Temi di Discussione

(Working Papers)
A goodness-of-fit test for Generalized Error Distribution
by Daniele Coin

E UROSISTEMA

Temi di discussione
 (Working papers)

A goodness-of-fit test for Generalized Error Distribution
by Daniele Coin

Number 1096 - February 2017

The purpose of the Temi di discussione series is to promote the circulation of working papers prepared within the Bank of Italy or presented in Bank seminars by outside economists with the aim of stimulating comments and suggestions.
The views expressed in the articles are those of the authors and do not involve the responsibility of the Bank.

Editorial Board: Ines Buono, Marco Casiraghi, Valentina Aprigliano, Nicola Branzoli, Francesco Caprioli, Emanuele Ciani, Vincenzo Cuciniello, Davide Delle Monache, Giuseppe Ilardi, Andrea Linarello, Juho Taneli Makinen, Valerio Nispi Landi, Lucia Paola Maria Rizzica, Massimiliano Stacchini.
Editorial Assistants: Roberto Marano, Nicoletta Olivanti.

ISSN 1594-7939 (print)
ISSN 2281-3950 (online)
Printed by the Printing and Publishing Division of the Bank of Italy

A GOODNESS-OF-FIT TEST FOR GENERALIZED ERROR DISTRIBUTION

by Daniele Coin*

Abstract

The Generalized Error Distribution is a widely used flexible family of symmetric probability distribution. Thanks to its properties, it is becoming more and more popular in many fields of science, and therefore it is important to determine whether a sample is drawn from a GED, usually done using a graphical approach. In this paper we present a new goodness-of-fit test for GED that performs well in detecting non-GED distribution when the alternative distribution is either skewed or a mixture. A comparison between well-known tests and this new procedure is performed through a simulation study. We have developed a function that performs the analysis described in this paper in the R environment. The computational time required to compute this procedure is negligible.

JEL Classification: C14, C15, C63.
Keywords: exponential power distribution, kurtosis, normal standardized Q-Q plot.

Contents

1. Introduction 5
2. Standardized Q-Q plot and Generalized Error Distribution 5
3. Test for Generalized Error Distribution 6
4. Power study 12
5. Application to financial data 13
6. Concluding remarks 21
References 21
Appendix: a formal proof of the domain of the test statistics 22
[^0]
1 Introduction

The exponential power (EP) distribution with mean $\mu \in(-\infty,+\infty)$, variance $\sigma^{2} \in(0,+\infty)$ and power parameter $\beta \in(-1 ; 1]$ is a symmetrical unimodal distributions family. The density function is

$$
\begin{equation*}
f_{E P D}(x ; \mu, \sigma, \beta)=\frac{e^{-\frac{1}{2}\left|\frac{x-\mu}{\sigma}\right|^{\frac{2}{1+\beta}}}}{2^{\frac{\beta+3}{2}} \sigma \Gamma\left(\frac{\beta+3}{2}\right)}, \tag{1}
\end{equation*}
$$

and it has domain on $(-\infty,+\infty)$. This family is also known as Generalized Error Distribution (GED) and it is a flexible member of the exponential family (Box and Tiao (1973), Harvey (1990)).

The shape parameter β determines (1) to become the density function of a range of symmetric distributions such as the uniform $(\beta \rightarrow-1)$ and the double exponential $(\beta=1)$. The shape of the density is more platykurtic than the normal distribution if $\beta<0$ the converse if $\beta>0$ (it is normal if $\beta=0$); to obtain the standard normal distribution we set $\beta=0, \mu=0$ and $\sigma=1$ in (1)).

Box and Tiao (1973) have proposed the parametrization reported in (1); another widespread one is given by $v=\frac{2}{1+\beta}$ with $v>1$ as new shape parameter (see for example Nelson (1991)).

The flexibility properties of the GED family has granted its numerous applications, for example modeling band encoding of audio and video signals (see Sharifi and Leon-Garcia (1995)), the error distribution in time series analysis (see Nelson (1991), Chen et al. (2008a)) moreover many application to financial analysis have been suggested (see Theodossiou (2000), Chen et al. (2008b), Lee et al. (2008) and Marín and Sucarrat (2012)). However before adopting a GED model in an applied problem the most important issue is to determine whether the distribution from which the sample is drawn actually belongs to the GED family. Many procedures for testing the normality of univariate samples have been proposed in the literature, but only graphical methods are commonly used in order to assess GED distribution. This article introduces a new goodness-offit statistic test for GED. This procedure is based on a standardized Q-Q plot. By an extensive simulation study we explore the properties of our proposal showing its ability to detect non GED samples.

The paper is organized as follows. In section 2 we summarize the relationship between GED and a normal standardized Q-Q plot. Section 3 presents our contribution, in section 4 an extensive power study is summarized while in section 5 an application to financial data is presented; finally concluding remarks are provided in section 6 .

2 Standardized Q-Q Plot and Generalized Error Distribution

Given a set of ordered observations $\mathbf{x}_{(.)}=\left(x_{(1)}, \ldots, x_{(n)}\right)$ and $\boldsymbol{\alpha}_{n}=\left(\alpha_{1}, \ldots, \alpha_{n}\right)$, the vector of n expected values of a hypothesized standard ordered n dimensional
distribution, a Q-Q plot is constructed by plotting $x_{(i)}$ against the normal scores α_{i}, given by

$$
\begin{equation*}
\alpha_{i}=\frac{n!}{(i-1)!(n-1)!} \int_{-\infty}^{+\infty} y[1-\Phi(y)]^{i-1} \Phi(y)^{n-i} \phi(y) d y \tag{2}
\end{equation*}
$$

where $\phi(y)=\frac{1}{2 \pi} \exp \left(-\frac{1}{2} y^{2}\right)$ and $\Phi(y)=\int_{-\infty}^{y} \phi(z) d z$. In any situation the values assumed by the elements of $\boldsymbol{\alpha}_{n}$ are only functions of n. Since the normal scores are unknown, we used the numerical approximation algorithm proposed by Royston (1982), that estimates numerically the values of α_{i} in (2).

The standardized Q-Q plot is instead constructed by plotting

$$
\begin{equation*}
z_{(i)}=\frac{x_{(i)}-\widehat{\mu}}{\widehat{\sigma}} \tag{3}
\end{equation*}
$$

against α_{i}, where $\widehat{\mu}$ and $\widehat{\sigma}$ are the sample mean and the sample standard deviation, respectively. If the estimates of location and scale parameters are selected such that (3) is location and scale invariant, linear transformation of the original data will not alter any point of the plot. This is useful because the intercept and slope of the best fit line have to be 0 and 1 respectively.

GED samples present an S-shape when displayed on a normal standardized Q-Q plot, the slope and the curvature are function of β since it determines kurtosis. In the appendix of Coin (2013) it is proved that symmetrical distributions give rise to symmetrical, with respect to the origin of the axes, inverted S-shaped graphs if they have heavier tails than the normal distribution and symmetrical, with respect the origin of the axes, S-shaped curves if their tails are thinner or shorter than the normal distribution. GED are symmetrical with heavy tails if $\beta>0$ and thin or short ones for $\beta<0$ by definition. This property is clearly represented in figure 1.

3 Test for Generalized Error Distribution

The assumption presented in the previous section also entails that the sum of the orthogonal distances between the points $\left(z_{(i)}, \alpha_{i}\right)$ and the straight line $\left(\alpha_{i}, \alpha_{i}\right)$ of the Normal Standardized Q-Q Plots are function of β and the sample sizes if $\mathbf{x} \sim G E D(\mu, \sigma, \beta, n)$.

Our proposal is based on this intuition: given a set of ordered observations $\mathbf{x}_{(.)}=\left(x_{(1)}, \ldots, x_{(n)}\right)$ we test whether \mathbf{x} is GED-distributed as follows: firstly we computed the standardized version of $\mathbf{x}_{(.)}$obtaining $\mathbf{z}_{(.)}=\frac{x_{(.)}-\widehat{\mu}}{\widehat{\sigma}}$, where $\widehat{\mu}$ and $\widehat{\sigma}$ are the sample mean and the sample standard deviation of $\mathbf{x}_{(.)}$after we compute the test statistic as follow:

$$
\begin{equation*}
T=\frac{\sum_{i=1}^{n} \widehat{z}_{(i)}^{2}}{\sum_{i=1}^{n} z_{(i)}^{2}}, \tag{4}
\end{equation*}
$$

where $\widehat{z}_{(i)}$ are the fitted values of z of the following model:

$$
\begin{equation*}
z_{(i)}=\alpha_{i}+\beta_{3} \alpha_{(i)}^{3}+\epsilon \tag{5}
\end{equation*}
$$

Figure 1: Ordered values of GED plotted on the Normal Standardized Q-Q Plots for different values of β
where ϵ are independent and identically distributed random errors with mean equal to 0 . The unknown parameter β_{3} in (5) is estimated with Ordinary Least Squares obtaining and $\widehat{\beta}_{3}$.

The test statistic (4) is a Shapiro and Francia (1972) like test and it can be defined also as the R-squared of the linear model (5). Hence (4) is a statistical measure of how close the $\widehat{z}_{(i)}$ s are to the $z_{(i)}$; being also the percentage of the response variable variation that is explained by a linear model (5) then (4) is always between 0 and 1 ; values close to 1 mean the standardized sample is well approximated by the theoretical values given by the null hypothesis of \mathbf{x} being GED-distributed. A formal proof of this property is provided in appendix A. Finally we are able to formally define our proposed test, the null hypothesis that a sample \boldsymbol{x} is drawn from a GED distribution with unknown parameters, in symbol

$$
\begin{equation*}
H_{0}: \boldsymbol{x} \sim G E D(\mu, \sigma, \beta, n), \tag{6}
\end{equation*}
$$

is accepted if

$$
\begin{equation*}
T \in\left[q_{T}(a, \beta, n), 1\right] \tag{7}
\end{equation*}
$$

for a level of confidence $1-a$; where $q_{T}(a, \beta, n)$ is the quantile of level a of (4). Since $q_{T}(a, \beta, n)$ is unknown and function of the sample size n and the true value of β, we estimated $q_{T}(a, \beta, n)$ simulating $1,000,000$ samples for many combination of n and β, where $n=\{20,21,22, \ldots, 1,000\}$ and $\beta=\{-0.995,-0.99, \ldots$, $0.99,0.995,1\}$.

In table 1 we report a short summary of such results for $n=50$.

	$\widehat{q}_{T}(a, \beta, n)$					
β	0.5	0.1	0.05	0.01	0.005	0.001
-0.995	0.9840	0.9716	0.9663	0.9521	0.9456	0.9231
-0.8	0.9872	0.9739	0.9680	0.9552	0.9508	0.9386
-0.6	0.9873	0.9740	0.9684	0.9533	0.9469	0.9304
-0.4	0.9870	0.9742	0.9688	0.9574	0.9519	0.9424
-0.2	0.9861	0.9726	0.9667	0.9534	0.9477	0.9335
0	0.9843	0.9680	0.9611	0.9444	0.9396	0.9278
0.2	0.9823	0.9619	0.9529	0.9288	0.9180	0.8991
0.4	0.9801	0.9555	0.9440	0.9185	0.9074	0.8817
0.6	0.9775	0.9485	0.9346	0.9042	0.8900	0.8597
0.8	0.9751	0.9426	0.9270	0.8904	0.8787	0.8222
1	0.9722	0.9331	0.9130	0.8612	0.8453	0.8137

Table 1: Empirical quantiles of T for $n=50$ and some selected values of β
In figure 2 instead we report the graphical representation $\widehat{q}_{T}(0.05)$ in function of n and β.

Finally the acceptance region (7) is modified as follows:

$$
\begin{equation*}
T \in\left[\widehat{q}_{T}(a, \widehat{\beta}), 1\right] \tag{8}
\end{equation*}
$$

where $\widehat{\beta}$ is the estimation of β from the sample \mathbf{x} with the estimator presented in Coin (2013).

In table 3 we present the estimated type I errors of the proposed test. The results are obtained by simulating 20,000 samples for different values of β and

Figure 2: $\widehat{q}_{T}(0.05)$ in function of n and β
n, the considered sizes of the test are $\alpha=0.05$ and $\alpha=0.01$; the estimated type I errors correctly tend to the value of α.

For better understanding we briefly describe the plug-in estimator used for estimating β, given a sample $\mathbf{x} \sim G E D(\mu, \sigma, \beta, n)$ we get standardized ordered sample $\mathbf{z}_{(.)}$in the same way described above in this section. From the model:

$$
z_{(i)}-\alpha_{i}=\beta_{3} \alpha_{i}^{3}+\frac{\epsilon_{i}}{\sigma}
$$

we estimate β_{3} with OLS and we substitute in the following plug-in estimator:

$$
\begin{equation*}
\widehat{\beta}=f\left(\widehat{\beta}_{3}\right)=\hat{a}_{1} \frac{1}{n}+\hat{a}_{2} \frac{1}{n^{2}}+\hat{a}_{3} \widehat{\beta}_{3}+\hat{a}_{4} \widehat{\beta}_{3}^{2}+\hat{a}_{5} \widehat{\beta}_{3}^{3}+\hat{a}_{6} \frac{\widehat{\beta}_{3}}{n} . \tag{9}
\end{equation*}
$$

where n is the sample size and the \hat{a}_{i} are reported in table 2 (for details how \hat{a}_{i} are computed see Coin (2013)).

Parameter	Estimates
\hat{a}_{1}	-6.03758
\hat{a}_{2}	-48.41451
\hat{a}_{3}	29.25522
\hat{a}_{4}	219.36466
\hat{a}_{5}	3410.16169
\hat{a}_{6}	-51.11288

Table 2: Estimated parameters of \hat{a}_{i}.

[^1]
4 Power Study

In order to evaluate the power of our proposal, a Monte Carlo study was performed. We estimated the power of our testing procedure by simulating 20,000 samples from many alternative distributions, considering the cases of 20,50 , $100,200,500$ and 1000 units sample size. Power simulations are based on a equal to 0.05 and 0.01 type I error level. Then we compared the power of our test with the ones of two widespread tests based on different distances between theoretical distribution function $\left(\Phi_{X}\right)$, given by the null hypothesis, and the empirical distribution function $\left(F_{n}\right)$ of the sample. We will consider the statistic proposed by Kolmogorov (1933) because of its wide diffusion, which is defined as

$$
\begin{equation*}
K S=\sup _{\mathbf{z}}\left|\Phi_{Z}(\mathbf{z})-F_{n}(\mathbf{z})\right| \tag{10}
\end{equation*}
$$

where Φ_{Z} is the theoretical standardized distribution function and \mathbf{z} is an n-size ordered standardized sample.

Many authors (e.g. D'Agostino and Stephens (1986) pag. 370-374) suggest the use of the following statistics proposed by Anderson and Darling (1954) for testing normality and adapted to any distribution by Marsaglia et al. (2004). It is defined as

$$
\begin{equation*}
A=-n-\sum_{i=1}^{n}(2 i-1) \frac{\ln P_{i}+\ln \left(1-P_{n+1-i}\right)}{n} \tag{11}
\end{equation*}
$$

where

$$
P_{i}=\Phi_{Z}\left(Z_{(i)}\right)=\int_{-\infty}^{Z_{(i)}} \frac{e^{-\frac{t^{2}}{2}}}{\sqrt{2 \pi}} d t
$$

and $z_{(i)}$ is the standardized i ordered value of the sample \mathbf{x}_{n}.
The two summarized above tests can be performed only for simple null hypothesis, in other words the unknown parameters of (1) need to be explicitly defined in H_{0}, here they are defined by estimation with sample mean and sample variance for μ and σ^{2} while β with the method presented in Coin (2013).

The alternative distributions considered in this study were selected to be representative of the various types of distributions considered in many extensive review of power studies for goodness-of-fit tests.

In the first set there are location contaminated normal distributions, $L C N(p, m)$ denotes the case in which an observation is randomly selected with a probability of $1-p$ from a standard normal distribution and probability p from a normal distribution with mean m and variance 1 .

The second set deals with symmetric short-tailed distribution with different shapes ($\operatorname{tnorm}(a, b)$ denotes the standard normal distribution truncated at a and b). Set 3 contains distributions that have slightly heavier tails than the standard normal distribution and the standard normal one. Scale contaminated normal distributions are included in sets 4,5 and 6 ; SCN (p, b) denotes the case in which an observation is randomly selected with a probability of $1-p$ from a standard normal distribution and probability p from a normal distribution with variance b and mean 0 . Large kurtosis value distribution are in set 7 .

The distributions in sets 8 and 9 are skewed unimodal with relative low kurtosis. They are separated by negative and positive skewness values. The location-contaminated normal distributions in sets 10,11 and 12 are bimodal with positive skewness and relative low kurtosis. Set 13 includes the distributions with the most extreme skewness kurtosis values.

Tables $4,5,6,7,8$ and 9 present the estimated powers of our proposed (T), Kolmogorov-Smirnov $(K S)$ and Anderson-Darling (A) tests versus the alternative distributions summarized above and for different sample sizes equal to 20 , $50,100,200,500$ and 1000 respectively. The significance levels were: $a=0.05$ and $a=0.01$. For better understanding of the simulation results, the highest simulated power for any size among the three tests is highlighted in bold.

For any alternative distribution we also computed the following two indexes of skewness and kurtosis.

We define skewness as the standardized third moment

$$
\begin{equation*}
\sqrt{b_{1}}=\frac{m_{3}}{m_{2}^{\frac{3}{2}}} \tag{12}
\end{equation*}
$$

which is equal to 0 for normal distributions.
The Pearson's measure of kurtosis is the fourth moment and it is equal to 3 for normal distributions:

$$
\begin{equation*}
b_{2}=\frac{m_{4}}{m_{2}^{2}} \tag{13}
\end{equation*}
$$

where

$$
\begin{equation*}
m_{r}=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{r}}{n} \tag{14}
\end{equation*}
$$

is r-moment of a sample.
Analyzing the simulation results, it emerges that our method is very powerful against skewed alternatives (groups 8 to 13), its power is higher for higher values of (12), it almost always dominates the other two tests specifically for higher sample sizes; (4) presents also good performances when the alternative is a scale contaminated normal distributions (sets 4, 5 and 6), dominating $K S$ and A tests when the sample size is small (20 and 50 units). $K S$ and specifically A perform better against bimodal alternatives (group 1) when sample sizes is small. Finally (4) is ineffective if the alternative distribution is just a normal truncated one (set 2). Group 3 contains distributions that are: or special case of GED family (normal) or very close to it (t with 9 degrees of freedom and logistic) so the percentage of refusal of alternatives tends to the level of confidence of the test.

5 Application to financial data

In order to present an application to real data we performed our test procedure on financial data: from the website http : //finance.yahoo.com we got the daily prices of the Standard \& Poor's 500 index for 2015. In total we have 252 observations, denoting the daily price with P_{i} for day i we get the daily returns

Set	Alternative	$\sqrt{b_{1}}$	b_{2}	Empirical tests powers					
				$T_{0.05}$	$T_{0.01}$	$K S_{0.05}$	$K S_{0.01}$	$A_{0.05}$	$A_{0.01}$
1	LCN(0.5,10)	0	1.15	0.9451	0.2756	0.9964	0.7348	1	1
	$\operatorname{LCN}(0.5,5)$	0	1.51	0.055	0.0004	0.4836	0.0368	0.9929	0.9907
	$\operatorname{LCN}(0.5,4)$	0	1.72	0.0125	0.0002	0.2546	0.008	0.9306	0.9173
	$\operatorname{LCN}(0.5,3)$	0	2.04	0.0102	0.0008	0.1028	0.0009	0.6924	0.6584
	$\operatorname{LCN}(0.5,2)$	0	2.5	0.0286	0.0032	0.032	0.0004	0.3642	0.3292
	$\operatorname{LCN}(0.5,1)$	0	2.92	0.0568	0.0144	0.0143	0.0002	0.2095	0.1798
2	beta $(0.5,0.5)$	0	1.5	0.1414	0.0521	0.4772	0.0277	0.9893	0.9854
	unif (0,1)	0	1.8	0.0502	0.0106	0.1584	0.0017	0.8128	0.7805
	tnorm(-1,1)	0	1.94	0.0379	0.0068	0.0927	0.0006	0.686	0.6444
	beta (2,2)	0	2.14	0.0358	0.0068	0.0485	0.0001	0.4841	0.4402
	tnorm(-2,2)	0	2.36	0.0351	0.006	0.0242	0.0003	0.3207	0.2816
	tnorm(-3,3)	0	2.84	0.053	0.012	0.0131	0.0001	0.2007	0.1741
3	norm (0,1)	0	3	0.0556	0.0138	0.0134	0	0.1957	0.169
	t(9)	0	4	0.097	0.034	0.0094	0	0.1323	0.1137
	$\operatorname{logis}(0,1)$	0	4.2	0.1001	0.0382	0.0086	0	0.12	0.1028
4	$\operatorname{SCN}(0.05,3)$	0	7.65	0.1824	0.1024	0.0108	0.0001	0.133	0.1112
	$\operatorname{SCN}(0.05,5)$	0	20	0.3835	0.2843	0.0588	0.0089	0.1736	0.1324
	$\operatorname{SCN}(0.05,7)$	0	31.4	0.5269	0.439	0.1499	0.0502	0.2731	0.219
5	$\operatorname{SCN}(0.1,3)$	0	8.33	0.2426	0.1389	0.0124	0.0003	0.1043	0.0845
	$\operatorname{SCN}(0.1,5)$	0	16.5	0.4617	0.3579	0.0879	0.0124	0.1651	0.1047
	$\operatorname{SCN}(0.1,7)$	0	21.5	0.5783	0.4943	0.2293	0.0702	0.3061	0.2054
6	$\operatorname{SCN}(0.2,3)$	0	7.54	0.2514	0.1493	0.0118	0.0005	0.0687	0.051
	$\operatorname{SCN}(0.2,5)$	0	11.2	0.4053	0.311	0.0984	0.0109	0.121	0.0682
	$\operatorname{SCN}(0.2,7)$	0	12.8	0.4587	0.3787	0.2695	0.0554	0.24	0.1321
7		0	5.38	0.1609	0.0783	0.0073	0.0003	0.0574	0.0443
	$t(5)$	0	6	0.1445	0.066	0.0079	0.0004	0.1007	0.0817
	t(3)	0	∞	0.2352	0.1454	0.0345	0.0102	0.0952	0.0729
	t(1)	0	∞	0.608	0.5418	0.4998	0.3328	0.489	0.3662
	beta (2,1)	0	∞	0.2819	0.1147	0.0924	0.0009	0.6826	0.6431
8	tnorm(-2,1)	-0.57	2.4	0.0928	0.0234	0.0489	0.0001	0.4997	0.455
	beta (3,2)	-0.32	2.27	0.0703	0.0174	0.0395	0	0.4271	0.3847
	tnorm(-3,1)	-0.29	2.36	0.1744	0.0577	0.0337	0.0001	0.4123	0.3747
	tnorm(-3,2)	-0.55	2.78	0.0537	0.0117	0.0189	0.0001	0.2566	0.2263
	weibull(4)	-0.18	2.65	0.054	0.0121	0.0164	0.0001	0.2324	0.2017
	weibull(3.6)	-0.09	2.75	0.0461	0.0094	0.0166	0.0002	0.2459	0.2141
	weibull(2.2)	0	2.72	0.1372	0.0456	0.0199	0	0.2943	0.2608
9	weibull(2)	0.51	3.04	0.1824	0.0676	0.0228	0	0.3207	0.2828
	$\operatorname{LCN}(0.2,3)$	0.63	3.25	0.3735	0.1704	0.024	0.0002	0.2855	0.2346
10	$\operatorname{LCN}(0.2,5)$	0.68	3.09	0.9548	0.819	0.2742	0.0094	0.7504	0.6713
	$\operatorname{LCN}(0.2,7)$	1.07	3.16	0.9998	0.9976	0.7717	0.0892	0.9829	0.9618
	LCN(0.1,3)	1.25	3.2	0.2823	0.1366	0.0053	0.0001	0.0835	0.064
11	$\operatorname{LCN}(0.1,5)$	0.8	4.02	0.8153	0.6453	0.0498	0.0027	0.1644	0.0896
	LCN(0.1,7)	1.54	5.45	0.99	0.9624	0.3035	0.0319	0.5985	0.3865
	LCN(0.05,3)	1.96	6.6	0.1838	0.0769	0.0036	0	0.0727	0.0615
12	LCN (0.05,5)	0.68	4.35	0.5675	0.3743	0.01	0.0003	0.0285	0.0175
	$\operatorname{LCN}(0.05,7)$	1.65	7.44	0.8994	0.7784	0.0716	0.0024	0.1698	0.0935
	chisq(4)	2.42	10.4	0.5983	0.399	0.0399	0.0005	0.4267	0.3775
13	$\exp (4)$	1.41	6	0.8537	0.7178	0.1206	0.0074	0.7222	0.6678
	chisq(1)	2	9	0.9764	0.933	0.3824	0.1358	0.9653	0.9514
	$\operatorname{lnorm}(0,1)$	2.83	15	0.939	0.8735	0.2653	0.1011	0.8106	0.7571
	weibull(0.5)	6.18	113.9	0.9982	0.9924	0.7241	0.5216	0.9972	0.9956
	Tukey(10)	6.62	87.7	0.2927	0.194	0.2383	0.0447	0.1257	0.0556

Table 4: Comparison of Tests power, 20 units samples

Set	Alternative	$\sqrt{b_{1}}$	b_{2}	Empirical tests powers					
				$T_{0.05}$	$T_{0.01}$	$K S_{0.05}$	$K S_{0.01}$	$A_{0.05}$	$A_{0.01}$
1	LCN(0.5,10)	0	1.15	1	1	1	1	1	1
	LCN(0.5,5)	0	1.51	0.7668	0.3154	0.9872	0.9387	0.9996	0.9988
	$\operatorname{LCN}(0.5,4)$	0	1.72	0.2571	0.0359	0.7522	0.5794	0.9721	0.945
	$\operatorname{LCN}(0.5,3)$	0	2.04	0.0437	0.0036	0.2325	0.1238	0.6691	0.5614
	$\operatorname{LCN}(0.5,2)$	0	2.5	0.0358	0.0058	0.0228	0.0083	0.1794	0.116
	$\operatorname{LCN}(0.5,1)$	0	2.92	0.0539	0.0108	0.0034	$9 \mathrm{e}-04$	0.0499	0.0287
2	beta $(0.5,0.5)$	0	1.5	0.2432	0.0772	0.9978	0.9674	1	1
	$\operatorname{unif}(0,1)$	0	1.8	0.0514	0.0118	0.6586	0.4554	0.9664	0.933
	tnorm(-1,1)	0	1.94	0.0375	0.0076	0.3444	0.1843	0.836	0.7466
	beta (2,2)	0	2.14	0.0316	0.0054	0.0871	0.0314	0.4665	0.346
	tnorm(-2,2)	0	2.36	0.0329	0.0068	0.0171	0.0051	0.1988	0.1235
	tnorm (-3,3)	0	2.84	0.0465	0.0099	0.0023	$7 \mathrm{e}-04$	0.0488	0.0246
3	norm (0,1)	0	3	0.0588	0.014	0.0029	$5 \mathrm{e}-04$	0.0444	0.0246
	$t(9)$	0	4	0.1003	0.0358	0.0013	$1 \mathrm{e}-04$	0.0153	0.0074
	$\operatorname{logis}(0,1)$	0	4.2	0.0984	0.0331	0.0012	0	0.0097	0.0049
4	$\operatorname{SCN}(0.05,3)$	0	7.65	0.2418	0.1352	0.0069	$2 \mathrm{e}-04$	0.0273	0.0098
	$\operatorname{SCN}(0.05,5)$	0	20	0.5077	0.3672	0.1168	0.0355	0.1777	0.0604
	$\operatorname{SCN}(0.05,7)$	0	31.4	0.6862	0.5523	0.3146	0.1636	0.4043	0.221
5	$\operatorname{SCN}(0.1,3)$	0	8.33	0.2761	0.1483	0.0218	0.0013	0.0349	0.0031
	$\operatorname{SCN}(0.1,5)$	0	16.5	0.5141	0.3256	0.3029	0.097	0.4001	0.1169
	$\operatorname{SCN}(0.1,7)$	0	21.5	0.6581	0.4268	0.6368	0.3646	0.7306	0.425
6	$\operatorname{SCN}(0.2,3)$	0	7.54	0.2145	0.1075	0.0346	0.0025	0.0413	0.002
	$\operatorname{SCN}(0.2,5)$	0	11.2	0.3203	0.16	0.438	0.1322	0.5221	0.1121
	$\operatorname{SCN}(0.2,7)$	0	12.8	0.3999	0.192	0.8294	0.4866	0.8811	0.4755
7	laplace(0,1)	0	5.38	0.1281	0.0494	0.0176	0.0012	0.0162	$6 \mathrm{e}-04$
	t(5)	0	6	0.1604	0.0726	0.0102	0.0022	0.0181	0.0052
	t(3)	0	∞	0.269	0.1543	0.0963	0.0383	0.1199	0.0457
	t(1)	0	∞	0.7773	0.6543	0.915	0.8129	0.9333	0.8251
	beta(2,1)	0	∞	0.6724	0.4315	0.252	0.125	0.8113	0.7101
8	tnorm(-2,1)	-0.57	2.4	0.2106	0.075	0.0926	0.0336	0.5269	0.3997
	beta (3,2)	-0.32	2.27	0.1572	0.0513	0.0491	0.0167	0.3525	0.2422
	tnorm(-3,1)	-0.29	2.36	0.478	0.2446	0.04	0.0131	0.3195	0.2237
	tnorm(-3,2)	-0.55	2.78	0.0614	0.0141	0.0084	0.0025	0.0974	0.0578
	weibull(4)	-0.18	2.65	0.0558	0.0145	0.0056	0.0015	0.071	0.0405
	weibull(3.6)	-0.09	2.75	0.043	0.0091	0.0061	0.0017	0.0751	0.0428
	weibull(2.2)	0	2.72	0.3239	0.1454	0.0113	0.0031	0.1315	0.0786
9	weibull(2)	0.51	3.04	0.4875	0.2631	0.017	0.0056	0.16	0.101
	LCN(0.2,3)	0.63	3.25	0.719	0.5025	0.0407	0.003	0.1923	0.0928
10	LCN(0.2,5)	0.68	3.09	0.9999	0.9996	0.7772	0.3021	0.9687	0.8487
	LCN(0.2,7)	1.07	3.16	1	1	0.9993	0.9564	1	1
	$\operatorname{LCN}(0.1,3)$	1.25	3.2	0.5247	0.3057	0.0141	$9 \mathrm{e}-04$	0.0191	0.0034
11	$\operatorname{LCN}(0.1,5)$	0.8	4.02	0.9923	0.9661	0.4938	0.1159	0.5944	0.1495
	$\operatorname{LCN}(0.1,7)$	1.54	5.45	1	1	0.9799	0.7646	0.9979	0.8982
	LCN(0.05,3)	1.96	6.6	0.2358	0.0953	0.0017	0	0.0057	0.0028
12	LCN(0.05,5)	0.68	4.35	0.7893	0.5539	0.0485	0.0025	0.0599	0.001
	LCN(0.05,7)	1.65	7.44	0.9922	0.9502	0.4146	0.0762	0.6207	0.0951
	chisq(4)	2.42	10.4	0.959	0.8925	0.0932	0.0114	0.371	0.1845
13	$\exp (4)$	1.41	6	0.9991	0.9953	0.4045	0.1055	0.8564	0.6042
	$\operatorname{chisq}(1)$	2	9	1	1	0.9095	0.6054	0.9987	0.9855
	$\operatorname{lnorm}(0,1)$	2.83	15	1	0.9993	0.7932	0.4759	0.9616	0.8293
	weibull(0.5)	6.18	113.9	1	1	0.9987	0.9758	1	0.9998
	Tukey(10)	6.62	87.7	0.2998	0.1103	0.8349	0.4468	0.7566	0.2264

Table 5: Comparison of Tests power, 50 units samples

Set	Alternative	$\sqrt{b_{1}}$	b_{2}	Empirical tests powers					
				$T_{0.05}$	$T_{0.01}$	$K S_{0.05}$	$K S_{0.01}$	$A_{0.05}$	$A_{0.01}$
1	LCN(0.5,10)	,	1.15	1	1	1	1	,	1
	LCN(0.5,5)	0	1.51	0.9964	0.9585	1	0.9986	1	1
	$\operatorname{LCN}(0.5,4)$	0	1.72	0.7496	0.363	0.9409	0.7908	0.9986	0.9935
	$\operatorname{LCN}(0.5,3)$	0	2.04	0.1438	0.0237	0.3027	0.1144	0.8055	0.655
	$\operatorname{LCN}(0.5,2)$	0	2.5	0.0408	0.0069	0.0113	0.0015	0.1566	0.0796
	$\operatorname{LCN}(0.5,1)$	0	2.92	0.0474	0.0097	$7 \mathrm{e}-04$	0	0.0187	0.0075
2	beta (0.5, 0.5)	0	1.5	0.4665	0.2229	1	1	1	1
	unif(0,1)	0	1.8	0.0392	0.0101	0.9374	0.8106	0.9994	0.9974
	tnorm(-1,1)	0	1.94	0.0238	0.0048	0.6417	0.378	0.9854	0.9504
	beta (2,2)	0	2.14	0.0249	0.005	0.1339	0.0365	0.6972	0.5046
	tnorm(-2,2)	0	2.36	0.0247	0.0041	0.0125	0.001	0.246	0.1162
	tnorm(-3,3)	0	2.84	0.0371	0.0069	$7 \mathrm{e}-04$	0	0.0181	0.006
3	$\text { norm }(0,1)$	0	3	0.0517	0.0132	$8 \mathrm{e}-04$	0	0.0145	0.0049
	t(9)	0	4	0.1019	0.0338	0.0014	0	0.0052	$6 \mathrm{e}-04$
	$\operatorname{logis}(0,1)$	0	4.2	0.0934	0.0273	0.0018	0	0.0046	$2 \mathrm{e}-04$
4	$\operatorname{SCN}(0.05,3)$	0	7.65	0.3361	0.1846	0.0227	0.0023	0.0811	0.0081
	$\operatorname{SCN}(0.05,5)$	0	20	0.6827	0.4906	0.3531	0.1376	0.5781	0.2898
	$\operatorname{SCN}(0.05,7)$	0	31.4	0.8669	0.7113	0.7114	0.4862	0.8515	0.6684
5	$\operatorname{SCN}(0.1,3)$	0	8.33	0.2918	0.1397	0.07	0.0064	0.2027	0.0257
	$\operatorname{SCN}(0.1,5)$	0	16.5	0.5933	0.3331	0.6884	0.3611	0.8718	0.5861
	$\operatorname{SCN}(0.1,7)$	0	21.5	0.7824	0.5099	0.9478	0.8126	0.9832	0.9189
6	$\operatorname{SCN}(0.2,3)$	0	7.54	0.164	0.0635	0.1474	0.0151	0.3566	0.0398
	$\operatorname{SCN}(0.2,5)$	0	11.2	0.3277	0.1206	0.902	0.5942	0.9772	0.79
	$\operatorname{SCN}(0.2,7)$	0	12.8	0.4796	0.1992	0.9978	0.9632	0.9998	0.9913
7	$\text { laplace }(0,1)$	0	5.38	0.0979	0.0301	0.0612	0.0062	0.1469	0.0091
	$t(5)$	0	6	0.1737	0.0815	0.0276	0.0062	0.0742	0.0141
	t(3)	0	∞	0.3321	0.2063	0.2482	0.1015	0.4109	0.1734
	t(1)	0	∞	0.9125	0.842	0.9976	0.9885	0.9994	0.9956
	beta (2,1)	0	∞	0.9337	0.8159	0.4866	0.2066	0.9768	0.9186
8	tnorm(-2,1)	-0.57	2.4	0.3958	0.1896	0.152	0.0415	0.7772	0.5957
	beta (3,2)	-0.32	2.27	0.2858	0.1204	0.056	0.0124	0.5037	0.3132
	tnorm(-3,1)	-0.29	2.36	0.8193	0.6275	0.0408	0.0065	0.4368	0.2413
	tnorm(-3,2)	-0.55	2.78	0.0892	0.0212	0.0025	$4 \mathrm{e}-04$	0.0777	0.0281
	weibull(4)	-0.18	2.65	0.0573	0.0141	0.0013	$1 \mathrm{e}-04$	0.0367	0.0142
	weibull(3.6)	-0.09	2.75	0.0403	0.0074	0.0017	$4 \mathrm{e}-04$	0.0424	0.0147
	weibull(2.2)	0	2.72	0.6113	0.3773	0.0061	$2 \mathrm{e}-04$	0.1218	0.0474
9	weibull(2)	0.51	3.04	0.8097	0.6187	0.0169	0.0012	0.1689	0.0699
	$\operatorname{LCN}(0.2,3)$	0.63	3.25	0.9496	0.8537	0.1778	0.0199	0.3793	0.1262
10	$\operatorname{LCN}(0.2,5)$	0.68	3.09	1	1	0.9985	0.948	1	0.9986
	$\operatorname{LCN}(0.2,7)$	1.07	3.16	1	1	1	1	1	1
	$\operatorname{LCN}(0.1,3)$	1.25	3.2	0.8026	0.5828	0.0623	0.0047	0.0692	0.0031
11	$\operatorname{LCN}(0.1,5)$	0.8	4.02	1	0.9999	0.9541	0.6646	0.9931	0.8245
	LCN(0.1,7)	1.54	5.45	11	1	1	0.9995	1	1
	LCN(0.05,3)	1.96	6.6	0.4755	0.2424	0.0083	$3 \mathrm{e}-04$	0.0113	$2 \mathrm{e}-04$
12	LCN(0.05,5)	0.68	4.35	0.9915	0.9459	0.4486	0.0934	0.7647	0.1947
	LCN(0.05,7)	1.65	7.44	1	1	0.9918	0.8537	0.9998	0.9843
	chisq(4)	2.42	10.4	0.9991	0.9972	0.3393	0.0726	0.7264	0.3172
13	$\exp (4)$	1.41	6	1	1	0.8742	0.5159	0.9974	0.938
	chisq(1)	2	9	1	1	1	0.9941	1	1
	$\operatorname{lnorm}(0,1)$	2.83	15	1	1	0.9962	0.9551	0.9999	0.9975
	weibull(0.5)	6.18	113.9	1	1	1	1	1	1
	Tukey(10)	6.62	87.7	0.7039	0.227	0.9989	0.9637	0.9999	0.9581

Table 6: Comparison of Tests power, 100 units samples

Set	Alternative	$\sqrt{b_{1}}$	b_{2}	Empirical tests powers					
				$T_{0.05}$	$T_{0.01}$	$K S_{0.05}$	$K S_{0.01}$	$A_{0.05}$	$A_{0.01}$
1	LCN(0.5,10)	0	1.15	1	1	1	1	1	1
	LCN(0.5,5)	0	1.51	1	1	1	1	1	1
	$\operatorname{LCN}(0.5,4)$	0	1.72	0.9949	0.9404	1	0.992	1	1
	$\operatorname{LCN}(0.5,3)$	0	2.04	0.3907	0.1336	0.6582	0.2918	0.9729	0.8976
	$\operatorname{LCN}(0.5,2)$	0	2.5	0.0471	0.0086	0.0181	0.0018	0.2173	0.0856
	$\operatorname{LCN}(0.5,1)$	0	2.92	0.0442	0.0076	$3 \mathrm{e}-04$	0	0.01	0.0019
2	beta $(0.5,0.5)$	0	1.5	0.8631	0.6668	1	1	1	1
	$\operatorname{unif}(0,1)$	0	1.8	0.0232	0.0055	1	0.9978	1	1
	tnorm(-1,1)	0	1.94	0.0103	0.002	0.9768	0.8571	1	0.9998
	beta (2,2)	0	2.14	0.0135	0.0022	0.4121	0.1259	0.9598	0.8513
	tnorm(-2,2)	0	2.36	0.0216	0.0048	0.0365	0.0035	0.5112	0.2479
	tnorm (-3,3)	0	2.84	0.0345	0.0071	$4 \mathrm{e}-04$	0	0.0115	0.0019
3	norm (0,1)	0	3	0.0562	0.0113	$1 \mathrm{e}-04$	0	0.0057	0.0011
	$t(9)$	0	4	0.1072	0.0363	0.0044	$4 \mathrm{e}-04$	0.0368	0.0019
	$\operatorname{logis}(0,1)$	0	4.2	0.0836	0.0264	0.0081	$1 \mathrm{e}-04$	0.0575	0.0023
4	$\operatorname{SCN}(0.05,3)$	0	7.65	0.4292	0.2338	0.1166	0.0135	0.3786	0.1089
	$\operatorname{SCN}(0.05,5)$	0	20	0.8428	0.6584	0.7982	0.5201	0.9413	0.8129
	$\operatorname{SCN}(0.05,7)$	0	31.4	0.9732	0.9088	0.9765	0.9039	0.9952	0.9798
5	$\operatorname{SCN}(0.1,3)$	0	8.33	0.3121	0.1295	0.364	0.0714	0.7393	0.3381
	$\operatorname{SCN}(0.1,5)$	0	16.5	0.743	0.4363	0.9839	0.8912	0.9993	0.9859
	$\operatorname{SCN}(0.1,7)$	0	21.5	0.9377	0.721	0.9998	0.9973	1	0.9999
6	$\operatorname{SCN}(0.2,3)$	0	7.54	0.14	0.0403	0.6637	0.2128	0.934	0.6119
	$\operatorname{SCN}(0.2,5)$	0	11.2	0.4282	0.1462	0.9999	0.9921	1	0.9999
	$\operatorname{SCN}(0.2,7)$	0	12.8	0.6937	0.3179	1	1	1	1
7	laplace(0,1)	0	5.38	0.0891	0.0229	0.3074	0.0448	0.7141	0.2564
	t(5)	0	6	0.1925	0.0956	0.1086	0.0187	0.3512	0.0955
	t(3)	0	∞	0.426	0.282	0.6378	0.3253	0.8881	0.6323
	t(1)	0	∞	0.9864	0.9662	1	1	1	1
	beta (2,1)	0	∞	0.999	0.9918	0.9194	0.6402	1	0.9994
8	tnorm(-2,1)	-0.57	2.4	0.6823	0.4534	0.4822	0.1588	0.9869	0.9308
	beta (3,2)	-0.32	2.27	0.5213	0.3087	0.1822	0.029	0.8351	0.5979
	tnorm(-3,1)	-0.29	2.36	0.9836	0.9492	0.1269	0.0145	0.7859	0.4882
	tnorm(-3,2)	-0.55	2.78	0.1721	0.0562	0.0029	$1 \mathrm{e}-04$	0.0976	0.0269
	weibull(4)	-0.18	2.65	0.0671	0.0185	0.0021	$3 \mathrm{e}-04$	0.0318	0.0079
	weibull(3.6)	-0.09	2.75	0.0406	0.0064	0.0013	0	0.0347	0.0081
	weibull(2.2)	0	2.72	0.9048	0.7785	0.0267	0.0016	0.2179	0.0629
9	weibull(2)	0.51	3.04	0.9838	0.9455	0.0671	0.0045	0.3547	0.1107
	LCN(0.2,3)	0.63	3.25	0.9995	0.9958	0.6441	0.2396	0.8391	0.4508
10	LCN(0.2,5)	0.68	3.09	1	1	1	1	1	1
	$\operatorname{LCN}(0.2,7)$	1.07	3.16	1	1	1	1	1	1
	LCN (0.1,3)	1.25	3.2	0.9824	0.9243	0.2996	0.0554	0.4272	0.062
11	LCN(0.1,5)	0.8	4.02	1	1	1	0.9988	1	0.9999
	LCN(0.1,7)	1.54	5.45	1	1	1	1	1	1
	LCN(0.05,3)	1.96	6.6	0.7712	0.5267	0.0394	0.0022	0.1181	0.0049
12	LCN(0.05,5)	0.68	4.35	1	0.9999	0.9631	0.6896	0.9992	0.9599
	$\operatorname{LCN}(0.05,7)$	1.65	7.44	1	1	1	1	1	1
	chisq(4)	2.42	10.4	1	1	0.8646	0.4901	0.9947	0.8894
13	$\exp (4)$	1.41	6	1	1	0.9998	0.9879	1	0.9999
	chisq(1)	2	9	1	1	1	1	1	1
	$\operatorname{lnorm}(0,1)$	2.83	15	1	1	1	1	1	1
	weibull(0.5)	6.18	113.9	1	1	1	1	1	1
	Tukey(10)	6.62	87.7	0.9989	0.9206	1	1	1	1

Table 7: Comparison of Tests power, 200 units samples

Set	Alternative	$\sqrt{b_{1}}$	b_{2}	Empirical tests powers					
				$T_{0.05}$	$T_{0.01}$	$K S_{0.05}$	$K S_{0.01}$	$A_{0.05}$	$A_{0.01}$
1	LCN(0.5,10)	0	1.15	1	1	1	1	1	1
	$\operatorname{LCN}(0.5,5)$	0	1.51	1	1	1	1	1	1
	$\operatorname{LCN}(0.5,4)$	0	1.72	1	1	1	1	1	1
	$\operatorname{LCN}(0.5,3)$	0	2.04	0.8755	0.6338	0.9975	0.949	0.9999	0.9997
	$\operatorname{LCN}(0.5,2)$	0	2.5	0.0712	0.0147	0.0833	0.0073	0.517	0.2409
	$\operatorname{LCN}(0.5,1)$	0	2.92	0.0452	0.0086	0	0	0.0072	4e-04
2	beta(0.5,0.5)	0	1.5	0.9998	0.9973	1	1	1	1
	unif(0,1)	0	1.8	0.0052	$5 \mathrm{e}-04$	1	1	1	1
	tnorm(-1,1)	0	1.94	7e-04	$3 \mathrm{e}-04$	1	1	1	1
	$\operatorname{beta}(2,2)$	0	2.14	0.0015	4e-04	0.9819	0.8269	1	1
	tnorm(-2,2)	0	2.36	0.0089	0.0013	0.3745	0.068	0.9816	0.8782
	$\operatorname{tnorm}(-3,3)$	0	2.84	0.0246	0.0049	$2 \mathrm{e}-04$	0	0.01	$8 \mathrm{e}-04$
3	$\text { norm }(0,1)$	0	3	0.0442	0.0092	$2 \mathrm{e}-04$	0	0.0019	$2 \mathrm{e}-04$
	$t(9)$	0	4	0.1237	0.0485	0.0659	0.0056	0.2958	0.0777
	$\operatorname{logis}(0,1)$	0	4.2	0.0832	0.0237	0.1012	0.0088	0.4242	0.1215
4	$\operatorname{SCN}(0.05,3)$	0	7.65	0.599	0.334	0.6594	0.3566	0.9037	0.7355
	$\operatorname{SCN}(0.05,5)$	0	20	0.979	0.9024	0.9996	0.9951	1	1
	$\operatorname{SCN}(0.05,7)$	0	31.4	0.9998	0.9973	1	1	1	1
5	$\operatorname{SCN}(0.1,3)$	0	8.33	0.3436	0.116	0.97	0.8483	0.9978	0.9843
	$\operatorname{SCN}(0.1,5)$	0	16.5	0.941	0.6867	1	1	1	1
	$\operatorname{SCN}(0.1,7)$	0	21.5	0.9987	0.9638	1	1	1	1
6	$\operatorname{SCN}(0.2,3)$	0	7.54	0.1153	0.0199	0.9994	0.9884	1	0.9997
	$\operatorname{SCN}(0.2,5)$	0	11.2	0.7618	0.3413	1	1	1	1
	$\operatorname{SCN}(0.2,7)$	0	12.8	0.9651	0.7542	1	1	1	1
7	laplace(0,1)	0	5.38	0.0779	0.0175	0.964	0.7057	0.9988	0.9836
	$\mathrm{t}(5)$	0	6	0.2413	0.1305	0.6591	0.3113	0.9239	0.7351
	$\mathrm{t}(3)$	0	∞	0.5793	0.4396	0.9969	0.9678	0.9996	0.9987
	t(1)	0	∞	0.9998	0.9993	1	1	1	1
	$\operatorname{beta}(2,1)$	0	∞	1	1	1	0.9998	1	1
8	tnorm(-2,1)	-0.57	2.4	0.953	0.8648	0.9961	0.921	1	1
	$\operatorname{beta}(3,2)$	-0.32	2.27	0.8748	0.732	0.8422	0.4223	0.9998	0.9946
	tnorm(-3,1)	-0.29	2.36	1	1	0.7363	0.2539	0.9995	0.9915
	tnorm($-3,2$)	-0.55	2.78	0.4463	0.2152	0.0169	8e-04	0.3431	0.0948
	weibull(4)	-0.18	2.65	0.1065	0.0342	0.0031	$1 \mathrm{e}-04$	0.0535	0.0076
	weibull(3.6)	-0.09	2.75	0.0359	0.0067	0.0028	0	0.0638	0.0121
	weibull(2.2)	0	2.72	0.9994	0.9971	0.2112	0.0254	0.7395	0.3149
9	weibull(2)	0.51	3.04	1	1	0.5105	0.118	0.9509	0.6457
	$\operatorname{LCN}(0.2,3)$	0.63	3.25	1	1	0.9993	0.9744	1	0.9982
10	$\operatorname{LCN}(0.2,5)$	0.68	3.09	1	1	1	1	1	1
	$\operatorname{LCN}(0.2,7)$	1.07	3.16	1	1	1	1	1	1
	$\operatorname{LCN}(0.1,3)$	1.25	3.2	1	1	0.9443	0.6707	0.9934	0.8683
11	$\operatorname{LCN}(0.1,5)$	0.8	4.02	1	1	1	1	1	1
	$\operatorname{LCN}(0.1,7)$	1.54	5.45	1	1	1	1	1	1
	$\operatorname{LCN}(0.05,3)$	1.96	6.6	0.9926	0.9641	0.3808	0.0637	0.7961	0.3328
12	$\operatorname{LCN}(0.05,5)$	0.68	4.35	1	1	1	0.9999	1	1
	$\operatorname{LCN}(0.05,7)$	1.65	7.44	1	1	1	1	1	1
	chisq(4)	2.42	10.4	1	1	1	0.9991	1	1
13	$\exp (4)$	1.41	6	1	1	1	1	1	1
	chisq(1)	2	9	1	1	1	1	1	1
	$\operatorname{lnorm}(0,1)$	2.83	15	1	1	1	1	1	1
	weibull(0.5)	6.18	113.9	1	1	1	1	1	1
	Tukey(10)	6.62	87.7	1	1	1	1	1	1

Table 8: Comparison of Tests power, 500 units samples

Set	Alternative	$\sqrt{b_{1}}$	b_{2}	Empirical tests powers					
				$T_{0.05}$	$T_{0.01}$	$K S_{0.05}$	$K S_{0.01}$	$A_{0.05}$	$A_{0.01}$
1	$\operatorname{LCN}(0.5,10)$	0	1.15	1	1	1	1	1	1
	LCN(0.5,5)	0	1.51	1	1	1	1	1	1
	$\operatorname{LCN}(0.5,4)$	0	1.72	1	1	1	1	1	1
	LCN(0.5,3)	0	2.04	0.9951	0.9672	1	1	1	1
	LCN(0.5,2)	0	2.5	0.1072	0.0258	0.3592	0.0661	0.8739	0.6218
	LCN(0.5,1)	0	2.92	0.0415	0.0072	$1 \mathrm{e}-04$	0	0.0073	$6 \mathrm{e}-04$
2	$\operatorname{beta}(0.5,0.5)$	0	1.5	1	1	1	1	1	1
	unif (0,1)	0	1.8	0.0035	$2 \mathrm{e}-04$	1	1	1	1
	tnorm($-1,1$)	0	1.94	0	0	1	1	1	1
	$\operatorname{beta}(2,2)$	0	2.14	$1 \mathrm{e}-04$	0	1	0.9999	1	1
	tnorm (-2,2)	0	2.36	0.0026	3e-04	0.9589	0.6402	1	0.9999
	tnorm($-3,3$)	0	2.84	0.0241	0.0042	$3 \mathrm{e}-04$	0	0.0152	$7 \mathrm{e}-04$
3	$\text { norm }(0,1)$	0	3	0.046	0.0079	$2 \mathrm{e}-04$	0	0.0018	$1 \mathrm{e}-04$
	$\mathrm{t}(9)$	0	4	0.1473	0.0679	0.3137	0.0728	0.7446	0.4213
	$\operatorname{logis}(0,1)$	0	4.2	0.0724	0.0225	0.4896	0.1355	0.8831	0.6118
4	$\operatorname{SCN}(0.05,3)$	0	7.65	0.7654	0.5132	0.9741	0.8866	0.9982	0.9882
	$\operatorname{SCN}(0.05,5)$	0	20	0.9997	0.9969	1	1	1	1
	$\operatorname{SCN}(0.05,7)$	0	31.4	1	1	1	1	1	1
5	$\operatorname{SCN}(0.1,3)$	0	8.33	0.4603	0.1906	1	0.9996	1	1
	$\operatorname{SCN}(0.1,5)$	0	16.5	0.9983	0.9779	1	1	1	1
	$\operatorname{SCN}(0.1,7)$	0	21.5	1	1	1	1	1	1
6	$\operatorname{SCN}(0.2,3)$	0	7.54	0.1715	0.0331	1	1	1	1
	$\operatorname{SCN}(0.2,5)$	0	11.2	0.9791	0.8673	1	1	1	1
	$\operatorname{SCN}(0.2,7)$	0	12.8	0.9999	0.9954	1	1	1	1
7	laplace(0,1)	0	5.38	0.0836	0.0207	1	0.9994	1	1
	$\mathrm{t}(5)$	0	6	0.2957	0.1848	0.9822	0.8757	0.9996	0.9931
	t (3)	0	∞	0.737	0.6293	1	1	1	1
	t(1)	0	∞	1	1	1	1	1	1
	$\operatorname{beta}(2,1)$	0	∞	1	1	1	1	1	1
8	tnorm(-2,1)	-0.57	2.4	0.9989	0.9929	1	1	1	1
	$\operatorname{beta}(3,2)$	-0.32	2.27	0.9878	0.9569	0.9999	0.9855	1	1
	tnorm (-3,1)	-0.29	2.36	1	1	0.9984	0.9292	1	1
	tnorm($-3,2$)	-0.55	2.78	0.7793	0.5457	0.1093	0.0077	0.8434	0.4708
	weibull(4)	-0.18	2.65	0.1764	0.0673	0.0085	$3 \mathrm{e}-04$	0.1544	0.0276
	weibull(3.6)	-0.09	2.75	0.0363	0.0076	0.0096	$4 \mathrm{e}-04$	0.1681	0.036
	weibull(2.2)	0	2.72	1	1	0.761	0.2829	0.9976	0.9243
9	weibull(2)	0.51	3.04	1	1	0.9684	0.7057	1	0.998
	LCN(0.2,3)	0.63	3.25	1	1	1	1	1	1
10	LCN (0.2,5)	0.68	3.09	1	1	1	1	1	1
	LCN(0.2,7)	1.07	3.16	1	1	1	1	1	1
	LCN(0.1,3)	1.25	3.2	1	1	0.9999	0.998	1	1
11	LCN (0.1,5)	0.8	4.02	1	1	1	1	1	1
	LCN (0.1,7)	1.54	5.45	1	1	1	1	1	1
	$\operatorname{LCN}(0.05,3)$	1.96	6.6	1	0.9999	0.9131	0.5465	0.9981	0.9532
12	$\operatorname{LCN}(0.05,5)$	0.68	4.35	1	1	1	1	1	1
	LCN (0.05,7)	1.65	7.44	1	1	1	1	1	1
	chisq(4)	2.42	10.4	1	1	1	1	1	1
13	$\exp (4)$	1.41	6	1	1	1	1	1	1
	chisq(1)	2	9	1	1	1	1	1	1
	$\operatorname{lnorm}(0,1)$	2.83	15	1	1	1	1	1	1
	weibull(0.5)	6.18	113.9	1	1	1	1	1	1
	Tukey(10)	6.62	87.7	1	1	1	1	1	1

Table 9: Comparison of Tests power, 1000 units samples
with:

$$
R_{i}=\frac{P_{i}}{P_{i-1}}
$$

In figure 3 we present the kernel density estimation of $\boldsymbol{R}=\left[R_{1}, \ldots, R_{i}, \ldots, R_{252}\right]$ and on it we performed the normality test by Shapiro and Wilk (1965) obtaining a value of the statistic test of $W=0.92727$ and a p.value <0.0001 that leads to reject the null hypothesis of normality. On \boldsymbol{R} we computed (4) obtaining $T=0.9890673$ with $\widehat{\beta}=1$. The quantiles of T with $\beta=$ 1 and $n=252$ are $q_{T}(\boldsymbol{p})=(0.9889,0.9773,0.971,0.956,0.9502,0.9388)$ for $\boldsymbol{p}=(0.5,0.1,0.05,0.01,0.005,0.001)$, so we can accept the null hypothesis that $\boldsymbol{R} \sim G E D$.

Kernel density estimation SP500 daily returns for 2015

Figure 3: Kernel estimation of the S\&P500 daily returns for 2015

6 Concluding Remarks

In this paper we present an original goodness-of-fit test for Generalized Error Distribution. This approach has some appealing features for detecting non GED distribution when the alternative distribution is skewed or a mixture. On the other hand it is quite insensitive to truncated normal alternatives.

The test produces a decision based on the critical values presented in section 3. Unfortunately we are not yet able to supply a method to compute the p-value representing how strongly the hypotheses of GED is rejected.

We have developed a function that performs the analysis described in this paper in the R environment. It can be obtained by e-mail on request to the author. In this R extension it is also possible to find all the critical values computed and cited in this paper. The computational time required to compute this procedure is negligible.

References

Anderson T.W. and Darling D.A. (1954) A test of goodness of fit, Journal of the American Statistical Association, 49, 141-160.

Box G. and Tiao G. (1973) Bayesian inference in statistical analysis., AddisonWesley Ed.; Reading, Massachusetts.

Chen C., Su Y. and Huang Y. (2008a) Hourly index return autocorrelation and conditional volatility in an EAR-GJR-GARCH model with generalized error distribution, Journal of Empirical Finance, 15, 4, 789-798.

Chen C.R., Su Y. and Huang Y. (2008b) Hourly index return autocorrelation and conditional volatility in an ear-gjr-garch model with generalized error distribution, Journal of Empirical Finance, 15, 4, 789-798.

Coin D. (2013) A method to estimate power parameter in exponential power distribution via polynomial regression, Journal of Statistical Computation and Simulation, 83, 11, 1981-2001.

D'Agostino R. and Stephens M. (1986) Goodness-of-Fit Techniques, Marcel Dekker, New York.

Davidson R. and MacKinnon J.G. (2004) Econometric theory and methods, volume 5, Oxford University Press New York.

Harvey A. (1990) The econometric analysis of time series, Mit Press.
Kolmogorov A. (1933) Sulla determinazione empirica di una legge di distribuzione, Giornale dell'Istituto Italiano Attuari, 4, 83-91.

Lee M.C., Su J.B. and Liu H.C. (2008) Value-at-risk in us stock indices with skewed generalized error distribution, Applied Financial Economics Letters, 4, 6, 425-431.

Marín J.M. and Sucarrat G. (2012) Modelling the skewed exponential power distribution in finance, in: Mathematical and statistical methods for actuarial sciences and finance, Springer, 279-286.

Marsaglia G., Marsaglia J. et al. (2004) Evaluating the anderson-darling distribution, Journal of Statistical Software, 9, 2, 1-5.

Nelson D.B. (1991) Conditional heteroskedasticity in asset returns: A new approach, Econometrica, 59, 347-370.

Royston J. (1982) Algorithm AS 177: Expected normal order statistics (exact and approximate), Journal of the Royal Statistical Society. Series C (Applied Statistics), 31, 2, 161-165.

Shapiro S.S. and Francia R.S. (1972) An approximate analysis of variance test for normality, Journal of the American Statistical Association, 67, 215-216.

Shapiro S.S. and Wilk M.B. (1965) An analysis of variance test for normality (complete samples), Biometrika, 52, 591-611.

Sharifi K. and Leon-Garcia A. (1995) Estimation of shape parameter for generalized gaussian distributions in subband decompositions of video, IEEE Transactions on Circuits and Systems for Video Technology, 5, 1, 52-56.

Theodossiou P. (2000) Skewed generalized error distribution of financial assets and option pricing, Available at SSRN 219679.

A Appendix: a formal proof of the domain of the test statistics

In this section we prove that:

$$
\begin{equation*}
0 \leq T \leq 1 \tag{15}
\end{equation*}
$$

The expression (4) can be rewritten as follows:

$$
\begin{equation*}
T=\frac{\widehat{\boldsymbol{z}}^{\prime} \widehat{\boldsymbol{z}}}{\boldsymbol{z}^{\prime} \boldsymbol{z}}=\frac{\operatorname{Dev}(\widehat{\boldsymbol{z}})}{\operatorname{Dev}(\boldsymbol{z})} \tag{16}
\end{equation*}
$$

where $\widehat{\boldsymbol{z}}$ and \boldsymbol{z} are the vectors of $\widehat{z}_{(i)}$ and of $z_{(i)}$ respectively, while $\operatorname{Dev}()$ is the deviance operator. The mean of \boldsymbol{z} is 0 since it is a standardized vector as the mean of $\widehat{\boldsymbol{z}}$ is the same of \boldsymbol{z} for the properties of ordinary least squares (see for example Davidson and MacKinnon (2004) chapter 1). Thanks to the geometrical properties of the OLS we can write (see Davidson and MacKinnon (2004) chapter 2):

$$
\begin{equation*}
z^{\prime} z=\widehat{z}^{\prime} \widehat{z}+(z-\widehat{z})^{\prime}(z-\widehat{z}) \tag{17}
\end{equation*}
$$

and dividing (17) by $\boldsymbol{z}^{\prime} \boldsymbol{z}$ we get:

$$
\begin{equation*}
1=T+\frac{(\boldsymbol{z}-\widehat{\boldsymbol{z}})^{\prime}(\boldsymbol{z}-\widehat{\boldsymbol{z}})}{\boldsymbol{z}^{\prime} \boldsymbol{z}} \tag{18}
\end{equation*}
$$

and finally

$$
\begin{equation*}
T=1-\frac{(\boldsymbol{z}-\widehat{\boldsymbol{z}})^{\prime}(\boldsymbol{z}-\widehat{\boldsymbol{z}})}{\boldsymbol{z}^{\prime} \boldsymbol{z}} \tag{19}
\end{equation*}
$$

since $\frac{(\boldsymbol{z}-\widehat{\boldsymbol{z}})^{\prime}(\boldsymbol{z}-\widehat{\boldsymbol{z}})}{\boldsymbol{z}^{\prime} \boldsymbol{z}}$ is a ratio of two squared operations, it has to be ≥ 0, this assumption with the two identities (18) and (19) prove (15).

RECENTLY PUBLISHED "TEMI" (*)

N. 1073 - Search costs and the severity of adverse selection, by Francesco Palazzo (July 2016).
N. 1074 - Macroeconomic effectiveness of non-standard monetary policy and early exit. A model-based evaluation, by Lorenzo Burlon, Andrea Gerali, Alessandro Notarpietro and Massimiliano Pisani (July 2016).
N. 1075 - Quantifying the productivity effects of global sourcing, by Sara Formai and Filippo Vergara Caffarelli (July 2016).
N. 1076 - Intergovernmental transfers and expenditure arrears, by Paolo Chiades, Luciano Greco, Vanni Mengotto, Luigi Moretti and Paola Valbonesi (July 2016).
N. 1077 - A "reverse Robin Hood"? The distributional implications of non-standard monetary policy for Italian households, by Marco Casiraghi, Eugenio Gaiotti, Lisa Rodano and Alessandro Secchi (July 2016).
N. 1078 - Global macroeconomic effects of exiting from unconventional monetary policy, by Pietro Cova, Patrizio Pagano and Massimiliano Pisani (September 2016).
N. 1079 - Parents, schools and human capital differences across countries, by Marta De Philippis and Federico Rossi (September 2016).
N. 1080 - Self-fulfilling deflations, by Roberto Piazza, (September 2016).
N. 1081 - Dealing with student heterogeneity: curriculum implementation strategies and student achievement, by Rosario Maria Ballatore and Paolo Sestito, (September 2016).
N. 1082 - Price dispersion and consumer inattention: evidence from the market of bank accounts, by Nicola Branzoli, (September 2016).
N. 1083 - BTP futures and cash relationships: a high frequency data analysis, by Onofrio Panzarino, Francesco Potente and Alfonso Puorro, (September 2016).
N. 1084 - Women at work: the impact of welfare and fiscal policies in a dynamic labor supply model, by Maria Rosaria Marino, Marzia Romanelli and Martino Tasso, (September 2016).
N. 1085 - Foreign ownership and performance: evidence from a panel of Italian firms, by Chiara Bentivogli and Litterio Mirenda (October 2016).
N. 1086 - Should I stay or should I go? Firms' mobility across banks in the aftermath of financial turmoil, by Davide Arnaudo, Giacinto Micucci, Massimiliano Rigon and Paola Rossi (October 2016).
N. 1087 - Housing and credit markets in Italy in times of crisis, by Michele Loberto and Francesco Zollino (October 2016).
N. 1088 - Search peer monitoring via loss mutualization, by Francesco Palazzo (October 2016).
N. 1089 - Non-standard monetary policy, asset prices and macroprudential policy in a monetary union, by Lorenzo Burlon, Andrea Gerali, Alessandro Notarpietro and Massimiliano Pisani (October 2016).
N. 1090 - Does credit scoring improve the selection of borrowers and credit quality?, by Giorgio Albareto, Roberto Felici and Enrico Sette (October 2016).
N. 1091 - Asymmetric information and the securitization of SME loans, by Ugo Albertazzi, Margherita Bottero, Leonardo Gambacorta and Steven Ongena (December 2016).
N. 1092 - Copula-based random effects models for clustered data, by Santiago Pereda Fernández (December 2016).
N. 1093 - Structural transformation and allocation efficiency in China and India, by Enrica Di Stefano and Daniela Marconi (December 2016).
N. 1094 - The bank lending channel of conventional and unconventional monetary policy, by Ugo Albertazzi, Andrea Nobili and Federico M. Signoretti (December 2016).
N. 1095 - Household debt and income inequality: evidence from Italian survey data, by David Loschiavo (December 2016).

[^2]Aaberge R. and A. Brandolini, Multidimensional poverty and inequality, in A. B. Atkinson and F. Bourguignon (eds.), Handbook of Income Distribution, Volume 2A, Amsterdam, Elsevier, TD No. 976 (October 2014).
Albertazzi U., G. Eramo, L. Gambacorta and C. Salleo, Asymmetric information in securitization: an empirical assessment, Journal of Monetary Economics, v. 71, pp. 33-49, TD No. 796 (February 2011).
Alessandri P. and B. Nelson, Simple banking: profitability and the yield curve, Journal of Money, Credit and Banking, v. 47, 1, pp. 143-175, TD No. 945 (January 2014).
Antonietti R., R. Bronzini and G. Cainelli, Inward greenfield FDI and innovation, Economia e Politica Industriale, v. 42, 1, pp. 93-116, TD No. 1006 (March 2015).
Bardozzetti A. and D. Dottori, Collective Action Clauses: how do they Affect Sovereign Bond Yields?, Journal of International Economics , v 92, 2, pp. 286-303, TD No. 897 (January 2013).
Barone G. and G. Narciso, Organized crime and business subsidies: Where does the money go?, Journal of Urban Economics, v. 86, pp. 98-110, TD No. 916 (June 2013).
Bronzini R., The effects of extensive and intensive margins of FDI on domestic employment: microeconomic evidence from Italy, B.E. Journal of Economic Analysis \& Policy, v. 15, 4, pp. 2079-2109, TD No. 769 (July 2010).
Bugamelli M., S. FAbiani and E. Sette, The age of the dragon: the effect of imports from China on firmlevel prices, Journal of Money, Credit and Banking, v. 47, 6, pp. 1091-1118, TD No. 737 (January 2010).
Bulligan G., M. Marcellino and F. Venditti, Forecasting economic activity with targeted predictors, International Journal of Forecasting, v. 31, 1, pp. 188-206, TD No. 847 (February 2012).
Cesaroni T., Procyclicality of credit rating systems: how to manage it, Journal of Economics and Business, v. 82. pp. 62-83, TD No. 1034 (October 2015).
Cuciniello V. and F. M. Signoretti, Large banks,loan rate markup and monetary policy, International Journal of Central Banking, v. 11, 3, pp. 141-177, TD No. 987 (November 2014).
de Blasio G., D. Fantino and G. Pellegrini, Evaluating the impact of innovation incentives: evidence from an unexpected shortage of funds, Industrial and Corporate Change, , v. 24, 6, pp. 1285-1314, TD No. 792 (February 2011).
Depalo D., R. Giordano and E. Papapetrou, Public-private wage differentials in euro area countries: evidence from quantile decomposition analysis, Empirical Economics, v. 49, 3, pp. 985-1115, TD No. 907 (April 2013).
Di Cesare A., A. P. Stork and C. De Vries, Risk measures for autocorrelated hedge fund returns, Journal of Financial Econometrics, v. 13, 4, pp. 868-895, TD No. 831 (October 2011).
Ciarlone A., House price cycles in emerging economies, Studies in Economics and Finance, v. 32, 1, TD No. 863 (May 2012).
FANTINO D., A. Mori and D. SCALISE, Collaboration between firms and universities in Italy: the role of a firm's proximity to top-rated departments, Rivista Italiana degli economisti, v. 1, 2, pp. 219-251, TD No. 884 (October 2012).
Fratzscher M., D. Rimec, L. Sarnob and G. Zinna, The scapegoat theory of exchange rates: the first tests, Journal of Monetary Economics, v. 70, 1, pp. 1-21, TD No. 991 (November 2014).
Notarpietro A. and S. Siviero, Optimal monetary policy rules and house prices: the role of financial frictions, Journal of Money, Credit and Banking, v. 47, S1, pp. 383-410, TD No. 993 (November 2014).
Riggi M. and F. Venditti, The time varying effect of oil price shocks on euro-area exports, Journal of Economic Dynamics and Control, v. 59, pp. 75-94, TD No. 1035 (October 2015).
TANELI M. and B. OhL, Information acquisition and learning from prices over the business cycle, Journal of Economic Theory, 158 B, pp. 585-633, TD No. 946 (January 2014).

Albanese G., G. DE Blasio and P. Sestito, My parents taught me. evidence on the family transmission of values, Journal of Population Economics, v. 29, 2, pp. 571-592, TD No. 955 (March 2014).

Andini M. and G. De Blasio, Local development that money cannot buy: Italy's Contratti di Programma, Journal of Economic Geography, v. 16, 2, pp. 365-393, TD No. 915 (June 2013).

Barone G. and S. Mocetti, Inequality and trust: new evidence from panel data, Economic Inquiry, v. 54, pp. 794-809, TD No. 973 (October 2014).

Beltratti A., B. Bortolotti and M. Caccavaio, Stock market efficiency in China: evidence from the split-share reform, Quarterly Review of Economics and Finance, v. 60, pp. 125-137, TD No. 969 (October 2014).

Bolatto S. and M. Sbracia, Deconstructing the gains from trade: selection of industries vs reallocation of workers, Review of International Economics, v. 24, 2, pp. 344-363, TD No. 1037 (November 2015).

Bolton P., X. Freixas, L. Gambacorta and P. E. Mistrulli, Relationship and transaction lending in a crisis, Review of Financial Studies, v. 29, 10, pp. 2643-2676, TD No. 917 (July 2013).

Bonaccorsi di Patti E. and E. Sette, Did the securitization market freeze affect bank lending during the financial crisis? Evidence from a credit register, Journal of Financial Intermediation, v. 25, 1, pp. 5476, TD No. 848 (February 2012).

Borin A. and M. Mancini, Foreign direct investment and firm performance: an empirical analysis of Italian firms, Review of World Economics, v. 152, 4, pp. 705-732, TD No. 1011 (June 2015).

Brandolini A. and E. Viviano, Behind and beyond the (headcount) employment rate, Journal of the Royal Statistical Society: Series A, v. 179, 3, pp. 657-681, TD No. 965 (July 2015).

BRIPI F., The role of regulation on entry: evidence from the Italian provinces, World Bank Economic Review, v. 30, 2, pp. 383-411, TD No. 932 (September 2013).

Bronzini R. and P. Piselli, The impact of $R \& D$ subsidies on firm innovation, Research Policy, v. 45, 2, pp. 442-457, TD No. 960 (April 2014).

Burlon L. and M. Vilalta-Bufi, A new look at technical progress and early retirement, IZA Journal of Labor Policy, v. 5, TD No. 963 (June 2014).

Busetti F. and M. Caivano, The trend-cycle decomposition of output and the Phillips Curve: bayesian estimates for Italy and the Euro Area, Empirical Economics, V. 50, 4, pp. 1565-1587, TD No. 941 (November 2013).

Caivano M. and A. Harvey, Time-series models with an EGB2 conditional distribution, Journal of Time Series Analysis, v. 35, 6, pp. 558-571, TD No. 947 (January 2014).
Calza A. and A. Zaghini, Shoe-leather costs in the euro area and the foreign demand for euro banknotes, International Journal of Central Banking, v. 12, 1, pp. 231-246, TD No. 1039 (December 2015).

CIANI E., Retirement, Pension eligibility and home production, Labour Economics, v. 38, pp. 106-120, TD No. 1056 (March 2016).

CIARLONE A. and V. Miceli, Escaping financial crises? Macro evidence from sovereign wealth funds' investment behaviour, Emerging Markets Review, v. 27, 2, pp. 169-196, TD No. 972 (October 2014).

Corneli F. and E. Tarantino, Sovereign debt and reserves with liquidity and productivity crises, Journal of International Money and Finance, v. 65, pp. 166-194, TD No. 1012 (June 2015).
D'Aurizio L. and D. Depalo, An evaluation of the policies on repayment of government's trade debt in Italy, Italian Economic Journal, v. 2, 2, pp. 167-196, TD No. 1061 (April 2016).

Dottori D. and M. Manna, Strategy and tactics in public debt management, Journal of Policy Modeling, v. 38, 1, pp. 1-25, TD No. 1005 (March 2015).

Esposito L., A. Nobili and T. Ropele, The management of interest rate risk during the crisis: evidence from Italian banks, Journal of Banking \& Finance, v. 59, pp. 486-504, TD No. 933 (September 2013).
Marcellino M., M. Porqueddu and F. Venditti, Short-Term GDP forecasting with a mixed frequency dynamic factor model with stochastic volatility, Journal of Business \& Economic Statistics , v. 34, 1, pp. 118-127, TD No. 896 (January 2013).
Rodano G., N. Serrano-Velarde and E. Tarantino, Bankruptcy law and bank financing, Journal of Financial Economics, v. 120, 2, pp. 363-382, TD No. 1013 (June 2015).

Alessandri P. and H. Mumtaz, Financial indicators and density forecasts for US output and inflation, Review of Economic Dynamics, v. 24, pp. 66-78, TD No. 977 (November 2014).
Mocetti S. and E. Viviano, Looking behind mortgage delinquencies, Journal of Banking \& Finance, v. 75, pp. 53-63, TD No. 999 (January 2015).
Patacchini E., E. Rainone and Y. ZEnou, Heterogeneous peer effects in education, Journal of Economic Behavior \& Organization, v. 134, pp. 190-227, TD No. 1048 (January 2016).

FORTHCOMING

ADAMOPOULOU A. and G.M. TANZI, Academic dropout and the great recession, Journal of Human Capital, TD No. 970 (October 2014).
Albertazzi U., M. Bottero and G. Sene, Information externalities in the credit market and the spell of credit rationing, Journal of Financial Intermediation, TD No. 980 (November 2014).
Bronzini R. and A. D'Ignazio, Bank internationalisation and firm exports: evidence from matched firmbank data, Review of International Economics, TD No. 1055 (March 2016).
Bruche M. and A. Segura, Debt maturity and the liquidity of secondary debt markets, Journal of Financial Economics, TD No. 1049 (January 2016).
Burlon L., Public expenditure distribution, voting, and growth, Journal of Public Economic Theory, TD No. 961 (April 2014).
Conti P., D. Marella and A. Neri, Statistical matching and uncertainty analysis in combining household income and expenditure data, Statistical Methods \& Applications, TD No. 1018 (July 2015).
DE BLASIO G. and S. Poy, The impact of local minimum wages on employment: evidence from Italy in the 1950s, Regional Science and Urban Economics, TD No. 953 (March 2014).
Federico S. and E. Tosti, Exporters and importers of services: firm-level evidence on Italy, The World Economy, TD No. 877 (September 2012).
Giacomelli S. and C. MEnon, Does weak contract enforcement affect firm size? Evidence from the neighbour's court, Journal of Economic Geography, TD No. 898 (January 2013).
MANCINI A.L., C. MONFARDINI and S. PasQUA, Is a good example the best sermon? Children's imitation of parental reading, Review of Economics of the Household, TD No. 958 (April 2014).
Meeks R., B. Nelson and P. Alessandri, Shadow banks and macroeconomic instability, Journal of Money, Credit and Banking, TD No. 939 (November 2013).
Micucci G. and P. Rossi, Debt restructuring and the role of banks' organizational structure and lending technologies, Journal of Financial Services Research, TD No. 763 (June 2010).
Mocetti S., M. Pagnini and E. Sette, Information technology and banking organization, Journal of Financial Services Research, TD No. 752 (March 2010).

Natoli F. and L. Sigalotti, Tail co-movement in inflation expectations as an indicator of anchoring, International Journal of Central Banking, TD No. 1025 (July 2015).
RIGGI M., Capital destruction, jobless recoveries, and the discipline device role of unemployment, Macroeconomic Dynamics, TD No. 871 July 2012).
Segura A. and J. Suarez, How excessive is banks' maturity transformation?, Review of Financial Studies, TD No. 1065 (April 2016).
ZINNA G., Price pressures on UK real rates: an empirical investigation, Review of Finance, TD No. 968 (July 2014).

[^0]: * Bank of Italy, Economic Research Unit, Torino Branch.
 e-mail: daniele.coin@bancaditalia.it

[^1]: Table 3: Empirical type I error of T

[^2]: (*) Requests for copies should be sent to:
 Banca d'Italia - Servizio Studi di struttura economica e finanziaria - Divisione Biblioteca e Archivio storico -
 Via Nazionale, 91 - 00184 Rome - (fax 003906 47922059). They are available on the Internet www.bancaditalia.it.

