (2003), p. 1322.
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5 Forecasting application

The latest available vintage for the empirical application ranges from January 2000 to November
2015. Because of the asynchronous release of the indicators, the dataset has a typical ragged-edge
structure and it is balanced on August 2015.
LASSO selected T2-retail among the first 13 most informative variables to fit the quarterly GDP
growth, over the 50 indicators early collected. This result is a first evidence of the importance of
the PS series to track the economic activity.
In Table 3 we assess how the forecasting performance of our model changes depending on whether
we include or exclude the PS from the set of regressors. More precisely, we compare the benchmark
model (Î), including all the variables listed in the fourth column of Table 2, with the model exclud-
ing the PS (Î−PS) and with the model replacing PS with the first variable discarded by LASSO
(Î−PS,CLIMATE), i.e. Consumer survey – future economic climate (CLIMATE). We simulated the
out-of-sample forecasts and we calculated the root mean squared forecast errors (RMSFE, onward)
on two samples: the first one from 2008.Q2 until 2015.Q2; the second one from the bout of the
sovereign-debt crisis in 2011.Q3 to 2015.Q2. The simulation was run in pseudo real-time, since we
use the latest available vintage of data and we cut it period by period being careful to replicate
the missing values’ pattern at the end of the sample. The size of the estimation sample is fixed
and it includes 78 months. The forecasting horizon is h = −1, 0, 1, depending on which month of
the quarter is taken as the pseudo vintage. For instance, in the first month of the quarter tq, we
backcast (h = −1) GDP of the previous quarter not yet released by the national statistical office
(Istat),14 other than nowcasting (h = 0) and forecasting 1 quarter ahead (h = 1).

Table 3: RMSFE of the models Î and Î−PS

RMSFE

Sample [2008.Q2 - 2015.Q2]

Backcast Nowcast Forecast 1-step

Î 0.910 0.985 0.991

Î−PS 0.911 1.028 1.038

Î−PS,CLIMATE 0.923 1.062 1.053

Sample [2011.Q3 - 2015.Q2]

Î 0.517 0.529 0.544

Î−PS 0.528 0.543 0.572

Î−PS,CLIMATE 0.646 0.635 0.584

The PS improve the forecasting accuracy broadly. If we throw out only T2-retail the RMSFE
rises throughout the forecasting horizons in both samples and in both competing models, Î−PS
and Î−PS,CLIMATE. This is a first rough proof of the relevance of the PS to make forecast. This
result is even more remarkable if we consider that within a factor-model framework the marginal

14The preliminary estimate of the Italian GDP is available 45 days later than the reference quarter.
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contribution of the single indicator to the covariance of the common components typically fades
as the cross-section dimension of the dataset becomes sizeable.

In order to disentangle the predictive contribution of the single indicator, we estimate the
weights in (12), which are implicitly assigned to the observations when estimating the smoothed
vector FFt|T . Figures from 4 to 6 show the weights attached to T2-retail (red bars) and to
some other indicators (blue bars), which track very well the short-term evolution of the economic
activity (as electricity consumption, industrial production index, freight truck, manufacturing
PMI - output component, expectations about liquidity of the manufacturing firms producing
intermediate goods). Let us assume that the current month is October 2015. Therefore, we need
to anticipate the GDP growth on 2015.Q3 (backcast; Figure 4), 2015.Q4 (nowcast; Figure 5) and
2016.Q1 (one-step-ahead forecast; Figure 6).

Let us consider the case of nowcasting (2015.Q4). In general, we observe that past observations
contribute less to the forecasts, as expected; since November 2015 onward the weights are exactly
zero because no observation is available yet. The weights of the PS are comparable to those of
electricity consumption and liquidity expectations throughout the forecasting horizons considered.
PS have sizeable weights compared to those of the manufacturing PMI (output component). This
means that past information on PS contributes more than that on the PMI to anticipate the GDP
growth. When forecasting 1-step ahead, the latest available data on PS weight as much as those
on the freight traffic and they contribute to make up for the missing information on industrial
production at the end of the sample.
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Figure 4: Weights for backcasting (PS red bar; other variable blue bar)

−0.03

−0.02

−0.01

0

0.01

0.02

Oct−10
Feb−12

Jun−13
Nov−14

Mar−16

Electricity consumption

−0.04

−0.02

0

0.02

0.04

Oct−10
Feb−12

Jun−13
Nov−14

Mar−16

Industrial production

−0.1

−0.05

0

0.05

0.1

Oct−10
Feb−12

Jun−13
Nov−14

Mar−16

Freight truck

−0.03

−0.02

−0.01

0

0.01

0.02

Oct−10
Feb−12

Jun−13
Nov−14

Mar−16

Liquidity expectations

−0.03

−0.02

−0.01

0

0.01

0.02

Oct−10
Feb−12

Jun−13
Nov−14

Mar−16

Households confidence − balance sheet

−0.03

−0.02

−0.01

0

0.01

0.02

Oct−10
Feb−12

Jun−13
Nov−14

Mar−16

PMI output−Manufacturing

19



Figure 5: Weights for nowcasting (PS red bar; other variable blue bar)
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Figure 6: Weights for 1-step ahead forecasting (PS red bar; other variable blue bar)
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Figure 7: Weights for 2-steps ahead forecasting (PS red bar; other variable blue bar)
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6 Conclusions

Our findings show that payment data help with tracking the economic activity in Italy. We look
at different aggregates of payment system flows in Italy, jointly with other indicators usually
adopted in GDP forecasting, and we see that they maintain some additional information content.
We start from a large database of short term monthly indicators and Lasso selects a series of retail
payment, jointly with other standard business cycle indicators such as industrial production and
business surveys. Moreover, an out of sample forecasting application using a mixed frequencies
MIDAS model shows that the model including retail payments flows outperforms the one based on
standard short-term indicators only, in terms of forecasting accuracy. In order to disentangle the
contribution of the observable variables to the forecasts of GDP, we estimate the weights proposed
in Koopman and Harvey (2003) and we find that the weights attached to PS are comparable to
those of some of the most important short-term indicators generally used to track the economic
activity.

Our analysis is based on pseudo real-time data, but given that payment system data are
available with a short delay and are not affected by revisions this result looks relevant also for real
time forecasting.

The payment data indicator used in this model is the aggregate of a huge number of transac-
tions. The forecasting ability of this indicator paves the way for a future work exploring the big
data base of the individual transactions.
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