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Abstract 

This paper provides theoretical background to the increasing R&D cooperation among 
firms and public research institutions. We find that R&D spillovers may impede cooperation 
among firms or research institutions even when the cost of forming a link is negligible. 
Further, the presence of heterogeneous players results in different concepts of network 
regularity but also increases the number of possible pairwise stable networks. Consequently, 
stronger concepts of stability are needed to study networks in which  players are not 
homogeneous. 
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1 Introduction 1

Since the half of the 1970s there has been a steady growth of R&D cooperative

agreements among firms. As pointed out by Cabral [2000], in the U.S.A., the

R&D partnerships increased from 750 in the 1970s to more that 20,000 in the

1987-1992 years. Such R&D alliances produced an increasing impact on firms’

innovation capacity and their competitiveness as well.2

On the other hand, the R&D activity made by public research institutions (PRI),

namely public research labs and universities, played an essential role for many

innovations (Rosenberg & Nelson [1994], Mansfield [1995], Cohen et al. [2002]).

In the last years, firms formed an increasing number of agreements also with

such PRIs (Poyago-Theotoky et al. [2002], Capellari [2011]). Take for example

the European framework Programme,3 where thousands of firms work together

with PRIs in order to develop new technologies as well as products; or the de-

velopment of the Mpeg-2 video standard, which involved firms like Canon and

Columbia University as well.4

As shown in the empirical literature, there are two main reasons that lead firms

to cooperate with PRIs. On one hand, the cooperation with PRIs allow firms

to exploit public funds. On the other hand, firms are increasingly diversifying

their R&D alliance portfolio in order to increase their innovative capacity and

keep their market competitiveness high. In this strategy setting, it is shown

(Veugelers & Cassiman [2002] [2005]) that firms cooperate with PRIs in order

to access skills and resources that competitors do not have.

From a theoretical point of view, the R&D cooperation is actually one of the

1This paper is drawn from my Ph.D thesis at Université Catholique de Louvain, Louvain

La Neuve, Belgium. I would like to thank my supervisors Paul Belleflamme and Vincent

Vannetelbosch and the other members of the jury Jan Bouckaert, Frederic Deroian, Wouter

Vergote and Xavier Wauthy for their insightful comments and suggestions. Many thanks also

to the anonymous referees and the participants of the ARET seminar (Rome) and the DEAMS

seminar (Trieste). The scientific responsibility is assumed by the author. The opinions ex-

pressed in this paper are those of the author and do not necessarily represent those of the

Bank of Italy.
2See also Roijakkers & Hagedoorn [2006], who show that the R&D partnering in the phar-

maceutical biotechnology sector passed from only few alliances among 30 firms in the 1970s

to thousands of partnerships among more than 600 firms in the 1990s.
3The Framework Programme is promoted by the European Commission since 1984. Its

aim is to foster the cooperation among European firms and PRIs. The Framework Programme

increased its relevance to pursue the so called Lisbon strategy. As a matter of fact, it is the

main tool for the development of the European Research Area. For more information about

the Framework Programme see the EU Commission documents [2006a] [2006b].
4For further details about Mpeg-2 see Shapiro [2001] and the following wikipedia website

http://en.wikipedia.org/wiki/MPEG-2.
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most active fields: since the seminal papers by Katz [1986] and d’Aspremont &

Jacquemin [1988] many scholars paid attention to the causes and the incentives

that lead two, or more, firms to form an R&D alliance.5 However, to the best

of our knowledge, there is no theoretical contribution that explains why firms

and PRIs cooperate in R&D.

Our first aim is therefore to fill this gap by providing a theoretical background to

the increasing R&D cooperation among firms and public research institutions.

Secondly, we show that, even when the cost of forming a link is nil, firms may

not want to form partnerships with PRIs because they fear the spillover benefit

that can be enjoyed by their competitors.

From a policy point of view, this suggests that subsidizing the formation of an

R&D partnership among firms and PRIs can be ineffective when R&D spillovers

are sufficiently high.

Our contribution is set in the network game literature, which properly describes

the strategic decision of a player to relate with another one by forming a “ link”.

Even though it is quite recent,6 the network game approach spread quickly

thanks to its interesting applications in the field of Industrial Organization.7

Among them, one of the most important topics is the analysis of R&D net-

works.

As a matter of fact, in the network game models players form links among ach

other with the aim of creating a “profitable relationship”. In R&D the networks

players are firms, a link is a profitable R&D partnership, and consequently, the

whole network represents the existing R&D partnerships among the firms.

The most notable papers on R&D networks are Goyal & Moraga [2001] and

Goyal & Joshi [2003]. The former considers a three stage game wherein firms

have to decide respectively at each stage a) their R&D partnerships, b) their

R&D effort, and c) the quantity to produce in the final market (Cournot com-

petition). Their main finding is that the complete network is always stable but

it is not always socially optimal when the competition in the final market is

strong.

On the other hand, Goyal & Joshi [2003] adopt a simpler two-stage game model

where firms have first to decide which links to form and then they compete

either à la Cournot or à la Bertrand. The aim is to study how the two different

market regimes and the cost of forming a link affect the stability of the networks.

One of the main objectives of this paper is to extend the picture by including

5See Marinucci [2012] and Caloghirou et al. [2003] and references therein.
6Actually, this class of games has been defined by Myerson [1991], the first paper that

analyzes the equilibrium solution of network games is Jackson & Wolinsky [1996].
7See Jackson [2005] for a survey of the literature.
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another kind of players, namely the public research institutions. The model

is a two-stage game where in the first stage players (i.e. firms and PRIs) can

form an R&D cooperative link in order to increase their amount of R&D. In the

second stage firms compete à la Cournot while PRIs receive their public funds

according to the amount of R&D produced.

This last assumption (public funding related to the research output) is justified

by the increasing debate about the universities funding system,8 where it is

suggested that universities should be financed according to their research per-

formance rather than their number of students and/or personnel. Therefore,

since in the near future PRIs will likely compete according to their R&D per-

formance, it seems quite reasonable to consider PRIs willing to cooperate in

R&D in order to increase their R&D “production”Ṫhis is empirically confirmed

by an increasing amount of partnering collaboration among PRIs, as shown by

Deiaco et al. [2010], who study some cooperative agreements among European

and North American universities.

For both types of players, firms and PRIs, the benefits enjoyed from the co-

operation with an agent of their own type markedly differ from those enjoyed

from the cooperation with an agent of the other type.9 Therefore, we suppose

in our model that for each player the benefit of making a link with a firm and

the benefit of a link with a PRI are independent of one another. Moreover,

the creation of a link between two players has a (positive) spillover effect to

their competitors. The existence of R&D spillovers between firms is widely

known both theoretically (d’Aspremont & Jacquemin [1988]) and empirically

(Griliches [1992]). However, it has been recently shown (e.g. Arnold [2004]

Siune et al.[2004]) that R&D spillovers are one of the main motivations that

drives firms to avoid cooperation with PRIs.

The analysis of R&D networks with heterogeneous agents is not new in the lit-

erature. Based on Goyal & Moraga [2001], Zikos [2008] analyses the interaction

among the private and the public sectors when subsidies to the R&D coopera-

tion are possible. In his model there are three firms (one public and two private

firms) that compete in a Cournot setting. In contrast to Goyal & Moraga [2001],

the author finds that the complete network (i.e. where each firm collaborates

with all others) is uniquely stable and socially efficient.

On the other hand, Zirulia [2005] extends the contribution of Goyal & Moraga

[2001] by considering two technologically different group of firms. Looking at

the case of four firms the results are mixed. For weak stability concepts and a

8See for example the OECD [2007a] [2007b] report about higher education institutions.
9For example, partnerships with firms are more helpful in applied (hence marketable)

research projects while cooperations with PRIs are more useful to get more basic research.
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degree of technological differentiation, the complete network is the unique to be

stable and, in some cases, it is also efficient. However, stronger stability con-

cepts make the complete network rarely stable whereas dominant fringe network

comes out as the unique stable network.

Differently from Zikos [2008] and Zirulia [2005], who base their analysis on Goyal

& Moraga [2001], we propose a model more in line with Goyal & Joshi [2003]

insofar as we do not endogenize the R&D effort level. Even though this ap-

proach has the drawback of not capturing the relationship between the R&D

effort and the incentive to form a link, it has the advantage of allowing us to

study networks with an indefinite number of firms and PRIs. This is even more

important for two reasons. First, because the above mentioned papers as well

as more recent contributions (Zu et al. [2011] and Kesavayuth and Zikos [2013])

still consider networks with three players. Second, differently from Kranton &

Minehart [2001], who were actually the first to study network with heteroge-

neous players, we allow that links can be formed not only with players of the

other group, but also with players of the same type.

As shown in the paper, the analysis of an indefinite number of players when they

are heterogeneous has non-trivial implications. First, we find that the regular-

ity concept of a network can be slightly different from the one used in “simple”

networks (i.e. networks with homogeneous players). In its “classic” definition,

a network is regular when all the players have the same number of links. On the

other hand, when we look at “mixed” networks (i.e. where there are at least

two types of players) the regularity can be seen in terms of a) the number of

links held by the player of the same type and/or b) the number of links that

each player has toward the players of different kind. This implies the existence

of a “relative” and an “absolute” form of regularity that differ from the classic

regularity concept. In particular, a network is “relative regular” when players of

the same type have the same number of link among each other and/or with the

players of the other type. On the other hand, a network is “absolute regular”

whenever the number of links among homogeneous players and the connections

between heterogeneous players are the same. Given these definitions,10 we find

that a) the relative regularity does not usually match the classic regularity while

b) the absolute one is a particular case of the latter.

Second, even though we define the conditions under which a relative and ab-

solute regular networks are pairwise stable (PWS), we show that the presence

of heterogeneous players greatly extends the number of possible pairwise stable

networks with respect to the case with homogeneous players. Thus, the pairwise

10A formal definition of “relative” and “absolute” regularity will be provided in Section 5.
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stability is such a weak concept that it is necessary to use stronger equilibrium

refinements to study networks with heterogeneous agents. However, it is worth

mentioning that our model is a first attempt to define the problems related to

the study of mixed networks so that the investigation of such refinements of the

pairwise stability goes beyond our purpose.11

In the next section we provide some basic features of the model, then we an-

alyze simple networks, namely networks where only homogeneous players are

involved. We first look at the network of firms (Section 2), then we consider the

network of PRIs (Section 4). In Section 5 we study the network with both type

of players, focusing on players’ incentives to form an alliance with a partner of

different type. Some concluding remarks are provided in the last section.

2 The Model

2.1 Modelling Networks

Before presenting the model we introduce the necessary notation to describe

the network game. Let us consider N ≥ 3 players which can form a link (i.e.

a relationship) among them. It is possible to describe the existence of a link

among players i and j through a binary variable ij such that

ij =


1 if i and j are linked

0 otherwise.

A network g is therefore a list12 which defines the existing relationships among

all N players. In particular, we say that ij ∈ g ⇔ ij = 1. To simplify the

notation, g + ij means that the link ij is added to the network g. Similarly,

g − ij corresponds to the network g without the link ij. Let Ni(g) denote the

set of players that are linked with i, then ηi(g) = |Ni(g)| represents the number

of partners held by i in the network g.

When every player i has the same number of links such that ηi(g) = k, then g

is a regular network of degree k. Among the regular networks, the most studied

are the empty network g0, where no player has a link with another (ηi(g
0) = 0)

and the complete network gc, where each player is linked to all the others

(ηi(g
c) = N − 1). Apart form the regular networks, it is worth mentioning the

11A first, interesting analysis of networks with N heterogeneous players was given by Galeotti

et al. [2006] who study the Nash equilibrium networks, but as already said, stronger stability

concepts has to be analysed in the next future.
12Formally the network g is a N ×N matrix whose elements are the binary variable defined

above. See Jackson [2010] for a survey on the applications of network games in Economics.
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star network g∗, where N − 1 players are connected only with a “hub” player.

In order to study the networks’ equilibria, we use the pairwise stability (PWS),

a network stability concept introduced by Jackson & Wolinsky [1996]. Formally,

a network g is pairwise stable when the following conditions are satisfied

1. ∀ij ∈ g πi(g) ≥ πi(g − ij) and πj(g) ≥ πj(g − ij)

2. ∀ij /∈ g if πi(g + ij) > πi(g)⇒ πj(g + ij) < πj(g)

where πi(g) is the payoff that the player i gets in the network g. Intuitively, the

two conditions state that, starting from a network g, there is neither a firm who

wants to severe a link (condition 1) nor a couple of firms that want to form a

new one (condition 2). The notation

g7
{i,j}−→ g8 ; g8

{k}9 g7

means that players i and j prefers to form a new link and deviate from a network

g7 toward g8; whereas player k prefers not to delete a link and move from g8 to

g7.

Finally, to avoid useless complication, we use the term “player” to mention

either a firm or a PRI while a “competitor” of i is another player of the same

type.

2.2 Timing and Assumptions

As already said, our aim is to model an R&D network where players (i.e. firms

and PRIs) can form a link. Given the complexity of the topic, we simplify the

model by assuming that for each player, the choice of making a link with a firm

is independent from the decision of forming a link with a PRI. In other words,

we assume the following:

Assumption 1 For each player, the R&D benefit of a link with a firm and the

benefit from a link with a PRI are additive.

Such assumption is not so strong as it seems. First, this additivity assumption

allows the marginal benefit to be independent on the network formation path.13

Moreover, several studies14 prove that firms’ cooperate with PRIs (universities

13For example, suppose that network gk can be reached by adding a link either to network

ga or gb. Then, without additivity, firm i’s benefit to form a new link gk + ij will depend on

the fact that gk is reached from ga rather than gb.
14See for example Veugelers & Cassiman [2005] and Belderbos et al. [2003]. See also

Caloghirou et al. [2001] for a deeper analysis on the cooperation among firms and universities

in the Framework Programme.
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above all) to get skills and know-how that competitors cannot provide: firms’

R&D alliances with PRIs are usually more focused on a basic research, whereas

R&D partnerships with competitors are of a more applied nature. On the other

hand, PRIs are willing to cooperate with firms in order to get benefits that other

PRI cannot supply.15 Therefore, additivity reflects not only a theoretical need

but also the empirical evidence that cooperation between heterogeneous agent

is due to the research of skills that cannot be provided by players of the same

type.

Concerning the cost of making a link (i.e. a partnership), we suppose that the

following condition holds:

Assumption 2 There is no direct cost of forming a cooperative link.

The rationale behind this assumption is twofold. First, network games are

suitable to “weak” alliances, namely alliances where partners share information

and/or do not need to provide significant amount of resources to make the

cooperation possible. Moreover, we aim to show that players may not want to

cooperate even when the cost of making a link is nil or negligible because there

are other (indirect) costs related to the R&D cooperation.

Some of these costs are pointed out by Mc Kinsey [2002] where it is shown that

cooperative alliances are difficult to be managed: partnerships lack coordination,

do not have a common strategy and, as a consequence, they are not in line with

the global strategy of the firm. Such difficulty, together with the usual problems

of forming an alliance with a partner (moral hazard, adverse selection, etc.), may

reduce the benefit enjoyed by a firm as its number of partnerships increases.

Assumption 3 The marginal benefit of forming a new alliance decreases with

the number of partnerships already held.

We will provide a formal definition of this assumption in the next section, how-

ever it is worth mentioning that it corresponds to suppose that, for each player,

the payoff function is concave with respect to the number of links that this

player has.

A second type of costs related to the link formation are the R&D spillovers

that player’s competitors enjoy from the new partnership. As a matter of fact,

a new alliance increases the information leakage of the R&D activity made by

the partners in favor of their competitors. Usually the literature addresses this

issue by assuming that the information flow goes only to players that are indi-

rectly linked with one/both partners (e.g. Deroian [2008], König et al. [2008]).

15For example, the possibility to get access to private labs, organize internship periods for

students and researchers, the prestige of cooperating with firms etc.
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However, there are some cases where spillovers concerns are considered serious

independently of the existing links. For example, Arnold [2004] shows that one

of the most important reasons that lead firms not to enter the European Frame-

work Programme is the fear that their participation to the program would cause

information leakages in favor of their competitors. This concern was motivated

independently of the fact that such competitors were in the program (i.e., some-

how linked with some partner) or they were not. Therefore, since players may

not want to form a link with a player because it would benefit all the other

competitors, it is reasonable to assume the validity of the following statement:

Assumption 4 The creation of a link between two players generates a spillover

benefit in favor of all the competitors of the two players.

Given these assumptions, the analysis of the model can be split into two parts.

In the first one we focus our attention to a player decision to form a link with

a player of the same type. This can be formalized as a “simple network” where

only the homogeneous players are involved. In the second part, we focus on the

players’ decision to form a link with player of the other type. Finally we consider

the “mixed” network as a whole, where both firms and PRIs are related.

Since in the rest of the paper we are dealing with different type of players we

always indicate i and j as firms such that i, j ∈ {F} s.t. i 6= j, where {F}
stands for the set of F firms involved in the network. Similarly, PRIs u and

v are PRIs such that u, v ∈ {P} ; u 6= v, where {P} is the set of P public

research institutions involved in the network.

3 Simple Oligopoly Network

In order to understand the firms’ decision to form a link with a competitor

we study the following simple network. Let us consider a Cournot oligopoly

where F ≥ 3 firms face a linear demand a−Q and linear costs of production.16

We assume that firms can reduce their costs by forming R&D alliances. Each

partnership can be seen as a link in an R&D network g. Therefore, according to

the network structure, each firm i will enjoy a particular benefit function bi(g)

such that its cost function is

ci(g) = c− bi(g); (1)

16Note that we assume that F ≥ 3 because we are considering a network with homogeneous

agents. In case of a network with heterogeneous agents, where there are both F firms and P

PRIs it is possible that F < 3 under the condition that F +P ≥ 3, i.e. there are at least three

players in the network.
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that is, the cost reduction enjoyed by the firm is a function of the structure of

R&D links (i.e. the network) formed in the industry. Once the alliances are

formed and firms observe the resulting cooperative network, firms compete á

la Cournot in the final market. Given the cost functions determined by the

first-stage alliances, the optimal quantity produced by each firm is

qi(g) =
a− Fci(g) +

∑
j 6=i cj(g)

F + 1
,

which can be rewritten as

qi(g) =
a− c+ Fbi(g)−

∑
j 6=i bj(g)

F + 1
. (2)

It is assumed that the latter quantity is positive for all network g (i.e., that an

interior Cournot-Nash equilibrium obtains whatever the structure of first-stage

R&D alliances). The gross profit is πi(g) = q2i (g), which is also the net profit

as we assume that there is no cost of forming links and of performing R&D.

Therefore, a firm i will form a link with another firm j if and only if it increases

qi(g). Formally, a new link ij is profitable for a firm i whenever

πi(g+ij)−πi(g) ≥ 0⇔ F [bi(g+ij)−bi(g)]−
∑
j 6=i

[bj(g + ij)− bj(g)] ≥ 0. (3)

To make the latter condition more explicit, we posit the following specific benefit

function

bi(g) =

Fi∑
f=0

φf︸ ︷︷ ︸
R&D benefit

+

∑
j 6=i(Fj − ij)

2
φ′︸ ︷︷ ︸

Spillover benefit

0 ≤ φ′ ≤ φ ≤ 1

(4)

where Fi is the number of partnerships held by the firm i in the network g.17

The first term in the right hand side (RHS) of the equation is the R&D benefit

that firm i gets from its partners and it reflects the decreasing returns to scale

assumption mentioned in the previous section: as the number of alliances in-

creases, the firms’ organization is less able to exploit all the R&D results and/or

is less capable of managing new alliances.

The second term of the RHS is the spillover benefit φ′ enjoyed by firm i from all

the cooperative links where it is not involved. We assume it is linear in order to

reflect the rationale behind Assumption 4. As a matter of fact, linearity implies

that the spillover benefits depend neither on the number of links nor on the

17Actually we should write Fi(g). However, we omit the term in brackets to avoid useless

complications.

13



network shape. Thus, it suits very well the evidence that some firms do not

make links because their R&D spillover concerns are so serious independently

of whether and how competitors are connected within the network.

Now, assume that firms i and j want to form a new link. The marginal benefit

they get from this new partnership depends on the number of links they already

have with the other players. In particular

bi(g + ij)− bi(g) = φFi+1 ; bj(g + ij)− bj(g) = φFj+1.

On the other hand, all the other competitors will get the following spillover

benefit

bk(g + ij)− bk(g) = φ′ k 6= i, j.

Using Equations (3) and (4), it is straightforward to see the validity of the

following statement.

Lemma 1 Given a network g where the link ij does not exist, firm i wants to

form the new link ij if and only if

πi(g + ij) ≥ πi(g)⇔ F φFi+1 ≥ φFj+1 + (F − 2) φ′. (5)

This means that firm i will form a link only when the benefit is greater than

the one enjoyed by all the other competitors (partner included).

Thanks to Lemma 1 and the definition of pairwise stability, it is possible to

characterize the conditions under which a regular network is pairwise stable.18

Lemma 2 Let gk be a regular networks of degree k ∈ [0, N). Then,

1. a network gk is pairwise stable if and only if

F − 1

F − 2
φk ≥ φ′ ;

F − 1

F − 2
φk+1 ≤ φ′;

2. the complete network gc is pairwise stable if and only if

φ′ ≤ F − 1

F − 2
φF−1;

3. the empty network g0 is never pairwise stable.

Proof: See Appendix A

Note that the complete network is less likely to be stable as the spillover level

and/or the number of firms involved in the network are higher. Using Lemmas

1 and 2, we can now establish our first result:

18Recall that a network is regular when all the players have the same number of links.
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Proposition 1 There always exists a non-empty regular pairwise stable net-

work.

Proof: The proof is straightforward. First, the empty network cannot be PWS

because of the last point of Lemma 2. Moreover, since 0 ≤ φ′ ≤ φ, there always

exists a value k ∈ (0, F − 1) such that either the first part of Lemma 2

F − 1

F − 2
φk ≥ φ′ ≥ F − 1

F − 2
φk+1

or its second condition

φ′ ≤ F − 1

F − 2
φF−1

is valid. Q.E.D.

Concerning the analysis of non-regular networks, it is possible to prove that the

following result is valid.

Proposition 2 The star network g∗ is never pairwise stable.

Proof: See Appendix B.

Intuitively, this result is due to the decreasing returns to scale of the benefit

function, which makes the benefit of the hub firm the lowest among the ones

enjoyed by its competitors. Therefore, when the hub player finds it convenient

to keep all its links, then each couple of non-hub players have the incentive to

form a new link.19

An example with 4 firms In order to better understand the single oligopoly

network, suppose there are F = 4 firms, so that the possible network structures

are the ones depicted in Figure 1. To check the PWS of a network we proceed

with the following steps. For each network we first define the players’ payoff,

which corresponds to the square of the quantity produced by each firm. Then,

we use these payoffs to check whether there exists an incentive to deviate from

each network (Lemma 1).

For example, in network g2 firms’ benefit are

b1(g2) = 1 + φ+ φ2 ; b2(g2) = 1 + φ+ φ′ ;

b3(g2) = 1 + φ+ φ′ ; b4(g2) = 1 + 2φ′.

19Obviously, Proposition 2 holds only if we are excluding the trivial case where φ = φ′ = 0.
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Figure 1: Main network structures with four players (i.e. firms).

According to Equation (2) firms’ profit are

π1(g2) =

(
a− c+ 1 + 2φ+ 4φ2 − 4φ′

5

)2

;

π2(g2) =

(
a− c+ 1 + 2φ− φ2 + φ′

5

)2

;

π3(g2) =

(
a− c+ 1 + 2φ− φ2 + φ′

5

)2

;

π4(g2) =

(
a− c+ 1− 3φ− φ2 + 6φ′

5

)2

.

Using this approach for all the other networks, the pairwise stability can be

checked by seeing whether no one is better off by creating/severing a link. Con-

tinuing with the example, the network g2 is PWS if

g1 → g2 and g2 9 g4 ; g2 9 g5 ; g2 9 g∗

namely when firms 1 and 2 want to move to g2 and no one else want to build

up another link after reaching g2. Now, g2 is reached if

π1(g1) < π1(g2)⇒ 3φ− 2φ′ ≤ 2φ+ 4φ2 − 4φ′ ⇒ −φ+ 4φ2 ≥ 2φ′
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and

π2(g1) ≤ π2(g2)⇒ 3φ′ − 2φ ≤ 2φ− φ2 + φ′ ⇒ 4φ− φ2 ≥ 2φ′

A condition that is always satisfied because φ is lager of both φ2 and φ′ On the

other hand, starting from g2, firms 3 and 4 will move to g4 if and only if

π3(g4) ≥ π3(g4)⇔ φ+ 3φ2 − φ′ ≥ 2φ− φ2 + φ′ ⇒ −φ+ 4φ2 ≥ 2φ′

and

π4(g2) ≥ π4(g4)⇔ −3φ− φ2 + 6φ′2 ≥ φ− 2φ2 + 4φ′

Since both conditions π1(g1) < π1(g2) and π3(g2) ≥ π3(g4) are identical, then

g1
{1,2}−→ g2 ⇒ g2

{2,4}−→ g4.

Therefore, when there is the incentive for two firms to reach g2 there exists

another couple of firms which have an incentive to create a new link and deviate

from g2. Hence network g2 is never PWS.

Using the same method for all the networks, we find that in a simple R&D

network with 4 firms:

• gc is PWS ⇔ 0 < 2φ′ ≤ 3φ3

• g8 is PWS ⇔ 3φ3 < 2φ′ ≤ 3φ2

• g5 is PWS ⇔ −φ+ 4φ3 < 2φ′ ≤ 3φ2

• g3 is PWS ⇔ 3φ2 < 2φ′ ≤ 2φ

which implies that, in our example, there always exists a unique PWS regular

network ans, under some conditions, a PWS dominant group network.

4 Simple Public Research Institutions Network

In this section we study a network with only P public research institutions.

First, the payoff function depends on the R&D level produced by each PRI.

Consequently, whatever the nature of the PRI (R&D lab/university), the co-

operation among PRIs can be an effective strategy to increase the partnering

PRIs R&D level with the aim of gaining a larger amount of government funds.

Formally, we suppose the following benefit function for a PRI:

bu(g) =

Pu∑
r=0

ρr︸ ︷︷ ︸
R&D benefit

+

∑
v 6=u(Pv − uv)

2
ρ′︸ ︷︷ ︸

Spillover benefit

0 ≤ ρ′ ≤ ρ ≤ 1
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(6)

where Pu represents the number of partnerships held by u with the other PRIs

in g. As in the previous section, we assume the existence of two benefits: a)

The R&D benefit, ρ, which captures the benefit for a PRI to form a link with

another PRI and b) the spillover benefit ρ′, that comes out from all the links

where u is not involved.

Therefore, the benefit function bu(g) can be seen as the effective R&D amount

that u obtains from network g. As in the simple oligopoly network case, we

assume that the R&D benefit follows a decreasing returns to scale regime be-

cause the management of a new alliance becomes more difficult as the number

of cooperations increase. On the opposite, the spillover benefit is linear because

it does not imply any kind of “congestion” effect to the free riders.

The second step is to define the payoff function of PRIs. We start from the obser-

vation that the allocation of the government funds toward PRIs are increasingly

based on their R&D level. In particular, as mentioned in the introduction,

policy makers are increasingly allocating their funds according to the relative

performance produced by each PRI (OECD [2007a] [2007b]). Consequently, it

is likely that a PRI is in competition with the others in order to get an amount

of public funds as large as possible.20

The creation of a link among the PRIs u and v influences the payoff of both

partners in two ways. First, it increases the R&D level of each partner. Second,

the new link makes also the free riders stronger because of the spillover effects.

In order to measure these two contrasting effects we adopt the following PRI

payoff function

Ru(g) =
bu(g)∑P
p=1 bp(g)

, (7)

which is simply the share of the effective R&D level enjoyed by u with respect to

the other PRIs in the network g. It is worth mentioning that this payoff function

can be seen as the payoff of a Tullock game where players can previously form

cooperative links.21 Given this payoff function, a PRI u will form a link only

20Moreover, the access to more funds is also a way for the PRI to increase its prestige and

its ranking with respect to the other institutions.
21The relationship among network theory and “contest” games is not new in the literature,

even though it is very recent. For example, Tellone and Vergote [2011] analyze how cooperative

network links can influence the outcome of a Tullock game. In their paper the authors prove

that, when the marginal benefit of forming a link is either linear or increasing in the number

of links already held by the partners, the complete network and the exclusive group network

can be PWS at the same time. Even though we do not formalize our results for any network,

we show that their results can also be valid when the benefit of forming a link is decreasing

with respect of the number of links.
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when its share increases. Formally, for each uv /∈ g

Ru(g + uv) ≥ Ru(g)⇔ bu(g + uv)∑P
p=1 bp(g + uv)

≥ bu(g)∑P
p=1 bp(g)

. (8)

A simple application of Equation (6) on Equation (8) will lead to the following

profitability condition

ρPu+1 ≥ bu(g)∑
v 6=u bv(g)

[ρPv+1 + (P − 2)ρ
′
].

Therefore, differently from the simple oligopoly network, the profitability con-

dition for two PRIs to cooperate depends on the network they want to deviate

from. We focus now on the pairwise stability of regular networks.

PWS of regular networks Let us consider a regular network gk of degree

k ∈ [0, N − 1]. Since the benefit is the same for all the PRIs, their payoffs in

a regular network gk are always 1/P . Given this framework, it is possible to

characterize the pairwise stability of regular networks among PRIs.

Lemma 3 Let gk be a regular network of degree k ∈ [0, N − 1) and k + 1

respectively. Then

1. a network gk is pairwise stable if and only if

ρk ≥ ρ′ ; ρk+1 ≤ ρ′ ; 0 ≤ ρ′ ≤ ρ ≤ 1;

2. the complete network gc is pairwise stable if and only if

ρ′ ≤ ρP−1;

Lemma 4 The empty network g0 is never pairwise stable

Proof: See Appendix C

Note that like in the simple oligopoly case, the R&D spillover effect has a neg-

ative effect on the PWS of the most linked networks. Moreover, the complete

network is less likely to be stable as P increases. Finally, since 0 ≤ ρ′ ≤ ρ ≤ 1,

this lemma shows also the existence and the uniqueness of a PWS regular net-

work.

Proposition 3 There always exists a non-empty regular pairwise stable net-

work.
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An intuitive proof is the following: suppose that it is profitable to deviate from

gk by adding a new link (ρk+1 ≥ ρ′), then there is a path of networks that lead

to the (next) regular network gk+1 where either it is still profitable to deviate

(ρk+2 ≥ ρ′) or it is not. This process continues until either we reach a regular

network where there is no incentive to add a link or we end up in the complete

network.22

PWS of non-regular networks Looking at non regular networks, it is pos-

sible to show the following result:

Proposition 4 The star network g∗ is never pairwise stable.

Proof: See Appendix D

We now provide an example that shows how we study the PWS of networks

where there are only PRIs.

Example: 3 PRIs To give an intuition of the PRIs’ decision to form a link

among each other, let us consider the case of a network with three public research

institutions. The possible networks are described in Figure 2. Similarly to the

Figure 2: Main network structures with three players (i.e. firms).

previous example, we check the network stability by using Lemma 3, namely

the conditions under which a network is pairwise stable. For example, given the

benefits shown in Table 1, we can verify the PWS of g2 in the following way

22Moreover, the incentive to deviate by adding a link to gk is equal to the incentive to keep

a link from gk+1. Formally, the former condition is

Ru(g + uv) ≥ Ru(gk)⇔
bk + ρk+1

Pbk + 2ρk+1 + (P − 2)ρ′
≥

1

P

while no one severes a link from gk+1 if and only if

Ru(gk+1 − uv) ≥ Ru(gk+1)⇔
bk − ρk+1

Pbk − 2ρk+1 − (P − 2)ρ′
≤

1

P

Simple calculations show that both conditions hold if and only if ρk+1 ≥ ρ′.
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First, note that in order to have g2 pairwise stable, we need that the hub u has

Network / Benefits bu bv bz

g0 1 1 1

g1 1 + ρ 1 + ρ 1 + ρ′

g2 1 + ρ+ ρ2 1 + ρ+ ρ′ 1 + ρ+ ρ′

g3 1 + ρ+ ρ2 + ρ′ 1 + ρ+ ρ2 + ρ′ 1 + ρ+ ρ2 + ρ′

Table 1: PRI payoffs according to the network structures.

no incentive to delete its links, namely

1 + ρ+ ρ2

3(1 + ρ) + ρ2 + 2ρ′
≥ 1 + ρ

3 + 2ρ+ ρ′
⇔ ρ′ ≤ ρ2(1 + ρ)− ρ

1 + ρ− ρ2

On the other hand, v and z will not form a link and deviate to g3 only when

1 + ρ+ ρ′

3(1 + ρ) + ρ2 + 2ρ′
≥ 1

3
⇔ ρ′ ≥ ρ2

However, since ρ2(1+ρ)−ρ
1+ρ−ρ2 < ρ2, these two conditions are always incompatible,

meaning that the star network g2 is never PWS. Making a similar analysis for

all the remaining networks, we can conclude that in a network of 3 PRIs, the

following results hold:

• the empty and star networks are never PWS;

• the exclusive group network g1 is PWS whenever23 ρ′ ≥ ρ2(1+ρ)−ρ
1+ρ−ρ2 ;

• the complete network g3 is PWS if and only if ρ′ ≤ ρ2;

• networks g1 and g3 are both PWS when ρ2(1+ρ)−ρ
1+ρ−ρ2 ≤ ρ

′ ≤ ρ2.

It is straightforward to see that this example reflects the results found in the

general part.

5 Mixed Network

5.1 Link among Firms and PRIs

In this section we study the situation where firms and universities can form links

among themselves. Our first aim is to define a benefit function bi(g) that allows

us to define when it is profitable for a firm to cooperate with a PRI, namely

when πi(g + iu) ≥ πi(g) holds. Then we look at the reverse case.

23Note that whenever 0 < ρ ≤ (
√

5 − 1)/2, the PWS condition is always satisfied because

its right hand side becomes negative.
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Firm’s strategy Before proceeding, it is worth reminding that, in line with

some stylized facts, we suppose that the benefit of two heterogeneous players

are additive (Assumption 1). As a consequence, we define the benefit function

enjoyed by a firm i as follows

bi(g) =

Fi∑
f=0

φf +

∑
j 6=i(Fj − ij)

2
φ′︸ ︷︷ ︸

Equation (4)

+

Pi∑
e=0

ψe +
∑
j 6=i

Pj ψ
′ (9)

s. t. 0 ≤ φ′ ≤ φ ≤ 1 ; 0 ≤ ψ′ ≤ ψ ≤ 1

which is simply the sum of the benefit that i gets from a) the link with its Fi

competitors (Equation 4) and b) the partnerships with Pi PRIs. Note that in

bi(g), we do not consider the benefit that i gets from the links among PRIs

because they have the same effect on all firms such that, for the sake of simplic-

ity, it can be ignored (for the same reason we will ignore the effect of the links

among firms on the benefit of a PRI bu(g)).

Let us focus now on the second part of the right hand side in the last equation,

which is actually the added value in the analysis of networks between heteroge-

neous agents

bi(g) = . . .+

Pi∑
e=0

ψe︸ ︷︷ ︸
R&D benefit

+
∑
j 6=i

Pj ψ
′

︸ ︷︷ ︸
Spillover benefit

0 ≤ ψ′ ≤ ψ ≤ 1

As can be seen, we formalize the benefit of firms from R&D partnerships with

PRI following the approach already used in the simple oligopoly networks: ψ and

ψ′ are parameters used to describe respectively the benefit enjoyed by firm i from

an alliance with PRI u and the spillover effect from the “mixed” partnerships

where i is not involved. Moreover, even though the benefit for firm i to create

an alliance with a PRI is a higher level of R&D, such benefit is lower when the

number of partnerships already held by the firm is larger. On the other hand,

the new link also provides a free riding benefit to its competitors. Therefore,

like in the simple oligopoly network, we assume the presence of a congestion

effect in the number of partnerships and a linear spillover benefit.

Given this framework, a firm i that competes in a Cournot oligopoly with F

firms, will form a link with a PRI u only when

πi(g + iu) ≥ πi(g)⇔ F [bi(g + iu)− bi(g)]−
∑
j 6=i

[bi(g + iu)− bi(g)] ≥ 0

which is similar to the profitability condition of a link among two firms (Equation

(1)). Using the definition of bi(g) described in Equation (9) we get

πi(g + iu) ≥ πi(g)⇔ FψPi+1 − (F − 1)ψ′ ≥ 0
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Note that, since ψ ≥ ψ′, firm i is always willing to form at least one link with

a PRI.

PRI Looking at the PRIs incentive to cooperate with a firm, we use adopt

the same approach the benefit enjoyed by u in a mixed network g is

bu(g) =

Pu∑
r=0

ρr +

∑
v 6=u(Pv − uv)

2
ρ′︸ ︷︷ ︸

Equation (6)

+

Fu∑
s=0

σs +
∑
v 6=u

Fv σ′ (10)

s. t. u, v ∈ {P} ; 0 ≤ ρ′ ≤ ρ ≤ 1 ; 0 ≤ σ′ ≤ σ ≤ 1

where Fu (Fv) are the number of firms which are (not) allied with u. Note

that, similarly to firm’s analysis, bu(g) corresponds to the sum of the benefits

that PRI u gets from cooperating with Pu PRIs (Equation 6) and Fu PRIs.

Considering the second part of Equation (10)

bu(g) = . . .+

Fu∑
s=0

σs︸ ︷︷ ︸
R&D benefit

+
∑
w 6=u

Fw σ′︸ ︷︷ ︸
Spillover benefit

0 ≤ σ′ ≤ σ ≤ 1,

we can see that also in this case we assume the existence of both congestion and

linear spillover effect.

Like the simple PRI network, the payoff function of the PRI is the relative

amount of the effective R&D level enjoyed by u with respect to the other PRIs

(Equation (7)). Therefore, u will find it profitable to cooperate with i only when

Ru(g + ui) ≥ Ru(g)⇔ bu(g + ui)∑P
p=1 bp(g + ui)

≥ bu(g)∑P
p=1 bp(g)

,

which lead to the following profitability condition when we apply Equation (10)

on the payoff functions:

σFu+1 ≥ (P − 1)
bu(g)∑
v 6=u bv(g)

σ′. (11)

Similarly to the previous section, it is straightforward to see that each PRI has

the incentive to form at least one link with a firm.24

Summarizing, given a network g with F firms and P public research institutions,

24In fact, let us consider a network where no PRI is linked with firms. Then, u will form a

link with i only when

1 + σ

1 + σ + (P − 1)σ′
≥

1

P
⇒ (P − 1)(1 + σ) ≥ (P − 1)σ′ ⇒ (1 + σ) ≥ σ′

which is always satisfied because 0 ≤ σ′ ≤ σ ≤ 1.
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a new link between a firm i and a PRI i is formed if and only if the following

conditions hold:

ψPi+1 − F − 1

F
ψ′ ≥ 0; (12)

σFu+1 − bu(g)(P − 1)∑
v 6=u bv(g)

σ′ ≥ 0 (13)

Given these conditions about the network formation among heterogeneous a-

gents, we are now able to consider a whole network where both firms and PRIs

are involved.

5.2 Pairwise Stability

Regular Networks A first step to study the pairwise stability is to look at

regular networks, namely networks where players have the same number of links.

However, since there are two types of players, it is possible to consider several

“degrees” of regularity.

In order to explain this point it is worth extending the notation used so far.

First, the set of players linked with i can be split according to the type of

partner such that the set of players linked with i, Ni(g), is given by the union

between the set of firms linked with i and the set of PRIs linked with i. Formally

Ni(g) = Fi(g) ∪ Pi(g). As a consequence, the number of partners held by firm

i is given by the sum of the partnering firms of i plus the PRIs cooperating

with i, i.e. ηi(g) = ηFi (g) + ηPi (g). In a similar vein, it is possible to define the

neighbourhood of the PRI u as Nu(g) = Fu(g) ∪ Pu(g) such that its number of

links is given by the following sum: ηu(g) = ηFu (g) + ηPu (g).

Given this notation, we now define the following types of regularity.

Definition 1 (Regularity) Let ĝ be a network with F firms and P public

research institutions, then

1. the network ĝ is relative regular if at least one of the following conditions

holds:

(a) ηFi (ĝ) = ηFj (ĝ); ηNh 6= ηNk ; ∀i, j ∈ F ; ∀h, k ∈ N ; N = F, P

(b) ηPu (ĝ) = ηPv (ĝ); ηNh 6= ηNk ; ∀u, v ∈ P ; ∀h, k ∈ N ; N = F, P

(c) i. ηPi (ĝ) = ηPj (ĝ); ηNh 6= ηNk ; ∀i, j ∈ F ; ∀h, k ∈ N ; N = F, P

ii. ηFu (ĝ) = ηFv (ĝ); ηNh 6= ηNk ; ∀u, v ∈ P ; ∀h, k ∈ N ; N = F, P

2. the network ĝ is absolute regular if ηNh (ĝ) = ηNk (ĝ) ; ∀h, k ∈ N
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In a more intuitive way, the regularity of a network is absolute when all the

players have the same number of links toward both types of agents whereas it

is relative when firms and/or PRIs have an identical number of links toward

either their competitors or the players of the other type.

Note that both absolute and relative regularity of networks do not necessarily

coincide with the “classic” regularity concept used in homogeneous networks.

To prove this point it is sufficient to see Figures 3, 4, and 5 where the usual

regularity of homogeneous network is compared with our relative and absolute

regularity respectively. As can be seen, the absolute regularity is a particular

case of the classic regularity in that it imposes for each player x not only that

ηx(g) = ηFx (g) + ηPx (g) to be constant but also that ηFx (g) = ηPx (g) = η̄. On

Figure 3: Classic regular network among 4 firms and 3 PRIs where ηh = 2

∀h ∈ N

the other hand, the relative regularity requires that ηFx (g) or ηPx (g) must be

constant for at least one type of players while classic regularity can occur also

when ηFx (g) and ηPx (g) differs among the players as long as ηx(g) is constant for

all the players.

Another important remark is related to the link formation conditions among

heterogeneous players (Equations (12) and (13)).

Lemma 5 Let us consider a network such that

ψp̂ ≥ F − 1

F
ψ′ ≥ ψp̂+1 ; σf̂ ≥ σ′ ≥ σf̂+1. (14)

namely where p̂ ≤ P and f̂ ≤ F are the maximum number of links that firms

and PRI want to hold respectively with the other type of player. Then,

1. the number of links among heterogeneous agents is λ = min(p̂ · F ; f̂ · P )
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Figure 4: Relative regular network among 4 firms and 3 PRIs such that ηi =

ηFi = 1 and ηu = ηPu = 2 ∀i ∈ F ∀u ∈ P ∀i ∈ F ∀u ∈ P .

Figure 5: Absolute regular network among 4 firms and 4 PRIs where ηNh = 2

∀h ∈ N and N = F, P . Plain and dotted lines are respectively links among

homogeneous and heterogeneous players.
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2. the number of links that firms and PRIs can form are respectively

ηPi ≤ p̂ ; ηFu ≤ f̂ ∀i ∈ F ;∀u ∈ P

with strict inequality for at least one player whenever p̂ · F 6= f̂ · P

3. if p̂ · F = f̂ · P ∀i, j ∈ F ∀u, v ∈ P , then there exists a network ĝ

where ηPi (ĝ) = ηPj (ĝ) and ηFu (ĝ) = ηFv (ĝ)

Proof: See Appendix E.

Given this minor finding it is possible to get the following result

Proposition 5 There always exists a PWS relative regular network where

1. ηFi (ĝ) = ηFj (ĝ) = κ ; ∀i, j ∈ F

2. ηPu (ĝ) = ηPv (ĝ) = ω ; ∀u, v ∈ P

3. ηPi ≤ p̂ ; ηFu ≤ f̂ ; ∀i ∈ F ;∀u ∈ P ;

with strict inequality for at least one player whenever p̂ · F 6= f̂ · P .

Moreover, if κ = ω = ηPi = ηFu , then the PWS network is also absolute regular.

Proof: The proof is quite straightforward. First, according to Assumption 1,

the decision of a player to link with a firm is independent of its decision to

form a link with a PRI. Therefore, the pairwise stability of the relative regular

network comes out from the PWS of the a) simple oligopoly networks (Section

3); b) simple PRIs networks (Section 4) and c) the links among heterogeneous

players.

Proposition 1 proves the existence of PWS regular network among firms of

degree κ ∈ [1, F −1], while Proposition 3 proves the existence of a PWS regular

network among PRIs of degree ω ∈ [1, P − 1]. The PWS of the links among

heterogeneous players is ensured by Lemma 5 because there is always a network

that satisfies Equation (14) such that the number of heterogeneous links is

λ = min(p̂ · F ; f̂ · P ). If we consider a regular network that embeds all these

pairwise stability conditions, the proof is done. Q.E.D.

Even though we prove the existence of a PWS mixed network, the presence of

heterogeneous agents has the drawback of dramatically increasing the number of

the possible PWS equilibria. Thus, the pairwise stability is too weak a concept

to refine a sufficient amount of mixed networks. To prove this point, we now

introduce the following example of mixed network with 4 firms and 4 PRIs.
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Example: 4 firms and 4 PRI’s Let us study a relative regular network

where

1. F−1
F−2 φ ≥ φ′ ≥ F−1

F−2 φ2 ⇒ firms form at most κ = 1 links among

themselves;

2. ρ2 ≥ ρ′ ≥ ρ3 ⇒ PRIs want to form ω = 2 links among themselves;

3. σ2 ≥ σ′ ≥ σ3 ⇒ PRIs want to create at most 2 links with firms.

4. F
F−1 ψ4 ≥ ψ′ ⇒ firms are always willing to form a partnership with

PRIs; Thus the number of links among firms and PRIs is λ = 2 · 4 = 8.

Then the network in Figure 6 is PWS. However, it is possible to prove that

Figure 6: Example of PWS relative regular network with 4 firms and 4 PRIs.

Plain and dotted lines are respectively links among homogeneous and heteroge-

neous players.

under the same conditions the network in Figure 7 is also PWS. On the other

hand, the network depicted as in Figure 6 is PWS also when we modify the last

PWS as follows:

• F
F−1 ψ3 ≥ ψ′ ≥ F

F−1 ψ4 firms want to form at most three links with

with PRIs; meaning that λ = 8 is still valid.

This example shows how a) the same PWS conditions are valid for both (rela-

tive) regular networks; b) if a regular network is PWS when λ is equal to (say)
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Figure 7: Example of PWS non regular network with 4 firms and 4 PRIs

three, then any other network that ensures λ = 3 is coeteris paribus also PWS.

Therefore, a higher number of PWS networks is mainly due to the strategic

interaction among heterogeneous players which multiplies the conditions under

which the links among heterogeneous players are stable.

5.3 Equilibrium analysis

So far, we have shown the existence of a PWS regular network among firms and

PRIs throughout the definition of two new regularity concepts (i.e. relative and

absolute regularity). Summarizing, for all the networks that satisfy Proposition

5 we have that

1. firms want to create κ links among each other:

φκ ≥ F − 2

F − 1
φ′ ≥ φκ+1 (15)

2. PRIs want to form ω links among each other:

σω ≥ σ′ ≥ σω+1 (16)

3. firms want to be linked with p̂ PRIs:

ψp̂ ≥ F − 1

F
ψ′ ≥ ψp̂+1 (17)
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4. PRIs are willing to form f̂ finks with firms:

σf̂ ≥ σ′ ≥ σf̂+1 (18)

such that the last two conditions lead to the formation of λ = min(f̂ , p̂) links

among the two type of players. Note that the four conditions are more difficult

to satisfy as the spillover provided to the player competitors is higher. Now, it is

worth studying which factors influence the formation of a PWS regular network

rather than another. A first, straightforward result comes from the conditions

just mentioned above:

Corollary 1 Suppose that Proposition 5 holds for a network g. Then, if the

number of firms F increases, PWS requires a smaller number of links among

firms and a smaller number of links between firms and PRIs.

This outcome is rather intuitive insofar as if F increases the creation of a new

partnership will provide a spillover benefit to a larger number of competitors,

hence a lower incentive to create links (Equations 15 and 17). Note that such

effect is due to the Cournot competition that occurs in the final market: for

PRIs, Equations 16 and 18 do not depend on P .

A second issue is when firms prefer to link among each other rather than with

PRIs, namely when Condition 15 is more/less restrictive than Condition 17.

From this point of view, it is quite reasonable to assume that the cost reduc-

tion stemming from the first link with another firm is larger than from the

first link with a PRI (i.e. φ > ψ). This assumption is reasonable if we think

that PRIs are more involved in basic research activity (less suitable to firms’

production strategies), and because firms and PRIs may lack coordination in

their R&D partnership because of their different objectives (commercialization

vs. publication of R&D results). Given that φ > ψ, the following statement is

valid:

Proposition 6 Firms will cooperate more among each other than with PRIs

if, for each firm, a new link with a partnering firm provides the same/lower

amount of spillover benefit to its own competitors than a new link with a PRI.

Formally, if F−1
F ψ′ ≥ F−2

F−1φ
′ then κ ≥ p̂

Proof: Since 0 ≤ ψ < φ ≤ 1, then φx > ψx for all x ∈ [0,∞). Therefore,

Condition 15 defines a larger interval than Condition 17:

φκ ≥ F − 2

F − 1
φ′ ≥ φκ+1
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ψp̂ ≥ F − 1

F
ψ′ ≥ ψp̂+1

whenever κ = p̂ = x. In fact, such a case leads to two possible scenarios:

I) φx ≥ ψx ≥ φx+1 ≥ ψx+1

II) φx ≥ φx+1 ≥ ψx ≥ ψx+1

Suppose now that Condition 2 is valid for p̂ = x. Then F−1
F ψ′ = F−2

F−1φ
′

implies that in the first scenario either

φx ≥ ψx ≥ F − 1

F
ψ′ =

F − 2

F − 1
φ′ ≥ φx+1 ≥ ψx+1

or

φx ≥ ψx ≥ φx+1 ≥ F − 1

F
ψ′ =

F − 2

F − 1
φ′ ≥ ψx+1,

while in the second scenario we have

φx ≥ φx+1 ≥ ψx ≥ F − 1

F
ψ′ =

F − 2

F − 1
φ′ ≥ ψx+1.

Only in the former case we have that the PWS condition for a link between

firms is valid for κ = p̂ = x. In the other two cases, PWS conditions require

that κ > p̂ = x. This result is also valid when F−1
F ψ′ > F−2

F−1φ
′ because in such

a case F−1
F ψ′ requires a PWS such that p̂ ≤ x. Q.E.D.

Keeping in mind that φ > ψ, the first inequality of Proposition 6

F − 1

F
ψ′ ≥ F − 2

F − 1
φ′ ⇒ ψ′ ≥ F (F − 2)

(F − 1)2
φ′ (19)

implies that firms can be more inclined to form a link among each other (rather

than with a PRI) even when the spillover parameter of forming a link with a

PRI ψ is smaller than the respective spillover for a link among firms (i.e. φ).25

Therefore, this result is in line with the stylized fact mentioned in Section 2.2,

where we pointed out that firms sometimes do not cooperate with PRIs because

the R&D spillover level where so serious to overcome the potential benefits of

the R&D alliance.

A third interesting point is to see under which conditions a firm has higher/lower

incentives than a PRI to cooperate in a firm-PRI partnership. However, since

we cannot say a priori if “mixed” alliances provide larger benefits to the PRIs

25In fact, since
F (F−2)

(F−1)2
< 1, then it is possible that φ′ ≥ ψ′ ≥ F (F−2)

(F−1)2
φ′.
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rather than to the firms,26 we can only answer this question on a case-by-case

analysis.

However, suppose that σ = ψ, namely that the benefit of the first link among

a firm and a PRI is the same for both types of players; then Conditions 17 and

18 lead to the following result:

Proposition 7 If a firm and a PRI would get the same benefit from creating a

first link among each other and the spillover level provided to firm’s competitors

is not smaller than the spillover given to PRI’s contenders, then the firm will

be at most equally inclined to cooperate than its PRI partner. Formally,

ψ = σ and
F − 1

F
ψ′ ≥ σ′ ⇒ p̂ ≤ f̂ .

Proof: See Appendix F.

A corollary to Proposition 7 is that the lower propensity of the firm to cooperate

with a PRI is valid not only when both get the same benefit from the first link

created (i.e. ψ = σ), but also when the firm gets a smaller one, namely that ψ ≤
σ.27 However, other cases (like ψ < σ and F−1

F ψ′ ≤ σ′) cannot be disentangled

without a case-by-case analysis. It is quite evident that the interaction between

firms and PRI needs further investigation in order to properly define which

hypothesis about the benefits and spillovers are more realistic.

Before concluding, it is worth mentioning the existence of a possible contrast

between the equilibrium network and the most socially efficient. This is due to

the fact that a new link in our model increases the performance (i.e. reduces the

marginal costs of all the firms and increases the R&D produced by all the PRIs)

of both partners and free riders, leading to a higher production of research (for

PRIs) and final good (for firms). As a consequence the complete network is the

most desirable from a welfare point of view but, as we found in the previous

section, the equilibrium network may be different.

6 Concluding Remarks

In the last years there has been an increasing debate about the social benefits

of R&D cooperation among firms. However, little attention is paid to the coop-

26For example, the advantage could be lower for a PRI than for a firm in a cooperation

between a well-known research centre and a start-up. The reverse case occurs in a partnership

between a multinational enterprise and a small university.
27Note also that, since F−1

F
< 1, Proposition 7 implies that

ψ = σ and ψ′ = σ′ ⇒ p̂ ≥ f̂
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eration among firms and public research institutions (i.e. public R&D labs and

universities) whose role is nowadays crucial for the firms’ innovative capacity.

In this paper we aim to cover this gap by providing a theoretical background to

the increasing R&D cooperation among firms and PRIs.

Another objective is to show that firms may not want to form R&D partnerships

even when the cost of forming a link is null because the benefits they get from

the R&D alliance can be lower than the R&D spillover benefits that go to their

competitors.

We show that the incentive for the players to form a partnership is decreasing

with the spillover effect such that the networks with a higher number of links

become less likely to be stable as spillover concerns are higher.

We get the realistic result that the PWS of a complete network is more difficult

to hold also when the number of players increases because the more competitors

there are, the larger the spillover benefits that a player provides them with when

forming a new alliance. Furthermore, both the empty and the star networks are

never PWS. The former because there is always an incentive to form at least

one collaborative link when there are no link cost, the latter because, if the hub

player has the incentive to hold its links, then a couple of peripheral players have

the incentive to form a new partnership. Finally, from a methodological point

of view, we find that different types of players interacting in a single network

has non trivial implications in the pairwise stability analysis. In fact, in order

to determine which network can be pairwise stable, the interaction of heteroge-

neous agents requires a concept of network regularity different from the classic

one. This leads us to define the concepts of relative and absolute regularity of

a network, which allow us to overcome the problems of the PWS analysis that

would have been met by using the classic regularity notion.

Nevertheless, the analysis is not immune to some important drawbacks: as al-

ready mentioned, we do not endogenize the R&D effort, an issue which can

be relevant to observe in the presence of R&D spillovers. Second, as shown in

the example of Section 5.2, the presence of heterogeneous players dramatically

increases the number of PWS networks such that refining the pairwise stability

concept becomes necessary. From this point of view, the use of strong stabil-

ity and/or farsighted stability may be two possible solutions to simplify the

scenario of the possible network equilibria. Another possible extension of the

model is to generalize the simple oligopoly network by overcoming the linear

Cournot oligopoly in favor of a generic function that relates profits with the

firms’ linking strategy.
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A Proof of Lemma 2

Proof of 1: Applying Lemma 1 to network gk, a firm k will keep the links

already held if the following condition holds

πi(g) ≥ πi(g − kl)⇔ F φk ≥ φk + (F − 2) φ′ ∀k, l ∈ {N}

which corresponds to the first (PWS) condition. On the other hand, two firms

will not deviate from gk by adding the link ij only when

πi(g + ij) ≤ πi(g)⇔ F φk+1 ≤ φk+1 + (F − 2) φ′ ∀i, j ∈ {N}

Isolating φ′ lead us to our second condition. Q.E.D.

Proof of 2: Let gc − ij be a network which differs from the complete one for

a missing link among i and j. If these two firms form the link then they get

bi(g + ij)− bi(g) = bj(g + ij)− bj(g) = φF−1

Since the other firms get a spillover benefit φ′, the profitability condition (Equa-

tion (3)) for the two partners is

πi(g+ ij) ≥ πi(g)⇔ F φF−1 ≥ φF−1 +(F −2) φ′ ⇔ φ′ ≤ F − 1

F − 2
φF−1

Proof of 3: Applying Lemma 2 when k = 0 we get that g0 is PWS if and only

if

F − 1

F − 2
≥ φ′ ≥ F − 1

F − 2
φ

Since F−1
F−2φ > φ > φ′ then the condition on the right is violated because 0 ≤

φ′ ≤ φ ≤ 1 by assumption. Q.E.D.

B Proof of Proposition 2

Let g∗ a star network where h is the hub firm i.e. the firm to which the other

F − 1 firms are linked. To prove the proposition we have to show that starting

from g∗ either a firm wants to delete a link or a couple of firms want to form

another link.

Part a). Let us consider the network g∗−hj i.e. a star network without the

link hj. If firms h and j want to form such link, their benefits are respectively

bh(g∗)− bh(g∗ − hj) = φF−1 ; bj(g
∗)− bj(g∗ − hj) = φ

while the other firms will get

bk(g∗)− bk(g∗ − hj) = φ′ k 6= h, j.
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The hub firm will form a link if and only if

πh(g∗) ≥ πh(g∗−hj)⇔ FφF−1−φ−(F−2)φ′ ≥ 0⇔ φ′ ≤ F φF−1 − φ

F − 2
,

(20)

while the profitability condition for the firm j is

πj(g
∗) ≥ πj(g∗ − hj)⇔ F φ − φF−1 − (F − 2) φ′ ≥ 0,

which is clearly satisfied.28 Therefore, when condition (20) does not hold, the

star network is not pairwise stable because the hub firm has the incentive to

severe one link.

Part b). Now, starting from g∗, we have to see under which condition two

firms want to form a new link ij. In this case partners’ benefits are

bi(g
∗ + ij)− bi(g∗) = bj(g

∗ + ij)− bj(g∗) = φ2 i, j 6= h

while the other firms will get the usual benefit

bk(g∗)− bk(g∗ − hj) = φ′ k 6= h, j.

The firm i will form the new link whenever

(F − 1)φ2 − (F − 2)φ′ ≥ 0⇔ φ′ ≤ F − 1

F − 2
φ2.

Therefore, a new link will not be added to the star network if and only if

φ′ ≥ F − 1

F − 2
φ2. (21)

Now to prove the proposition 2, we have to show that the conditions for the

pairwise stability (20) and (21) cannot hold at the same time. Note that the

two conditions lead to the following range

F − 1

F − 2
φ2 ≤ φ′ ≤ F φF−1 − φ

F − 2

which implies that

F − 1

F − 2
φ2 ≤ F φF−1 − φ

F − 2
⇒ φ ≤ F φF−1 − (F − 1) φ2 (22)

First, note that for F = 3, the condition (22) becomes φ ≤ φ2, which is never

valid. Moreover, the RHS of the condition (22) is decreasing in F . In fact

(F + 1) φF − (F ) φ2 ≤ F φF−1 − (F − 1) φ2 ⇒

F (φF − φF−1)︸ ︷︷ ︸
<0

+φF ≤ φF ≤ φ2

Therefore, the pairwise stability conditions for a star network lead to a range

which is always empty. Q.E.D.

28In fact, it is easy to see that (F − 1)φ ≥ φF−1 − (F − 2)φ′ because φ is larger than both

φF−1 and φ′.
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C Proof of Lemma 3

Let us consider a regular network of degree k ∈ [0, n− 1) such that the benefit

enjoyed by each player is bk, then no firm will have an incentive to delete a link

from gk if

bk − ρk

2(bk − ρk) + (P − 2)(bk − ρ′)
≤ 1

P

hence

P (bk − ρk) ≤ 2(bk − ρk) + (P − 2)(bk − ρ′)

Rearranging terms and simplifying we obtain

(P − 2)(bk − ρk) ≤ (P − 2)(bk − ρ′)

which leads to our first condition of part 1

ρ′ ≤ ρk.

Note that, this condition holds also for a complete network. Therefore Part 2

of the lemma is a straightforward application of this condition as k = P − 1

On the other hand two firms will not have an incentive to form a link if

bk + ρk+1

2(bk + ρk+1) + (P − 2)(bk + ρ′)
≤ 1

P
.

Rearranging the terms we get

P (bk + ρk+1) ≤ 2(bk + ρk+1) + (P − 2)(bk + ρ′).

Simplifying and rearranging some terms

(P − 2)(bk + ρk+1) ≤ (P − 2)(bk + ρ′)

which implies that

ρk+1 ≤ ρ′,

which corresponds to the second condition of Part 1. Finally, it is straightfor-

ward to see that the empty network cannot be PWS because ρk+1 ≥ ρ′ when

k = 0.
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D Proof of Proposition 4

The proof is similar to previous one. Before continuing we first find the benefit

functions for all the networks needed to prove the PWS of the star network

which are g∗ − uh, g∗ and g∗ + uv.

Network g∗−uh Let consider the network g∗−uh where u is an isolated PRI

and h is the hub. Then, we have that

bu = 1 + (P − 2)ρ′ ; bz = 1 + ρ+ (P − 3)ρ′ ; bh =

P−2∑
r=0

ρr,

which implies that the overall network benefit is

B(g∗ − uh) =

P∑
p=1

bp = P + (P − 2)ρ+ (P − 2)2ρ′ +

P−2∑
r=1

ρr.

Network g∗ On the other hand in the star network

bu = bz = 1 + ρ+ (P − 2)ρ′ ; bh =

P−1∑
r=0

ρr,

which implies that the overall network benefit is

B(g∗) =

P∑
p=1

bp = P + (P − 1)ρ+ (P − 1)(P − 2)ρ′ +

P−1∑
r=1

ρr.

Network g∗+uv Finally, in the network g∗+uv where two non-hub PRI are

linked we have

bu = bv = 1 +ρ+ρ2 + (P −2)ρ′ ; bz = 1 +ρ+ (P −1)ρ′ ; bh =

P−1∑
r=0

ρr +ρ′,

which implies that the overall network benefit is

B(g∗ + uv) =

P∑
p=1

bp = P + (P − 1)ρ+ 2ρ2 + P (P − 2)ρ′ +

P−1∑
r=1

ρr.

Pairwise Stability from severing a link To find the PWS of g∗ we first

check under which conditions the hub and the PRI u are better off in the star

network rather than in the network g∗−uh. Using the equation (8), PRI u will

find profitable to cooperate whenever

1 + ρ+ (P − 2)ρ′

B(g∗)
≥ 1 + (P − 2)ρ′

B(g∗ − uh)
⇒
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ρ B(g∗ − uh) ≥ [1 + (P − 2)ρ′] [B(g∗)−B(g∗ − uh)] .

while the hub PRI is better off when∑P−1
r=0 ρ

r

B(g∗)
≥

∑P−2
r=0 ρ

r

B(g∗ − uh)
⇒ ρP−1B(g∗−uh) ≥

P−2∑
r=0

ρr [B(g∗)−B(g∗ − uh)] .

Since the profitability condition is more restrictive for the hub player we will

restrict our analysis on it. Now, given that [B(g∗ −B(g∗ − uh))] = ρ+ ρP−1 +

(P − 2)ρ′ we have that

ρP−1

[
P + (P − 2)ρ+ (P − 2)2ρ′ +

P−2∑
r=1

ρr

]
≥
P−2∑
r=0

ρr
[
ρ+ ρP−1 + (P − 2)ρ′

]
,

hence

ρP−1

[
P − 1 + (P − 2)ρ+ (P − 2)2ρ′ +

P−2∑
r=0

ρr

]
≥
P−2∑
r=0

ρr
[
ρ+ ρP−1 + (P − 2)ρ′

]
Simplifying some terms

ρP−1
[
P − 1 + (P − 2)ρ+ (P − 2)2ρ′

]
≥
P−2∑
r=0

ρr [ρ+ (P − 2)ρ′]

and extending the left hand side

(P−1)ρP−1+(P−2)ρP−1 [ρ+ (P − 2)ρ′] ≥ [ρ+ (P − 2)ρ′]+

P−2∑
r=1

ρr [ρ+ (P − 2)ρ′] ,

we obtain

[
(P − 1)ρP−1 − ρ− (P − 2)ρ′

]
≥ [ρ+ (P − 2)ρ′]

[
P−2∑
r=1

ρr − (P − 2)ρP−1

]
or

[
ρP−1 − ρ− (P − 2)(ρP−1 − ρ′)

]
≥ [ρ+ (P − 2)ρ′]

[
P−2∑
r=1

ρr − (P − 2)ρP−1

]

Now, since the RHS is always positive a necessary but not sufficient condition

to have h better off in the star network is that the LHS is positive. This is true

if and only if

ρP−1 − ρ′ ≥⇒ ρ′ ≤ ρP−1 (23)

Let us keep this condition in mind and continue to the other possible deviation,

namely the creation of a new link from the star network.

38



Pairwise Stability from a new link formation Now, suppose that we are

in g∗, two non-hub PRIs u and v will not form a link if

1 + ρ+ (P − 2)ρ′ + ρ2

B(g∗ + uv)
≤ 1 + ρ+ (P − 2)ρ′

B(g∗)
⇒

ρ2B(g∗) ≤ [1 + ρ+ (P − 2)ρ′][B(g∗ + uv)−B(g∗)]

Substituting the definition of B(g∗) and B(g∗ + uv) we get

ρ2

[
P + (P − 1)ρ+ (P − 1)(P − 2)ρ′ +

P−1∑
r=1

ρr

]
≤ [1+ρ+(P−2)ρ′][2ρ2+(P−2)ρ′]

Putting +/- 1 in the term within brackets of the left hand side we have

ρ2

[
P − 1 + (P − 1)ρ+ (P − 1)(P − 2)ρ′ +

P−1∑
r=0

ρr

]
≤ [1+ρ+(P−2)ρ′][2ρ2+(P−2)ρ′]

allowing us to rearrange the terms in the following way

ρ2(P − 1)[1 +ρ+ (P − 2)ρ′] +ρ2
P−1∑
r=0

ρr ≤ [1 +ρ+ (P − 2)ρ′][2ρ2 + (P − 2)ρ′]

Now, let us rewrite the condition such that

[1+ρ+(P −2)ρ′][(P −2)ρ2− (P −2)ρ′]+ρ2
P−1∑
r=0

ρr−ρ2[1+ρ+(P −2)ρ′] ≤ 0

hence

[1 + ρ+ (P − 2)ρ′](P − 2)(ρ2 − ρ′) + ρ2

[
P−1∑
r=0

ρr − (1 + ρ+ (P − 2)ρ′)

]
≤ 0

Now, a necessary but not sufficient condition to satisfy the inequality is one of

the terms to be negative. The first term is negative if and only if ρ2 ≤ ρ′ while

the second is negative only when

P−1∑
r=0

ρr − (1 + ρ+ (P − 2)ρ′) ≤ 0⇒
P−1∑
r=2

ρr ≤ (P − 2)ρ′ ⇒

ρ′ ≥
∑P−1
r=2 ρ

r

P − 2
(24)

Therefore, since ρ2 ≥
∑P−1

r=2 ρr

P−2 , the latter condition is less demanding to have at

least one of the two terms with negative values.

Now if we merge Equations (23) and (24),

ρP−1 ≥ ρ′ ≥
∑P−1
r=2 ρ

r

P − 2

we can see that they are incompatible insofar as (P − 2)ρP−1 ≤
∑P−1
r=2 ρ

r.

Therefore, since the two necessary conditions to have the PWS of a star network

cannot coexist, the star network is never pairwise stable. Q.E.D.
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E Proof of Lemma 5

Note first that, for any 0 ≤ ψ′ ≤ ψ ≤ 1 and 0 ≤ σ′ ≤ σ ≤ 1, there always

exist values of p ∈ [1, P ] and f ∈ [1, F ] that satisfy the two conditions stated in

Equation (14).

Concerning the first point, since p̂ and f̂ are the maximum number of links

that firms and PRI want to form among each other, then the number of mixed

links that all the firms and PRIs want to form is respectively p̂ · F ; and f̂ · P .

Therefore, the number of links actually formed in the network is given by the

lowest number of mixed links “demanded” by each type of players.

The second part is a straightforward consequence of Equation (14). The strict

inequality condition comes out from the fact that p̂ · F 6= f̂ · P occurs either

becausep̂ · F < f̂ · P or p̂ · F > f̂ · P , which implies that there is at least one

player will not be able to create all the desired links (a PRI in the former case,

a firm in the second).

On the other hand p̂ · F = f̂ · P means that all the players are able to create

all their desired links. Hence ηPi (ĝ) = p̂ and ηFu (ĝ) = f̂ ; ∀i ∈ F ; hs ∀u ∈ P .

Q.E.D.

F Proof of Proposition 7

Before proceeding with the proof let us keep in mind that, since p̂ and f̂ are

integers, it is not possible to have

σf̂ > σp̂ ≥ σf̂+1 > σp̂+1

because it would mean that p̂ ≥ f̂ + 1 > p̂+ 1.

Therefore, if f̂ > p̂, then

σf̂ > σf̂+1 ≥ σp̂ > σp̂+1 (25)

while f̂ = p̂ trivially implies that

σf̂ = σp̂ > σf̂+1 = σp̂+1 (26)

Now, we can rewrite Condition 18 as a function of ψ (that is equal to σ)

ψf̂ ≥ σ′ ≥ ψf̂+1

keeping in mind Condition 17

ψp̂ ≥ F − 1

F
ψ′ ≥ ψp̂+1
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Since σ′ ≤ F−1
F ψ′, it is straightforward to see that, when Condition 18 holds

either

ψf̂ ≥ F − 1

F
ψ′ ≥ σ′ ≥ ψf̂+1

or

F − 1

F
ψ′ > ψf̂ ≥ σ′ ≥ ψf̂+1

The latter case implies that f̂ > p̂ because otherwise we cannot satisfy Condition

17 without violating Equation (25). In the former case f̂ = p̂ because, according

to Equation (26), Condition 17 would be otherwise violated. Q.E.D.
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