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IDENTIFICATION AND ESTIMATION OF OUTCOME RESPONSE 
WITH HETEROGENEOUS TREATMENT EXTERNALITIES 

 
by Tiziano Arduini#, Eleonora Patacchini$ and Edoardo Rainone* 

 
Abstract 

This paper studies the identification and estimation of treatment response with 
heterogeneous spillovers in a network model. We generalize the standard linear-in-means 
model to allow for multiple groups with between and within-group interactions. We provide 
a set of identification conditions of peer effects and consider a 2SLS estimation approach. 
Large sample properties of the proposed estimators are derived. Simulation experiments 
show that the estimators perform well in finite samples. The model is used to study the 
effectiveness of policies where peer effects are seen as a mechanism by which the treatments 
could propagate through the network. When interactions among groups are at work, a shock 
on a treated group has effects on the non-treated. Our framework allows us to quantify how 
much of the indirect treatment effect is due to variations in the characteristics of treated 
peers (treatment contextual effects) and how much is to variations in peer outcomes (peer 
effects).  
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1 Introduction

The program evaluation literature focuses on estimating the program effects without exter-
nalities. There is a growing awareness, however, that there may be indirect effects that are
important to measure (see Manski, 2013). Existing methodological contributions as well as
studies collecting empirical evidence are still scarce. In particular, while there are a few pa-
pers about the identification and estimation of treatment response with interactions (Hudgens
and Halloran, 2008, Miguel and Kremer, 2004 and Sinclair et al., 2012 ), to the best of our
knowledge there are no studies that consider the presence of heterogeneous interactions.

Angelucci and De Giorgi (2009) estimates the indirect effects of the flagship Mexican
welfare program, PROGRESA, on the consumption of ineligible households. This study finds
that cash transfers to eligible households indirectly increase the consumption of ineligible
households living in the same village. These findings are clearly very important for designing
policies as well as developing experiments to evaluate them.1 The framework, however, does
not determine how much of the spillover is due to effects from eligible to ineligible subjects,
effects within ineligible (eligible) subjects and feedback effects. It identifies the presence of
indirect effects by comparing outcomes between untreated household in untreated villages and
untreated households in treated villages. When network data are available, the analysis can
be pushed forward and the heterogeneous impact of policies can be modeled and quantified.

Heterogeneity can be conceived in different ways. First, treatment heterogeneity, when the
intensity or type of treatment can differ depending on the treated unit. Second, treatment
effect heterogeneity when the treatment is the same for each agent but its effect is different
depending on her characteristics. Third, interaction-driven heterogeneity, when the diffusion
of the treatment effect through interactions generates an heterogeneous individual response.
This may be due to both differences in interaction strengths within and between groups and
to network structure, if data on connections are available. Several papers have focused on the
first two types of heterogeneity.2 In this paper we focus on the third kind of heterogeneity.

Using a network approach, our analysis brings three contributions to this literature. First,
we derive analytically the bias that arises if spillovers are ignored. Second, we provide es-
timands for understanding whether different types of untreated - eligible or ineligible- are
differently impacted by the treatment. Finally, our framework allows us to distinguish be-
tween different sources of treatment transmission - in particular, how much of the treatment
response is generated by variations in the characteristics of treated peers ( treatment contextual
effects) and how much is due to spillovers through outcomes (peer effects). More specifically,
our paper provides a network-based approach to estimate the average effects of the treatment
in the presence of spillovers on subjects both eligible and ineligible for a program, accounting
for heterogeneous within and between-group spillover effects. We show that heterogeneity in

1More specifically, policy interventions should internalize the externalities that they engender, and exper-
iments to evaluate their effectiveness should consider the effects on the entire local economy (e.g. the school,
the village, the city), rather than focusing on differences between treatment and control group from the same
local entity. When spillovers are at work, both groups’ performance may change.

2See Imbens and Woolridge (2009) for a revision of recent studies using matching and non-parametric
methodologies to address the second type of heterogeneity. Remarkably, Crump et al. (2008) proposes a
non-parametric test for subpopulation heterogeneity in the effect of the treatment. Firpo (2007) proposed a
quantile treatment estimation where the heterogeneity is given by the position of unit in the pre-treatment
outcome distribution. Other papers employ more complex techniques to allow both the first and second type of
heterogeneity. Among the others, generalized cross-validation statistic (Imai, Ratkovic, et al., 2013), boosting
(LeBlanc and Kooperberg, 2010), Bayesian Additive Regression Trees (Chipman et al., 2010) have been used.
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the effects is both helpful in terms of identification and harmful for traditional estimation
methods. We develop an estimation approach able to provide reliable estimates of all the
cascade effects that stem from a given network topology.

Interaction among agents can be modeled in several ways. When the exact topology of
connections is know, one possibility is to consider the peer effects that stem from the given
network structure. There is a large and growing literature on peer effects in economics using
network data.3 The popular model employed in empirical work is the Manski-type linear-
in-means model (Manski, 1993). Three assumptions underlie this statistical model: (i) the
network is exogenous, (ii) the effects of all peers are equal, (iii) peer status is measured with-
out error. Although these assumptions may be restrictive in empirical analyses, only a few
recent papers consider alternative models and methods in which some of these assumptions
are relaxed. Point (i) has been recently studied by Goldsmith-Pinkham and Imbens (2013)
and Hsieh and Lee (2011) who propose parametric modelling assumptions and Bayesian in-
ferential methods to integrate a network formation model with the study of behavior over
the formed networks. Point (iii) belongs to another strand of recent literature which looks
at the consequences of peer-group misspecification, focusing in particular on sampling issues
(see Chandrasekhar and Lewis, 2011, Liu, Patacchini, and Rainone, 2013 and Liu, 2013a). In
this paper, we consider the specification and estimation of a peer effects model when assump-
tion (ii) is removed. Lee and Liu (2010) considers a peer effects model with one endogenous
variable and one adjacency matrix in a multiple network context, with no between-network
interactions. Liu (2013) extends this model to the case of two endogenous variables and one
adjacency matrix. In this paper, we allow the model to have two endogenous variables, two
adjacency matrices, and both within and between-group interactions. We also consider the
generalization to the case of multiple endogenous variables.4 To the best of our knowledge,
we are the first to consider models of peer effects where different peers are allowed to exert a
different influence and where both within and between groups interactions can be at work.5

We maintain assumptions (i) and (iii).
We show that the multiple group structure of the model requires modifying the conven-

tional identification conditions (Bramoullé et al., 2009 and Cohen-Cole et al., 2012) and has
interesting connections with the concepts of chains and Tree-indexed Markov chains (see Ben-
jamini and Peres, 1994).

We propose efficient 2SLS estimators using instruments based on the two reduced forms.
We show that the standard IV approximation (Kelejian and Prucha, 1998, Kelejian and
Prucha, 1999 and Liu and Lee, 2010) involves a huge number of IVs, even if we use a low de-
gree approximation of the optimal instruments.6 For this reason, we consider many-instrument
asymptotics (Bekker, 1994) allowing the number of IVs to increase with the sample size.

Differently from Lee and Liu (2010) and Liu (2013b) where the many instruments derive
from the multiple network framework, in our model the many instruments derive from the (ap-
proximation of the) multiple adjacency-matrix framework. A multiple matrix framework does
not only result in an increasing number of instruments but also yields multiple approximations

3See Jackson and Zenou, 2014, part III, for a collection of recent studies.
4There is a long tradition in spatial econometrics looking at spatial autoregressive models with multiple

endogenous variables (see Kelejan and Prucha, 2004). In the spatial econometrics context, however, the
adjacency matrix is the same for all endogenous variables, and no groups are considered.

5Goldsmith-Pinkham and Imbens (2013) also estimate a model with two peer effects, but without cross
effects, using a Bayesian estimation method.

6See Prucha (2013) for a review of Generalized Method of Moments estimators in a spatial framework.

6



of the optimal instruments. As a result, we show that the form of the many-instrument bias
differs, though the leading order remains unchanged. We also propose a bias-correction pro-
cedure. Simulation experiments show that the bias-corrected estimator performs well in finite
samples. When the number of endogenous variables is allowed to grow, our estimator remains
consistent and asymptotically normal if the number of endogenous variables grows more slowly
than the sample size. Finally, we investigate the bias occurring when the interaction struc-
ture is misspecified. We derive analytically the bias that occurs when only within-group peer
effects are considered, i.e when interactions between groups are at work but ignored by the
econometrician. We then use a simulation experiment to evaluate this bias in finite samples.

In the last part of the paper we show the empirical salience of our model for policy purposes.
As highlighted by Manski (2013), the policy maker can rarely manipulate peer outcomes. Peer
effects, however, can be seen as a mechanism through which the treatment could propagate
through the networks. If peer effects are at work, then the policy intervention has not only a
direct effect on outcomes but also an indirect one through the outcomes of connected agents
(i.e. the so called ”social multiplier”). We show via Monte Carlo simulations that the presence
of heterogeneous peer effects and between-group interactions may create unexpected, or some-
times paradoxical results if the policy maker ignores the heterogeneity of interactions among
groups. Our results can be helpful to explain why several policy programs do not accomplish
the expected goals.

The paper is organized as follows. The next section introduces the econometric model.
Identification conditions are derived in Section 3, and in Section 4 we consider 2SLS estimation
for the model. Section 5 investigates the bias occurring when the interaction structure is
misspecified. We devote Section 6 to show the importance of our analysis for the identification
of treatment response with spillovers. We first derive estimands for direct, indirect and total
effects of treatment strategies in network settings with interactions. Then we use a simulation
experiment to show the extent to which the heterogeneity of the endogenous effects can affect
the outcome response for different groups. Section 7 concludes.

2 The Network Model with Heterogeneous Peer Effects

A general network model has the specification

Y = φGY +Xβ +G∗Xγ + ε, (1)

where Y = (y1, . . . , yn)′ is an n−dimensional vector of outcomes, G = [gij] is an n × n
adjacency matrix, gij is equal to 1 if i and j are connected, 0 otherwise. G∗ is the row-
normalized version of G, where g∗ij = gij/

∑
j gij. X is a n × p matrix of exogenous variables

capturing individual characteristics. ε = (ε1, . . . , εn)′ is a vector of errors whose elements are
i.i.d. with zero mean and variance σ2 for all i. For model (1), φ represents the endogenous
effect, where an agent’s choice/outcome may depend on those of his/her peers on the same
activity, and γ represents the contextual effect, where an agent’s choice/outcome may depend
on the exogenous characteristics of his/her peers. Let X∗ = (X,G∗X) and β∗ = (β, γ).

Let A and B be two countable sets (types) of individuals (e.g. males and females, blacks
and whites) such that A∩B = ∅ and n = na + nb is the cardinality of A∪B, with na and nb
being respectively the cardinalities of A and B. Let us define Y = (Y ′a, Y

′
b )
′, X = (X ′a, X

′
b)
′,

and G =

[
Ga Gab

Gba Gb

]
. For instance, the subscript a denotes that Y,X ∈ A, G is formed only

7



among nodes of type A and the subscript ab denotes the fact that links are directed from b to
a.7 Appendix A defines regularity conditions.

Model (1) can be written as

Ya = φaGaYa + φabGabYb +X∗aβ
∗
a +G∗abXbγab + εa, (2)

Yb = φbGbYb + φbaGbaYa +X∗b β
∗
b +G∗baXaγba + εb, (3)

where β∗a = (βa, γa), X
∗
a = (Xa, G

∗
aXa), X

∗
b = (Xb, G

∗
bXb) β

∗
b = (βb, γb), and εa and εb are i.i.d

errors with variance σ2
a and σ2

b , respectively. Let us suppose for simplicity that σ2
a = σ2

b = σ.
Model (2) - (3) is a generalization of the standard framework in the sense that it allows
endogenous effects to be different within and between groups. If we stack up equations (2)
- (3) and restrict the endogenous effect parameters of the two equations to be the same (i.e.
φa = φb = φab = φba ), then we obtain model (1).

Let us define the following matrices

Aδa = X∗aβ
∗
a +G∗abXbγab + εa,

Bδb = X∗b β
∗
b +G∗baXaγba + εb,

where A = (Xa, G
∗
abXb, εa), δa = (β∗a, γab, 1), B = (Xb, G

∗
baXa, εb) and δb = (β∗b , γba, 1). By

plugging Yb in equation (2) we have

Ya = φaGaYa + φabGab(Jb(φbaGbaYa +Bδb)) + Aδa (4)

= (φaGa + φabφbaCa)Ya + φabGabJbBδb + Aδa,

where Jb = (I − φbGb)
−1 =

∑∞
k=1(φbGb)

k provided ‖φbGb‖∞ < 1, where ‖·‖∞ is the row-sum
matrix norm. The ijth element of Jb sums all k-distance paths from j to i when i, j ∈ B
scaling them by φkb and Ca = GabJbGba.

8 Therefore the reduced form of model (2) is

Ya = Ma(φabGabJbBδb + Aδa), (5)

where Ma = (I − φaGa − φabφbaCa)
−1.9 A sufficient condition for the non singularity of

(I − φaGa − φabφbaCa) is ‖φaGa‖∞ + ‖φabφbaCa‖∞ ≤ 1. This condition also implies that Ma

is uniformly bounded in absolute value.10

We note that: (i) we present an aggregate model specification (i.e. G which multiplies y
in model (1) is not row-normalized), but the approach applies also to an average model (i.e.

7More formally, Ya = RaY , Xa = RaX, Ga = RaGR
′
a and Gab = RaGR

′
b, where Ra = (Ina , Ona,nb

) and
Rb = (Onb,na

, Inb
) are matrices that select the nodes in group a and b respectively. Ok,l is a k × l matrix of

zeros.
8Ca is a matrix which captures all the indirect connections among nodes of type A passing through one or

more nodes of type B. Note that the ijth generic element of GabGba is equal to the number of length-2 paths
directed from j ∈ A to i ∈ A passing through a node l ∈ B. This matrix accounts only for distance-2 indirect
connections while Ca = GabJbGba captures all the paths starting from j ∈ A and ending to a generic node in
B, eventually passing through other nodes of type B and finally arriving in i ∈ A scaling them by φb.

9This matrix captures all direct and indirect paths among type A nodes passing through others type A
nodes and type B nodes.

10The assumption is crucial for identification of the model and asymptotic normality of the estimator (see
Appendix A).
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when G which multiplies y in model (1) is row-normalized);11 (ii) our model specification has
two groups, but all the assumptions, propositions and proofs can be naturally extended to a
finite number of groups; (iii) we consider a single network, but the approach can be extended
to the case of multiple networks(i.e. a network with several components) with the addition of
network fixed effects in the model specification; (iv) we can also add a heterogeneous spatial
lag in the error term εa = ρaWaεa + ρabWabεb.

12

3 Identification

Let us define Za = (GaYa, GabYb, X
∗
a , G

∗
abXb). Equation (2) is identified if E(Za) has full

column rank for large n.13 In this section, we find sufficient conditions for E(Za) to have full
column rank.14 The detailed proof is given in Appendix C.

Proposition 1. Let Xa and Xb have full column rank. If the sequences of {Ma}, {Mb}, {Ja}
and {Ja} are UB matrices,15 then E(Za) has full column rank in the following cases

1. [(I)]

2. (a) i. βaφa + γa 6= 0,

ii. Ia, Ga and G2
a are linearly independent.

[and]

(b) i. βbφb + γb 6= 0,

ii. Gab and GabGb are linearly independent.

[or]

3. (a) i. γab 6= 0,

ii. Gab and GaGab are linearly independent.

[and]

(b) i. γba 6= 0,

ii. Ia, Ga and GabGba are linearly independent.

Note that conditions (2a) are exactly the same identification conditions found by Bramoullé
et al. (2009) in the case of homogeneous effects (i.e. only one group). Proposition 1 here is
more general as it provides alternative possibilities. When more than one group is considered
we do not need linear independence of a particular set of matrices - we have multiple sufficient
conditions. Even if Ia, Ga and G2

a are linearly dependent we can still identify φa, and the other

11Aggregate and average models are different in terms of behavioral foundations, contextual effects are
supposed to be averages over peers in both cases w.l.o.g. (see Liu, Patacchini, and Zenou, 2014 forthcoming).

12The resulting model is a SARARMAG(p; q; g) with p = 1, q = 1 and g = 2, where p and q are respectively
the number of spatial lags for outcome and error, and g is the number of groups (see Kelejian and Prucha,
2007).

13This implies that Assumption 4 in Appendix A holds.
14Symmetric conditions and results hold for equation (3).
15In practice we need a series expansion to approximate the inversion of the matrices. We are grateful to

Chihwa Kao for pointing it out.
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Figure 1: Identification with heterogeneous nodes

parameters, relying on linear independence of chains passing through type B nodes.16 The set
of adjacency matrices’ combinations can be represented as a Tree-indexed Markov chain- the
parameters can be identified because of the multiple branches of the tree (see Appendix B).
Obviously, if Ga, Gba, Gab and Gb are complete and consequently all products among them are
linearly dependent, then the model remains not identified. However, if group A nodes are in
a complete network, but the matrices representing between-group interactions are sparse (i.e
Gab and Gba are not complete), then identification can be achieved and φa can be estimated
even if Ga is complete. Systems in panels (b) and (c) in Figure 1 can be identified because
the adjacency matrix of type B nodes (blue nodes in Figure 1) is sparse, whereas systems in
panel (a) and (d) cannot. The additional parameters’ restrictions (condition (2b, 3a or 3b))
are due to an additional vector in the full rank condition (i.e. E(Gabyb)).

Proposition 1 has a natural interpretation in terms of instrumental variables. A multi-
ple group framework adds an extra layer of exclusion restrictions. In fact, multiple sets of
matrices provide additional instruments. The intuition is that when we distinguish nodes in
different types, a higher number of possible network intransitivities are formed. Appendix B
provides technical details on the connection between identification in a single group model
and a multiple group one.

4 The 2SLS estimator

Equation (2) cannot be consistently estimated by OLS because Gaya and Gabyb are correlated
with εa.

17 We consider 2SLS estimation for the model in the spirit of Lee-Liu (2010). Following
the standard technique used in spatial econometrics literature, we have the following optimal
instruments from the two (symmetric) reduced forms

E(Gaya) = Ga(Ma(φabGabJbE(B)δb + E(A)δa), (6)

E(Gabyb) = Gab(Mb(φbaGbaJaE(A)δb + E(B)δa). (7)

16For example, we can take advantage of linear independence of Ia, Ga and GabGba (instead of Ia, Ga and
G2

a); and Gab and GaGba.
17From equation (5), Gaya = Sa(φabGabJbBδb +Aδa) where Sa = GaMa. OLS is not consistent because we

have E((Gaya)′, εa) = E((Sa(φabGabJbBδb+Aδa))′, εa) = E((Saεa)′, εa), since we assume that the cov(εa, εb) =
0 and E(εa) = E(εb) = 0. It follows that E((Saεa)′, εa) = σ2

aTr(Sa) 6= 0. A similar argument holds for Gabyb.
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Recalling that Za = [Gaya, Gabyb, E(A)] is a n × (k + 2) matrix, we have fa = E(Za) =
[E(Gaya), E(Gabyb), E(A)], so from equations (6) - (7) we have

Za = fa + va = fa + [(φabSaGabJbεb + Saεa), (φbaSabGbaJaεa + Sabεb)][e1, e2]′,

where e1 is a first unit vector of dimension (k + 2), Sa = GaMa and Sab = GabMb. These
instruments are infeasible given the embedded unknown parameters. fa can be considered
a linear combination of IVs in H∗∞ = (Sa(GabJbE(B), E(A)), Sab(GbaJaE(A), E(B)), E(A)).
Furthermore, since Sa = GaMa and Sab = GabMb provided ‖φaGa‖∞ + ‖φabφbaCa‖|∞ ≤ 1 and

‖φbGb‖∞ < 1, we have Sa = Ga

∞∑
j=0

(φaGa+φabφbaCa)
j = Ga

∞∑
j=0

(φaGa+φabφbaGab

∞∑
j=0

(φjbG
j
b)Gba)

j.

The same approximation holds for Sab. It follows that

Ca = GabJbGba = Gab(
∞∑
j=0

φjbG
j
b)Gba = Gab(

p∑
j=0

φjbG
j
b + (φbGb)

p+1Jb)Gba.

This implies ‖Ca −
p∑
j=0

φjbG
j
b‖∞ ≤ ‖(φbGb)

p+1‖∞‖Ca‖∞ = o(1) as p→∞.

Sa = GaMa = Ga

∞∑
j=0

(φaGa+φabφbaCa)
j = Ga[

p∑
j=0

(φaGa+φabφbaCa)
j+(φaGa+φabφbaCa)

p+1Sa]→

‖Sa−
p∑
j=0

(φaGa + φabφbaCa)
j‖∞ ≤ ‖(φaGa + φabφbao(1))p+1‖∞‖Sa‖∞ = o(1) as p→∞. Hence,

the approximation error by series expansion diminishes very quickly in a geometric rate, as
long as the degree of approximation (p) increases as n increases. We can also replace Sa and
Sab by a linear combination. The instruments become

Ha
∞ = (Ga(I,Ga, G

2
a, . . . (Gab(I,Gb, G

2
b , . . . )Gba)) . . . (Gab(I,Gb, G

2
b , . . . )E(B), E(A)),

Hab
∞ = (Gab(I,Gb, G

2
b , . . . (Gba(I,Ga, G

2
a, . . . )Gab)) . . . (Gba(I,Ga, G

2
a, . . . )E(A), E(B)),

with an approximation error diminishing very quickly when K (or p) goes to infinity, where K
denotes the number of instruments. Let us define H∞ = [Ha

∞, H
ab
∞ , X

∗
a , GabXb] as the matrix

of instruments and select an na × K submatrix HK based on a p-order approximation of
H∞.18 For instance, if we use the second order approximation of the infinite sums, HK =
(Ha

2 , H
ab
2 , X

∗
a , GabXb) will be the first step best projector. The feasible 2SLS estimator for

model (2) is
µ̂ = (Z ′aP̂KZa)

−1Z ′aP̂KYa, (8)

where µ̂ = (φa, φab, β
∗
a, γab) and P̂K = HK(H ′KHK)−1H ′K .

4.1 Asymptotic Properties

This section derives the asymptotic properties of the many-instrument 2SLS estimator for
heterogeneous network models. Cohen-Cole et al. (2012) and Liu (2013b) consider a network
model with two endogenous variables and one adjacency matrix with multiple networks.19 Our

18Note that K is a function of the degree of approximations p.
19Kelejian and Prucha (2004) considers SAR models with multiple endogenous variables and a unique weights

matrix.
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network model requires two endogenous variables, and two different adjacency matrices.20 In
Lee and Liu (2010) and Liu (2013b), the asymptotic approximation of the 2SLS estimator is
based on many-instrument asymptotics, where the many instruments derive from the multiple
network framework. In our model the many instruments derive from the (approximation
of the) multiple adjacency-matrix framework. A multiple matrix framework results in an
increasing number of instruments due to multiple approximations of the optimal instruments.21

This complicates the derivations of the asymptotic properties of the many-instrument 2SLS
estimator.

The following propositions establish the consistency and asymptotic normality of the many-
instrument 2SLS estimator in equation (8). Regularity conditions together with some discus-
sion can be found in Appendix A. Some useful Lemmas are provided in Appendix B. All the
proofs are listed in Appendix C. Let

Fa = lim
n→∞

1

n
f ′afa,

22

PKSa = Ψa and PKTba = Ξba, where Tab = SabGbaJb.
23

Proposition 2. Under assumptions 1-5, if K/n → 0, then
√
n(µ̂ − µ0 − b)

d→N(0, σ2
aF
−1
a ),

where b = (Z ′aPKZa)
−1[e1, e2]σ2

a[tr(Ψa), φbatr(Ξba)]
′ = Op(K/n).

From Proposition 2, when the number of instruments K grows at a slower rate than
the sample size n, the 2SLS estimator is consistent and asymptotically normal. However, the
asymptotic distribution of the 2SLS estimator may not be centered around the true parameter
value due to the presence of many-instrument bias of order Op(K/n) (see, e.g., Lee and Liu,
2010). We note that the leading order of the bias is the same as in Lee and Liu (2010)
and Liu (2013b). However, the structure of the bias differs. Here, it depends on multiple
approximations of the optimal instruments (see the beginning of Section 4). The condition
that K/n → 0 is crucial for the 2SLS estimator to be consistent. This appears evident if
we look at the normal equation of our estimator: 1

n
Z ′aPK(Ya − Zaµ̂). When µ̂ = µ0 we have

that E( 1
n
Z ′aPK(Ya − Zaµ0)) = [e1, e1]σ2

a[tr(Ψa), φbatr(Ξba)]
′ = Op(K/n) by Lemma B.2 in the

Appendix. This converges to 0 only if the number of instruments grows more slowly than the
sample size.24 The following corollary characterizes different scenarios for different rates in
which K diverges from n.

Corollary 1. Under assumptions 1-5, (i) if K2/n → 0,
√
n(µ̂ − µ0)

d→N(0, σ2
aF
−1
a ); (ii) if

K2/n→ c <∞,
√
n(µ̂− µ0)

d→N(b̄, σ2
aF
−1
a ), where b̄ = lim

n→∞

√
nb.

20We consider the analysis with one network only. The extension to multiple networks extremely complicates
the notation burden, but the theoretical results remain basically unchanged.

21See Section 4.
22This is a crucial assumption. See the discussion in Appendix A after Assumption 4.
23To simplify the notation, we assume that n→∞ implies na →∞ and nb →∞.
24Indeed, if we use a fixed number of instruments given by H̄, the asymptotic distribution will be

√
n(µ̂ −

µ0)
d→N(0, σ2

a(limn→∞
1
nf
′
aP̄ fa)−1. Note that (Fa−limn→∞

1
nf
′
aP̄ fa) = limn→∞ f ′a(I−P̄ )fa, which is positive

semi-definite in general. The 2SLS estimator with fixed number of instrument is generally not efficient. In
order to have efficiency, we need to index our matrix of instruments with K and let K grow more slowly than
the sample size.
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The many-instrument bias of the 2SLS estimator can be corrected by the estimated leading-
order bias (b) given in Proposition 2. Given consistent estimates of φ̂a, φ̂b, φ̂ab, φ̂ba, σ̂a and σ̂b,
the bias-corrected 2SLS estimator is

µ̂c = (Z ′aPKZa)
−1[Z ′aPKYa − σ̂2

a[e1, e2][tr(Ψa), φ̂ba(Ξba)]
′]. (9)

The following proposition shows that the bias-corrected estimator is properly centered around
the normal distribution.

Proposition 3. Under assumptions 1-5, if K/n → 0 and φ̂a, φ̂b, φ̂ab, φ̂ba, σ̂a and σ̂b are
√
n−consistent initial estimators, then

√
n(µ̂c − µ0)

d→N(0, σ2
aF
−1
a ) .

In the next subsection we discuss the case in which the number of endogenous variables
(groups) grows with the sample size.

4.2 Estimation with Many Groups

So far, we have assumed that group numerosity does not depend on the sample size. We
believe that, in practice, such an assumption is virtually always satisfied. For instance, if we
increase the size of the sample, we will always have two genders: male and female. However,
for completeness, it is interesting to explore whether having the number of groups growing
together with the sample size affects the estimator properties.

In the many-instrument literature, Anatolyev (2013) and Imbens, Kolesar, et al. (2011)
have relaxed the assumption of a fixed number of exogenous regressors. To the best of our
knowledge, the implications of relaxing the assumption of a fixed number of endogenous re-
gressors have not been investigated yet.

Let us define g as the number of endogenous variables and p as the degree of approximation
(see Appendix C for an intuition of p as length of chains).

The following proposition characterizes the rate of divergence of g from n.

Proposition 4. if K/n→ 0, we have that g = o(n1/p).

This means, that for our estimator to be consistent and asymptotically normal in this
framework with many instruments and many endogenous variables we need g to grow more
slowly than n1/p.

For completeness, let us consider the link between the number of groups (i.e. endogenous
variables) and the many-instrument asymptotics.

In our framework we have that g/K → 0. In order to have a good performance of the
estimator we need K/n → 0. This implies g/n = 1/sg → 0, where sg is the average size
of groups. In words, in order to have a good performance of the estimators, we need the
size of groups to be large enough. Furthermore, in order to have the estimator properly
centered, we need K2/n → 0. This implies g2/n = g/sg → 0. Therefore, for asymptotic
efficiency, the average size of groups needs to be large enough compared to the number of
groups. These results are similar to those in Lee and Liu (2010). However, the framework
in Lee and Liu (2010) considers multiple networks embedded in a block-diagonal adjacency
matrix (i.e. G = diag(Ga, Gb)) with the restriction that the within peer effects are the same
for each network, (i.e. φa = φb) and there are no interactions between networks . If a network
is defined as a group, then our framework can be considered as a generalization. We have
different groups, with both within and between-group interactions. Our adjacency matrix is
thus not block-diagonal.
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4.3 Finite sample performance

In this section, we use simulation experiments to investigate the performance of the proposed
estimator in small samples.

We conduct a Monte Carlo simulation study based on the following model

ya = φaGaya + φabGabyb +X∗aβa +G∗abXbγab + εa,

yb = φbGbyb + φbaGbaya +X∗b βb +G∗baXaγba + εb,

where Xa, Xb and ε ∼ N(0, 1). Borrowing from Lee and Liu (2010), we generate the G matrix
as follows. First, for the ith row of G, we generate an integer di ∈ [0, 1, ..,m] with a uniform
probability function, where m = 10, 20, 30. Then we set the (i + 1)th, · · · , (i + di)th elements
of the ith row of G to be ones. If (i + di)th < na, the other elements in that row are zeros;
otherwise, the entries of ones will be wrapped around such that the number of di − na entries
of the ith row will be ones. We partition the matrix into four submatrices Ga, Gb, Gab and
Gba with a random selection of rows and correspondent columns. The identifier variable used
to select the two groups is generated by a Bernoulli distribution with p=0.5. The number of
replications is 1000 and na = nb = 500. We perform two experiments that are summarized
in Table 1 and Table 2. Each column reports mean and standard error (in parenthesis) of
the empirical distributions of different estimators. The first column shows 2SLS few IVs. It
is based on equation (8) with the IV matrix HK derived by the first order approximation of
the best instruments (K=24). The second column reports the 2SLS many IVs, it is derived
by the second order approximation of the best instruments (K=84). Finally, Column 3 shows
the 2SLS bias-corrected. It is based on equation (9) with consistent estimates derived from
the 2SLS few IVs.

Table 1 reports on the performance of the estimators when changing the density of the
network, i.e. the number of connections. Each panel represents a different value of m, which
indicates the maximum number of connections. The data are generated with βa = βb =
γa = γb = γab = γba = 0.5. The peer effects parameters are set to: φa = φb = 0.1 and
φab = φba = 0.2. The results show that all estimators perform well, with different nuances.
In particular, one can observe the trade-off between bias and efficiency for the 2SLS many
IVs when network density increases- the higher the density, the higher the gain in terms of
efficiency with respect to the 2SLS few IVs. However, the bias (due to the many instruments)
increases as well. The bias correction that we propose is thus particularly beneficial when the
network is dense.

Table 2 reports on the performance of the estimators when changing the heterogeneity
within and between-group parameters. The simulation setup remains unchanged, but we now
set the maximum number of connections to 20 and let the φ parameters vary. In the first
panel, we consider φa = φab = φb = φba = 0.1 This is the benchmark framework in which
peer effects are homogeneous. In the second panel, we introduce some heterogeneity in the
within-group interaction effects. We set φa = φb = 0.1 and φab = φba = 0.3. In the third panel,
peer effects are different both within and between groups. We set φa = 0.1, φb = 0.2 φab = 0.4
and φba = 0.05. Table 2 shows that the performance of the estimators does not depend on the
values of the parameters- the ranking of the estimators in terms of efficiency and bias remains
unchanged.

To test the robustness of our results, we have also performed two additional exercises.25

25Results available upon request.

14



First, instead of using randomly generated networks, we have used the Add Health’s socioma-
trix26 as an adjacency matrix, thus replicating features of real-world social networks. Our
aim is to understand whether the results of Table 1 are driven by the random generation of
links. Second, we use uniform and gamma distributions to generate the errors of the data
generating process. In doing so, our aim is to investigate whether and to what extent our i.i.d.
assumption for the error terms in the derivation of large sample properties affects the finite
sample Monte Carlo results. In both cases, the simulation results are very similar to those
reported here.

5 Model Misspecification Bias

In this section, we investigate the bias occurring when the interaction structure is misspecified.
First, we analytically derive the bias that occurs when only within-group peer effects are

considered, i.e. when interactions between groups are at work but ignored by the econometri-
cian. We then use a simulation experiment to evaluate this bias in finite samples.

Second, we derive the mapping between the parameters of a model with homogeneous
peer effects and those of a model with heterogeneous peer effects. We then use a simulation
experiment to give an example of parameter mapping when peer effects are believed to be
homogeneous but are actually heterogeneous in the data generating process (DGP).

Let us suppose the econometrician estimates the following model

ya = (I − φaGa)
−1(Xaβa +G∗aXaγa + ε), (10)

whereas the real DGP is

ya = Ma(φabGabJbBδb + Aδa), (11)

yb = Mb(φbaGbaJaAδb +Bδa). (12)

This model misspecification results in an estimator of the endogenous effect φa that is incon-
sistent. First, we are omitting the influence of the outcome of type B agents. Second, we
do not consider the indirect connections among type A nodes passing through type B nodes.
As a result, Gk

a, with k ≥ 2, is misspecified. Therefore, the commonly used instrument G2
a

might not be valid as the exclusion restrictions might be violated. Third, we misspecify the
contextual effects (G∗aXa) by ignoring the characteristics of other-type peers. 27

Analytically, the bias is

E(µ̂a) = µa + E(Z ′aPaZa)
−1ZaPa(φabGabyb +G∗abXbγab),

26A matrix derived from observed connections among students in the Add Health, a program project directed
by Kathleen Mullan Harris and designed by J. Richard Udry, Peter S. Bearman, and Kathleen Mullan Harris at
the University of North Carolina at Chapel Hill, and funded by grant P01-HD31921 from the Eunice Kennedy
Shriver National Institute of Child Health and Human Development, with cooperative funding from 23 other
federal agencies and foundations. Special acknowledgment is due to Ronald R. Rindfuss and Barbara Entwisle
for assistance in the original design. Information on how to obtain the Add Health data files is available
on the Add Health website (http://www.cpc.unc.edu/addhealth). No direct support was received from grant
P01-HD31921 for this analysis.

27This issue also arises when full information about node characteristics and network structure is not avail-
able. See Chandrasekhar and Lewis, 2011, Liu, Patacchini, and Rainone, 2013 and Liu, 2013a for problems
related to the use of sampled network data.
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where Za = [Gaya, Xa, G
∗
aXa] and µa = (φa, βa, γa). The bias is positively correlated with the

direct influence of type B on type A, as captured by the peer effects from B to A and the
influence of the characteristics of type B on type A.

Table 3 shows the extent of this bias in finite samples through a Monte Carlo simulation.
Table 3 represents the performance of the 2SLS few IVs following the same experiment design
as in the previous section.28 We report on the case in which the maximum number of connec-
tions is 10 for each node (as in panel 2 of table 1).29 The first column reports the real value
of the parameters. The second column shows the performance of the 2SLS estimator in the
misspecified model. When interactions between groups are at work but ignored by the econo-
metrician it results in the size of the bias derived above. The third column shows the results of
the estimator when the econometrician considers the correct DGP (equations (11) and (12)),
but does not use the approximation of optimal instruments (in equation (8)). In other words,
we consider the case where the traditional network IV approach is applied mechanically, thus
G2
aXa and GabGbXb are used as instruments respectively for GaYa and GabYb. In short, only

within-group instruments are considered. The resulting 2SLS estimator is consistent but not
efficient. The fourth column reports the performance of our 2SLS few IVs (in equation (8)),
which considers the Hk matrix derived in Section 4(i.e which also includes between group
instruments).30 Mean values for each coefficient’s empirical distribution and standard errors
(in parenthesis) are reported.

Table 3 shows that the bias is large in the second column, especially for the β coefficients.
In the second column the bias is not large, but the problem is efficiency. Our approach (third
column) reveals no bias and improved efficiency.

In our second exercise, we consider the case in which the econometrician estimates a
standard network model (model (1)) when the real DGP is characterized by heterogeneous
peer effects (model (11) - (12)).

Let us define the following n× n matrices

G(a) =

[
Ga Oab

Oba Ob

]
, G(ab) =

[
Oa Gab

Oba Ob

]
,

G(ba) =

[
Oa Oab

Gba Ob

]
, G(b) =

[
Oa Oab

Oba Gb

]
,

where Ol is a l × l matrix of zeros and Olk is a l × k matrix of zeros. Let us suppose for
simplicity that β = βa = βb and γ = γa = γab = γba = γb and focus our attention on the peer
effects parameters. In this case model (1) can be written as

Y = φGY +Xβ +G∗Xγ + ε (13)

= (φaG(a) + φabG(ab) + φbaG(ba) + φbG(b))Y +Xβ +G∗Xγ + ε.

Hence, the peer effects parameter, φ, is the following non-linear function of heterogeneous peer
effects

φ = φaG
−1G(a) + φabG

−1G(ab) + φbaG
−1G(ba) + φbG

−1G(b).

28We use the 2SLS few IVs to ease the comparison of 2SLS estimators with the misspecified set of instruments.
Observe that the bias considered here is due to the misspecification of the model rather than to the many-
instrument issue.

29The simulation results in the other cases, i.e. when the maximun number of simulations is 20 or 30, are
very similar.

30First order approximation of optimal instruments is considered.
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If φa = φb = φab = φba = φ, then

φaG(a) + φabG(ab) + φbaG(ba) + φbG(b) = φ(G(a) +G(ab) +G(ba) +G(b)) = φG.

Table 4 contains the results of a simulation experiment in which we estimate model (13), for
different values of φa, φb, φab and φba. The simulation set-up is as before- the data generating
process remains as in equations (11) and (12)). The estimator considered is the 2SLS few IVs.

In the first column, we set all the φ parameters equal to 0.1. In fact, the 2SLS few
IVs consistently estimates φ = φa = φb = φab = φba. In the second column, we add some
heterogeneity. We set φab = 0.3 and φba = 0.3, leaving the other parameters unchanged. The
third column corresponds to the case in which all the φ parameters are different. As expected,
as soon as some heterogeneity is introduced, the estimated value of φ is not informative at all.

6 Impact Evaluation and Treatment Effect

Let us now highlight the importance of our analysis for the identification of treatment response
with spillovers. Let A be the set of eligible recipients and B the set of ineligible recipients of
a treatment (respectively eligibles and ineligibles hereafter). The treatment is administrated
using a randomized controlled experiment. Having in mind policy interventions such as condi-
tional cash transfer or microfinance subsidies can be useful. Let Ta be the binary treatment
vector whose ith element is Ta,i = {0, 1}, which indicates whether i is treated or not (among
the eligibles).31 Model (2) and (3) can be written as

Ya = φaGaYa + φabGabYb +X∗aβ
∗
a + δaTa + ρaGaTa +G∗abXbγab + εa, (14)

Yb = φbGbYb + φbaGbaYa +X∗b β
∗
b +G∗baXaγba +GbaTaρba + εb. (15)

In this model, the Stable Unit Treatment Value Assumption (SUTVA)32 doesn’t hold because
(i) spillovers are at work and (ii) spillovers are heterogeneous. To the best of our knowledge,
there are no studies that consider violations of the SUTVA because of (ii). This is surprising
given that heterogeneity in spillovers is naturally implied by differences between eligibles and
ineligibles.

Our results in Sections 4 provide consistent and efficient estimators for the parameters of
model (2) - (3).33

31Our analysis can be easily adapted to the case of continuous or multinomial treatment. It is also useful
to recall an assumption already listed in the previous sections for estimator properties, G ⊥ Ta, which here
states that the treatment does not change the network topology. This assumption relates to Manski (2013)
which assumes that reference groups are person-specific and treatment-invariant (unable to be manipulated
by the policy maker).

32Following Rubin (1986), SUTVA states that potential outcomes depend on the treatment received, and
not on what treatments other units receive and that there are no ”hidden treatments”.

33As mentioned in the Introduction, we do not consider direct treatment effect heterogeneity. This assump-
tion can be relaxed, allowing for a double form of heterogeneity: one coming from individual characteristics,
the other from the interactions. The identification becomes much more complex. We leave this extension for
future research. Following Manski (2013), we also assume here that the treatment does not change the network
topology, i.e. that the policy maker cannot manipulate reference groups.
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6.1 Average Treatment Effect with Heterogeneous Spillovers

The Average Treatment Effect in our context can be written as34

ATE = E(Yi|i ∈ A, Ta,i = 1, X,G)− E(Yi|i ∈ A, Ta,i = 0, X,G). (16)

From the reduced form of equation (14)

ATE = δaEET (ma,ii), (17)

where ma,ii is the iith element of Ma and EET (·) = E(·|i ∈ A, Ta,i = 1, X,G) indicates the
expected value over the treated eligibles. The Average Treatment Effect is thus equal to the
direct impact of the treatment on the individual i (i.e. δa) plus the indirect effect of other
agents’ spillovers on i triggered by i’s treatment (but not triggered by other nodes’ treatment)

δaMa = δaIa + δa

∞∑
k=1

(φaGa + φabφbaCa)
k.

Observe that ma,ii is a function of (Ga, Gb, Gab, Gba, φa, φb, φab, φba). This implies that when
network interactions are at work, the ATE depends on network topology and strength of
outcome spillovers among agents. As a result, an individual can have a high increase in
outcome even if she has a low treatment direct impact (a low δa) but she is central in the
network.35 Observe that even if δa,i = δa( i.e. the treatment effect is homogenous) the ATE
can be heterogeneous because of the different position of nodes in the network. Indeed, the
ATE can be decomposed into two parts

ATE = δa︸︷︷︸
DTE

+ δaEET [(diag(Ma − Ia)]︸ ︷︷ ︸
FLTE

. (18)

The first part is the Direct Treatment Effect (hereafter DTE), whereas the second part is the
effect of the treatment due to the interactions among agents, i.e. the effect of i’s treatment
that impact i through other nodes. We denote the latter effect as Feedback Loop Treatment
Effect (hereafter FLTE). The sample counterpart of equation (18) is

ˆATE = µ′t[δ̂adiag(M̂a)]µt
1

nta
= δ̂a

1

nta

∑
i∈NT

a

ˆma,ii, (19)

where NT
a is the set of treated individuals which has cardinality nta < na, µt is the nta × 1

selector vector for that units and M̂a = Ma(φ̂a, φ̂b, φ̂ab, φ̂ba) is the estimated counterpart of
Ma.

Treatment Effect Misinterpretation and Bias When SUTVA holds, ATE = DTE.
If interferences are at work, then ATE 6= DTE. However, the problem is not only about
interpretation. We show below that if spillovers are ignored, then the parameter estimates
can be inconsistent. Suppose that a treatment is administered to nta < na subjects and we
ignore interactions among them. Estimation of δa is based on the following regression

34When the treatment is a randomized control experiment, the average treatment effect is equal to the
average treatment effect on treated.

35Of course the centrality itself is not a sufficient condition, a high level of spillovers is required.
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Ya = Xaβa + Taδa + ε∗a, (20)

where ε∗a = ρaGaTa +φaGaYa +φabGabYb + εa contains the three relevant spillover effects omit-
ted:36 (i) the direct treatment spillover from other eligibles ρaGaTa, (ii)the endogenous out-
come spillover from other treated eligibles φaGaYa and (iii) the endogenous outcome spillover
from ineligibles φabGabYb. Misinterpretation occurs because the estimate of δa is interpreted
as a DTE while, if the data generating process is given by equations (14) and (15), it is an
ATE. Bias can occur if the treatment is correlated with the three components listed above

δ̂a = δa + bias = δa + (T ′aTa)
−1Ta { ρaGaTa

+ φaGaMa[φabGabJb(ρbaGbaTa) + Taδa + ρaGaTa]

+ φabGabMb[φbaGbaJa(δaTa + ρaGaTa) + ρbaGbaTa]}.

The bias is due to the spillover effects coming from the three omitted components listed
before. By correctly specifying the interaction structure we can consistently estimate the
direct treatment effect purged of the influence of the three omitted components.

It should appear clear from our discussion that, if the spillovers’ coefficients and the direct
treatment effect are positive, neglecting between and within-group interactions result in an
overestimation of the direct treatment effect. Manski (2013) defines this scenario as Rein-
forcing Interactions. Of course one can imagine different scenarios where interactions are not
reinforcing and, on the contrary, are Opposing Interactions.

Our approach has an advantage from this point of view- it allows interactions between
and within groups to be heterogeneous (e.g. Reinforcing Interactions within groups members
and Opposing Interactions between groups). We also note that, using again Manski (2013)’s
terminology, our framework can be adapted to the estimation of social interaction with leaders
and followers, labeling those agents as groups A and B.

6.2 Indirect Treatment Effect

As mentioned before, the Indirect Treatment Effect (hereafter ITE) has been an object of
interest in several papers. Most of the existing papers focus attention on the indirect effect
on ineligibles (see, e.g. Angelucci and De Giorgi, 2009). However, when the population is
split into two sets, it is also natural and interesting from a policy perspective to understand
whether different types of untreated (eligible or ineligible), are differently impacted by the
treatment. Let us define ITEE and ITEI as the Indirect Treatment Effect on Eligibles and
the Indirect Treatment Effect on Ineligibles, respectively.

The Indirect Treatment Effect on Eligibles in our model is

ITEE = E(Yi|i ∈ A,MiT 6= 0∩Ta,i = 0, X,G)−E(Yi|i ∈ A,MiT = 0∩Ta,i = 0, X,G), (21)

whereas the Indirect Treatment Effect on Ineligibles can be defined as

ITEI = E(Yi|i ∈ B,MiT 6= 0, X,G)− E(Yi|i ∈ B,MiT = 0, X,G), (22)

36The other omitted terms, X∗aβ
∗
a and G∗abXbγab, are independent from the treatment.
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where Mi is the ith row of M =

([
Ia
Ib

]
−
[
Gaφa Gabφab
Gbaφba Gbφb

])−1

, T = [Ta, 0b], and 0b is a

nb×1 vector of zeros. MiT = 0 indicates that i is not affected by any of the treated nodes (i.e.
that there are no direct and indirect paths in the networks between i and a treated node).

Let us now suppose that, given our data generating process (equations (14) and (15))
we are asked by a policy maker to evaluate the Indirect Treatment Effects after a treatment
administered to the eligibles (i.e. to a subset of A). From model (14) - (15) we can derive the
following formulas

ITEE = EEu [Mai(φabGabJb(ρbaGbaTa) + δaTa + ρaGaTa)],

ITEI = EI [Mbi(φbaGbaJa(δaTa + ρaGaTa) + ρbaGbaTa)],

where Mai is the ith row of Ma, Mbi is the ith row of Mb , EI(·) = EI(·|i ∈ B,MiT 6= 0, X,G)
indicates the expected value over the (indirectly treated) ineligibles, and EEu(·) = E(·|i ∈
A,MiT 6= 0 ∩ Ta,i = 0, X,G) indicates the expected value over (indirectly treated) untreated
eligibles. Observe that these estimands depend on direct and indirect connections because
of network-based spillovers. More formally, they can be decomposed into different parts.
For instance, ITEE may be decomposed into three effects. The first term , δaMa, captures
propagation of the treatment via outcome spillovers.37.

The nice feature of this derivation of ITEI and ITEE is that instead of simply addressing
the question whether an ITE is different from zero, we can also decompose it into different
sources of treatment’s transmission. For instance, one can find that the treated population
has a strong reaction to the treatment (δa and ρa are high) and transmits it to ineligibles
through low magnitude peer effects (φab is low). The same level of ITEI, however, can also
arise from a scenario where there is a low reaction to the treatment within group (δa and ρa
are low) and a large transmission between groups (φab is high).

Understanding these different channels is paramount for policy purposes. Most impor-
tantly, our framework enables the researcher to distinguish the role of contextual effects from
peer effects in transmitting the treatment. In other words, one can quantify how much of
the effect is generated by the direct effect of the treatment through exogenous variables (as
captured by δa, ρa and ρba) and how much is due to spillovers through outcomes (as captured
by φba, φa, φb and φab). Note also that having these estimates at hand, one can understand
which effects (within eligibles, within ineligibles and between them) are the dominant ones in
spreading out the policy’s beneficial effect.

We can thus simply use the sample counterpart to estimate the ITEE and ITEI

ˆITEE = µ′u[M̂a(φ̂abGabĴb(Gbaγ̂ba) + β̂a +Gaγ̂a)]µu
1

nua
,

37Given that Ma = (I−φaG−φabφbaCa)−1, we have Maδa = Iaδa+[(Ia−φaG−φabφbaCa)−1−I]δa. The first
term is the diagonal matrix of treatment direct effects which has (by definition) no impact on the untreated,
while the second term represents the propagation of those effects through the network via endogenous spillovers
(i.e. changes in outcomes due to treatment). The second term, ρaMaGa, measures the spillover arising from
the treatment given to other units (ρaGa), as well as its amplification through interactions (as captured by
Ma). Finally, φabρbaMaGabJbGba, denotes the spillover accruing to ineligibles distinguished between outcome
amplification (MaGabJb) and (indirect) treatment effect (ρbaGba). A similar decomposition can be applied to
ITEI

20



ˆITEI = ι′b[M̂b(φ̂baGbaĴa(β̂a +Gaγ̂a) +Gbaγ̂ba)]ιa
1

nb
,

where nua < na is the number of eligibles who are untreated, µu is the na × 1 selector vector
for that units and ιl is an nl × 1 vector of ones.

6.3 Total Treatment Effect

One can also be interested in evaluating the treatment effect on the entire population (or
network). As the SUTVA has been removed and spillovers are in place, it is useful to derive
the Total Treatment effect (hereafter TTE). Following our previous notation we have the
following definition for TTE

TTE = E(Yi|i ∈ A ∪B,MiT 6= 0, X,G)− E(Yi|i ∈ A ∪B,MiT = 0, X,G).

This represents the treatment effect on a generic individual in the network (eligible or ineligi-
ble). Its sample counterpart is

ˆTTE = ι′
([

Ia
Ib

]
−
[
Gaφ̂a Gabφ̂ab
Gbaφ̂ba Gbφ̂b

])−1(
δ̂a

[
Ta
Ob

]
+

[
Gaρ̂a Gab

Gbaρ̂ba Gb

] [
Ta
Ob

])
ι
1

n
,

where ι is an n × 1 vector of ones. Note that the ˆTTE is basically the weighted average of
ˆATE, ˆITEE, and ˆITEI.

6.4 Control Group

It is well-known that the ATE, ITEE, ITEI and TTE are identified if we have a control
group, i.e. if we can distinguish sample of units who are not treated (directly or indirectly).
This can be quite challenging when estimating the indirect treatment effects. In a network
context, we have two possibilities: (i) a multiple network-based approach and (ii) topology-
driven approach.

In the first case, we have multiple networks, some of which are randomly treated and others
which are not- offering a valid control group. A similar scheme is often followed for policy
design and evaluation in a non-network context.38

The second possibility is unique to a network approach and exploits the architecture of
networks. When information on actual connections is available and the direction is known,
it may be possible to estimate ATE, ITEE, ITEI and TTE using only one network. The
network topology determines the possibility of having the control population if there are some
nodes in the network that are not influenced by a treatment to other nodes. For example,
let us consider the network in Figure 2, where the red nodes are treated and the blue ones
are not. According to the directions of the edges (arrows in the picture), the blue node i
is influenced by red nodes whereas the blue node j is not. Therefore, the direction of the
links between nodes stemming from this network topology allows us to distinguish between
indirectly treated nodes (node i) and control group nodes (node j).39

38For example, in PROGRESA, a set of treated and untreated villages are surveyed (see Angelucci and De
Giorgi (2009) for more details on the program design).

39Note also that we need these two kinds of nodes to be comparable in terms of characteristics.
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Figure 2: Topology-driven policy evaluation design

6.5 Policy Experiments

Manski (2013) studies treatment response in settings with endogenous effects. In this frame-
work, endogenous effects are seen as a mechanism in which the treatments could propagate.40

The main objects of interest are P [Y ] and P [Y (Ta)], the outcome distributions respectively
without and with a treatment Ta administered to the population. Policy makers are usually
interested in comparing these two distributions since interventions are often finalized to reduce
inequality between a disadvantaged cluster and the rest of the population. The marginal effect
of T on Y accounts for the adjustment of the outcome after a policy intervention.

In this paper, we consider a network framework with heterogeneous peer effects similar
to Manski (2013).41 In this section, we numerically study the empirical density functions
P [Ya]−P [Ya(Ta)] and P [Yb]−P [Yb(Ta)], where the subscripts indicate the reference to eligible
and ineligible populations.

We perform a numerical simulation to asses the extent to which the underlining hetero-
geneity of the endogenous effects can affect the outcome response for different groups. Our
goal is to provide evidence about the individual and aggregate implications of this heterogene-
ity. In the simulation experiment below, we show that for some values of φa, φb, φba and φab it
may be (paradoxically) more convenient to treat a group other than the target one. This has
implications for the study of socio-economic inequality. Importantly, by allowing estimation
of all the different parameters of interest, our model specification can be used to understand
what nodes (or which type of nodes) should be targeted by a social planner whose final goal
is to maximize an aggregate outcome or to converge to a desired distribution of individual
outcomes.

We present an experiment where we treat a random sample of nodes and simulate the
treatment’s propagation through a network characterized by heterogeneous peer effects. More
specifically, we look at the increase of type A and type B nodes’ outcomes once a certain set
of nodes receives a treatment42.

40If a dynamic model is at work, then a social multiplier may also arise in terms of expectations.
41The framework in Manski (2013) considers only one group, thus homogeneous peer effects (and no between

group interactions).
42We compute the marginal effect matrix of Ta on Ya multiplied by the treatment vector

∂E(Ya|G,X)

∂Ta
Ta = Ma(φabGabJb(ρbaGbaTa) + δaTa + ρaGaTa).

Note that when there are no interactions between the two groups (or only type A nodes are considered in the

analysis), we have ∂E(Ya|G,X)
∂Ta

Ta = Sa(δaTa + ρaGaTa), where Sa = (I − φa)−1. This is the marginal effect
matrix in a standard peer effects model.

The marginal effect matrix of Ta on Yb is
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Two exercises are implemented. In the first, we evaluate aggregate effects, i.e. the change
in the sum of outcomes (for both type A and type B individuals) which follows a treatment
for different values of peer effects (i.e. φa, φb, φba, φab). In the second exercise, we look at
distributional effects, i.e. at changes in the empirical distribution of individual node outcomes
for different sets of peer effects parameters following the policy intervention .

Figures 5 and 6 report on the first exercise. Figure 5 depicts the results when fixing φb =
φba = 0.1 and varying φa and φab. We generate a grid of values for parameters resulting from
two sequences: φa = 0.02, 0.04, ..., 0.50 and φab = 0.02, 0.04, ..., 0.50. For each couple (φa, φab)
we generate one hundred independent replications using the same DGP as described in Section
4.3 and compute Y s

a =
∑

i∈A yi and Y s
b =

∑
i∈B yi. We then select a random sample of one

hundred type A nodes to be treated. This treatment is represented by an na × 1 vector Ta of
zeros for non treated nodes and ones for treated nodes. Finally, we compute Y s∗

a =
∑

i∈A y
∗
i

and Y s∗
b =

∑
i∈B y

∗
i , where y∗i = yi + ∂yi

∂Ta
TA. This exercise represents the case where group A

nodes are treated and there are low interactions between nodes A and nodes B (φba = 0.1).
From equations (14) and (15) we have

∆yi = y∗i − yi =
∂yi
∂Ta

Ta =
{

Mai (φabGabJb(ρbaGbaTa) + (δa +Gaρa)Ta) if i ∈ A
Mbi (φbaGbaJa(δa + ρaGa)Ta + ρbaGbaTa) if i ∈ B .

Figure 5 represents the differences ∆Y s
a = Y s∗

a − Y s
a =

∑
∂Ya
∂Ta

Ta and ∆Y s
b = Y s∗

b − Y s
b =∑ ∂Yb

∂Ta
Ta for all the possible combinations (φa, φab).
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Figure 5 shows that ∆Y s
a increases steadily with φa (and slightly with φab), whereas ∆Y s

b

remains roughly unchanged. These results are not surprising. If there are no interactions (or
low interactions) between the two groups, then there is no reason why the outcome of group
B should change. The variation in the outcome of the group A depends on the extent of the
endogenous effects (φa). If instead there are interactions between the two groups, then the
treatment response depends on both φa and φab. For example, assuming a positive effect of
the independent variable, if a policy intervention targets a group when the two groups have
the same outcome profile, we expect an increase in inequality in terms of outcomes between
the two types when the within-peer effects (φa) are high and the between-peer effects (φab)
are low.

Figure 6 depicts the results when fixing φb = φab = 0.1, and varying φa and φba. The
experiment design remains unchanged. This exercise represents the case where group A nodes
are treated and there are increasing influences within nodes A and from nodes A and nodes B
(φba increasing up to 0.5). Figure 6 shows that an increase of φba is beneficial for ∆Y s

b , as type B
nodes receive an impulse from type A nodes. Interestingly, type B nodes may actually benefit
even more than A nodes (the treated group). Our results shows that when φba > 0.20, we
observe ∆Y s

b > ∆Y s
a . In terms of policy effects, this means that if a policy targets one group

but peer effects between groups are high, then we can observe increasing inequality between
the two groups, rather than the expected decrease (assuming that the targeted group has a
lower starting outcome). In terms of the estimands derived in Section 6 , note that the blue

∂E(Yb|G,X)

∂Ta
Ta = Mb(φbaGbaJa(δaTa + ρaGaTa) + ρbaGbaTa). (23)

Observe that the marginal effect of Ta on Ya is different from the marginal effect of Ta on Yb -an increase in
Ta differently affects nodes depending on their type.

43Some combinations are missing in the grid because it is unlikely to draw Ga and Gab such that ‖φaGa‖∞+
‖φabφbaCa‖|∞ ≤ 1. These combinations are at the edge of the parameter space.
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surfaces in Figures 5 and 6 are simply ITEI×nb while the red ones are ITEE×nua+ATE×nta,
plotted for different combinations of parameters.

In the second exercise, we consider four points from the grid formed by φa and φba and
look at the empirical distributions of ∆yi∈A and ∆yi∈B . We estimate these distributions using
a normal kernel density. We consider the case where φa = 0.1 and φba = 0.1 as a benchmark
and then increase the strength of peer effects among agents in different ways.

In Figure 7 we increase the effect within group A only (φa = 0.3.). While this change is
irrelevant for type B nodes, it has interesting implications for the distribution of outcomes
among type A nodes (Panel a). While in the benchmark model (the single line), the distribu-
tion is quasi-bimodal (due to the treated and non-treated A nodes), an increase of φa smooths
the distribution (the bold line). In other words, the higher the endogenous effects, the more
evenly the benefits of the policy intervention are shared among nodes (individuals).

In Figure 8 we increase the between-group effect only (φba = 0.3). Type A density remains
basically unchanged (Panel a) . The impact is instead apparent on the outcome distribution
of type B nodes (Panel b). One can observe an important shift to the right. This means that
non treated type B nodes benefit more than non-treated type A nodes ( from the treatment
to type A nodes).

The red and blue curves in Figures 7 and 8 are the empirical density functions P [Ya(Ta)−Ya]
and P [Yb(Ta)− Yb], respectively. They have ITEE×nua+ATE×nta

na
and ITEI as expected values.

7 Concluding Remarks

We generalize the linear-in-means model to the presence of two groups and between-group
interactions. We derive the sufficient conditions to identify the model and propose efficient
2SLS estimators. We characterize the bias which arises when interactions are ignored and
evaluate it in finite sample using simulation experiments. We illustrate the relevance of these
issues for policy purposes. If peer effects are seen as a mechanism in which the treatments could
propagate through the networks, then accounting for heterogeneous peer effects and between-
group interactions can be helpful in designing and evaluating policy interventions that alter the
outcome distribution. We show that when between-group interactions are strong, an impulse to
a given group can engender benefits to another group which are even higher than those accruing
to the target group. Examples of types of interventions where the local non-target population
may also be indirectly affected by the treatment through social and economic interaction
with the target population are widely varied. For example, the recipients of conditional cash
transfers may share resources with ineligible households who live in the same community
or with extended family members, which could affect the incentives to accumulate human
capital (Angelucci, De Giorgi, et al., 2010). School vouchers or other incentives (such as
equipment provision) to increase schooling of indigent children may increase the learning ability
of untreated children if, for example, textbooks or computers are shared among classmates.
A number of organizations promote the deworming of children in the developing world as a
public health and development strategy. Supplying deworming drugs to a group of children
may benefit untreated children by reducing disease transmission, thus lowering infection rates
for both groups.

In sum, our paper contributes to the literature by providing a framework able to decompose
the treatment response into different components, including the crucial difference between
endogenous effects and effects stemming from exogenous variations in the characteristics of
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the treated.
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APPENDIX

Appendix A: Assumptions and Discussions

Let us introduce some notation and assume the following regularity conditions: a sequence
of square matrices {A}, where A = [Aij], is defined ”uniformly bounded in absolute value”
(UB) if there exists a constant cb < ∞ (that does not depend on n) such that ‖A‖∞ =
maxi=1,··· ,n

∑n
j=1|Aij| < cb and ‖A‖1 = maxj=1,··· ,n

∑n
i=1|Aij| < cb. We indicate that {A} is

bounded only in row (column) sum absolute value as UBR (UBC). For the sake of simplicity
we will assume that n→∞ implies na →∞ and nb →∞.

Assumption 1. The elements of εa and εb are iid with zero mean, variance σ2
a and σ2

b respec-
tively, and zero covariance. Moments higher than the fourth exist.

Assumption 2. The elements of Xa and Xb are uniformly bounded constants, Xa and Xb

have full rank k, and lim
na→∞

1
na
X ′aXa and lim

nb→∞
1
nb
X ′bXb are finite and non singular.

Assumption 3. The sequences of matrices {Ga}, {Gab}, {Gb}, {Gba}, {Ma}, {Mb}, {Jb},
and {Ja} are UB.

The first assumption is needed in order to apply the Kelejian and Prucha (2001) Central
Limit Theorem (CLT) of a linear and quadratic form. Assumption 2 is standard in the
literature. Assumption 3 is exploited in Kelejian and Prucha (1999) to limit the spatial
dependence among the units. It rules out any spatial unit root case. As Lee (2004) pointed
out, it plays an important role in the derivation of asymptotic properties of the estimators
for spatial econometric models. It guarantees that the variance of Ya and Yb is bounded as
n goes to infinity. Observe that this assumption is also crucial for the identification of the
heterogeneous network model, as shown in Proposition 1.

Assumption 4 is a sufficient condition for identification of the social network model. For
assumption 4 to hold, E(Za) must be full column rank for large enough na.

Assumption 4. Fa = lim
n→∞

1
n
f ′afa is finite and a full rank matrix, Fb = lim

n→∞
1
n
f ′bfb is finite

and a full rank matrix.

Since the variance of the structural error is var(va) and the concentration parameter (which
measures the instrument’s strength) is f ′afa/var(va), this assumption implies that the concen-
tration parameter grows at the same rate as the sample size. Such a rate is assumed in
Bekker (1994). Hence, we assume that the instruments are stronger than assumed in the
weak-instrument literature.44 For the sake of brevity we focus on equation (2), and we imply
the same argument holds for equation (3).

Assumption 5. There exists a K × (k + 2) matrix ΘK such that 1
n
‖E(Za)−HKΘK‖2 → 0

as n,K →∞.

44See Staiger and Stock, 1997 or Baltagi et al., 2012 for a panel data version of weak-instrument asymptotics.
Another interesting extension could be to derive the estimator’s asymptotic properties under many weak
instruments. In doing so, we are allowing the rate of concentration parameter to be different than the rate of
the sample size. Consequently, we can compare it with the rate in which K increases. See for example, Chao
and Swanson (2005)
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Following Lee and Liu(2010), assumption 5 requires that the (infeasible) best IV matrix
can be well approximated by a certain linear combination of the feasible IV matrix HK as the
number of instruments increases with the sample size. Once we assume this, we can deal with
the approximation of Sa and Sab. We have to approximate this matrix since we cannot use it
as matrix of instruments because it is formed by unknown parameters. If HK has the following
structure then assumption 5 holds and we can obtain efficiency under certain conditions.

Proposition 5. If ‖φaGa‖∞+‖φabφbaCa‖∞ < 1, let us define H
(p)
K = (H

a(p)
K , H

b(p)
K , X∗a , GabXb)

where

H
a(p)
K = (Ga(Ga, (Gab(Gb, . . . , G

p+1
b )Gba), . . . , (Ga(Ga, (Gab(Gb, . . . , G

p+1
b )Gba)

p+1(E(A), GabJbB),

H
b(p)
K = (Gab(Gb, (Gba(Ga, . . . , G

p+1
a )Gab), . . . , (Gb(Gb, (Gba(Ga, . . . , G

p+1
a )Gab)

p+1(E(B), GbaJaA),

where p is an increasing integer valued function of K, there exists a K × (k + 2) matrix Θ
(p)
K

such that ‖fa −H(p)
K Θ

(p)
K ‖∞ → 0 as n,K →∞.

Therefore, the 2SLS estimator can be asymptotically efficient when we use an increasing
number of instruments.
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Appendix B: Some Useful Lemmas

Lemma 1. Recall that Za = fa + va. Let ef = 1
n
f ′a(I − PK)fa. As K/n = O(1): (i) Tr(ef ) =

o(1) (ii) v′aPKva = Op(K). (iii) f ′aPKva = Op(
√
nK). (iv) ef = O(tr(ef )). (v) 1

n
Z ′aPKZa =

1
n
f ′afa − ef + 1

n
f ′aPKva + 1

n
v′aPKfa + 1

n
v′aPKva = Op(1).

Proof. (i) See lemma B.3 (i) in Lee and Liu (2010).
(ii) Let us write v′aPKva = ε′aS

′
aPKSaεa+ε′bJ

′
bG
′
baS
′
abPKSabGbaJbεb. Let us focus on the first

term of the sum, since E|ε′aS ′aPKSaεa| = E[tr(|ε′aS ′aPKSaεa|)] = σ2
atr(|PKSaS ′aPK |) = O(K)

by lemma B.2 (ii) Lee and Liu (2010), then by Markov’s Inequality Pr(|εaS ′aPKSaεa|) ≥ α) ≤
E(|εaS′aPKSaεa|)

α
= Op(K).

For the second part of the sum, given also that SabGbaJb = Tab where Tab is UB, we can
apply the same proof and obtain the same order of probability. We then have O(f(x))+
O(f(x))=O(f(x)).

(iii) For each j we have by Cauchy-Schwarz inequality |e′jf ′aPKva| ≤
√
e′jf
′
afaej

√
εaS ′aPKSaεa =

O(
√
n)Op(

√
K) = Op(

√
nK).

(iv) By lemma A.3 (ii) in Donald and Newey (2001).
(v) 1

n
Z ′aPKZa = 1

n
f ′afa −O(tr(ef )) +Op(K/n) +Op(

√
K/n) = Op(1).

Lemma 2. Recall that Za = fa + va, let PKSa = Ψa and PKTba = Ξba . As K/n = O(1): (i)
E(v′aPKεa) = σ2

a[e1, e2][tr(Ψa), φ̂ba(Ξba)]
′. (ii)E(v′aPKεaε

′
aPKva) = σ4

atr
2([(Ψa), (Ξba)]) +O(K).

(iii) [Z ′aPKεa− [σ2
a[e1, e2][tr(Ψa), φ̂batr(Ξba)]

′/
√

(n)] = f ′aεa/
√
n+Op(

√
K/n)+Op(

√
tr(ef )) =

f ′aεa/
√
n+Op(1).

Proof. (i) E(v′aPKεa) = [e1, e2]E([(φabSaGabJbεb + Saεa), (φbaSabGbaJaεa + Sabεb)]
′)PKεa =

[e1, e2][E(ε′aS
′
aPKεa), E(φbaε

′
aJ
′
aG
′
baS
′
abPKεa)]

′ = σ2
a[e1, e2][tr(Ψa), φ̂batr(Ξba)]

′.
(ii) By lemma A.2 in Lee (2001), E(v′aPKεaε

′
aPKva) = E([ε′a(Ψa)εaε

′
a(Ψa)εa, ε

′
aΞbaεaε

′
aΞbaεa]) =

(µa4 − 3σ4
a)
∑
i

[(Ψa), φba(Ξba)]
2
ii + σ4

0[[tr2(Ψa), φbatr(Ξba)]+

tr([(Ψa), φba(Ξba)]
′[(Ψa), φba(Ξba)] + tr([(Ψa)

2, (Ξba)
2])]

= σ4
atr

2([(Ψa), (Ξba)]) +O(K),

where the last equality holds by Lemma B.2 (ii) in Lee and Liu (2010).
(iii) Since Z ′aPKε = faεa−f ′a(I−PK)ε+vaPKε, then (Z ′aPKεa−σ2

a[e1, e2][tr(Ψa), φ̂batr(Ξba)])
′/
√

(n) =

f ′aεa/
√
n− f ′a(I − Pa)ε/

√
n+ [v′aPKεa − σ2

a[e1, e2][tr(Ψa), φ̂batr(Ξba)]
′]/
√
n.

By Lemma 1 above and by Lemma B.2 (ii) in Lee and Liu (2010)
√
nf ′a(I − Pa)εa =

Op(
√

(Tr(ef ))). By Lemma 2 (i), (ii) and Markov’s inequality for variance we have 1√
n
[v′aPKεa−

σ2
a[e1, e2][tr(Ψa), φ̂ba(Ξba)]

′ = Op(
√
K/n).
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Appendix C: Proofs

Proof of proposition 1. We need to prove that E(Za) = (E(Gaya), E(Gabyb), Xa, GaXa, GabXb)
is full column rank. This means that if E(Gaya)d1+E(Gabyb)d2+Xad3+GaXad4+GabXbd5 = 0
then d1 = d2 = d3 = d4 = d5 = 0, where d1, d2, d3, d4, d5 are parameters.

By inserting the definitions of E(Gaya) and E(Gabyb) we have:

Ga(Ma(φabGabJbE(B)δb + E(A)δa)d1 +Gab(Mb(φbaGbaJaE(A)δb + E(B)δa)d2

+Xad3 +GaXad4 +GabXbd5 = 0.

More explicitly,

Ga(Ma(φabGabJb(Xbβb +GXbγb +GbaXaγba) +Xaβa +GXaγa +GabXbγab)d1

+Gab(Mb(φbaGbaJa(Xaβa +GaXaγa +GabXbγab) +Xbβb +GbXbγb +GbaXaγba)d2

+Xad3 +GaXad4 +GabXbd5 = 0 .(24)

Let us assume that Ja, Jb, Ma and Mb are invertible and thus

Ja = (φaGa)
−1 =

∞∑
k=0

(φaGa)
k,

Jb = (φbGb)
−1 =

∞∑
k=0

(φbGb)
k,

Ma = (φaGa + φabφbaGabJbGba)
−1 =

∞∑
j=0

(φaGa + φabφbaGab

∞∑
k=0

(φbGb)
kGba)

j,

Mb = (φbGb + φbaφabGbaJaGab)
−1 =

∞∑
j=0

(φbGb + φbaφabGba

∞∑
k=0

(φaGa)
kGab)

j.

Going back to equation (24), we obtain

Ga(
∞∑
j=0

(φaGa + φabφbaGab

∞∑
j=0

(φjbG
j
b)Gba)

j(φabGab

∞∑
k=0

(φbGb)
k(Xbβb +GbXbγb +GbaXaγba))

+Xaβa +GaXaγa +GabXbγab)d1

+Gab(
∞∑
j=0

(φbGb + φbaφabGba

∞∑
k=0

(φaGa)
kGab)

j(φbaGba

∞∑
k=0

(φaGa)
k(Xaβa +GaXaγa +GabXbγab))+

Xbβb +GbXbγb +GbaXaγba)d2 (25)

+Xad3 +GaXad4 +GabXbd5 = 0 .

The left side of the previous equation is the sum of products of the matrices Ga, Gba, Gab and
Gb times Xa or Xb weighted by different parameters.45

Let us define J = (k, p,m) and C(c(1) ∈ A, ·, ..., c(l) ∈ B, J). C is a set of paths, hereafter
called a chain,46 of length l which starts from A and ends at B, having k links from a type

45The matrices sequence is multiplied by Xa or Xb depending on the last interaction matrix. For instance
G2

aGab is multiplied by Xb while GbGba is multiplied by Xa.
46In this notation a chain includes all possible paths that have common features. For instance, all of paths

starting from A and arriving to B are in the same chain.
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B node to another type B node, p links from a type A node to another type A node, and
m links between nodes of different types. The concept of chain is particularly useful in our
context. Indeed, the product of adjacency matrices contains the same information of a chain.
For instance Ga ≡ C(c(1) ∈ A, c(2) ∈ A, k = 0, p = 1,m = 0) and GaGab ≡ C(c(1) ∈
A, c(2) ∈ A, c(3) ∈ B, k = 0, p = 1,m = 1). A similar characterization can be written for all
combinations (products) of adjacency matrices considered in equation (25).

Taking advantage of this notation, the system in equation (25) can be characterized by the
following two matrices

C =

[
Ca

Cab

]
=



Ia

Ga

G2
a

·
Gk

a

·
GabGba

·
GabGbGba

·
GabG

k
bGba

·
GaGabGbGba

·
Gl

aGabG
k
bGba

GaGabGbGba

·
Gk

aGabG
l
bGba

·
C(c(1)≡A,·,c(l)≡A,J)

·
Gab

GaGab

·
Gk

aGab

·
GabGb

·
GabG

k
b

·
GaGabGbGbaGabGba

·
Gl

aGabG
k
bGbaGabGba

·
GabGbGbaGaGab

·
GabG

k
bGbaG

l
aGab

·
C(c(1)≡A,·,c(l)≡B,J)

·



,Θ =

[
Θa

Θab

]
=



d1 d2 d5 d4 d3

0 0 0 0 1

βa 0 0 1 0

βaφa+γa 0 0 0 0

· · · · ·
(βaφa+γa)φk−1

a 0 0 0 0

· · · · ·
0 γba 0 0 0

· · · · ·
0 γbaφb 0 0 0

· · · · ·
0 γbaφ

k
b 0 0 0

· · · · ·
βaφbaφabφbφa 0 0 0 0

· · · · ·
βaφbaφabφ

k
bφ

l
a 0 0 0 0

βbφbaφabφ
k
b 0 0 0 0

· · · · ·
βbφbaφabφ

k
b 0 0 0 0

· · · · ·
f(θ,J)g(Φ,J) f(θ,J)g(Φ,J) 0 0 0

· · · · ·
0 βb 1 0 0

γab 0 0 0 0

· · · · ·
γabφ

k−1
a 0 0 0 0

· · · · ·
0 (γb+βbφb) 0 0 0

· · · · ·
0 (γb+βbφb)φk−1

b
0 0 0

· · · · ·
γbaφbaφabφb 0 0 0 0

· · · · ·
γbaφ

l−1
a φbaφabφ

k
b 0 0 0 0

· · · · ·
0 βbφbaφabφaφb 0 0 0

· · · · ·
0 βbφbaφabφ

l
aφ

k
b 0 0 0

· · · · ·
f(θ,J)g(Φ,J) f(θ,J)g(Φ,J) 0 0 0

· · · · ·



,

where C represents different products of Ga, Gba, Gab and Gb (chains) appearing in the left side
of equation (25) and Θ collects the relative coefficients. Θ has five columns which distinguish
the elements that are multiplied by d1, d2, d3, d4 or d5.

The lower panel represents chains starting from A and arriving to B (labeled as Cab),
while the upper panel collects chains starting from A and coming back to A (labeled as
Ca). The generic element of Θ is defined by the following objects, θ = (θa, θb), where θa =
(βa, γa, γab) and θb = (βb, γb, γba); Φ = (φba, φab, φb, φa) and f(θ, J) = βaIJ,βa(βa)+γaIJ,γa(γa)+
γabIJ,γab(γab) + βbIJ,βb(βb) + γbIJ,γb(γb) + γbaIJ,γba(γba) is a set of indicator functions that take
value one if the argument appears in the corresponding chain and zero otherwise. The function
g(Φ, J) =

∏
k φ

k
b

∏
l φ

l
a

∏
m(φbaφab)

m keeps track of the number of times the relative chain
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passes from one type of node to another scaled by the respective interaction parameters.
Observe that (d1, d2, d3, d4, d5)′Θ′H∞ = 0 is equal to the condition E(Gaya)d1 +E(Gabyb)d2 +
Xad3 +GaXad4 +GabXbd5 = 0. The elements of H∞ are equal to the elements of C multiplied
by Xa or Xb depending on the last interaction matrix.47

From C and Θ one can argue that the model is identified in the cases listed in Proposition
1.

Let us focus on case (2). For E(Za) to have full rank, it suffices that Θ has full rank. This
means that we need the linear independence of at least five chains (rows of C), translating to
the linear independence of Ia, Ga, G

2
a, Gab and GabGb.

48 The corresponding five rows of Θ
are thus linear independent. Additionally we need to have five linear independent columns of
Θ, so having βaφa + γa 6= 0 and βbφb + γb 6= 0 suffices to reach the full rank condition for Θ
and consequently E(Za). The same argument applies for case (3).

Relationship with chains and trees. In the proof of Proposition 1 we have established the
equivalence between sequences of products of adjacency matrices and the concept of chains.
In order to provide a better intuition behind the multiple sufficient conditions argument note
that, according to the proof of Proposition 1 notation, a set of chains with a certain length p
can be divided in gp+1 number of chains, where g is the number of node types. For instance,
chains of length 1 can be classified in four categories when nodes are split into two types.
following proof notation we can define C(1) ≡ C(c(1) ≡ a, c(2) ∈ A, 0, 1, 0) ∪ C(c(1) ∈
B, c(2) ∈ B, 1, 0, 0) ∪ C(c(1) ∈ A, c(2) ∈ B, 0, 0, 1) ∪ C(c(1) ∈ B, c(2) ≡ a, 0, 0, 1) (e.g.
Ga ∪Gb ∪Gab ∪Gba = G).

We can see this system of chains as a tree, more specifically as a Tree-indexed Markov
chain. A tree is a graph with a distinguished vertex x0 ∈ g (here a type A node, the starting
point) and the degree of each vertex is at least two (in our case the number of types, g). Its
structure is basically determined by a countable set of states (in our case the number of types,
g) characterized by a transition probability ({p(x, y)|x, y ∈ g} in our case).49

Let Ta := ∪l,JC(c(1) ∈ A, ·, c(l), J) (Figure 3), it is simply the collection of all possible
chains of all possible lengths starting in a type A node. For identification purposes, we simply
need that Ga, Gb, Gab and Gba are not empty (and not full).50 In words, it means that there
are no reasons why two randomly drawn nodes cannot be connected for each combination type
(or that each node is connected with all of other nodes).51

47Note that H∞ is the IV matrix considered in Section 4, which is approximated by HK in the feasible 2SLS
estimation.

48Note that here we need at least three chains from Ca and two from Cab because we are considering the
outcome equation for type A nodes, i.e. the staring point of chains is always a type A node.

49Given that here we are not interested in determining the transition probability law of a chain, even if it is
simple to estimate and is basically the link formation probability considered for all of the possible combinations
of nodes’ type. Benjamini and Peres (1994) give a detailed discussion on Tree-indexed Markov chain.

50It is equivalent to say that the probability 0 < P (gij = 1) < 1, i ∈ A,B and j ∈ A,B. Note that transition
probability can be derived from Ga, Gb, Gab and Gba. Here we are simply excluding the classical linear in
mean framework (when the matrices are complete) and the case in which there are no connections (when the
matrices are empty).

51From a Markov Chain perspective again, a more restrictive condition consists in assuming that the under-
lying Markov Chain is irreducible and aperiodic. This means that type A are connected with type B or type
A with the same probability (and the same holds for type B). Thus, in this case tree branches with the same
length have the same probability of being observed. The aperiodicity and irreducibility are not necessary for
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Figure 3: Tree of Chains when type A and B nodes are considered (or have connections)

Figure 4: Non-tree of chains when only type A nodes are considered (or have connections)

An interesting feature of this framework is that, as case (3) tells us, even if Ia, Ga, and
G2
a are linearly dependent, we can still identify φa and the other parameters relying on linear

independence of chains passing through type B nodes.52 In other words, we can identify the
parameters because of the multiple branches of the tree (see Figure 3).53

Comparison with the identification conditions for homogeneous models. Let us
conclude this discussion by further highlighting the connection between identification in a
single group model and in a multiple group one. Let us reproduce a single group model by
considering only type A nodes. The model is

ya = φaGaya + βaXa + γaGaXa + εa. (26)

In order to obtain identification we want (E(Gaya), Xa, GaXa) to have full rank. Given that
E(Gaya) = Ga(I−φaGa)

−1(βaXa+γaGaXa) = Ga

∑∞
j=0(φaGa)

j(βaXa+γaGaXa), the matrices
used in the proof of Proposition 1 can be written in the following way

the identification condition to hold, but of course are sufficient.
52Holding condition (3) instead of (2). We basically take advantage of linear independence of Ia, Ga and

GabGba instead of G2
a

53The additional parameter restrictions (conditions (2b, 3a or 3b) in Proposition 1) are basically due to an
additional vector in the full rank condition (i.e. E(Gabyb)).
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C =
[
Ca
]

=


Ia
Ga

G2
a

·
Gk
a

·

 ,Θ =
[

Θa

]
=



0 0 1
βa 1 0

βaφa + γa 0 0
· · ·

(βaφa + γa)φ
k−1
a 0 0

· · ·


.

As before, these two matrices respectively represent the chains and their coefficients. Accord-
ing to the proof of Proposition 1, the full rank condition for (E(Gaya), Xa, GaXa) depends on
C and Θ. From C and Θ one can argue that the model is identified if (see proof of Proposition
1 for details)

1. βaφa + γa 6= 0,

2. Ia, Ga and G2
a are linear independent.

These are exactly the conditions of Proposition 1 in Bramoullé et al. (2009). Note that
if Ia, Ga and G2

a are linearly dependent, then Gk
a is also linearly dependent ∀k. Given that

here we cannot differentiate nodes, we have Ia ≡ C(0), Ga ≡ C(1), and G2
a ≡ C(2), where

C(k) represent the set of chains with length k. In terms of chains it means that C(k) ≡
{C(k − 1), C(1)} ≡ {C(k − 2), C(2)} ≡ · · · ≡ {C(2), C(k − 2)} ≡ {C(1), C(k − 1)}. In words
it means that each chain’s set can be represented by at least two sets of chains. So each Gk

a

can be represented by the product of two matrices, GaG
k−1
a , G2

aG
k−2
a , and so on. This is the

connection to the linear independence of Ia, Ga, and G2
a as a condition for identification. In

this case, a length l set of chains cannot be separated by node type, and thus Ta is composed
only of one chain (Figure 4) instead of multiple chains (Figure 3).54 Therefore, we need Ia,
Ga, and G2

a to be linearly independent in order to have at least three independent chains in
C and consequently identify the model’s parameters satisfying the restriction βaφa + γa 6= 0.

Proof of proposition 2. By the classical expansion the estimator is√
n(µ̂ − µ0) = 1

n
(Z ′aPKZa)

−1 1√
n
Z ′aPKεa. As Za = fa + va, by Lemma 1 (v), we have

1
n
(Z ′aPKZa) = Fa + op(1). By Lemma 2 (iii) [Z ′aPKεa − σ2

a[e1, e2][tr(Ψa), φ̂ba(Ξba)]
′]/
√

(n) =

f ′aεa/
√
n+ op(1)

d→N(0, σ2
aFa) by CLT.

Hence, the proposition is derived by Slutzky theorem

1

n
(Z ′aPKZa)

−1 1√
n
Z ′aPKε

d→F−1
a ·N(0, σ2

aFa) = N(0, σ2
aF
−1
a ).

Proof of proposition 3. Given the proof of Proposition 2, it is sufficient to show that

σ̂2
a[e1, e2][tr(Ψa), φ̂ba(Ξba)]

′/
√
n = op(1).

54Borrowing from Markov chains vocabulary again, this is because the state that characterizes the chain is
only one (A).
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If we fix Ca, then by Lemma C.12 in Lee and Liu (2008) M̂a −Ma = M̂a(φ̂a − φa)Ga +
M̂a((φ̂abφ̂ba−φabφba)Ca). So we can write, tr(Ψ̂a)−tr(Ψa) = tr(PK(Sa(φ̂)−Sa) = tr(PK(Ga(M̂a−
Ma) = tr(PK(Ga(M̂a(φ̂a − φa)Ga + M̂a((φ̂abφ̂ba − φabφba)Ca) = (φ̂a − φa)tr(PK(Ga(M̂aGa) +
(φ̂baφ̂ba − φabφba)tr(PK(Ga(M̂aCa)).

Since the product of UB matrices is still UB (Kelejian and Prucha 1998), using the lemma
B.2 (ii) in Lee and Liu (2010) and the initial

√
n consistency assumption, we obtain√

n(φ̂a−φa)tr(PK(Ga(M̂aGa)+
√
n(φ̂baφ̂ba−φabφba)tr(PK(Ga(M̂aCa))/n = op(1)O(K/n)+

op(1)O(K/n) = oP (K/n).

Finally, we have
√
n(σ̂2

a − σ2
a)(tr(Ψ̂a) − tr(Ψa))/n = op(1)op(K/n) = op(K/n) = oP (1) as

K/n → 0. The same procedure can be applied for
√
n(σ̂2

b − σ2
b )(tr(Ξ̂a) − tr(Ξa))/n and for

the second element of the stacked vector v.

Proof of proposition 4. Let p be a finite integer. Let us define the number of instruments
equal to

K =
P∑
p=1

gp + o(1),

so that we have
∑P

n=1 g
p = O(gp). Since we assume K/n → 0, we have

∑P
p=1 g

p = o(n) by

assumption. This implies that gp = o(n). It follows that g = o(n1/p).

Proof of proposition 5. We prove this proposition for H
a(p)
K . The same applies for H

b(p)
K .

Let Θ
(p)
K be the matrix of true parameters derived from the p-order expansion of Θ (see Section

3). If sup‖φaGa‖∞ + sup‖φabφbaCa‖∞ < 1, then

H
(p)
K Θ

(p)
K = Ga

p∑
j=0

(φaGa + φabφbaC
k
a )j(φabGabJbE(B)δb + E(A)δa).

It follows that ‖fa−H(p)
K Θ

(p)
K ‖∞ = ‖(φaGa + φabφbaC

k
a )p+1Sa(φabGabJbE(B)δb +E(A)δa)‖∞ ≤

‖(φaGa + φabφbaC
k
a )p+1‖∞‖Sa‖∞‖φabGabJbE(B)δb + E(A)δa‖∞ = o(1) as p→∞.
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Appendix D: Tables and Figures

Table 1: Monte Carlo Simulation: 1000 obs., 1000 replications

(1) (2) (3)
10 max connections 2SLS finite IVs 2SLS large IVs 2SLS bias-corrected

φa = 0.1 0.100(0.032) 0.100(0.026) 0.099 (0.027)
φab = 0.2 0.201(0.031) 0.201(0.026) 0.197(0.069)
βa = 0.5 0.501(0.047) 0.501(0.047) 0.501(0.048)
γa = 0.5 0.503(0.081) 0.502(0.078) 0.503(0.076)
γab = 0.5 0.496(0.079) 0.496(0.075) 0.500(0.097)

20 max connections 2SLS finite IVs 2SLS large IVs 2SLS bias-corrected

φa = 0.1 0.098(0.025) 0.098(0.020) 0.100(0.020)
φab = 0.2 0.197(0.023) 0.195(0.019) 0.200(0.019)
βa = 0.5 0.501(0.048) 0.501(0.048) 0.501(0.048)
γa = 0.5 0.506(0.096) 0.506(0.093) 0.503(0.093)
γab = 0.5 0.500(0.097) 0.497(0.093) 0.496(0.093)

30 max connections 2SLS finite IVs 2SLS large IVs 2SLS bias-corrected

φa = 0.1 0.099(0.020) 0.098(0.016) 0.099(0.016)
φab = 0.2 0.198(0.019) 0.195(0.015) 0.199(0.015)
βa = 0.5 0.500(0.048) 0.501(0.047) 0.501(0.047)
γa = 0.5 0.506(0.110) 0.507(0.107) 0.505(0.107)
γab = 0.5 0.500(0.112) 0.498(0.109) 0.497(0.109)
Note: yb is generated with φb = 0.1, φba = 0.2, βb = 0.5, γb = 0.5, γba = 0.5

Table 2: Monte Carlo Simulation: 1000 obs., 1000 replications

(1) (2) (3)
20 max connections 2SLS few IVs 2SLS many IVs 2SLS bias-corrected

φa = 0.1 0.099(0.040) 0.095(0.032) 0.097(0.032)
φab = 0.1 0.101(0.038) 0.101(0.031) 0.099(0.031)
βa = 0.5 0.501(0.047) 0.505(0.047) 0.501(0.047)
γa = 0.5 0.504(0.084) 0.506(0.081) 0.506(0.080)
γab = 0.5 0.497(0.083) 0.497(0.078) 0.498(0.078)
Note: yb is generated with φb = 0.1, φba = 0.1, βb = 0.5, γb = 0.5, γba = 0.5

20 max connections 2SLS few IVs 2SLS many IVs 2SLS bias-corrected

φa = 0.1 0.097(0.029) 0.097(0.022) 0.103(0.022)
φab = 0.3 0.298(0.027) 0.298(0.021) 0.302(0.021)
βa = 0.5 0.501(0.048) 0.501(0.048) 0.501(0.048)
γa = 0.5 0.506(0.077) 0.506(0.075) 0.501(0.075)
γab = 0.5 0.500(0.076) 0.500(0.072) 0.496(0.072)
Note: yb is generated with φb = 0.1, φba = 0.3, βb = 0.5, γb = 0.5, γba = 0.5

20 max connections 2SLS few IVs 2SLS many IVs 2SLS bias-corrected

φa = 0.1 0.099(0.016) 0.097(0.010) 0.091(0.452)
φab = 0.4 0.390(0.012) 0.370(0.008) 0.401(0.064)
βa = 0.5 0.501(0.048) 0.501(0.048) 0.502(0.079)
γa = 0.5 0.505(0.074) 0.504(0.073) 0.502(0.073)
γab = 0.5 0.498(0.070) 0.478(0.069) 0.498(0.582)
Note: yb is generated with φb = 0.2, φba = 0.05, βb = 0.5, γb = 0.5, γba = 0.5
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Table 3: Monte Carlo Simulation: 1000 obs., 1000 replications, 10 max connections, φb =
φab = φba = 0.3 ,βb = 0.5 ,γb = γab = γba = 0.5

2SLS/Misspeficied model 2SLS/misspecified IVs 2SLS/correct model-correct IVs

φa = 0.3 0.3684 (0.0335) 0.2971 (0.0465) 0.2999 (0.0164)
βa = 0.5 0.3856 (0.1804) 0.4865 (0.2233) 0.5097 (0.1489)
γa = 0.5 -0.0016 (0.2315) 0.4929 (0.2102) 0.4963 (0.1765)

Table 4: Monte Carlo Simulation: 1000 obs., 1000 replications, 10 max connections

(1) (2) (3)
φa = φb = φba = φab = 0.1 φa = φb = 0.1 ,φba = φab = 0.3 φa = 0.1, φb = 0.2, φba = 0.05 , φab = 0.4

φ 0.100(0.020) 0.178(0.021) 0.205(0.022)
β 0.500(0.031) 0.499(0.034) 0.499(0.033)
γ 0.446(0.022) 0.445(0.024) 0.442(0.025)

Figure 5: Policy experiment: varying φa and φab
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Figure 6: Policy experiment: varying φa and φba

Figure 7: Kernel density estimation of empirical distributions of ∆yi∈A and ∆yi∈B, increasing φa.
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Figure 8: Kernel density estimation of empirical distributions of ∆yi∈A and ∆yi∈B, increasing φba.
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