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CONTAGION AND FIRE SALES IN BANKING NETWORKS 
 

by Sara Cecchetti*, Marco Rocco** and Laura Sigalotti* 
 

Abstract 

The paper develops a theoretical framework to analyze the connection between the 
structure of banking networks and their resilience to systemic shocks. We base our analysis 
on the model of interbank contagion proposed by Cifuentes, Ferrucci and Shin (2005), which 
accounts for the impact of illiquid assets' fire sales. We develop this model along three main 
lines: (i) analytically proving, in a general setting, the existence of an equilibrium and the 
convergence of the algorithm that can be used to compute it; (ii) extending the scope of the 
simulations (e.g., including an assessment of the resilience of different stylized network 
topologies and a sensitivity analysis); (iii) generalizing the model to deal with the case where 
more than one illiquid asset is available on the market. 

 
JEL Classification: D85, C62, G21, G28. 
Keywords: financial networks, contagion, liquidity, fire sales, systemic risk. 

 
 

Contents 
 

1. Introduction .......................................................................................................................... 5 
2. CFS model ........................................................................................................................... 9 
3. Analytical foundations for the single asset case ................................................................ 12 

3.1 Notation and preliminaries ......................................................................................... 13 
3.2 The algorithm ............................................................................................................. 17 

4. Simulations for the single asset case ................................................................................. 23 
 4.1 Simulations set-up and stylized network topologies ................................................... 24 
 4.2 Contagion analysis ....................................................................................................... 29 
 4.3 Capital injections: an allocation problem .................................................................... 32 
 4.4 The incremental effect of fire sales ............................................................................. 35 
 4.5 Sensitivity analysis: relative effectiveness of different policies .................................. 37 
 4.6 A more complex and realistic model: scale-free interbank network ........................... 41 
5. An extension to multiple illiquid assets.............................................................................. 45 
 5.1 Microfoundation of liquidation strategies ................................................................... 48 
 5.2 Numerical results ......................................................................................................... 56 
6. Conclusion .......................................................................................................................... 59 
References .............................................................................................................................. 61 
Appendix ................................................................................................................................ 64 
 
 

 

__________________________________ 

*  Bank of Italy, Directorate General for Economics, Statistics and Research. 

**  European Central Bank, Directorate General Micro-Prudential Supervision IV. 





1 Introduction1

The global financial crisis brought to the attention of both academics and policy-

makers the importance of taking into account the intertwined nature of financial

systems. Interconnections between financial institutions are varied and arise both

from the asset side and the liability side of their balance sheets. For instance,

connections between banks include direct exposures in interbank loans and indi-

rect links stemming from holding similar portfolios or sharing the same group of

depositors.

Network analysis provides a convenient way to model linkages among finan-

cial institutions. Since the seminal paper by Allen and Gale (2000), a network

perspective has been increasingly used in Economics and Finance and network

analytical tools have become part of the policymaker’s toolkit, especially for fi-

nancial stability purposes. A careful assessment of the externalities that risks

associated with single institutions can create for the entire system is necessary

for the purposes of financial supervision. Network analysis can contribute to the

assessment of such externalities and to the implementation of adequate regulatory

initiatives; for instance, measures of interconnectedness were introduced by the

Financial Stability Board in its regulatory framework on systemically important

financial institutions (see e.g. Gai, 2013, for a discussion of financial stability and

systemic risk based on network methods).

In general a network is simply a collection of nodes, linked with one another

by arcs, or edges. A banking system can be represented as a network in which

nodes correspond to banks and arcs stand for financial interdependencies among

those banks, such as bilateral loans on the interbank market or more complex

interactions (see Newman, 2010; Jackson, 2010, for an introduction to network

analysis and its applications to social and economic networks). Network topology,

i.e. the arrangement of links among nodes, accounts for the system’s “emerging

properties”, i.e. those features of the network that cannot be inferred from the

characteristics of its individual components, but only from the way in which these

units are related to each other. Network theory provides a conceptual framework

to analyze the different patterns of interconnections among financial institutions

1This publication should not be reported as representing the views of the European Central
Bank (ECB) or the Bank of Italy. The views expressed are those of the authors and do
not necessarily reflect those of the ECB or the Bank of Italy. We are grateful to Piergiorgio
Alessandri, Lorenzo Burlon, Antonio Di Cesare, Giovanni di Iasio, Giorgio Gobbi, Giuseppe
Grande, Giancarlo Mazzoni, Marcello Pericoli and Stefano Battison for useful comments and
suggestions.
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and to assess their implications in terms of systemic risk.

The academic literature that studies financial systems using network analyt-

ical tools has grown at a fast pace over the last few years. Following Allen and

Babus (2009), we distinguish among two main approaches, depending on the type

of questions address by network theory: (i) papers studying network effects, fo-

cusing on phenomena taking place in fixed networks; (ii) papers addressing the

mechanism of network formation.2 Our paper relates to the first strand of lit-

erature, which includes extensive research on financial stability and contagion:

by investigating the responses of different financial network structures to a shock

hitting one or more banks and propagating through the system, the most re-

silient structures are identified.3 Among the main contributions to the literature

on contagion in financial networks and its implications for financial stability, we

recall Allen and Gale (2000), Freixas et al. (2000), Cifuentes et al. (2005a,b), Gai

and Kapadia (2010), Upper (2011), Gai et al. (2011), Allen et al. (2012), Amini

and Minca (2012), Gauthier et al. (2012), Cabrales et al. (2014), Elliot et al.

(2014), Acemoglu et al. (2015a). These papers explore the mechanisms through

which solvency and liquidity shocks may generate a domino effect in a financial

network, where distress can flow through a variety of channels.4 In particular,

Cifuentes, Ferrucci, and Shin (2005a,b, CFS hereafter) is a a pioneering paper

on the interaction between two important channels of contagion: direct balance-

sheet exposures between banks and price deterioration of bank assets due to fire

sales. The authors develop a stylized model in which, on one hand, banks can be

affected by direct exposure on the interbank market, where the default of some of

their counterparties can occur; on the other hand, banks hold similar portofolios,

whose market value can be depressed by a fire sale mechanism.

Cifuentes et al. (2005a,b) relate to the literature on asset fire sales, which

began with the paper by Shleifer and Vishny (1992), where asset market liquidity

is linked to the funding of financial intermediaries. This field of research gained

2The literature on strategic network formation in financial markets developed in very recent
years; important contributions include Zawadowski (2013); Farboodi (2014); Acemoglu et al.
(2015b); Babus (2015). Our paper adopts a “network effects” perspective, thus diverging from
this growing literature.

3In this paper we adopt a rather broad and informal definition of contagion as the trans-
mission of (severe) negative shocks affecting one or more banks to other banks in the system.
This is in line with “what has evolved into the most common usage of the term contagion –
the transmission of an extreme negative shock in one country to another country (or group of
countries)” (Forbes, 2012).

4In addition to the theoretical investigations, a number of empirical works studied the stabil-
ity of national banking systems by simulating the effects of financial contagion on those systems.
For instance, Mistrulli (2011); Battison et al. (2015) deal with the Italian interbank market.
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greater importance after the recent financial crisis, when fire sales contributed to

aggravate the fragility of the financial system by deteriorating the balance sheets

of financial institutions.5 An incomplete list of the recent theory on asset fire

sales in financial markets include Brunnermeier and Pedersen (2009); Adrian and

Shin (2010); Shleifer and Vishny (2011); Jotikasthira et al. (2012); Caballero and

Simsek (2013); Geertsema (2014).

The paper by CFS is the first one in the literature in which price effects play

an important role in the modelization of contagion in interbank networks; we will

describe their model in details in Section 2 since the present paper builds on that

framework. We elaborate on the layout by CFS mainly along three directions:

(i) we provide complete analytical foundations to CFS framework, presenting a

constructive proof of the existence of an equilibrium, along with the convergence

of the algorithm to such equilibrium (Section 3); (ii) we extend the scope of

the simulations and perform a through investigation of the resilience of different

stylized network topologies to exogenous systemic shocks; we also conduct a sen-

sitivity analysis of the model to its main parameters, along with related policy

implications (Section 4); (iii) we generalize the model to deal with the case where

banks are endowed with different classes of illiquid assets, having different prices,

and each kind of illiquid assets can undergo price deterioration phenomena at

the same time; this assumption adds realism to the model but increases signif-

icantly both theoretical and computational complexity (Section 5). Within our

analysis, in line with a wide share of the related literature, we do not model pos-

sible strategical anticipation of the default of a bank by other institutions (banks

can only take action once they are hit by a shock or by contagion) and we do

not model all relevant channels of contagion (in particular, we do not consider

liquidity hoarding). These extensions are left for future research.

In the empirical section of this paper we investigate the fragility of different

stylized network topologies hit by an exogenous shock; the importance of the

structure of the lending relationships among banks for the stability of the financial

system was studied in many papers, including Allen and Gale (2000); Allen et al.

(2012); Roukny et al. (2013); Cabrales et al. (2014). In particular, Cabrales et al.

(2014) adopt a theoretical perspective to assess the resilience of banking network

characterized by different stylized configurations. In our empirical analysis we

consider four archetypal topologies: totally interconnected, circle, star and core-

5See, e.g. United States Treasury (2009), which states that the outburst of the housing
bubble triggered a wide-scale deleveraging in financial markets and subsequent fire sales.
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periphery topologies; despite being overly simplistic, this stylized configurations

can provide useful insights on the differences in the fragility of banking networks

with different arrangements.

Consistently with the literature, in this paper the main results of the simu-

lation exercises highlight the crucial role of the network topology in determining

how the banking system may be affected by systemic shocks. In particular, simu-

lation results confirm that networks with a star or core-periphery structure may

be more resilient, but are more fragile with respect to targeted shocks that affect

core banks (Section 4.2). Concerning the distribution of the initial shock, we

also show that, even in the case of homogeneous banks (i.e., banks with identical

balance-sheets), the impact of contagion following an exogenous shock of fixed

aggregate magnitude depends on the number of banks among which the shock

is distributed. The dependence is no-linear and varies according to the network

topology (Section 4.3). Furthermore, we show that the network structure also

affects the relative importance of the two main parameters of the model (i.e., the

degree of liquidity of non-interbank assets and the requirement on the leverage

ratio) in the transmission of the shock. For instance, in the star topology the two

parameters are equally important, while in the circle and totally interconnected

configurations either the former or the latter plays a preeminent role (Section

4.5). As a consequence, the relative effectiveness of policy instruments (e.g. cap-

ital or liquidity requirements) employed to tackle different risks in the banking

system may depend on the topology of the interbank network.

Finally, when several illiquid assets are available, we model the liquidation

strategy of each bank as a solution to a convenient optimization problem. In this

way we are able to: (i) analytically justify the behavioral rule assumed in the

CFS model for the single-asset case; (ii) highlight possible discrepancies between

microfounded optimal strategies and liquidation strategies that are often assumed

as sensible behavioral rules. In particular, since bank assets are marked to market,

the liquidity of an asset is not an intrinsic quality of the asset (fully described by

the elasticity of its price) from the point of view of a bank that has to deleverage,

but depends on both the composition of the bank’s portfolio and the liquidation

strategies adopted by the other banks in the system.

The remainder of the paper is organized as follows. Section 2 presents CFS

model, on which our work builds. Section 3 presents our formalization of the

model in the case of a single illiquid asset, with the proof of the existence of an

equilibrium and the convergence of the algorithm. Section 4 discusses the results
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of simulation exercises in the single asset case based on the theoretical framework

built in the previous section, while Section 5 generalizes that framework to the

case of multiple illiquid assets. Finally, Section 6 concludes.

2 CFS model

The starting point of this work is the paper by Cifuentes et al. (2005a,b, CFS),

which deals with liquidity risk in a network of financial institutions and explore

the effects of asset fire sales. They consider a system of interconnected institutions

(which can be thought of as stylized banks) subject to a regulatory constraint

on their leverage ratio, calculated marking-to-market the value of assets. The

institutions in the network can hold interbank claims and two kinds of assets (one

liquid and one illiquid);6 moreover, they can borrow funds from the interbank

market and collect deposits. When the system is hit by an exogenous shock,

some of the institutions may go in distress and become unable to meet the capital

requirement; in this case they can ease their balance sheet positions by selling part

of their non-interbank assets. If the market demand for such assets is not perfectly

inelastic, then sales by distressed institutions can lower the corresponding price.

Since the regulatory ratio is computed using marked-to-market assets, a further

round of endogenously generated sales can occur, possibly leading to contagious

failures. The paper by CFS is a pioneering contribution capturing the importance

of price effects in the modelization of contagion in interbank networks. This

section describes in detail CFS model, since our work builds on that framework.

The model considers a system of N interconnected banks. Each institution

can hold interbank assets and liabilities, described by a N ×N matrix

L = (Lij)1≤i,j≤N ,

where the entry Lij is the face value of the liability of bank i to bank j. By

definition Lij ≥ 0 and Lii = 0 for all i, j. Let Li be the face value of the total

interbank liabilities of bank i, i.e.

Li =
∑
j

Lij,

6In the model, the degree of liquidity is represented by a parameter accounting for price
elasticity, as shown in equation (4).
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and πij be the proportion of bank i’s liabilities associated with bank j:7

πij =

{
Lij/Li if Li > 0

1/N if Li = 0.

Let Π = (πij)1≤i,j≤N . We denote by xi the market value of bank i’s interbank

liabilities, which can be lower than Li because the bank can be unable to repay

all of its debts. The model assumes that all the interbank claims have equal

seniority, so the payments made by a bank in distress are proportional to its

notional liabilities: the borrower i pays the amount xiπij to the lender j.

In addition, bank i is endowed with a certain amount c of liquid assets and a

fixed holding e of illiquid assets, which can be sold at the market price p (which

is endogenously determined by the model). Moreover, bank i collects di units of

deposits. Then the equity value of bank i is given by

pei + ci +
∑
j

xjπji − xi − di. (1)

Besides equal priority of interbank claims, the model assumes two additional

conditions: limited liability of the shareholders, which implies that bank i’s equity

value is nonnegative; and priority of debt over equity, which implies that the

equity value is strictly positive only if xi = Li.

For a fixed value of p, based on the previous assumptions the vector of inter-

bank payments is given by

xi = min
{
Li, pei + ci +

∑
j

xjπji − di
}

; (2)

either a bank is able to pay its liabilities in full (Li), or it pays the marked-to-

market asset value.8 Equation (2) shows that bank i’s equity value depends on

the payments xj of the other institutions, as well as on the market price p of the

illiquid assets. The price p is endogenously determined by the model and depends

on the amount of assets liquidated in the market by the banks in distress.

In this model each institution is subject to a capital adequacy constraint:

the ratio between the equity value, where the interbank assets and liabilities are

7The definition of πij when Li = 0 ensures that row-sums of π equal one in any case.
8Actually, when deposits are added to the balance-sheet, the quantity pei+ci+

∑
j xjπji−di

may take negative values if the counterparties of bank i do not repay their liabilities in full.
Then, (2) should be replaced by xi = max

{
0,min

{
Li, pei + ci +

∑
j xjπji − di

}}
, as in (10).
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calculated in terms of the expected payments, and the marked-to-market value

of the assets held by the bank must be above a pre-specified threshold r̄. If a

bank violates the capital requirement, then it starts selling its assets to ease its

balance-sheet position (in this kind of models this is the only feasible option,

since raising fresh capital is not allowed). Let ti be the units of the liquid asset

sold by the distressed institution (at full price 1) and si be the units of illiquid

asset sold by bank i (at price p ≤ 1). Then, after the sale of ti units of liquid

assets and si units of illiquid assets, the regulatory leverage ratio reads

ri =
pei + ci +

∑
j xjπji − xi − di

p(ei − si) + (ci − ti) +
∑

j xjπji
≥ r̄. (3)

In equation (3), the denominator is the marked-to-market value of the assets after

the sale of ti and si: it is assumed that assets are sold for cash (giving ti+psi) and

that cash does not attract capital requirement, so the ratio takes into account

only the residual assets held by the bank.

The goal of the model is to determine an equilibrium solution (x, s, p), which

is defined as follows.

Definition 2.1. The triple (x, s, p), with x = vector of payments, s = vector

of sales of illiquid assets, p = price of the illiquid asset, is an equilibrium if the

following conditions are satisfied:

1. for all i, xi = min
{
Li, pei + ci +

∑
j xjπji − di

}
;

2. for all i, si is the smallest amount of illiquid assets sold by bank i which

guarantees that the regulatory constraint is satisfied, upon selling all the

liquid asset. If ri < r̄ for all values of si, then si is set equal to ei.

3. the equilibrium price satisfies p = ξ−1(
∑

i si), where ξ−1 denotes the inverse

demand function.

In CFS the inverse demand curve for the illiquid asset is assumed to be expo-

nential,

p = exp
(
− α

∑
i

si

)
, (4)

where α is a fixed exogenous parameter mirroring the semi-elasticity of the price.

An equilibrium price is defined as a value p such that the aggregate sale s(p) =∑
i si(p) of illiquid assets equals the demand ξ(p), s(p) = ξ(p).
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The existence of an equilibrium triple (x, s, p) is a nontrivial issue, even in a

stylized interbank network. In fact, the problem is highly nonlinear in the three

unknowns, which are defined by implicit conditions. The paper by CFS deals

with two subproblems separately:

• on one hand, it states that equation (2) can be solved, for fixed p and s,

using a fixed point theorem, as in Eisenberg and Noe (2001);

• on the other hand, it explores the existence of the equilibrium price p (and

simultaneously of the optimal quantity s), keeping the payment vector x

fixed. The paper provides some conditions under which, for fixed x, the

problem admits an equilibrium price lower than 1 (i.e. the trivial solution

in which no fire sale occurs) and gives a graphical intuition of the price

dynamics.

However, the work by CFS does not address explicitly the existence of the whole

equilibrium solution (x, s, p). In addition, when non-bank deposits are added to

the balance-sheet, the arguments used in Eisenberg and Noe (2001) do not apply

any longer and the proofs need to be deeply modified. The paper by CFS states

that the equilibrium can be determined computationally through an iterative

procedure, whose results are shown in a simulation exercise. In the next section

we will present a complete analytical foundation which is not present in Cifuentes

et al. (2005a,b), including a constructive proof of the existence of the equilibrium,

which will be the basis for our simulations.

3 Analytical foundations for the single asset case

In this section we provide a complete analytical foundation for a CFS-like model,

presenting a constructive proof of the existence of an equilibrium, along with

the convergence of the algorithm used to find it. None of the following proofs is

shown or sketched in CFS. As we will show in this section, the existence of an

equilibrium is not trivial at all, despite the highly stylized model.

The main result is stated in Theorem 3.8: we construct a non-increasing se-

quence of prices pk and a non-increasing sequence of payment vectors xk which

converge to an equilibrium of the problem. Moreover, we describe in detail the

algorithm we will implement in the simulations, which generalizes CFS to the

case of a general demand function and explicit exogenous shocks. The iterative

12



procedure is composed of two intertwining algorithms: a modification of Eisen-

berg and Noe’s algorithm to compute the interbank payment vector and a fixed

point argument to determine the price of the illiquid asset through a fire sale

mechanism.

3.1 Notation and preliminaries

1. Sales of illiquid assets. Let ξ = ξ(p) be a demand function for the illiquid

asset, with p ∈ (0, 1]. We assume that ξ is continuous, invertible and such that

ξ−1 is non-increasing.9 Let s = sx(p) be the supply function, defined as the sum

of the units of illiquid asset sold by the banks in the systems.

Bank i is subject to the regulatory requirement defined in Equation (3). If the

bank is in distress and violates the regulatory condition, then it liquidates (part

of) its assets to ease its balance sheet position. In some cases it is sufficient to sell

a share of the liquid assets endowment to comply with the regulatory condition.

If bank i’s leverage ratio ri is still below the regulatory ratio r̄ even after selling all

the available liquid assets (ti = ci), then we can compute the minimum amount

of illiquid assets the bank needs to liquidate to match exactly the regulatory ratio

r̄. Let gxi (p) be the amount of illiquid assets which makes the condition ri = r̄

hold for given x and p, after all liquid assets are liquidated: by Equation (3),

gxi (p) = −(1− r̄)ei
r̄

+
xi + di − (1− r̄)

∑
j xjπji − ci

r̄p
. (5)

Note that gxi (p) is negative whenever ri > r̄; in this case the bank does not need

to sell any illiquid assets. The amount of illiquid assets bank i can sell is bounded

from above by its endowment ei, while the variable gxi (p) can take values greater

than ei. Then the share of illiquid assets sold by bank i is given by

sxi (p) =

{
ei if xi < Li

max
{

min{ei, gxi (p)}, 0
}

otherwise.
(6)

Note that for all i and x, sxi (p) is a non-increasing continuous function of p

and that there exist two values 0 ≤ q1
i ≤ q2

i ≤ 1 such that sxi (p) = ei for p ≤ q1
i ,

sxi (p) = 0 for p ≥ q2
i and sxi (p) = gxi (p) for p ∈ (q1

i , q
2
i ).

9This assumption are sufficient to prove the main results and generalize the exponential
demand function used in CFS.
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Although the price p can vary in (0, 1] a priori, actually we can restrict the

range of feasible prices to a smaller interval, which depends on the network struc-

ture and on the initial shock which hits the system.

• The upper bound p0 of the price set depends on the extent of the initial

shock which hits the system, possibly triggering a fire sale mechanism. In

this setting an exogenous shock is modeled by canceling part of the illiquid

assets held by the banks of the network; it can be concentrated on one

financial institution or widespread over a number of banks.

The after-shock price p0 is a function of the magnitude of the shock. If it

were equal to 1 regardless of the extent of the shock, we might obtain some

incongruous results: a large shock on the illiquid assets of one bank could

lead to a small overall effect, since the after-shock quantity of illiquid asset

in the bank’s portfolio could not be sizable enough to trigger a fire sales

mechanism; on the other hand, a smaller shock to the same bank could

generate more contagious effects, since in this case the bank’s after-shock

endowment of illiquid asset could suffice to trigger widespread fire sales, if

liquidated.

Let σ be the overall amount of illiquid assets canceled by the exogenous

shock. We then assume that, when the shock hits the system, the price of

the illiquid asset drops to the after-shock price

p0 = ξ−1(σ) = ξ−1
σ (0), (7)

where we introduce the additional notation

ξ−1
σ (s) := ξ−1(σ + s).

Note that the parameter σ affects the function ξ−1
σ only by horizontal shifts

(it determines the starting point of the inverse demand function, corre-

sponding to s = 0); the shape of the function is the same for all values of

the initial shock.

Note that p0 is the price of the illiquid assets prior to the spread of the

contagion and the asset fire sales. Since the fire sale mechanism can only

depress the market value of the assets, any feasible price p must be lower

than or equal to p0.
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• On the other hand, the lowest feasible price corresponds to the case in which

all the banks in the system liquidate their endowment of illiquid assets in

full:

pmin = ξ−1
σ

(∑
i

ei

)
. (8)

We define

Ψx(p) = ξ−1
σ (sx(p)), (9)

with sx(p) as in (6). From the previous observations we deduce that

Ψx : [pmin, p0]→ [pmin, p0].

Since it is the composition of two non-increasing functions, Ψx is non-decreasing

in p. By Tarski’s fixed point theorem (see Theorem A.1) we can deduce the

existence and uniqueness of the maximal fixed point of Ψx, for a given x:

Lemma 3.1. For fixed x, there exists a unique p∗ ∈ [pmin, p0] such that

Ψx(p∗) = p∗

and p∗ ≥ q for all q ∈ [pmin, p0] satisfying Ψx(q) = q.

Proof. The interval [pmin, p0] is a complete lattice; the function Ψx : [pmin, p0]→
[pmin, p0] is non-decreasing by construction. By Tarski’s fixed point theorem, Ψx

admits a unique maximal fixed point.

2. Clearing payments. Having fixed a price p for the illiquid asset, the vector

x is a clearing payment vector if it is a fixed point of the map

Φp : [0, L1]× . . .× [0, LN ]→ [0, L1]× . . .× [0, LN ]

defined as

Φp(x) = max{min{L,Π′x+ pe+ c− d}, 0}. (10)

The function Φp is non-decreasing in [0, L1]× . . .× [0, LN ] by construction. The

existence of a maximal fixed point of Φp can be obtained by Tarski’s fixed point

theorem (the proof runs as in Lemma 3.1).

Lemma 3.2. For fixed p, there exists a unique vector x ∈ [0, L1] × . . . × [0, LN ]

such that

x = Φp(x)

15



and that x ≥ y for all y ∈ [0, L1]× . . .× [0, LN ] satisfying y = Φp(y).

The function Φp can be written in an equivalent form, which will be convenient

to describe the algorithm; to this end, we introduce some additional notation. Let

Dp(x) = {i ∈ 1, . . . , N : (Φp(x))i < Li} (11)

and let

(Λp(x))ij =

{
1 if i = j and i ∈ Dp(x)

0 otherwise.
(12)

For fixed p, given x, y ∈ [0, L1]× . . .× [0, LN ] we define

Fp,y(x) = Λp(y)
(

min{Li,max{0,Π′(Λp(y)x+ (I − Λp(y))L) + pe+ c− d}}
)

+(I − Λp(y))L. (13)

By construction we have

Fp,x(x) = Φp(x), for all x. (14)

Note that, for fixed p, y, the map Fp,y(·) is non-decreasing.

We introduce a definition which will be useful in the proofs.

Definition 3.3. The vector x is a supersolution for Φp if

x ≥ Φp(x).

We now prove a lemma on the monotonicity of Fp,y which will be useful in

what follows.

Lemma 3.4. Let Fp,y(x) be defined as in (11)-(13), for p ∈ [pmin, p0], x ∈ [0, L1]×
. . . × [0, LN ] and y ∈ [0, L1] × . . . × [0, LN ]. Then the function Fp,y(x) is non-

decreasing:

(a) in p, for fixed x, y;

(b) in y, for fixed p, x;

Proof.

(a) Notice first that, if p ≤ q, Dp(y) ⊇ Dq(y), as Φp(y) is non-decreasing in

p for fixed y, where the two sets are defined in (11). As a consequence,
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Λp(y) ≥ Λq(y) component-wise, the function Λ being defined in (12). We

can distinguish three cases:

◦ if (Λp(y))ii = (Λq(y))ii = 0, then (Fp,y(x))i = Li = (Fq,y(x))i;

◦ if (Λp(y))ii = (Λq(y))ii = 1,

(Fp,y(x))i = min
{
Li,max

{
0,
∑
j

πji((Λp(y))jjxj + (1− (Λp(y))jj)Lj)

+ pei + ci − di
}}

≤ min
{
Li,max

{
0,
∑
j

πji((Λq(y))jjxj + (1− (Λq(y))jj)Lj)

+ qei + ci − di
}}

= (Fq,y(x))i,

as (Λp(y))jjxj + (1 − (Λp(y))jj)Lj ≤ (Λq(y))jjxj + (1 − (Λq(y))jj)Lj

and pei ≤ qei;

◦ if (Λp(y))ii = 1 and (Λq(y))ii = 0,

(Fp,y(x))i = min
{
Li,max

{
0,
∑
j

πji((Λp(y))jjxj + (1− (Λp(y))jj)Lj)

+ pei + ci − di
}}
≤ Li = (Fq,y(x))i.

(b) If y ≤ z, then Dp(y) ⊇ Dp(z), since Φp(y) is non-decreasing in y for fixed p.

Therefore, Λp(y) ≥ Λp(z) component-wise. The proof is then on the same

line of (a).

We finally present a definition of equilibrium coherent with our framework.

Definition 3.5. A pair (x∗, p∗) ∈ [0, L1]× . . . [0, LN ]× [pmin, p0] is said to be an

equilibrium if

x∗ = Φp∗(x∗) and p∗ = Ψx∗(p∗).

3.2 The algorithm

We assume that an interbank system as in the previous sections is hit by an

exogenous shock σ on the illiquid assets. Let e0
i be the initial endowment of

illiquid assets for bank i and ei be the after-shock one. Then σ =
∑

i e
0
i −

∑
i ei.

The algorithm runs as follows:
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• Step 0 (Initialization): we set

x0 = L, p0 = p0, s
0 = (0, . . . , 0), t0 = (0, . . . , 0).

• Step k, k ≥ 1: in the previous step we determined the payment vector xk−1,

the amount of illiquid assets sold by each bank sk−1 = (sk−1
1 , . . . , sk−1

N ) and

the corresponding price pk−1. Moreover we calculated the amount of liquid

assets sold by the banks in the network tk−1 = (tk−1
1 , . . . , tk−1

N ).

Now, we first compute the value of the leverage ratio for each bank:

rki =
pk−1ei + ci +

∑
j x

k−1
j πji − xk−1

i − di
pk−1(ei − sk−1

i ) + (ci − tk−1
i ) +

∑
j x

k−1
j πji

.

We define the vector of indicator functions Ik as Iki = χrki <r̄, i.e. Iki = 0 if

bank i complies with the capital requirement, Iki = 1 otherwise.

� If tk−1
i = ci and sk−1

i = ei for all i such that Iki = 1, then we terminate

the algorithm: either a bank is satisfying its regulatory ratio (i.e. Iki =

0), or it has sold all the available assets (i.e. Iki = 1, tk−1
i = ci and

sk−1
i = ei). In this case there is no further sale of illiquid assets and

the corresponding price remains constant. We set:

x∗ = xk−1 = L, p∗ = pk−1, t∗ = tk−1, s∗ = sk−1. (15)

� If, for some i, Iki = 1 and sk−1
i < ei, then we compute the amount of

assets sold by the banks in distress, the resulting price of the illiquid

assets and the payment vector.

◦ Computation of pk, sk and tk. Namely, we first calculate the

units of liquid assets sold by each bank, which is given by

tki = max
{

min
{di + xk−1

i − (1− r̄)(pk−1 ei + ci + π′xk−1)

r̄
, ci

}
, 0
}
.

The formula above states that bank i sells the smallest amount

of available liquid assets which guarantees the fulfillment of the

capital adequacy condition. If the regulatory ratio is still violated

after selling the entire endowment ci, then bank i needs to start

selling its illiquid assets.
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Now, sk and pk are defined as follows:

sk =
∑
i

ski ,

ski = sx
k−1

i (pk) =

{
ei if xk−1

i < Li

max
{

min{ei, gki (pk)}, 0
}

otherwise,

(16)

with

gki (p) = −(1− r̄)ei
r̄

+
xk−1
i − (1− r̄)

∑
j x

k−1
j πji − ci

r̄p
, (17)

and pk is the greatest fixed point of

Ψk(p) = ξ−1
σ (sk(p)) = ξ−1

σ (sx
k−1

(p)) in [pmin, p0].

In order to find pk numerically, we implement a sub-algorithm

starting from the initial guess P0 = p0. Then for n ≥ 1 we set the

recursive condition Pn = Ψk(Pn−1). By Lemma A.2, the sequence

{Pn} converges to pk, so we can stop the iterations when |Ψk(Pn)−
Pn| is lower than a pre-assigned tolerance level ε.

◦ Computation of xk. We define xk as the greatest fixed point of

the map Fpk,xk−1 , i.e.

Fpk,xk−1(xk) = xk

and xk ≥ z for all z such that Fpk,xk−1(z) = z. In order to find

a numerical approximation of xk, we start a sub-algorithm from

X0 = L and we set Xn = Fpk,xk−1(Xn−1) for n ≥ 1. By Lemma

A.2, the sequence {Xn} converges to xk, so we can stop the iter-

ations when |Fpk,xk−1(Xn)−Xn| is below a pre-assigned tolerance

level ε.

Lemma 3.6. If pk+1 ≤ pk and xk ≥ Φpk(xk), then

xk+1 ≤ xk and xk+1 ≥ Φpk+1(xk+1).
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Proof. Let x̂k+1 and xk+1 be the greatest fixed points of the maps Fpk,xk(·) and

Fpk+1,xk(·), respectively, i.e.

Fpk,xk(x̂k+1) = x̂k+1, x̂k+1 ≥ z for all z such that z = Fpk,xk(z),

and

Fpk+1,xk(xk+1) = xk+1, xk+1 ≥ z for all z such that z = Fpk+1,xk(z).

Note that x̂k+1 and xk+1 are well-defined by Theorem A.1.

We firstly show that

xk+1 ≤ x̂k+1 ≤ xk, (18)

thus getting the first part of the proof. Recall that Fp,y(·) is non-decreasing and,

by Lemma 3.4, Fpk+1,xk(y) ≤ Fpk,xk(y) for all y. Then, by Lemma A.3,

F
(n)

pk+1,xk
(L) ≤ F

(n)

pk,xk
(L).

By passing to the limit as n→ +∞ on both sides of the previous inequality and

using Lemma A.2, we obtain xk+1 ≤ x̂k+1.

The second inequality can be proved analogously. By Lemma 3.4, Fpk,xk(y) ≤
Fpk,xk−1(y) for all y. As a consequence,

F
(n)

pk,xk
(L) ≤ F

(n)

pk,xk−1(L),

from which, letting n tend to infinity, x̂k+1 ≤ xk; this concludes the proof of (18).

It remains to show that xk+1 is a supersolution, i.e. xk+1 ≥ Φpk+1(xk+1). We

have just shown that xk+1 ≤ xk; by Lemma 3.4 we get

Fpk+1,xk(xk+1) ≥ Fpk+1,xk+1(xk+1).

Since Fpk+1,xk(xk+1) = xk+1 and Fpk+1,xk+1(xk+1) = Φpk+1(xk+1), the proof is com-

plete.

Lemma 3.7. If xk ≤ xk−1, then pk+1 ≤ pk.

Proof. We recall that, for fixed p and i, ski (p) and gki (p) are defined as in (16) and

(17). If xki = Li, the assumption xk ≤ xk−1 implies that xk−1
i = Li. There follows

that gk+1
i (p) ≥ gki (p), hence sk+1(p) ≥ sk(p). On the other hand, if xki < Li then

sk+1
i (p) = ei by definition, so sk+1

i (p) ≥ ski (p) for all p. Since ξ−1
σ is non-increasing,
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we get that

ξ−1
σ (sk+1(p)) ≤ ξ−1

σ (sk(p)), i.e. Ψk+1(p) ≤ Ψk(p).

Since Ψk+1 is non-decreasing, by applying Lemma A.3 we get

(Ψk+1)(n)(p0) ≤ (Ψk)(n)(p0) for all n ≥ 1.

By Lemma A.2, we can pass to the limit as n tends to infinity and get

pk+1 ≤ pk,

as desired.

Theorem 3.8. There exist a non-increasing sequence of prices {pk} converging

to a price p∗ and a non-increasing sequence of payment vectors {xk} converging

to a vector x∗, such that (p∗, x∗) satisfy

x∗ = Φp∗(x∗) and p∗ = Ψx∗(p∗) = ξ−1
σ (sx

∗
(p∗)). (19)

The pair (x∗, p∗) is then an equilibrium according to Definition 3.5.

Proof. Let p0 = ξ−1(σ) and x0 = L. For k ≥ 1, we define pk as the greatest fixed

point of the function Ψk = Ψxk−1
and then xk as the greatest fixed point of the

function Fpk,xk−1 .

We can show by induction that

pk+1 ≤ pk, xk+1 ≤ xk, and xk+1 ≥ Φpk+1(xk+1). (20)

• For k = 0 we have x0 = L, p0 = p0 and x0 = L ≥ Φp0(x
0). Then by

definition p1 ≤ p0 = p0 and x1 ≤ x0 = L. Moreover, x1 ≥ Φp1(x
1) by

Lemma 3.6.

• Now, we assume that pk ≤ pk−1, xk ≤ xk−1 and xk ≥ Φpk(xk) and we show

that this implies (20).

By Lemma 3.7, we have that xk ≤ xk−1 implies pk+1 ≤ pk. Now, by Lemma

3.6, we deduce that xk+1 ≤ xk and xk+1 ≥ Φpk+1(xk+1), as desired.

The sequence {xk} is non-increasing and takes values in the set [0, L1]×. . . [0, LN ],

hence it admits a limit x∗ ∈ [0, L1] × . . . [0, LN ]. The sequence {pk} is non-
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increasing and pk ∈ [pmin, p0] for all k; hence it admits a limit p∗ ∈ [pmin, p0]. It

remains to show that (x∗, p∗) satisfies (19).

By the definition of xx+1, the monotonicity of Fpk+1,xk(·) and the fact that xk

is a supersolution, we get

xk+1 = Fpk+1,xk(xk+1) ≤ Fpk+1,xk(xk) ≤ Fpk,xk(xk) = Φpk(xk) ≤ xk.

Since xk → x∗ and xk+1 → x∗, by comparison {Φpk(xk)} admits a limit and

lim
k

Φpk(xk) = x∗.

The function Φp(x) is continuous in (x, p) ∈ D = [0, L1]× . . .× [0, LN ]× [pmin, p0]

by construction, hence

x∗ = lim
k

Φpk(xk) = Φp∗(x∗).

By definition of pk we have

lim
k

Ψk(pk) = lim
k
pk = p∗. (21)

It remains to show that p∗ = Ψx∗(p∗). Recall that Ψx(p) = ξ−1 ◦ sx. In this case

we cannot claim that Ψ is continuous in (x, p) in the whole domain D, because

s is not continuous as a function of x (see equation (6)). However, we can show

that the continuity of Ψ on a subset of D is sufficient to prove the desired result.

Let

A =

{( N∏
i=1

Ai

)
× [pmin, p0] : Ai = {Li} ∨ Ai = [0, Li) for all i

}
.

We can show that:

1. Ψ = Ψx(p) is continuous in B for all B ∈ A;

2. there exist k̄ ∈ N and B̄ ∈ A such that (xk, pk) ∈ B̄ for all k ≥ k̄. In other

words, the sequence (xk, pk) is eventually contained in one of the sets of

continuity of the function Ψx(p).
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By (6), for fixed i the function sxi (p) is continuous with respect to the variables

(x, p) in the set

A1 × . . .× [0, Li)× . . .× AN × [pmin, p0],

with Aj = [0, Lj] for all j 6= i, since the only set of discontinuity is {xi = Li}.
Moreover, the restriction of sx(p) to the hyperplane {xi = Li} is continuous by

definition, hence sxi (p) is continuous with respect to (x, p) in

A1 × . . .× {Li} × . . .× AN × [pmin, p0],

with Aj = [0, Lj] for all j 6= i. By repeating this argument for each bank and

summing up s(x, p) =
∑

i si(s, p), we get claim 1.

We can now prove claim 2. Let x∗ ∈ [0, L1] × . . . × [0, LN ] be x∗ = limk x
k.

For fixed i, either x∗i = Li or x∗i ∈ [0, Li). In the first case, since the sequence

xk is non-increasing, then we have xki = Li for all k, we set k0
i = 0. In the latter

case, by definition of limit there exists k0
i ∈ N such that xki < Li for k ≥ k0

i . Up

to permutations of the indexes, we can assume that x∗i = Li for i = 1, . . . , I and

that x∗i < Li for i = I + 1, . . . , N . Then for all k ≥ k̄ := maxi k
0
i we have

xk ∈ {L1} × . . .× {LI} × [0, LI+1)× . . .× [0, LN).

There follows that there exist k̄ ∈ N and B̄ ∈ A such that (xk, pk) ∈ B̄ for all

k ≥ k̄, and Ψx(p) is continuous in B̄. Then we have limk Ψk(pk) = Ψx∗(p∗); on

the other hand, Ψk(pk) = pk → p∗ by (21), hence

Ψx∗(p∗) = p∗,

as desired.

4 Simulations for the single asset case

In this section we present the results of a few simulation exercises that are meant

to illustrate how the model works and how asset fire sales and direct balance-

sheet exposures may interact, spreading contagion through the system. In this

connection, a caveat is in order: the model has a theoretical purpose and is more

suitable for a qualitative analysis than for exact calibration to real data. As a
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consequence, the numerical values assigned to the parameters in the simulations

and the results presented have an illustrative aim only and are not meant to

provide quantitative estimates of potential losses in real banking systems.

4.1 Simulations set-up and stylized network topologies

The CFS model was tested by the authors on a uniform, totally interconnected

network of ten banks, i.e. a banking system in which all banks have equal balance-

sheets and lend to or borrow from one another the same amount of money. This

framework is useful to discriminate patterns in the results that are due to intrinsic

characteristics of the model from patterns that might emerge as a consequence of

specific features of the banking system at hand. Therefore, we will consider this

benchmark case as well in our assessment of the model.

On the other hand, the purpose of introducing networks in economic and

financial models relates to the need to explicitly account for the structure of

interconnections that characterizes the financial system. Indeed, this structure

(the topology of the network) may deeply influence the behavior of the system. In

particular, it may contribute to the resilience of the financial system to exogenous

shocks, or, on the contrary, increase havoc (see e.g. the seminal paper by Allen

and Gale, 2000). It is then important to consider how the model behaves when

performing contagion analysis on different network topologies. To this end, in

the following paragraphs we consider four main archetypal topologies (Figure 1):

(i) totally interconnected topology – each bank is linked to all other banks (as

described above);

(ii) circle topology – each bank borrows from only one bank and only lends

to another bank, i.e. bank i borrows from i − 1 and lends to i + 1, for

i = 1, . . . , N (bank 1 borrows from bank N);

(iii) star topology – there is only one big bank (the core of the star) that borrows

from and/or lends to all other banks in the system, while non-core banks

are not interconnected with one another;

(iv) core-periphery topology – similar to the star topology, there is a core of big

banks that interact on the interbank market with smaller banks (peripheral

banks).
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While the first three topologies are highly stylized, the last one represents a

situation that is somewhat closer to real banking systems (see Craig and von Pe-

ter, 2014; in ‘t Veld and van Lelyveld, 2014; Fricke and Lux, 2015, for a discussion

on core-periphery topologies in different financial markets). Though differentiat-

ing the way in which banks are interconnected, we assume a uniform structure in

terms of balance-sheet dimensions and composition, except for the banks belong-

ing to the core of the star or the core-periphery networks. We consider networks

of 100 banks, with the initial (i.e., pre-shock) balance-sheet of a representative

bank in the system as in Table 1. In the case of the star topology, we add to the

100 uniform banks a core bank, the total assets of which are five times bigger in

value than those of the representative bank. Peripheral banks are assumed to be

split in two equinumerous groups, according to whether they lend to or borrow

from the core bank. Finally, in the core-periphery network, the core consists of 10

uniform banks, with total assets ten times those of peripheral banks. The latter

are divided in 10 groups (of 10 banks each). The banks in each group exchange

money in the interbank market between one another (assuming total intercon-

nectedness inside each group) and with one and only one bank belonging to the

core. Core banks, similarly, lend to and borrow from any other bank belonging

to the core, in addition to peripheral banks belonging to the associated group.

Table 1: Representative bank’s balance-sheet

Assets Liabilities
Liquid asset: ci = 40
Illiquid asset: ei = 130
Interbank assets:

∑
j 6=i xjπji = 30

Non-interbank liabilities: di = 160
Interbank liabilities: Li = 30

Equity: Ki = 10

In the following sections we present four main simulation exercises imple-

mented with this basic set-up. Unless otherwise specified, we set the regulatory

leverage ratio equal to 4% (a figure broadly in line with leverage ratios of many

commercial banks and with the 3% requirement envisaged by the Basel 3 frame-

work) and the minimum price that can be attained by the illiquid asset equal to

0.9 (the initial price, when no liquidation has occurred yet, is normalized to 1,

as the price of the liquid asset).10 The inverse demand function is assumed to be

10Obviously, these parameters play a key role in determining the outcomes of any simulation
exercise (a sensitivity analysis is presented in Section 4.5). In particular, the choice of the
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Figure 1: Stylized network topologies
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quadratic and is accordingly fitted to the minimum price as:11

p(s) = 1− αs2, where α =
1− pmin(∑N

j=1 ej

)2 .

This functional form represents the easiest way to instance the assumption of

a concave inverse demand function, which better fits the empirical behavior of

prices in case of fire sales than a convex function (like the exponential one) does.

Indeed, the price of an asset is usually little affected by small sales, but it may

significantly deteriorate, and at a faster pace, in case there are substantial sales.

Furthermore, in each exercise contagion analysis is performed in a standard

way: an exogenous shock hits one or more banks in the system and the ensuing

propagation of distress is measured. A bank defaults if, after liquidating all of its

non-interbank assets, it does not comply with the regulatory leverage ratio. In

this connection, note that:

(i) As is common in the literature, we adopt a “timeless” perspective, according

to which contagion spreads instantaneously (there is no time dimension in

the model) and banks do not have the possibility to readjust the composition

of their assets in response to a shock or to defaults of other banks (they are

only allowed to sell as many assets as needed to comply with the regulatory

leverage ratio).

(ii) The rate of recovery for investors exposed to a defaulting bank is deter-

mined endogenously in the model. As a consequence, the magnitude of the

initial shock matters and we do not need to restrict ourselves to consider

the complete wipe out of a bank’s total assets as an initial trigger of the

contagion process.

(iii) We only consider here shocks to the asset side of the balance-sheet.12 More

minimum price is not straightforward. For instance, in Cifuentes et al. (2005a), the extended
working paper version of the CFS model, in most simulations the authors set the minimum
price equal to 0.5. On the other end of the scale, Gauthier et al. (2012) set it equal to 0.98.
While modeling real fire sales would require to pick a low value of the minimum price, the
stylized structure of the model, in which only one type of illiquid asset is available on the
market, imposes a trade-off: on one hand, low values of the minimum price would produce the
unrealistic result that even a modest shock could trigger an endemic contagion yielding to the
wipe-out of the whole system; high values, on the other hand, are unrealistic but allow to study
a wider range of outcomes assuming reasonable shock values.

11Section 4.5 provides an example of how a different assumption on the functional form may
affect the results of the simulations. In particular, comparative statics for other values of the
minimum price attainable by the illiquid asset will be shown.

12The financial crisis has shown that considerable problems to bank balance-sheets may stem
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precisely, the initial shock is modeled as a loss of a given share of the illiquid

asset, affecting one or more banks in the system.13

(iv) In the CFS model, distress may be transmitted even if no default occurs:

as soon as a bank is forced to sell part of the illiquid asset in its portfolio in

order to comply with the regulatory ratio, the price of that asset deteriorates

and, as a consequence, the value of other banks’ illiquid assets diminishes

as well.

Finally, when evaluating the impact of fire sales and balance-sheet contagion

on the system, we will compute the following metrics:

• the share of liquid assets sold by bank i, %Liq = ti/ci;

• the share of illiquid assets sold by bank i, %Illiq = si/ei;

• the share of interbank liabilities that bank i is unable to repay, %IB =

1− xi/Li;

• the negative of the change in total asset value, with respect to the value of

assets recorded after the shock hits and before the contagion process starts,

namely

∆TA = 1−
∑N

j=1 (cj − tj + p · (ej − sj) + Π′x)∑N
j=1 (cj + p0 · ej + Π′L)

,

where p0 and ej denote respectively the price of the illiquid asset and bank

j’s endowment of illiquid asset immediately after the initial shock, before

any liquidation process starts;

• the (positive) loss of senior creditors (e.g., depositors or bondholders)

LossD =

∑N
j=1 max{0, dj − (cj + p · ej + Π′x)}∑N

j=1 dj
;

from the liabilities side and part of the recent literature has shifted towards the consideration
of funding liquidity issues. However, we do not include this extension here in order to avoid
complicating the model excessively, before having clarified the structure of its original version
(see also the comments in Amini and Minca, 2012, on this topic).

13Once the shock hits the system, the price of the illiquid asset is updated, as if the amount
of illiquid asset eliminated by the shock were sold on the market. Running simulations without
this adjustment, one could draw the paradoxical conclusion that a more severe shock would be
better than a lighter one. In fact, a severe shock would leave the hit bank with less illiquid
asset available for sale, i.e. with a smaller potential to negatively impact other banks via the
fire sales channel (see Section 3.1).
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• the number of defaults, i.e. the number of banks j = 1, . . . , N such that

tj = cj, sj = ej and

r =
cj + p · ej + Π′x− dj − Lj

Π′x
< r.

4.2 Contagion analysis

The first simulation exercise we present is a standard contagion analysis, per-

formed on the four different stylized topologies described above. In particular,

we fix beforehand a set of banks that are hit by an exogenous shock and calculate

the impact metrics letting the magnitude of the shock vary. More precisely, the

chosen banks are affected by an initial shock eroding a share S of the illiquid

asset endowment of each of them, with S ranging between 0 and 100 per cent

(for simplicity, S is equal for all banks hit by the exogenous shock). The results

are shown in Figure 2.

The first overall conclusion conveyed by the results is the existence of “phase

transition” points in each configuration, i.e. threshold values of the initial shock

above which the number of defaults shifts from virtually zero to the number of

banks hit by the shock, and then to the total number of banks in the system.

While exacerbated by the simplicity of the model and by the chosen set-up (ho-

mogeneous banks), a regime-switching behavior based on different values of the

relevant parameters may be found also in more realistic network models (see e.g.

Newman, 2003) and should be taken into account when assessing the resilience

of real financial networks.

Considering more in detail the four topologies analyzed, Figure 2 displays

a few remarkable differences. As shown by panels (a) and (b), the total inter-

connected topology and the circle configuration display similar outcomes with

respect to all metrics, although the circle starts yielding to the default of all

banks at a lower level of the initial shock (roughly 20 per cent, instead of 30).

Thus, compared with the totally interconnected topology, it displays a narrower

range of shocks leading to non-catastrophic contagion.14 On the other hand, the

transition between the two regimes (either only the banks hit by the shock or

all banks default) is more gradual, due to the heterogeneous structure of the in-

14This conclusion does not hold if there is a clustering of the banks hit by the shock. In this
case (not shown in Figure 2), the circle configuration may be especially apt to dampen balance-
sheet contagion effects, due to the scantly interconnected structure of interbank exposures.

29



Figure 2: Contagion analysis and magnitude of the initial shock (1)

(a) Totally interconnected 
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(b) Circle 
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(c) Star (core not hit by the shock) (2) 
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(d) Core-periphery (core not  
hit by the shock) (2) 
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(e) Star (core hit by the shock) (3) 
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(f) Core-periphery (core hit  
by the shock) (4) 

0%

20%

40%

60%

80%

100%

120%

0% 10
%

20
%

30
%

40
%

50
%

60
%

70
%

80
%

90
%

10
0%

Initial shock (share of illiquid assets)

0

20

40

60

80

100

120

%Liq %Illiq
%IB D(TA)
Loss(D) N. defaults (rhs)  

 

(1) On the x axis the share S of illiquid assets canceled by the initial shock for each affected
bank is reported, while the y axis refers to the metrics defined in Section 4.1. The number
of defaults (N. defaults) is on the right-hand scale. The main parameters of the model are
set as follows: r = 4%; pmin = 0.9. – (2) The banks hit by the initial shock are uniformly
chosen among the peripheral ones. – (3) The core of the star is affected, in addition to thirteen
peripheral banks. – (4) Two core banks are affected, in addition to twelve uniformly chosen
peripheral banks.
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terbank exposures.15 In the case of the star and core-periphery configurations,

where heterogeneity between bank balance-sheets matters by definition, the re-

sults depend on how the initial shock is targeted. If it only affects peripheral

banks (Figure 2, panels (c) and (d)), these topologies prove to be particularly

resilient, as contagion effects are not able to trigger additional defaults (apart

from those of the banks hit by the shock). On the other hand, as one or more

core banks are involved in the set of shocked institutions, the results become very

similar to those recorded for the totally interconnected and circle topologies, with

the only difference that, even in the regime in which the whole banking system

defaults, the interbank assets are not completely wiped out (about 30 and 80 per

cent of interbank loans are not paid back in the star and core-periphery topolo-

gies, respectively). Moreover, while the cut-off is similar for the core-periphery

and circle configurations (an initial loss of about 20 per cent of illiquid assets of

the banks hit by the shock), it is far larger for the star topology (above 40 per

cent), suggesting that the overall resilience of a core-periphery type of network

depends substantially on the relative dimension of the core, as compared with

the periphery.

In conclusion, the results of this exercise indicate that a star or core-periphery

topology might be better than other stylized network configurations in order to

dampen contagion effects, as implied also by current regulatory effort to bring

securities markets transactions to be cleared by central counterparties (CCPs).

However, the resilience of these topologies may deteriorate significantly when they

are subject to targeted shocks hitting the core of the network, especially if the

dimension of the core is huge compared with that of peripheral banks. This calls

for additional care by supervisors in controlling risk management practices at

core banks (or CCPs, extrapolating the results to the case of securities markets).

Moreover, it may justify the introduction of additional capital buffers for core in-

stitutions, as envisaged by the Financial Stability Board (FSB) for systemically

important financial institutions (SIFIs). On the other hand, by the same argu-

ment one could advocate lower capital buffers for peripheral banks, compared

with banks having similar asset size but organized according to different network

structures. In other words, the “interconnectedness” of a bank is not equivalent to

the size of its total interbank assets and liabilities, but is intrinsically determined

15Recall from Section 4.1 that the heterogeneity stems here only from the structure of the
unweighted adjacency matrix (i.e., the matrix of interbank liabilities obtained from L replacing
all non-zero elements with 1), as all links have equal weights (all banks have equal interbank
assets/liabilities).

31



by the actual decomposition of those aggregate figures at the level of bilateral

exposures (i.e., the topology of the network).

4.3 Capital injections: An allocation problem

While in the previous exercise the set of banks hit by the initial shock was fixed

and the magnitude of the shock varied, we now let the pool of shocked banks

vary as well; we will then show how this exercise can be interpreted in terms of a

problem of optimal recapitalization of a banking system subject to a Government

budget constraints.

Assume that the system is hit by a shock which cancels overall a percentage

M of the total illiquid assets; we want to analyze to what extent the final impact

depends on how the shock is distributed among several banks. To this end we

split the shock in equal proportions among an increasing number n of banks

(n = 2, . . . , 100). In particular, we choose the banks to be hit by the shock in

such a way that the serial numbers identifying the n banks are equally spaced

over the range 1, . . . , 100 (e.g., if n = 5, we can shock banks 1, 21, 41, 61 and 81)

and, in the case of the star and core-periphery topologies, no core banks are hit

by the initial shock.16

The results are shown in Figure 3, where the impact in terms of number of

defaults (panels (a1), (b1), (c1) and (d1)) and change in total asset value (∆TA;

panels (a2), (b2), (c2) and (d2)) are plotted against the percentage M of initial

shock (x axis; M = 1%, . . . , 4%) and the number n of banks hit by the shock (y

axis; N = 2, . . . , 100), for all four stylized network configurations.

A common pattern emerges from these plots, indicating a regime-shifting be-

havior. Irrespective of the topology and the chosen distress metric (either number

of defaults or change in total asset value), there exists a threshold value M of the

initial shock with the following characteristics:

• If M ≤M , there exists a threshold n(M) such that the impact of contagion

is increasing (or non monotone, in the case of the circle topology) in the

number n of banks hit by the shock if n ≤ n, decreasing otherwise (in

particular, the number of defaults abruptly goes down to zero). This means

that, if the initial aggregate shock is not too big, it may be better born by

16This is consistent with the goal of this exercise, i.e. an optimal recapitalization problem:
we saw in the previous section that when the core takes a loss, the impact on the star and
core-periphery networks is more substantial than if only peripheral banks are hit; in this case,
then, the choice of how to allocate capital may be more straightforward.
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Figure 3: Contagion analysis and distribution of the initial shock (1)

(a1) Totally interconnected  N. defaults (a2) Totally interconnected  LossTA 

  
(b1) Circle  N. defaults (b2) Circle  LossTA 

  
(c1) Star  N. defaults (c2) Star  LossTA 

  
(d1) Core-periphery  N. defaults (d2) Core-periphery  LossTA 

  
 

(1) On the x axis, the aggregate magnitude M of the initial shock is reported (M = 1%, . . . , 4%
of aggregate illiquid asset endowment); on the y axis, the number n of banks hit by the initial
shock (n = 2, . . . , 100); on the z axis, either the number of defaults (N.defaults) or the change
in the value of assets (∆TA), as defined in Section 4.1. The main parameters of the model are
set as follows: r = 4%; pmin = 0.9. The banks hit by the initial shock are uniformly chosen in
the system (among the peripheral ones only, in the star and core-periphery configurations).
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the system if it is split among a sufficient number of banks, as in this case

the initial loss per bank can be easily absorbed selling liquid assets (or an

amount of illiquid assets not so substantial as would be necessary to trigger

a fire sale).

• If M > M , there exists a threshold n(M) such that the impact of contagion

is increasing (or non monotone, in the case of the circle and star topology)

in the number n of banks hit by the shock if n ≤ n, constantly equal to the

maximum level of distress reached at n = n otherwise (all banks default).

In this case, the magnitude of the initial shock is so large that its impact

is less material if the shock is split among a few banks than if it is spread

over the whole system. Indeed, in the latter case the initial loss faced by

each bank is sufficiently big to force the bank to sell all of its assets without

being able to comply with the regulatory ratio.

While the first part of the previous result can be intuitively grasped in terms of

“diversification” (the more spread out the shock, the less substantial its impact),

the second part indicates that, if the aggregate shock is big enough, dilution of the

shock among many banks is not beneficial for the network. This remark suggests

that, when coping with systemic risk, not only the magnitude of the shock should

be taken into account, but also how it is distributed across the system, even in

the stylized case of homogeneous banks.

The policy implications of this conclusion may be better rephrased if we in-

terpret the exercise reported in Figure 3 as a problem of optimal recapitalization

of the banking system subject to a budget constraint. We assume that a huge

shock hits all the banks and the Government wants to inject new capital in the

system (or force banks to raise additional capital),17 but it is able or willing to

do so only up to a certain point: here M is the percentage of pre-shock illiquid

asset endowment which remains unfilled after the recapitalization. In this con-

text, how should the Government allocate its constrained resources in order to

restore the initial conditions of the banking network? Arguably, given that bank

balance-sheets in our stylized networks are homogeneous, it should simply inject

equal quantities of capital in each bank. However, Figure 3 proves that, when-

ever the initial shock is greater than a given threshold value M , such a uniform

recapitalization would not be optimal. A uniform recapitalization of all banks

17To be consistent with the model, assume that the capital injections take place immediately
after the shock, before marking-to-market the illiquid asset.

34



except a few of them would do better, both in terms of number of defaults and

total assets’ value deterioration.

4.4 The incremental effect of fire sales

The results of the previous exercises did not allow to discern the relative impor-

tance of the two different channels of contagion considered in the model. To this

end, we perform two contagion analysis exercises with the same initial shock and

parameters, except that in one of them we consider all assets as liquid (this simply

amounts to set pmin = 1).18 In this case, direct balance-sheet exposures are the

only possible channel of contagion, as no fire sale effects can emerge. Different

values of the metrics described in Section 4.1 across the two exercises are then a

proxy of the incremental effect obtained assuming that one asset is illiquid.

In particular, Figure 4 shows how the change in total assets’ value ∆TA changes

as an initial shock of fixed magnitude is split among an increasing number of

banks (similar to the exercise presented in Section 4.4, but with the aggregate

magnitude M of the initial shock alternatively set equal to two different given

values, for the sake of simplicity). In each panel, the red line refers to the case

with fire sales, while the blue line represents the case with liquid assets only.

The results of these simulations suggest that the effect of asset fire sales adds to

the direct balance-sheet exposure channel of contagion in an incremental way and

then gradually fades away as the number n of banks hit by the initial contagion

tends to 100 (the total number of banks in the system – the number of peripheral

banks, in the star and core-periphery topologies). Indeed, in each panel of Figure

4 three main intervals of values of n may be broadly discerned, that merge with

one another in a continuous way:

• For n sufficiently small (independently of the value of M), the shock is

confined to a few banks in the system and can not trigger enough illiq-

uid assets sales to generate a sizable price deterioration. In this case, direct

balance-sheet exposures (loans on the interbank market) are the main chan-

nel of contagion and the final impact of the exogenous shock can hardly be

distinguished in the cases with or without illiquid assets.

• As n takes on “intermediate” values (the exact range depends on the net-

18This analysis is a particular case of the sensitivity analysis presented in Section 4.5, but is
presented separately in order to explicitly focus on the effect of fire sales per se, independently
on the degree of illiquidity assumed.
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Figure 4: Incremental effect of illiquidity (1)

(a1) Totally interconnected  M = 2% (a2) Totally interconnected  M = 4% 
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(b1) Circle  M = 2% (b2) Circle  M = 4% 
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(c1) Star  M = 2% (c2) Star  M = 4% 
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(d1) Core-periphery  M = 2% (d2) Core-periphery  M = 4% 
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(1) On the x axis, the number n of banks hit by the initial shock (n = 2, . . . , 100) is reported
(the aggregate magnitude M of the initial shock equals either 2% or 4% of the aggregate illiquid
asset endowment); on the y axis, the change in the value of assets is reported, as defined in
Section 4.1. The main parameters of the model are set as follows: r = 4%; pmin = 0.9. The
banks hit by the initial shock are uniformly chosen in the system (among the peripheral ones
only, in the star and core-periphery configurations).
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work topology and the value of M), more banks have to liquidate their

illiquid asset endowment, generating a material effect on price. As a conse-

quence, the final impact on the total assets’ value is significantly different

from that recorded in the case with liquid assets only. However, as n is in

this range, the difference is mainly in levels, while in each panel the two

lines show qualitatively similar contours overall.

• Finally, as n takes sufficiently high values, depending on the magnitude

M of the initial shock there may be two completely different outcomes.

If M is low (2% of the aggregate illiquid asset endowments in Figure 4,

panels (a1), (b1), (c1), (d1)), then the exogenous shock is split among a

sufficiently high number of banks. Therefore, the shock faced by each bank

is relatively small and the regulatory leverage ratio can be met without

selling substantial amounts of illiquid asset. In this case, the final impact

(as measured by ∆TA) displays negligible differences (if any) in the case

with the illiquid asset and the case with liquid assets only. On the contrary,

if M is high (4% in the figure, panels (a2), (b2), (c2), (d2)), all banks in

the system19 eventually lose their assets in full due to the effect of fire sales

(differently from the case with no liquid assets).20

4.5 Sensitivity analysis: Relative effectiveness of different

policies

Finally, we present the results of an analysis of sensitivity of the model to its

key parameters, i.e. the leverage ratio r that the banks have to comply with

and the minimum price pmin attainable in case all banks sell their illiquid asset

endowments in full. This is equivalent to investigating how the resilience of the

banking system depends on its initial capitalization level and on the degree of

illiquidity of the asset with non-zero price elasticity. In addition, we assess how

the functional form of the inverse demand function (exponential or polynomial)

may affect the contagion analysis results.

The relevance of this exercise is given by its policy implications. In the sim-

plified world described by the model, a policymaker could act on two levers to

make the banking system more resilient: (i) require banks to hold more liquid

19Peripheral banks only, in the case of the star or core-periphery topologies.
20For higher values of M (not shown in Figure 4), the shock may be huge enough to trigger

the default of all banks also in the case with liquid assets only.
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assets in their portfolios; (ii) ask for higher capital levels. We will show that

the two instruments may not be perfect substitutes, especially for some network

topologies. Moreover, we will show that the relative importance of the two policy

intruments may also depend on the characteristics of the initial shock and on the

properties of the demand of illiquid assets.

The results of this simulation excercise are shown in Figure 5: we let r range

between 2% and 5% (x axis) and pmin over the interval [0.2, 1.0] (y axis), and plot

against them the deleveraging of liquid assets (%Liq; panels (a1), (b1) and (c1))

and the change of assets’ value (∆TA; panels (a2), (b2) and (c2)).21 As expected,

the final impact of the shock (i.e., the role played by contagion) depends heavily on

how the parameters are initialized: an initial shock of fixed magnitude can either

trigger no deleveraging (if both assets are liquid and the regulatory leverage ratio

is low) or force all banks to sell the liquid assets in their portfolios and eventually

default.

However, the sensitivity analysis also shows how the relative importance of

the two parameters in triggering contagion depends on the topology considered,

something that could not be easily predicted ex ante. In particular, in the totally

interconnected configuration (Figure 5, panels (a1), (a2)) the level of the regu-

latory ratio influences the final impact of the shock significantly more than the

minimum price does. Irrespective of how low (high) the price of the illiquid asset

can be, no deleveraging occurs (all banks default, respectively) if the regulatory

ratio is sufficiently low (high). In the circle topology (panels (b1), (b2)), on the

contrary, the elasticity of the price of the illiquid asset is the leading parameter.

No matter how highly capitalized the banking system is (i.e., how low the reg-

ulatory ratio is, compared with the actual leverage of the banks), if the asset is

sufficiently illiquid, all banks will eventually go bankrupt. Finally, the star topol-

ogy (panels (c1), (c2)) is somewhere in the middle between these two extreme

situations. Indeed, there is no clear hierarchy between the two parameters: low

leverage (i.e., a high value of the ratio r) and high liquidity of the assets are

equally relevant for the soundness of the banking system.

The previous remarks give an insight on the relative importance of the two

instruments which can be used by a policymaker to make this stylized banking

system more resilient (require banks to hold more liquid assets in their portfolios,

21In order to better visualize the qualitative behavior of the model as a function of the pa-
rameters, the exercise reported in Figure 5 is performed assigning shocks of different magnitude
to each stylized network configuration (results for the core-periphery topology are similar to
those of the star topology and are omitted).
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Figure 5: Sensitivity to regulatory ratio and illiquidity (1)

(a1) Totally interconnected  %Liq (a2) Totally interconnected  LossTA 

  
(b1) Circle  %Liq (b2) Circle  LossTA 

  
(c1) Star  %Liq (c2) Star  LossTA 

  
 

(1) On the x axis, the regulatory leverage ratio r is reported; on the y axis, the minimum price
(pmin) that can be attained by the illiquid asset; on the z axis, either the deleveraging of liquid
assets (%Liq) or the change of the value of assets (∆TA), as defined in Section 4.1. The initial
shock consists of the wipe-out of illiquid assets of n banks (n = 10 in the totally interconnected
topology; n = 5 in the circle; n = 14 in the star). The banks hit by the initial shock are
uniformly chosen in the system (among the peripheral ones only, in the star topology).
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Figure 6: Sensitivity to regulatory ratio and illiquidity in the case of an exponen-
tial inverse demand function (1)

(a1) Totally interconnected  %Liq (a2) Totally interconnected  LossTA 

(b1) Circle  %Liq (b2) Circle  LossTA 

(c1) Star  %Liq (c2) Star  LossTA 

 (1) On the x axis, the regulatory leverage ratio r is reported; on the y axis, the minimum
price (pmin) that can be attained by the illiquid asset; on the z axis, either the deleveraging
of liquid assets (%Liq) or the change of the value of assets (∆TA), as defined in Section 4.1.
The initial shock consists of the complete wipe-out of illiquid assets of n banks (n = 5 in the
totally interconnected topology; n = 3 in the circle; n = 7 in the star). The banks hit by the
initial shock are uniformly chosen in the system (among the peripheral ones only, in the star
topology).
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or ask for higher capital levels). We have seen that, depending on the topology

of the banking network, the two instruments may not be perfect substitutes.

With respect to the specification adopted in the present exercise, while they are

substitutes in the star configuration, in the totally interconnected topology it

may be useless to try to improve the soundness of the banking system simply

increasing the liquidity of banks’ assets without acting on capitalization levels

(the converse holds for the circle topology).

Finally, the simulations show that the relative substitutability of the two

policy instruments may also depend on the characteristics of the initial shock

and on the functional form of the inverse demand function.

Obviously, an exponential function implies a more sizable impact of fire sales

than a polynomial function does. Therefore, when performing the previous sen-

sitivity analysis under the assumption that the inverse demand function has an

exponential form, we have to lower the magnitude of the initial shock substantially

in order to obtain results that are qualitatively similar to (or at least comparable

with) those discussed above. The results of this exercise with an exponential

function are presented in Figure 6, where the magnitude of the initial shock is

roughly half of that assumed in Figure 5. It is apparent that the relative impor-

tance of the minimum price over the regulatory leverage ratio is greater in the

exponential case, thus shifting the balance between the two policy instruments

considered. Although the results for the circle topology are basically unchanged

(the supremacy of liquidity conditions is confirmed), the totally interconnected

topology now displays a higher degree of substitutability between the two instru-

ments (similar to the star configuration in Figure 5), while the behavior of the

star topology with respect to changes in the two parameters of the model becomes

closer to that of the circle configuration.

4.6 A more complex and realistic model: scale-free inter-

bank network

In the previous paragraphs we analyzed the results of a set of simulation exercises

performed on extremely stylized networks models. This approach is useful to

highlight the role of the network topology in the flow of contagion, but it may

oversimplify the results and lead to a lack of reliability. In this paragraph we

test the model on a network structure which bears a greater resemblance to

actual banking systems, thus getting a deeper insight in the contagion dynamics.
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Following Georg (2013), we focus on a scale-free network configuration, i.e. a

network in which the degree distribution is asymptotically described by a power

law. Empirical evidence suggests that power laws are very common in natural

and social systems, due to their capability to reflect complex behaviour and self-

organization. In particular, we study a Barabasi and Albert model (Barabasi and

Albert, 1999), which is characterized by low average path length, high clustering

and equilibrium power-law distributions.

The build-up of the banking network is a two-step process:

• first of all, we construct a Barabasi and Albert undirected network by im-

plementing a preferential attachment algorithm. The procedure starts with

N0 nodes connected in a complete graph. At each step a node is added and

connected to d distinct nodes chosen among the pre-existing ones with a

probability proportional to their current degree. The procedure ends when

the system reaches N nodes.22 As shown in Georg (2013), this algorithm

leads to a configuration in which a small number of banks plays the role of

hubs of the network;

• secondly, we determine the balance sheet for each node and the value of the

interbank loans. Namely, the nodes are ordered according to their degree

and divided into three subsets: core (identified as the most interconnected

5 per cent of the network), semicore (the subsequent 15 per cent of the

system) and periphery (the remaining 80 per cent). So far this classifica-

tion reflects only the degree of interconnectedness of the nodes; we set the

balance sheets for the different nodes such that the biggest banks are also

the most connected. Then, for each core bank the total asset value is set

equal to a predetermined value T , while the banks in the semicore and the

periphery are assigned a total asset value equal to T/2 and T/10, respec-

tively. We assume that for each bank interbank liabilities account for 20

per cent of the magnitude of the balance sheet and that they are evenly

distributed among their counterparties; this determines the value of all the

entries in the interbank claims matrix L.23 Finally, we assume that equity

equals 5 per cent of total assets (and the completion is given by deposits)

22In our case, we set N0 = 2, d = 2 and N = 100.
23Actually, we assume that for each bank the interbank assets cannot exceed 30 per cent of

total assets. If a bank violates this condition, we lower the interbank loans of all of its borrowers
by a proportional amount, so that the sum of its interbank assets lowers to 30 per cent. Then
the proportion of interbank liabilities can be somewhat lower than 20 per cent of the total
liabilities.
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and that liquid assets account for 30 per cent of non-interbank assets, the

remainder being illiquid assets.

Figure 7: Scale free network (1)

(1) Node colors identify the core of the network (red), the semicore (light blue) and the periphery
(white).

The above procedure leads to a network in which we can distinguish three

subgroups (core C, semicore SC and periphery P), characterized by increasing

size and interconnectedness; Figure 7 shows a realization of this network. Note

that although we start with an undirected graph, by construction the interbank

matrix L built in the second step is not symmetric.

In the simulations we follow a Monte Carlo approach: we replicate the above

construction S = 1000 times and we apply CFS model to each of the resulting

networks. This approach aims at wiping out the effects due to the specific features

of one realization of the Barabasi and Albert model, thus focusing on the patterns

that are common to this class of scale-free networks. The Monte Carlo procedure

allows us to derive a mean value and a distribution of the most relevant metrics.

In this setting we are interested in particular in the following quantities:
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• the number of defaulting banks, i.e. banks such that ri < r̄ at the end of

the contagion dynamics;

• percentage change in the marked-to-market value of total assets,

∆TA = 1−
∑N

j=1 (cj − tj + p · (ej − sj) + Π′x)∑N
j=1 (cj + p0 · ej + Π′L)

;

• the share of liquid assets sold by the banks in the system,

%LiqTot =

∑N
i=1 ti∑N
i=1 ci

;

• the share of illiquid assets sold by the banks in the system,

%IlliqTot =

∑N
i=1 si∑N
i=1 ei

;

• the share of interbank liabilities which are not payed back,

%IBTot = 1−
∑N

i=1 xi∑N
i=1 Li

.

In this simulation exercise the extent and the target of the initial shock were

also modeled through a Monte Carlo approach. We considered three stylized

cases: (a) an idiosyncratic shock on two core banks; (b) an idiosyncratic shock

on three semicore banks; (c) an idiosyncratic shock on five peripheral banks. In

every scenario a shock on bank i wipes out a share 1−α of its initial endowment

of illiquid assets ei, thus leading to the after-shock level e0
i = αei. The parameter

α is randomly generated from a beta distribution: we draw S ′ = 1000 values for

α, apply CFS model for each α and compute the resulting network metrics. The

network metrics are then averaged across the S ′-dimensional sample.24 We firstly

model a moderate shock by generating α from a β(2, 2) distribution (in particular,

mean = 0.5), then we simulate a bigger shock through a β(3, 5) distribution (mean

= 0.625).

The results are shown in figures 8-11, where the histograms represent the

distribution of some relevant metrics across the S realizations of Barabasi and

24Note that this procedure is replicated S = 1000 times, i.e. for each realization of the
stochastic scale-free network.
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Albert network. For each simulated network, the value of the corresponding

metrics is the result of an average across S ′ generated values of the initial shock

parameter α.

Figure 8: Number of defaulting banks (1)
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(1) The histograms show the frequency of the number of defaulting banks across the S real-
izations of the network; the three figures correspond to an idiosyncratic shock on the core, the
semicore and the periphery.

The impact of a shock on the core is clearly the most disruptive, whereas

stressing the semicore of the network can give a wide range of outcomes, de-

pending on the specific network topology. When an idiosyncratic shock hits the

periphery the cascade effect is limited in terms of number of defaulting banks

and share of interbank loans which is not repaid; nevertheless, the banks in the

network may need to sell a high percentage of their liquid assets to deal with the

effects of the shock.

5 An extension to multiple illiquid assets

The CFS model assumes a stylized representation of a bank’s balance-sheet, in

which there are only two types of assets (apart from the interbank loans), i.e. a

totally liquid asset and an illiquid one. A natural generalization of the model that

would make it more realistic consists of expanding the range of available assets.25

25Gauthier et al. (2012) partly move in this direction, introducing heterogeneity in prices of
different banks’ illiquid assets. However, they model this as a fluctuation around the fundamen-
tal price derived in the CFS framework, due to heterogeneous levels of riskiness of individual

45



Figure 9: Deleveraging of liquid assets (1)
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(1) The histograms show the frequency across the S realizations of the network of the value of
the deleveraging of liquid assets; the three cases correspond to an idiosyncratic shock on the
core, the semicore and the periphery.

Figure 10: Deleveraging of illiquid assets (1)
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(1) The histograms show the frequency across the S realizations of the network of the value of
the deleveraging of illiquid assets; the three cases correspond to an idiosyncratic shock on the
core, the semicore and the periphery.
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Figure 11: Share of non-repayed interbank loans (1)
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(1) The histograms show the frequency across the S realizations of the network of the share of
interbank loans which is not payed back; the three cases correspond to an idiosyncratic shock
on the core, the semicore and the periphery.

In the context of the CFS model, there are only two features that can char-

acterize an asset: (i) its degree of liquidity (described by the inverse demand

function); (ii) how it is distributed across banks’ portfolios. The interaction be-

tween these two factors determines to what extent a bank can contribute to or is

affected by price deterioration in the case of fire sales. Analogously, when consid-

ering several assets, we can discriminate among them assuming different degrees

of liquidity and/or different endowments across banks.

The question then arises as to how a bank should liquidate its assets when

forced to deleverage in order to comply with the regulatory ratio (for a given

interbank payments vector x). In the single illiquid asset case considered in the

CFS model, the authors assumed that the liquidation strategy was the same for

all banks: sell as many units of the liquid assets as needed to restore the minimum

leverage ratio; if selling the whole endowment of liquid asset does not suffice, then

start selling as many units of the illiquid asset as necessary. While this behavioral

rule is economically sensible, it does not have analytical underpinnings in the

CFS model and is unclear how to generalize it to the multiple assets case that

we are considering now.26 Even though we could agree that a sensible strategy

banks. On the contrary, we want to model assets that may differ per se in their degree of
liquidity and have the same value for different banks holding them.

26In a similar context, Geertsema (2014) assumes that the liquidation is performed on a
pro rata basis, advocating this choice based on the claim that the results are reasonably sim-
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consists of selling more liquid assets first, it is debatable how liquidity should be

defined in this context. For instance, at least two strategies can be devised (each

prevalently hinging on one of the two aspects that characterize illiquid assets)

that may lead to different liquidation decisions: (i) selling first the asset whose

price deteriorates less rapidly (e.g., in the case of the exponential inverse demand

function in equation (4), selling the asset with a smaller α first); (ii) selling the

asset whose minimum price is higher (this depends on the aggregate endowment

of illiquid assets of each class, in addition to the parameter α that identifies

that class). Notice that, in the case of a liquid asset and an illiquid one only,

both strategies reduce to the behavioral rule assumed in the CFS model. In the

general case, however, there may be cases in which both of them are sub-optimal,

as shown in the following. Thus, the extension of the CFS model to the multiple

assets case may add economic insight to the model.

To answer the question on liquidation strategies, we provide a simple mi-

crofoundation based on the assumption that each bank is willing to pick any

liquidation strategy that maximizes the final value of its equity (equivalent to

maximize total assets’ value in this simplified setting). In Section 5.1 we present

the problem and derive some analytical conditions. In Section 5.2 we show the

results of a numerical example.

5.1 Microfoundation of liquidation strategies

In this section we propose a possible way to extend the algorithm described in

Section 3.2 to the case of multiple assets. The notation remains broadly un-

changed, except that now there are M + 1 assets in the economy and we denote

by:27

• e the matrix of endowments – eik (or eki , as we will write it) is the quantity

of asset j that bank i is initially endowed with, i = 1, . . . , N , k = 0, . . . ,M ;

• s the matrix of liquidation strategies – sik (or ski ) is the quantity of asset

j sold by bank i to try to comply with the regulatory leverage ratio, i =

1, . . . , N , k = 0, . . . ,M ;

ilar to those obtain with a sequential liquidation, a strategy consistently employed by many
practitioners. We show in the following that both these strategies may be sub-optimal.

27For simplicity, one can think of asset 0 as the liquid asset, but in the framework that we
are describing it is neither necessary to assume that there is a perfectly liquid asset, nor that
it is unique. Therefore, we no longer use a different variable (c or t, respectively) to denote the
endowment or selling of the liquid asset.
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• p0 and pmin the vectors of after-shock prices and minimum attainable prices,

respectively – we assume 0 < pkmin ≤ pk0 ≤ 1 for k = 0, . . . ,M ;

• gk : [0,
∑N

i=1 e
k
i ] −→ [pkmin, p

k
0] the inverse demand function of asset k =

0, . . . ,M after a shock σ – we assume it to be either constant (if asset k is

completely liquid) or continuous and decreasing.28

We also denote by ei, si the endowment and strategy vectors of bank i and

by e−i, s−i the correspondent matrices of all other banks. Similarly, ek and sk

will denote the vectors of quantities of asset k that each bank is endowed with or

decides to sell according to its liquidation strategy. Furthermore, when focusing

on bank i’s problem, we will write gk(s
k
i , s

k
−i) instead of gk(

∑N
j=1 s

k
j ).

Recall that at each step h of the algorithm, two sub-algorithms have to be

implemented, that in the current notation read: (i) given the vector of interbank

payments xh−1, find an equilibrium matrix of liquidation strategies sh and a

corresponding price vector ph (phk = gk(s
k));29 (ii) given ph and sh, compute the

new interbank clearing vector xh with the adapted version of the fictitious default

algorithm by Eisenberg and Noe (2001) described in Section 3.2. The second sub-

algorithm is not affected by the extension to the multiple assets case. Therefore,

we can focus on the first sub-algorithm only: given a clearing vector x, find an

equilibrium liquidation strategy s and the associated price vector p (we drop the

h indexes for ease of notation).

A standard way to model banks’ liquidation strategies is to assume that they

try to maximize the final value of their equity. However, this simple assumption

brings two issues along. First, a priori the optimal strategy may not be unique.

Second, we have to model in which way prices are updated by the bank when

evaluating the final value of equity.

As far as the former issue is concerned, one can complement this simple op-

timization problem with an auxiliary optimization or behavioral rule that dis-

criminates among the optimal solutions found according to a given criterion. As

for the latter issue, in the CFS model the behavioral rule adopted does not leave

28The strict monotonicity assumption (satisfied both by the exponential inverse demand
function used in the CFS model and by the quadratic function used in most simulations of
Section 4) makes the proofs in this section easier. Although it rules out the interesting case of
an asset that is liquid up to a certain level of sales and then becomes illiquid, this case can be
easily approximated by a decreasing function with arbitrary small (in absolute value) derivative
in the range of sales in which the asset is liquid.

29While in Section 3.2 at each iteration bank i’s strategy si was determined on the basis
of the equilibrium price, here it is more convenient to reason in the opposite way, letting the
equilibrium price be determined by the interaction of banks’ optimal strategies.
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room for any choice on the part of the liquidating bank. As a consequence, it is

ultimately immaterial whether the bank considers the price impact of its selling

or not. However, in the present context the price impact of different liquidation

strategies matters and should be taken into account when computing the final

value of assets.Therefore, we make the following assumption.30

Assumption 5.1. Every bank i, given the strategies s−i of other banks, picks its

optimal strategy si in the solution set of the problem

max
si : ski ∈ [0, eki ]

max

{
0,

M∑
k=0

(eki − ski )gk(ski , sk−i) + (Π′x)i − di − Li

}

sub r̄

(
M∑
k=0

(eki − ski )gk(ski , sk−i) + (Π′x)i

)
≤

≤
M∑
k=0

eki gk(s
k
i , s

k
−i) + (Π′x)i − di − Li.

(22)

The strategy adopted is then

si =

{
ei if xi < Li, or problem (22) has no solution

si if xi = Li.
(23)

Taking into account that the minimum ratio requirement does not allow the

equity value to become negative and that the previous constraint is always binding

at an optimal solution, we can prove that problem (22) can be simplified and

replaced with problem (24).

Lemma 5.2. If, given s−i, the strategy si = (0, . . . , 0)′ is feasible, then it is the

unique optimal solution to problem (22). Otherwise, under suitable constraint

30Actually, to ensure that the algorithm presented in Section 3.2 converges, we need an

increasing sequence of liquidation strategy vectors {s(h)i }, i = 1, . . . , N . Therefore, the box
constraints [0, eki ] in the optimization problem should be replaced by [(ski )(h), eki ]. This would
not change the results that follow, but would make the notation more cumbersome. Analogously,
we solve the algorithm iteratively, considering in the optimization problem of bank i at step

h the liquidation strategies of other banks at step h − 1, s
(h−1)
−i , but we drop the indexes for

simplicity.
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qualification conditions, that problem is equivalent to the following

max
si : ski ∈ [0, eki ]

M∑
k=0

eki gk(s
k
i , s

k
−i)

sub r̄fi(si, s−i)−
∑M

k=0 e
k
i gk(s

k
i , s

k
−i) + di + Li − (1− r̄)(Π′x)i = 0,

(24)

where

fi(si, s−i) =
M∑
k=0

(eki − ski )gk(ski , sk−i).

Proof. Obviously, the objective function in problem (22) can be replaced by

fi(si, s−i). Rearranging the constraint, we obtain the equivalent problem

max
si : ski ∈ [0, eki ]

fi(si, s−i)

sub r̄fi(si, s−i)−
∑M

k=0 e
k
i gk(s

k
i , s

k
−i) + di + Li − (1− r̄)(Π′x)i ≤ 0.

(25)

First of all, as gk(·, sk−i) is decreasing and positive, then

∂fi
∂ski

(si, s−i) = (eki − ski )
∂gk
∂ski

(ski , s
k
−i)− gk(ski , sk−i) < 0. (26)

Therefore, whenever the strategy si = (0, . . . , 0)′ is feasible, it is the unique

solution to the problem.

Suppose then that it is not feasible and let si be an optimal solution with

smi > 0 for some m ∈ {0, . . . ,M}. The Lagrangian of problem (25) reads

Li = fi(si, s−i) +
M∑
k=0

λk(e
k
i − ski )− µhi(si, s−i)

with

hi(si, s−i) = r̄fi(si, s−i)−
M∑
k=0

eki gk(s
k
i , s

k
−i) + di + Li − (1− r̄)(Π′x)i (27)

and µ ≥ 0, λk ≥ 0 for k = 0, . . . ,M . If µ = 0, first order conditions would imply

∂Li
∂smi

=
∂fi
∂smi

(si, s−i)− λm = 0,
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and, by equation (26),

0 ≤ λm =
∂fi
∂smi

(si, s−i) < 0,

a contradiction. Therefore, the constraint is always binding at a non-zero solution

and can be replaced by the equality constraint. From the new constraint we obtain

fi(si, s−i) =
1

r̄

( M∑
k=0

eki gk(s
k
i , s

k
−i) + (1− r̄)(Π′x)i − di − Li

)
.

Substituting for the objective function in problem (25) and dropping the constant

terms, we obtain problem (24).

Remark 5.3. In the following we will assume that the constraint qualification

conditions required for Lemma 5.2 to hold are satisfied. For instance, if the in-

verse demand functions gk are concave and C2 (e.g., quadratic, as we assumed in

Section 4), it is easily verified that the function hi is (strictly) convex. Therefore

all constraints are convex (the box constraints are affine) and Slater qualification

condition only requires that there exist a feasible point at which the constraints

are not binding. Notice that, under these assumptions, KKT conditions for prob-

lem (24) with the equality constraint hi = 0 (and hi is defined as in equation

(27)) replaced by hi ≤ 0 are necessary and sufficient conditions for a point to

be a local maximum, as all constraints are convex and the objective function is

concave (it can be easily shown along the same lines of Lemma 5.2 that the in-

equality constraint hi ≤ 0 is binding at any optimal solution, so that the solution

set of problem (24) remains the same if we replace hi = 0 with hi ≤ 0).

As a consequence of Lemma 5.2, in the remainder of this section we will focus

on problem (24), instead of problem (22). In particular, we derive from the first

order condition a few equations that allow us to better understand how optimal

liquidation strategies relate to the heuristic strategies discussed above. First of

all, we prove that, whenever a bank is endowed with a liquid asset, it is not

optimal to sell any amount of illiquid assets, unless the liquid asset has been

sold in full. This provides an analytical foundation to the liquidation strategy

assumed in the CFS model.

Proposition 5.4. Let asset ` be liquid (g`(s
`
i , s

`
−i) = 1 for all s`) and asset m be

illiquid (gm be decreasing). Any strategy si such that s`i < e`i and smi > 0 is not

optimal for bank i.
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Proof. The Lagrangian of problem (24) is

Li =
M∑
k=0

eki gk(s
k
i , s

k
−i) +

M∑
k=0

λk(e
k
i − ski )− µhi(si, s−i), µ ∈ R.

If ski > 0, the first order condition related to ski reads

∂Li
∂ski

= 0⇔ eki
∂gk
∂ski

(si, s−i)− λk − µ
(
r̄
∂fi
∂ski

(si, s−i)− eki
∂gk
∂ski

(ski , s
k
−i)
)

= 0

⇔ eki
∂gk
∂ski

(si, s−i)−λk+µ
((

(1− r̄)eki + r̄ski
)∂gk
∂ski

(ski , s
k
−i)+ r̄gk(s

k
i , s

k
−i)
)

= 0. (28)

For asset `, equation (28) simply reads λ` = µr̄. Therefore, if s`i < e`i , one has

λ` = 0 and, as a consequence, µ = 0. On the other hand, if smi > 0 equation (28)

with µ = 0 implies

0 ≤ λm = emi
∂gm
∂smi

(si, s−i) < 0, (29)

a contradiction.

Consider now under what circumstances it may be optimal for bank i to sell

a positive amount of two different illiquid assets (s`i > 0 and smi > 0). It follows

from inequalities (29), arguing by contradiction, that µ 6= 0. Then we can solve

equation (28) for µ with k = `,m. Equating the two expressions obtained, we

then have

e`i
∂g`
∂s`i

(s`i , s
`
−i)− λ`

r̄
∂fi
∂s`i

(si, s−i)− e`i
∂g`
∂s`i

(s`i , s
`
−i)

=

emi
∂gm
∂smi

(smi , s
m
−i)− λm

r̄
∂fi
∂smi

(si, s−i)− emi
∂gm
∂smi

(smi , s
m
−i)

.

As a consequence, we obtain the following necessary (and sufficient, under suitable

assumptions; see Remark 5.3) condition for an interior solution in the assets `

and m, i.e. a liquidation strategy si such that s`i ∈ (0, e`i) and smi ∈ (0, emi ):

e`i
∂g`
∂s`i

(s`i , s
`
−i)

emi
∂gm
∂smi

(smi , s
m
−i)

=

r̄g`(s
`
i , s

`
−i) + ((1− r̄)e`i + r̄s`i)

∂g`
∂s`i

(s`i , s
`
−i)

r̄gm(smi , s
m
−i) + ((1− r̄)emi + r̄smi )

∂gm
∂smi

(smi , s
m
−i)

. (30)

The previous condition shows that the optimality of a liquidation strategy

that is an interior point in (at least) two assets depends on the optimal strategies
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of other banks and all the parameters of the model: the inverse demand function

and its derivative, the initial endowments of bank i and the minimum leverage

ratio set by the regulator. On the other hand, the same equality may be used to

derive sufficient conditions under which an interior solution may not be optimal.

An example is provided in the following remark, under additional assumptions

on the inverse demand functions.

Remark 5.5. (a) In the exponential case31

gk(s
k
i , s

k
−i) = exp

(
−αk

N∑
j=1

skj

)
, αk > 0, k = `,m,

used in the CFS model for the single-asset case, condition (30) simplifies to

α`e
`
i

αmemi
=

α`((1− r̄)e`i + r̄s`i)− r̄
αm((1− r̄)emi + r̄smi )− r̄

,

from which, after a few algebraic manipulations,

α`e
`
i

αmemi
=

1− α`s`i
1− αmsmi

. (31)

This necessary condition has the remarkable property that it does not de-

pend on the liquidation strategies adopted by other banks (and it does not

depend on the regulatory ratio r̄ either).

Moreover, it clearly shows that an optimal liquidation strategy should not

be based only on the minimum price that an asset k can attain, or on

the velocity with which its price deteriorates (as measured by the deriva-

tive of the inverse demand function, or its semi-elasticity α). The quantity

that matters is instead the product αke
k
i of the semi-elasticity times the

endowment of asset k initially held by bank i, i.e. a transformation of the

maximum price deterioration that bank i could cause by selling the whole

of its endowment of asset k.

Finally, notice that equation (31) can be used to derived sufficient condi-

tions under which an interior strategy in assets ` and m can not be optimal.

31In this remark and Remark 5.6, we are assuming that when no asset sales have occurred,
all prices are normalized to one, as in the CFS model.
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Indeed, since

1− α`e`i ≤
1− α`s`i

1− αmsmi
≤ 1

1− αmemi
, ∀s`i ∈ [0, e`i ], s

m
i ∈ [0, emi ],

if
1

1− αmemi
<

α`e
`
i

αmemi
, or

α`e
`
i

αmemi
< 1− α`e`i ,

then equation (31) can not hold.

(b) Equation (30) simplifies also in the case of affine inverse demand functions

gk(s
k
i , s

k
−i) = 1− αk

(
N∑
j=1

skj

)
, αk > 0, k = `,m,

reading

α`e
`
i

αmemi
=

1− α`
(
s`i +

∑N
j=1 s

`
j

)
1− αm

(
smi +

∑N
j=1 s

m
j

) .
While in this case the strategy of bank i depends on the strategies of other

players, comments similar to those made in the exponential case apply.

Since it may be the case that no interior solution is optimal, it is useful to

derive optimality conditions that allow to compare boundary solutions as well.

This can be done evaluating the objective function of problem (24) directly. In-

deed, consider two feasible points for that problem that differ only in the two

components ` and m, namely si and ŝi such that s`i 6= ŝ`i , s
m
i 6= ŝmi and ski = ŝki

for all k 6= `,m. By direct evaluation of the objective function, si is a better

strategy than ŝi if and only if

M∑
k=0

eki gk(s
k
i , s

k
−i) >

M∑
k=0

eki gk(ŝ
k
i , s

k
−i)⇔

M∑
k=0

eki
(
gk(s

k
i , s

k
−i)− gk(ŝki , sk−i)

)
> 0

⇔ e`i
(
g`(s

`
i , s

`
−i)− g`(ŝ`i , s`−i)

)
+ emi

(
gm(smi , s

m
−i)− gm(ŝmi , s

m
−i)
)
> 0. (32)

In case of two boundary solutions with s`i > 0, smi = 0, ŝ`i = 0 and ŝmi > 0, it is

easy to pick the better one based on condition (32), that now reads

gm(0, sm−i)− gm(ŝmi , s
m
−i)

g`(0, s`−i)− g`(s`i , s`−i)
>

e`i
emi
. (33)
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Remark 5.6. In the case of affine inverse demand functions, condition (33)

simplifies to
αme

m
i

α`e`i
>

s`i
smi
.

This condition goes in the same direction as Remark 5.5, confirming the role

played by the maximum potential impact of bank i’s sales of each illiquid asset

when discriminating among different strategies.

5.2 Numerical results

We finally present the results of two simulation exercises in order to illustrate

the main points discussed in Section 5.1 on the optimality of different liquidation

strategies.

In the first example, we consider a totally interconnected banking system of 10

homogeneous banks. The liability side of their balance-sheet is as in Table 1. On

the asset side, each bank is endowed with 120 units of asset 1 and with 50 units

of asset 2 (interbank loans amount to 30). We then perform contagion analysis

assuming an initial shock that cancels an equal share S of bank 1’s endowments of

both assets. Keeping the minimum price of asset 2 constant, we let the minimum

price of asset 1 and the share S vary. The results are presented in Figure 12.

Focusing on the shares of each asset liquidated by banks that are not hit

by the initial shock, we can distinguish three main strategies, depending on the

values of the two parameters:

(i) both shares equal zero, meaning that contagion effects are not strong enough

to trigger asset sales by other banks – this happens when the initial shock

is small in magnitude;

(ii) both shares are equal to one, i.e. contagion effects are so strong that force

all banks to completely deleverage and, eventually, default – this case covers

the region in which the shock is higher and asset 1 is less liquid;

(iii) both shares are in the interval (0, 1), i.e. an interior point strategy is op-

timal – this is the case only in two small regions of the parameter space

that we are showing, corresponding either to an intermediate value of the

initial shock, or a higher degree of liquidity of asset 1. Notice that, in the

first case, while the ratio of the quantity of asset liquidated to the initial

endowment decreases slowly for asset 1 as its liquidity improves, the de-

crease is exponential for asset 2. This suggests that, as liquidity conditions
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Figure 12: Contagion analysis with two illiquid assets (1)

(a1) Share of asset 1 sold by bank i (a2) Share of asset 2 sold by bank i

(b1) Final price of asset 1 (b2) Final price of asset 2

(c1) Final aggregate asset value (c2) Final loss on non-interbank 
liabilities

(1) On the x axis the share S of assets of bank 1 canceled by the initial shock is reported. On
the y axis, the minimum price that asset 1 can attain. On the z axis, different metrics are
plotted: the share of asset 1 and asset 2 sold by banks that are not hit by the initial shock, in
panels (a1) and (a2); the price of the assets after contagion has taken place, in panels (b1) and
(b2); the final value of total assets, panel (c1); the amount of senior debt that banks are not
able to pay back, panel (c2). The main parameters of the model are set as follows: r = 4%;
pmin(2) = 0.9.
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of asset 1 improve, its preeminence in optimal liquidity strategies increases

(at a more than linear pace).

These outcomes are in line with the claim of Section 5.1 that an optimal liq-

uidation strategy can not be chosen in advance, as it depends crucially on the

characteristics of the initial shock and of banks’ portfolios. That is, from the

point of view of a given bank, liquidity as measured by price elasticity or by the

minimum attainable price may not be the only relevant parameter on the basis

of which a liquidation strategy is planned (unless one perfectly liquid asset is

available).

In this connection, another finding that is worth pointing out is that, in the

same region of parameter values that yield interior point strategies, the final price

of the first asset is lower than the price of the second one. Although in principle

asset 1 is more liquid than asset 2 (as indicated by the minimum price that they

could attain if all banks completely liquidated their endowments), it may end up

with a greater price deterioration due to fire sales. At least in some cases, this

might be a socially undesirable outcome, as prices could then provide incorrect

signals concerning the intrinsic value of assets.

Another example of how all relevant parameters interact in the choice of the

optimal liquidation strategy may be provided in a slightly more complicated set-

ting, in which there are three illiquid assets and each bank holds two of them

only in its portfolio. In particular, asset 1 (more liquid) represents a share L

of each bank’s total assets, while only banks 1 to 5 are endowed with asset 2

(intermediate level of liquidity) and banks 6 to 10 hold asset 3 (less liquid) each.

Asset 2 and 3 account for a share M of total assets of the banks holding them.

Given an exogenous shock to the holdings of asset 2 in bank 1’s portfolio, we

want to analyze how the liquidation strategies of other banks are affected as L

and M change, while keeping the sum L + M constant (as a consequence, the

amount of interbank loans of each bank is constant too).32

The results of Table 2 show that the asset hit by the initial shock to bank 1 is

never sold by other banks (banks i in the table), unless their selling of asset 1 is

not enough to restore the minimum leverage ratio required by the regulator. This

is an instance of sequential selling, justified by the significant deterioration of asset

2’s price in the aftermath of the initial shock. On the other hand, the behavior

of banks 6 to 10 (banks j in the table) is more complex. Unless they default or

do not have to deleverage, their optimal strategy is always at some interior point.

32Balance-sheet dimensions and network topology are the same as in the previous exercise.
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In particular, the share of assets 1 and 3 that they have to sell is increasing in M

(i.e., the ratio of asset 3 – more illiquid – to total assets). However, they grow at

a different pace, with the share of asset 1 sold that increases considerably faster

as bank’s portfolio becomes less liquid.

Table 2: Optimal liquidation strategies (1)

L M
Bank i,
asset 1

Bank i,
asset 2

Bank j,
asset 1

Bank j,
asset 3

45.0% 40.0% 0.0% 0.0% 0.0% 0.0%

40.0% 45.0% 5.5% 0.0% 0.0% 0.0%

37.5% 47.5% 12.6% 0.0% 0.0% 2.4%

35.0% 50.0% 22.9% 0.0% 5.1% 5.5%

32.5% 52.5% 41.8% 0.0% 17.8% 9.0%

30.0% 55.0% 100% 100% 100% 100%

(1) The first two columns report values of the shares L and M of a bank’s assets that are of type
1 and 2 (or 3), respectively. On the other columns, we report optimal liquidation strategies of
representative banks from the two groups: bank i stands for banks 2 to 5; bank j stands for
banks 6 to 10. The parameters are set as follows: r = 4%; pmin(1) = 0.95; pmin(2) = 0.92;
pmin(3) = 0.90.

6 Conclusion

In this paper we build on the model by Cifuentes et al. (2005a,b), a pioneering

reference for contagion analysis in banking networks with market liquidity effects

due to asset fire sales, in order to study how different network topologies respond

to exogenous shocks (either systemic or idiosyncratic). First, we provide detailed

analytical foundations to the key insights of that model, proving under fairly

general assumptions the existence of an equilibrium (in principle there might be

several equilibria, but only one of them can actually occur in the model) and

the convergence of the algorithm to compute it. Then, to answer our research
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question (to what extent the resilience of an interbank network depends on its

topology), we run a set of simulation exercises testing how some stylized networks

are affected by different types of shocks. Finally, we extend the original model

to include the case where banks hold in their portfolios multiple illiquid assets,

with different degrees of illiquidity.

The main conclusions and policy implications can be summarized as follows.

First, consistent with the relevant literature, our results confirm that the resilience

of the banking system may depend heavily on the network topology. From a pol-

icy perspective, this might justify that macroprudential authorities have access to

granular data on interbank exposures.33 Second, we show that different network

configurations may be affected by changes in relevant market and regulatory pa-

rameters (assets’ liquidity and minimum leverage ratio, respectively) in different

ways. The search for an optimal balance between different policy instruments

that can be used to cope with systemic risk would benefit from a deeper knowl-

edge of the sensitivity of the banking network at hand on the key parameters.

Finally, in a more realistic setting bank assets show heterogeneous degrees of

illiquidity (as measured by price elasticity); in this context, there exist several

channels of contagion (or, more precisely, interdependence) and banks that take

losses and are forced to partially deleverage have to choose what liquidation strat-

egy to adopt. To this end, we show that optimal liquidation strategies (from an

equity maximization perspective) may be in disagreement with common behav-

ioral strategies. For a bank that has to deleverage, the liquidity of an asset is

not an absolute quality of the asset, but relates to both the composition of the

bank’s portfolio and the liquidation strategies adopted by other banks.

Future research extending this paper could extend the analysis of the multi-

ple asset setting and include the additional channel of contagion represented by

funding liquidity.

33For policy purposes, it is also worth mentioning that the impact of an exogenous shock
of given magnitude depends on how it is distributed among the banks in the system (even
in the case of homogeneous banks) and the structure of this dependence varies for different
network configurations. This has implications, for instance, for the optimal allocation of limited
resources for banks’ recapitalizations.
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Appendix

In Section 3 we use extensively Tarski’s fixed point theorem, that we recall here

for convenience of the reader (see e.g. Carter, 2001).

Theorem A.1. (Tarski’s fixed point theorem, 1955) Let X be a non-empty

complete lattice. If f : X −→ X is non-decreasing, then the set of fixed points

of f is a non-empty complete lattice. In particular, f has a greatest fixed point x

and a least fixed point x.

We also prove two useful results that we need in Section 3.

Lemma A.2. Let X be a compact metric space and a complete lattice, and let

f : X −→ X be non-decreasing and continuous. Denote by m the least upper

bound of X and by x the greatest fixed point of f . Then

f (n)(m)
n−→ x.

Proof. By definition of m and x, as f is non-decreasing,

x = f(x) ≤ f(m).

By iterated application of f (which is non-decreasing) to the first and last term

of the previous chain of inequalities,

x ≤ f (n)(m). (A.1)

Since X is compact, we can assume without loss of generality that the sequence

(f (n)(m))n converges to a limit x∗. By continuity of f ,

x∗ = lim
n
f (n)(m) = f

(
lim
n
f (n−1)(m)

)
= f(x∗),

i.e. x∗ is a fixed point of f . Taking limits on both sides of (A.1), we obtain

x ≤ x∗, from which x = x∗, by definition of x.

Lemma A.3. Let X be a complete lattice and f, g : X −→ X. If f is non-

decreasing and f ≤ g on X, then

f (n)(x) ≤ g(n)(x), ∀x ∈ X,n ∈ N\{0}.
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Proof. We prove the result by induction. If n = 1, then f (n)(x) ≤ g(n)(x) by

hypothesis. Assume that the previous inequality holds for an arbitrary n ≥ 1.

Then, for all x ∈ X,

f (n+1)(x) = f
(
f (n)(x)

)
≤ f

(
g(n)(x)

)
≤ g

(
g(n)(x)

)
= g(n+1)(x),

where the two inequalities follow from the monotonicity of f and the hypothesis

that f ≤ g, respectively.
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