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TWO EGARCH MODELS AND ONE FAT TAIL 

by Michele Caivano* and Andrew Harvey† 

 

Abstract 

We compare two EGARCH models, which belong to a new class of models in which 
the dynamics are driven by the score of the conditional distribution of the observations. 
Models of this kind are called dynamic conditional score (DCS) models and their form 
facilitates the development of a comprehensive and relatively straightforward theory for the 
asymptotic distribution of the maximum likelihood estimator. The EGB2 distribution is 
light-tailed, but with a higher kurtosis than the normal distribution. Hence it is 
complementary to the fat-tailed t. The EGB2-EGARCH model gives a good fit to many 
exchange rate return series, prompting an investigation into the misleading conclusions liable 
to be drawn from tail index estimates. 
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1 Introduction

The exponential generalized autoregressive heteroskedasticity (EGARCH) class of

models was introduced by Nelson (1991) as a means of modeling changing volatility.

By letting the dynamic equation for the logarithm of variance be driven by the

score of the conditional distribution, many of the theoretical problems inherent in

EGARCHmodels are resolved; see Harvey (2013, ch 4). Furthermore there is already

a body of evidence showing that these dynamic conditional score (DCS) EGARCH

models perform better on real data than do standard GARCH formulations; see, for

example, Creal et al (2011) and Harvey and Sucarrat (2012).

The DCS-EGARCH model based on a conditional Student-t distribution, called

Beta-t-EGARCH, is resistant to observations that would be outliers if a Gaussian

distribution were used. The reason for this robustness is that the score depends

on a beta variable which, of course, is bounded; compare the discussion of robust

GARCHmodels in Muler and Yohai (2008). The t-distribution has fat tails (for �nite

degrees of freedom) and this property is re�ected in the shape of the score function.

However, not all variables which are subject to changing volatility have fat tails and

the question therefore arises as to what other distributions might be entertained

and what is the behaviour of their score functions. One possibility is to assume

a general error distribution (GED) leading to the Gamma-GED-EGARCH model.

This model has a gamma distributed score and hence its properties may be obtained

in much the same way as may the properties of Beta-t-EGARCH. However, although

the GED family provides a compromise between the normal and t-distributions, the

behaviour of its score function is not ideal from the point of view of robustness. We

argue here that a better choice is a new model based on the family of exponential

generalized beta distributions of the second kind (EGB2). The EGB2 distribution
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is light-tailed, but with higher kurtosis than the normal. It has featured in GARCH

models before; see Wang et al (2001). But it has not been used in a DCS-EGARCH

model and its score function has a form which makes it the ideal complement to

Beta-t-EGARCH.

The �rst contribution of this paper is on what we shall refer to as the EGB2-

EGARCH model. We derive its properties and contrast them with those of Beta-

t-EGARCH and Gamma-GED-EGARCH. The asymptotic distribution of the max-

imum likelihood estimator of the dynamic parameters can be derived for EGB2-

EGARCH just as it can for the other two models. An analytic expression for the

asymptotic covariance matrix can be obtained and the conditions for the asymptotic

theory to be valid are easily checked. The theory is much more straightforward than

it is for the corresponding GARCH model.

The second aspect of the paper concerns tail indices in �nancial time series. Tail

indices, which are a key feature of fat-tailed distributions, are often computed, and

low values are cited as evidence of fat tails and the associated non-existence of higher

moments1. However, although excess kurtosis is a well-established stylized fact for

both unconditional and conditional distributions of �nancial returns, the issue of

whether such series have fat tails is more problematic. While it is undeniable that

low tail estimates are a feature of �nancial returns, we argue that this does not,

in itself, provide conclusive evidence of fat-tailed distributions. A subsidiary theme

concerns the use of tail index estimates as starting values for the shape parameters

of EGB2 and t-distributions, and in fact this provides a convenient lead-in to the

discussion.

The article is organized as follows. Section 2 discusses classi�cations of tail

1For example, Loretan and Phillips (1994) report (modi�ed) Hill�s estimates of between 3 and
4 for the unconditional distributions of many daily and monthly stock and exchange rate returns
series. They conclude that fourth moments do not exist for such series.
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behaviour in distributions and makes an important connection with the condi-

tional score function. Section 3 describes the Beta-t-EGARCH and Gamma-GED-

EGARCHmodels, and the associated asymptotic theory for the maximum likelihood

estimator. The DCS scale model with an EGB2 distribution is analysed in Section 4

and the asymptotic theory is shown to extend to this case. Fitting Beta-t-EGARCH

and EGB2-EGARCH to various returns series in Section 5 indicates that in a sig-

ni�cant number of cases the EGB2 model gives a better �t, indicating that the

conditional distribution does not have heavy tails. Since a DCS-EGARCH model

cannot induce fat-tails, there is a paradox to be resolved. Section 6 analyses the

problem and o¤ers an explanation. Section 7 concludes.

2 Tails and tail indices

The Gaussian distribution has kurtosis of three and a distribution is said to exhibit

excess kurtosis if its kurtosis is greater than three. Although many researchers

take excess kurtosis as de�ning heavy tails, it is not, in itself, an ideal measure,

particularly for asymmetric distributions. Most classi�cations in the insurance and

�nance literature begin with the behaviour of the upper tail for a non-negative

variable, or one that is only de�ned above a minimum value; see Asmussen (2003)

or Embrechts, Kluppelberg and Mikosch (1997). The two which are relevant here

are as follows.

A distribution is said to be heavy-tailed if

lim
y!1

exp(y=�)F (y) =1 for all � > 0; (1)

where F (y) = Pr(Y > y) = 1 � F (y) is the survival function. When y has an

exponential distribution, F (y) = exp(�y=�); so exp(y=�)F (y) = 1 for all y: Thus
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the exponential distribution is not heavy-tailed.

A distribution is said to be fat-tailed if, for a �xed positive value of �;

F (y) = cL(y)y��; � > 0; (2)

where c is a non-negative constant and L(y) is slowly varying, that is limy!1(L(ky)=L(y)) =

1; k > 0:

The parameter � is the (right) tail index. The implied PDF is a power law PDF

f(y) � cL(y)�y���1; as y !1; � > 0; (3)

where � is de�ned such that a(x) � b(x) as x ! x0 if limx!x0(a=b) ! 1: The

m�th moment exists if m < �: The Pareto distribution is a simple case in which

F (y) = y�� for y > 1: If a distribution is fat-tailed then it must be heavy-tailed;

see Embrechts, Kluppelberg and Mikosch (1997, p 41-2). On the other hand, not

all heavy�tailed distributions are fat-tailed; the lognormal is an example.

The complement to the Pareto distribution is the power function distribution

for which F (y) = y�; 0 < y < 1; � > 0: More generally,

F (y) = cL(y)y�; 0 < y < 1; � > 0;

where � is the left tail index. Hence f(y) � cL(y)�y��1 as y ! 0.

The above criteria are related to the behavior of the conditional score and

whether or not it discounts large observations. This, in turn, connects to robustness,

as shown in Caivano and Harvey (2014). More speci�cally, consider a power law

PDF, (3), with y divided by a scale parameter; ', so that F (y=') = cL(y=')(y=')��
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and f(y) � cL(y)'�1�(y=')���1: Then

@ ln f=@' � �=' as y !1 (4)

and so the score is bounded. With the exponential link function, ' = exp(�);

@ ln f=@� � � as y !1: Similarly as y ! 0; @ ln f=@� � �:

The logarithm of a variable with a fat-tailed distribution has exponential tails.

Let x denote a variable with a fat-tailed distribution in which the scale is written

as ' = exp(�) and let y = ln x: Then for large y

f(y) � cL(ey)�e��(y��); � > 0; as y !1;

whereas as y ! �1; f(y) � cL(ey)�e�(y��); � > 0: Thus y is not heavy-tailed but

it may exhibit excess kurtosis. The score with respect to location, �; is the same as

the original score with respect to the logarithm of scale and so tends to � as y !1:

If a scale parameter is introduced, its score is bounded when divided by the variable.

The relevance of the above paragraph to this paper is that the (light-tailed)

EGB2 variable is obtained by taking the logarithm of a fat-tailed GB2 variable.

3 Dynamic conditional score volatility models

A volatility model is typically of the form

yt = �+ 'tjt�1"t; t = 1; :::; T; (5)

where 'tjt�1 is a time-varying scale and "t is a standardized IID random variable.

The scale, 'tjt�1; is proportional to �tjt�1; with the factor of proportionality de-
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pending on the shape parameter(s) of the distribution of "t: In a DCS model the

dynamics are set up by letting the logarithm of a time-varying scale parameter be

a linear function of the conditional score. In the case of �rst-order dynamics,

�t+1jt = !(1� �) + ��tjt�1 + �ut; (6)

where ut is the score with respect to �tjt�1 = ln'tjt�1: Extensions to higher order

models, components, seasonals and explanatory variables are discussed in Harvey

(2013, ch 4).

The above model belongs to the EGARCH class introduced by Nelson (1991).

The usual formulation has ut replaced by j"tj. Moments of yt exist for a GED

distribution (with the normal being a special case), but Student�s t is not viable

because yt has no moments for �nite degrees of freedom. The dynamic scale model

overcomes this di¢ culty because the score is a linear function of a variable with a

beta distribution.

Like the GED, the EGB2 distribution o¤ers a contimuum of distributions be-

tween the normal and Laplace. However, unlike the GED (with shape parameter

greater than one), the score with respect to the scale parameter of the EGB2 is

bounded when divided by the variable2. The associated dynamic scale model is

described in Section 4. (The dynamic EGB2 location model is discussed in Caivano

and Harvey, 2014).

The GARCH-t model is widely used in empirical �nance. The GARCH-EGB2

has been studied by Wang et al (2001) but is far less common. In both models,

yt = �+ �tjt�1�t and the variance is driven by squared observations, that is

�2t+1jt = � + ��2tjt�1 + �y2t ; �; � � 0; � > 0;
2This property features in the robustness literature; see Maronna et al (2006, p 34-8).
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or, in notation similar to that in (6),

�2t+1jt = � + ��2tjt�1 + ��2tjt�1�
2
t ;

where � = !�(1� �); where � = �+ � and � = �:

For the DCS-EGARCH models with t and GED conditional distributions, all

moments of the score exist and the existence of moments of yt is not a¤ected by

the dynamics. The same is true of the EGB2. On the other hand, the existence of

moments for GARCH models is a¤ected by the volatility; see, for example, Mikosch

and Starica (2000).

3.1 Maximum likelihood estimation

TheML estimates of the parameters,  = (�; �, !)0; in a DCSmodel can be obtained

by maximizing the log-likelihood function with respect to the unknown parameters.

The asymptotic distribution of the ML estimator in the �rst-order case is derived

in Harvey (2013). De�ne

a = �+ �E

�
@ut
@�

�
(7)

b = �2 + 2��E

�
@ut
@�

�
+ �2E

�
@ut
@�

�2
� 0

c = �E

�
ut
@ut
@�

�
;

where unconditional and conditional expectations are the same. When scale and

shape parameters are known and b < 1, the information matrix for a single obser-

vation is time-invariant and given by

I( ) = �2uD( ); (8)
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where �2u is the information quantity for a single observation and

D( ) = D

0BBBB@
e�e�
e!

1CCCCA =
1

1� b

266664
A D E

D B F

E F C

377775 ; (9)

with

A = �2u; B =
�2�2u(1 + a�)

(1� �2)(1� a�)
; C =

(1� �)2(1 + a)

1� a
;

D =
a��2u
1� a�

; E = c(1� �)=(1� a) and F =
ac�(1� �)

(1� a)(1� a�)
:

The ML estimator is asymptotically normal with covariance matrix given by the

inverse of (8).

The above result can be easily extended to include the estimation of additional

�xed parameters, such as the degrees of freedom in a t-distribution. Let � denote a

vector of parameters such that � = (�1;�
0
2)
0: Suppose that �2 consists of n� 1 � 1

�xed parameters, while �1 is time-varying and depends on a set of parameters,

 . When the terms in the information matrix of the static model that involve �1,

including cross-products, do not depend on �1;

I

0B@  

�2

1CA =

264 E
�
@ ln ft
@�1

�2
D( ) dE

�
@ ln ft
@�1

@ ln ft
@�02

�
E
�
@ ln ft
@�1

@ ln ft
@�2

�
d0 E

�
@ ln ft
@�2

@ ln ft
@�02

�
375 ; (10)

where D( ) is the matrix in (9) and d =(0; 0; (1� �)=(1� a))0. When the as-

ymptotic distributions of the ML estimators of �1 and �2 are independent, the

information matrix is block-diagonal and the top left hand block is as in (8).
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3.2 Beta-t-EGARCH

The t�-distribution with a location of � and scale of ' has probability density func-

tion

f (y;�; '; �) =
� ((� + 1) =2)

� (�=2)'
p
��

�
1 +

(y � �)2

�'2

��(�+1)=2
; '; � > 0;

where � is the degrees of freedom and � (:) is the gamma function. Moments exist

only up to and including �� 1. For � > 2; the variance is �2 = f�= (� � 2)g'2: The

excess kurtosis is 6=(� � 4); provided that � > 4: The t� distribution has fat tails

for �nite � with the tail index given by �; see McNeil et al (2005, p 293).

When "t in (5) is t� distributed with � = 0 and ' = 1, the conditional score for

the time-varying parameter �tpt�1 is

ut =
(� + 1)y2t

� exp(2�tpt�1) + y2t
� 1 = (� + 1)"2t

� + "2t
� 1; �1 � ut � �; � > 0: (11)

At the true parameters values, ut is IID and may be expressed as ut = (�+1)bt� 1;

where bt is distributed as beta(1=2; �=2); see Harvey (2013, ch 4). Analytic expres-

sions for the moments and autocorrelations of yt can be found from the in�nite

MA representation of �tjt�1: The asymptotic distribution for a stationary �rst-order

model, as in (6), can be found from (8).

There are a number of ways in which skewness may be introduced into a t-

distribution. One possibility is by the method proposed by Fernandez and Steel

(1998); see Harvey and Sucarrat (2012).
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3.3 Gamma-GED-EGARCH

The PDF of the general error distribution, denoted GED(�), is

f (y;�; '; �) =
�
21+1=�'�(1 + 1=�)

��1
exp(� j(y � �)='j� =2); '; � > 0; (12)

where ' is a scale parameter, related to the standard deviation by the formula

� = 21=�(� (3=�) =� (1=�))1=2': The normal distribution is obtained when � = 2;

in which case � = ': Setting � = 1 gives the Laplace, or double exponential,

distribution, in which case � = 2
p
2': Therefore when 1 � � � 2 the GED dis-

tribution provides a continuum between the normal and Laplace. The kurtosis is

� (5=�) � (1=�) =� (3=�) ; so for � = 1 the excess kurtosis is three.

The conditional score for �tpt�1 = ln'tpt�1 is

ut = (�=2) jyt= exp(�tpt�1)j� � 1; t = 1; :::; T: (13)

The variable ut is IID and may be expressed as ut = (�=2)gt � 1; where gt has a

gamma(2, 1=�) distribution. The score gives less weight to outliers than squared

observations when � < 2; but it is not as robust as a Beta-t-EGARCH model with

small degrees of freedom. Unlike the EGB2, the score is not bounded when divided

by yt; unless � = 1:

4 EGB2-EGARCH

The exponential generalized beta distribution of the second kind (EGB2) is obtained

by taking the logarithm of a variable with a GB2 distribution. The distribution was

�rst analyzed in Prentice (1975) and further explored by McDonald and Xu (1995).
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The PDF of a GB2(�; �; �; &) is3

f(x) =
�(x=�)���1

�B(�; &) [(x=�)� + 1]
�+&

; �; �; �; & > 0; (14)

where � is the scale parameter, �; � and & are shape parameters and B(�; &) is the

beta function. GB2 distributions are fat tailed for �nite � and & with upper and

lower tail indices of � = &� and � = �� respectively. The absolute value of a tf

variate is GB2('; 2; 1=2; f=2) with tail index � = � = f:

If x is distributed as GB2(�; �; �; &) and y = ln x; the PDF of the EGB2(�; �; �; &)

variate y is

f(y;�; �; �; &) =
� expf�(y � �)�g

B(�; &)(1 + expf(y � �)�g)�+& : (15)

The parameter which was the logarithm of scale in GB2 now becomes location in

EGB, that is ln� becomes �. Furthermore � is now a scale parameter, but � and &

are still shape parameters and they determine skewness and kurtosis.

4.1 Properties of EGB2

All moments of the EGB2 distribution exist. The �rst four are as follows:

Mean: E(y) = �+ ��1[ (�)�  (&)] (16)

Variance: �2 = E(y � E(y))2 = ��2[ 0(�) +  0(&)] (17)

3The GB2 is described in Kleiber and Kotz (2003, ch6). Note that their convention has the
order of � and � reversed.
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Skewness:
E(y � E(y))3

�3
=

 00(�)�  00(&)

[ 0(�) +  0(&)]3=2
(18)

Kurtosis:
E(y � E(y))4

�4
=
 000(�) +  000(&)

[ 0(�) +  0(&)]2
+ 3; (19)

where  ,  0,  00 and  000 are polygamma functions of order 0, 1, 2 and 3 respectively.

The EGB2 distribution is positively (negatively) skewed when � > & (� < &) and

its kurtosis decreases as � and & increase. Skewness ranges between -2 and 2 and

kurtosis4 lies between 3 and 9. There is excess kurtosis for �nite � and/or &:

Although � is a scale parameter, it is the inverse of what would normally be

considered a conventional measure of scale. Thus scale is better de�ned as 1=� or

as the standard deviation

� =
q
 0(�) +  0(&)=� = h(�; &)=� = h=�: (20)

Thus

f(y;�; �; �; &) =
h expf�h(y � �)=�g

�B(�; &)(1 + expfh(y � �)=�g)�+& :

When � = &, the distribution is symmetric; for � = & = 1 it is a logistic distribu-

tion and when � = & !1 it tends to a normal distribution. When � = & = 0 in the

EGB2, the distribution is double exponential or Laplace; see Caivano and Harvey

(2014). The following results will be used in a number of places when � = & : (i)

�h2 = 2 as � ! 1; and �h ! 2=h ! 1;(ii) �h =
p
2 for � = 0: Equivalently: (i)

� 0(�) = 1 as � !1; (ii) �
p
 0(�) = 1 for � = 0:

A plot of the (symmetric) EGB2, GED and Student�s t with the same excess

kurtosis shows them to be very similar. It is di¢ cult to see the heavier tails of

4The maximum kurtosis in the symmetric case is 6 and is for � = & = 0: The kurtosis of 9 is
achieved when �( or &) = 0 and &( or �)=1:
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Figure 1: PDF at the mean for GED, EGB2 and t-distributions with the same
kurtosis.

the t distribution from the graph, and the only discernible di¤erence among the

three distributions is in the peak, which is higher and more pointed for the GED.

The EGB2 in turn is more peaked than the t. As the excess kurtosis increases, the

di¤erences between the peaks become more marked; see Figure 1.

4.2 Dynamic scale model

The �rst-order dynamic scale model with EGB2 distributed errors is (5) where "t

is a standardized (� = 0; � = 1) EGB2, that is "t � EGB2(0; 1; �; &): Thus the

conditional distribution is

ft(yt;�; ; �; &) =
expf�(yt � �)e��tjt�1g

e�tjt�1B(�; &)(1 + expf(y � �)e��tjt�1g)�+&
;

where  now denotes the parameters in (6). The conditional score is

ut =
@ ln f(yt)

@�tjt�1
= (� + &)"tbt � �"t � 1; (21)
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where "t = (yt � �)e��tjt�1 and

bt =
expf(y � �)e��tjt�1g

1 + expf(y � �)e��tjt�1g
=

exp "t
1 + exp "t

:

At the true parameters values, bt � beta(�; &).

The model may be parameterized in terms of the standard deviation, �tjt�1; by

de�ning �t = "t=h: Then

yt = �+ exp(��;tjt�1)�t; t = 1; :::; T;

with the only di¤erence between ��;tjt�1 and �tjt�1 being in the constant term which

in ��;tjt�1 is !� = ! + lnh; see the earlier discussion in sub-section 5.1. Note that

the variance of �t is unity.

Writing the score, (21) as

ut = h(� + &)�tbt � h��t � 1; (22)

it can be seen5 that when � = & = 0;
p
2 j�tj � 1 and, when � = & !1; ut = �2t � 1:

Figure 2 compares the way observations are weighted by the score of an EGB2

distribution with � = & = 0:5; a Student�s t7 distribution and a GED(1:148). These

are the same distributions used in Figure 1; all have excess kurtosis of 2. Dividing

(22) by �t gives a bounded function as j�tj ! 1: This is consistent with the �soft�

5When � = 0, �h =
p
2 and bt degenerates to a Bernoulli variable such that bt = 0 when �t < 0

and bt = 1 when �t > 0. Then 2bt � 1 = 1 (�1) for �t > 0 (�t < 0) and the score can be written
as: ut =

p
2 j�tj � 1.

As regards � !1; note that because @bt=@�t = hbt (1� bt), a �rst order Taylor expansion of bt
around "t = 0 yields bt ' 1

2 +
h
4 �t:Therefore 2bt � 1 ' (h=2)�t and ut ' (�h

2=2)�2t � 1. As � !1,
�h2 ! 2.
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Figure 2: Score functions for EGB2 (thick line), GED (medium line) and t (thick
dash), all with unit variance and an excess kurtosis of 2. Thin dash shows normal
score. (These score functions are even).

Winsorizing6 of the location score; see Caivano and Harvey (2014).

The unconditional mean is given byE (yt) = �+E ("t)E(e
�tjt�1); whereas them�

th unconditional moment about the mean is E ("mt )E(e
m�tjt�1); m > 1: In the Beta-

t-EGARCH and Gamma-GED-EGARCH models analysed in Harvey (2013, ch4),

the expression E(exp(m�tjt�1)) depends on the moment generating functions (MGF)

of beta and gamma variates, respectively, which have a known form. For EGB2-

EGARCH, the unconditional moments depend on the MGF of ut; ie EEGB2(�;&)[mut];

where ut is de�ned in (21). For the limiting normal and Laplace cases of the EGB2,

the score functions and hence the unconditional moments are the same as for � = 2

and � = 1 in Gamma-GED-EGARCH; see Harvey (2013, sub-section 4.2.2). For

� = 1 it is necessary to have m� < 1 in the �rst-order model for the m� th moment
6The M-estimator, which features prominently in the robustness literature, has a Gaussian

response until a certain threshold, K; whereupon it is constant; see Maronna et al (2006, p 25-31).
This is known as Winsorizing as opposed to trimming where observations greater in absolute value
than K are set to zero.
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to exist, whereas for � = 2 the condition is m� < 1=2: For 0 < �; & < 1 having

the last condition hold is therefore su¢ cient for the existence of the unconditional

moments. This being the case, we can at least assert, from Jensen�s inequality, that

the unconditional moments exceed the conditional moments and that the kurtosis

increases; see Harvey (2013, p 102).

The MGF of ut is also required to �nd the conditional expectations needed to

forecast volatility and volatility of volatility. However, it is the full ` � step ahead

conditional distribution which is often needed in practice and this is easily simulated

from standardized beta variates. The quantiles, such as those needed for VaR and

the associated expected shortfalls, may be estimated at the same time.

4.3 Maximum likelihood estimation

The asymptotic distribution of the ML estimators of the parameters in a dynamic

scale model with a symmetric EGB2 distribution is given in the proposition be-

low. The score and its derivatives are linear combinations of variables of the form

"rt b
h
t (1 � bt)

k; r; h; k = 0; 1; 2:: and the properties of these variables are such that

the conditions for convergence and asymptotic normality of the maximum likelihood

estimator may be veri�ed without too much di¢ culty. The formulae for the general

result on the asymptotic distribution are quite complex; see and Harvey (2014).

Proposition 1 Suppose that "t in (5) is known to be symmetric with a standardized

EGB2(0; 1; �; �) distribution: Let �tjt�1 be generated by (6) with j�j < 1. De�ne a; b

and c as in (7) with

E(u0t) =
1� 2�2 0(�)� 2�

2� + 1
= ��2u (23)
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E(u02t ) =
�3 (� + 1)

(2� + 3) (2� + 1)
(2 000(� + 2) + 12 02(� + 2)) + �2u + 1 (24)

and

E(utu
0
t) = �1: (25)

Let  = (�; �, !)0: Assuming that b < 1 and � 6= 0; (�; e 0;e�; )0; the ML estimator
of (�; 0; �)0; is consistent and the limiting distribution of

p
T (e�� �; (e � )0;e� �

�)0 is multivariate normal with mean vector zero and covariance matrix given by

V ar(e�; e ;e�; ) = I�1(�; ; �); where the information matrix is

I

0BBBB@
�

 

�

1CCCCA =

266664
�2

1+2�
E(e�2�tjt�1) 0 0

0 2�+2�2 0(�)�1
1+2�

D( ) �1
�
d

0 �1
�
d0 2 0(�)� 4 0(2�)

377775 : (26)

The block diagonality of (26) means that the asymptotic variances of � and the

parameters in  can be computed even though an expression for the unconditional

expectation of exp(�tjt�1) is di¢ cult to derive for 0 < � <1:

Remark 1 The information matrix is more complicated if !� (which is !+lnh) is

used rather than ! (although it can still be found). However, standard errors are of

little practical importance for the constant term and the standard errors of the other

parameters do not depend on its parameterization.

When � = 0, so that the distribution is Laplace, E(u0t) = �1: Similarly as

� ! 1; E(u0t) = �2; which is the correct result for a Gaussian distribution. In

addition, when � = 0, both  0(� +2) and  000(� +2) are �nite, so E(u02t ) = 2. Hence

b = �2 � 2��+ 2�2; (27)
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which is the same as given by the expression in Harvey (2013, p 120) for b in

Gamma-GED-EGARCH when � = 1. (Also c = �1:) Similarly for � !1;

b = �2 � 4��+ 12�2:

5 Exchange rates

Tables 1 and 2 report the full ML estimates of the (symmetric) EGB2-EGARCH and

Beta-t-EGARCH models for the returns of exchange rates of developed and emerg-

ing countries against the US dollar. Developed countries currencies include the

Australian dollar (AUD), the Canadian dollar (CAD), the Swiss franc (CHF), the

Denmark krone (DKK), the Euro (EUR), the Pound sterling (GBP), the Japanese

yen (JPY), the Norwegian krone (NOK), the New Zealand dollar (NZD) and the

Swedish krona (SEK). Emerging countries currencies include the Brazilian Real

(BRL), the Chinese renmimbi (CNY), the Hong Kong dollar (HKD), the Indian

rupee (INR), the South Korean won (KRW), the Sri Lanka rupee (LKR), the Mex-

ican peso (MXN), the Malaysian ringgit (MYR), the Singapore dollar (SGD) the

Thai baht (THB), the Taiwan dollar (TWD) and the South African Rand (ZAR).

Exchange rate data are daily and range from 4th January 1999 to 15th March 2013.

As can be seen, the EGB2 gives a better �t for �ve developed countries, whereas

the t is best for four. In the case of Switzerland, the exchange rate experienced a

sudden fall on 6th September 2011 when the Swiss National Bank announced its

intention to enforce a ceiling on the exchange rate of the euro against the Swiss franc.

If the resulting outlier is removed from the returns series, the EGB2 performs better

than the Student�s t. For the developing countries the situation is very di¤erent in

that the EGB2 is better than the t in only three cases out of 12. For four currencies
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the estimated degrees of freedom of the t-distribution is below three and in these

cases the ML estimation of the EGB2 model failed to converge7.

EGB2 t

� � ! � Log-L � � ! � Log-L

AUD 0.030 0.991 -5.34 1.29 12523.7 0.030 0.992 -5.04 9.22 12526.2

CAD 0.023 0.996 -5.55 1.71 13823.2 0.024 0.996 -5.40 12.64 13822.4

CHF 0.018 0.993 -5.56 1.05 12848.2 0.017 0.994 -5.14 8.47 12849.9

CHF* 0.017 0.994 -5.47 1.22 12865.0 0.016 0.994 -5.13 9.69 12863.1

DKK 0.019 0.995 -5.61 1.12 13086.9 0.018 0.995 -5.22 8.87 13086.9

EUR 0.017 0.995 -5.43 1.46 13118.4 0.017 0.995 -5.20 11.13 13117.4

GBP 0.022 0.994 -5.30 2.30 13575.8 0.022 0.994 -5.33 16.01 13575.3

JPY 0.024 0.989 -5.87 0.73 13074.7 0.024 0.990 -5.21 6.14 13078.2

NOK 0.018 0.997 -5.38 1.54 12596.8 0.018 0.997 -5.19 11.03 12596.1

NZD 0.024 0.992 -5.41 1.03 12184.0 0.024 0.992 -4.98 7.77 12184.7

SEK 0.018 0.996 -5.15 1.91 12547.4 0.018 0.996 -5.07 13.18 12546.9

* CHF series without the outlier corresponding to September 6, 2011

Table 1 ML estimates for exchange rate data (developed countries)

7Although it is not the purpose of this exercise to compare DCS EGARCH models with standard
GARCH - there is already a good deal of evidence in Creal et al (2011), Harvey and Sucarrat (2012)
and elsewhere to suggest that DCS EGARCH tends to be better- we did �t GARCH-t models and
found that in only 7 out of 23 cases did they beat Beta-t-EGARCH.
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EGB2 T

� � ! � Log-L � � ! � Log-L

BRL 0.082 0.975 -5.25 1.08 12099.7 0.087 0.974 -484 8.30 12098.8

CNY 0.011 0.998 -9.73 0.35 23414.1 0.057 0.999 -9.38 5.37 23919.2

HKD - - - - - 0.213 0.985 -9.15 2.29 26527.7

INR - - - - - 0.102 0.992 -6.49 2.97 16136.4

MYR 0.024 1.000 -10.11 1.16 21792.3 0.078 1.000 -9.81 9.64 21907.8

MXN 0.055 0.979 -5.63 1.31 13727.8 0.055 0.980 -5.34 9.32 13728.9

ZAR 0.042 0.991 -5.09 1.18 11596.4 0.042 0.991 -4.74 8.75 11596.5

SGD 0.032 0.989 -6.48 0.89 15724.7 0.033 0.989 -5.95 7.04 15726.9

KRW 0.074 0.985 -6.75 0.33 14026.1 0.074 0.984 -5.49 4.83 14020.1

LKR - - - - - 0.167 0.974 -7.08 1.89 18451.6

TWD - - - - - 0.111 0.974 -6.47 2.72 16727.3

THB 0.096 0.968 -7.25 0.31 15410.3 0.091 0.970 -5.95 4.26 15405.3

Table 2 ML estimates for exchange rate data (emerging countries)

6 Scale parameters and tail indices

Tail index estimators may be computed prior to �tting DCS-EGARCH volatility

models. As such they may be used as starting values for an iterative maximum

likelihood estimation procedure. Sub-section 6.1 reviews tail estimators and sub-

section 6.2 presents evidence on the accuracy with which they may be expected to

estimate the scale parameters of an EGB2 distribution when applied to the residuals

from �tting a preliminary model to returns. A similar analysis is conducted on the

estimation of the degrees of freedom of a t-distribution from tail indices computed
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from the logarithms of absolute returns. Sub-section 6.3 returns to the exchange

rate data of Section 5 and presents estimates of the tail indices, and implied shape

parameters, computed from the residuals from GARCH models. These estimates

are much smaller than the corresponding ML estimates.

The use of residuals from a preliminary model can be avoided simply by using

the raw data on returns because, in theory, the tail index estimators will still be

consistent; see Resnick and Starica (1995). However, it seems that the increased

kurtosis induced by dynamic volatility can substantially increase the downward bias.

These �ndings have important implications for the conclusions to be drawn from

estimating tail indices by nonparametric methods.

6.1 Tail index estimators

Hill�s estimator of the tail index for a fat-tailed distribution is

b� =  k�1 kX
j=1

lnxj � lnxk

!�1
=

 
k�1

kX
j=1

yj � yk

!�1

where xj and yj; j = 1; :::; k; denote the observations in descending order. Em-

brechts, Kluppelberg and Mikosch (1997, p 336-7) set out the asymptotic properties

for a power law distribution of the form (3). The variance of the limiting (normal)

distribution of
p
k(b�� �) is �2; so the asymptotic variance of lnb� is 1=k. Note that

the asymptotic theory requires not only that T and k !1; but that k=T ! 0:

A similar estimator, b�; may be constructed for the lower tail index by putting
the observations in ascending order and using the smallest observations. When

the observations come from a (symmetric) distribution, an estimate of location is

subtracted and Hill�s estimator is then constructed from the logarithms of absolute

values.
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It is well-known that Hill�s estimator can be quite badly biased; it is usually too

low. Various alternatives have been suggested, one of the more recent ones being the

OLS estimator from a regression of log rank minus half on log size; see Gabaix and

Ibragimov (2011). However, even the improved estimators have bias and this bias

turns out to play an important role in in�uencing the conclusions that one might

be tempted to draw.

Because the performance of both Hill�s and OLS estimates improves the more

observations are excluded from the tail, one might be tempted to exclude as many

observations as possible. However, doing so can lead to very imprecise estimates.

A careful choice of the truncation point is needed in order to achieve a good bias-

variance trade-o¤; see the plots in Embrechts et al (1997).

6.2 Tail index estimators of shape parameters for EGB2 and

Student t distributions

The upper and lower tail indices in the GB2 distribution are �& and �� respectively.

Hence estimators of & and � in the EGB2 model may be obtained from standardized

residuals from an initial model by solving the equations b� = h(b�;b&)b& and b� = h(b�;b&)b�:
Note that the lower bound for � (= �) is obtained in the symmetric model when

� = & = 0 and is
p
2: More generally the lower bound is one for b� ( b�) when &(�) = 0

and �(&) > 0: There is no �nite upper bound. In the symmetric case the tail index

values implied by various values of � = & - given in brackets - are as follows: 14: 18

(100); 3: 33 (5), 2: 27 (2), 1: 81 (1), 1: 57 (0.5).

When Hill�s estimator is constructed from the logarithms of absolute values of

residuals, it gives an estimator of the degrees of freedom of a t-distribution directly.

In order to assess the accuracy of the Hill�s and OLS estimators for the EGB2 and
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Figure 3: Average estimates of tail index plotted against true tail index for a GB2
corresponding to EGB2(0; 1; �; �):

t-distributions, simulations for T = 10; 000 were carried out using 1,000 replications.

The results for an EGB2(0; 1; �; �) are shown in Figure 3; setting with � = 1 means

that � = �: The OLS estimator dominates Hill�s estimator in terms of bias, but

it still underestimates the true tail index, with the bias increasing with the shape

parameter. The bias also depends on how many observation are included in the tail:

when 10% of the observations are included, the bias is already non-negligible for

� = 1:5. On the other hand, if we include only 1% of the observations, the estimate

is still relatively reliable when � = 2:

The ML estimates of the EGB2 shape parameters reported in Table 1 are all

quite low. Hence the tail index estimates obtained by the Hill and OLS methods will

provide good starting values for parameters of this order of magnitude. On the other

hand, for a t distribution, the bias in Hill�s estimator is large even for a relatively

small degrees of freedom and a 1% truncation; see Figure 4. The bias becomes

considerably worse as the degrees of freedom increase. The OLS estimator o¤ers
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Figure 4: Average estimates of tail index plotted against degrees of freedom for t� :

some improvement but not a great deal. The same is true of other modi�cations.

Studies of new estimators are often con�ned to small tail indices; for example,

Huisman at al (2001) only8 present results for a t-distribution with � � 5:

The di¤erences in the value of the tail index estimators as starting values for t

and EGB2 stems from the fact that the low values of the EGB2 shape parameter, �;

correspond to tail indices for the GB2 distribution that are much smaller than the

the tail indices for the t-distribution. Figure 5 shows the tail index estimators for

EGB2 and t-distributions plotted in such a way that the values of � on the horizontal

axis for EGB2 correspond to a tail index for GB2 that is similar to the degrees of

freedom ( and hence tail index) for the t.

The above graphs prompt the question as to the behaviour of tail estimators when

the distribution does not have fat tails. An analysis of the log-normal distribution

provides some insight. The log-normal distribution is sub-exponential9, but it is not

fat-tailed and all its moments exist. Hence the tail index should theoretically be

in�nite. However, consider Hill�s estimator which, as McNeil et al (2005, p 286-7)

8Nevertheless they conclude on p 214 that �..tail fatness is easily exaggerated in small samples.�
9See Embrechts, Kluppelberg and Mikosch (1997, p 34)
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Figure 5: Hill�s and OLS estimates compared for GB2 and t distributions.

observe, is motivated by the mean excess function of the logarithm of variable, x;

with a fat-tailed distribution, that is

e(y�) = E(y � y� j y > y�); (28)

where y = lnx. Hill�s estimator is the inverse of the sample mean excess function.

For a Pareto distribution, y is exponentially distributed and e(0) = 1=� is just the

mean. For the log-normal, we can make use of the relationship between ES(�);

the expected shortfall for a Gaussian variable, that is y � N(�; �2); beyond the �

quantile, and the mean excess function. Speci�cally,

e(y� = y�) = ES(�)� �� z��;

where y� = � + z�� and z� is the � quantile for a standard normal variate. From
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the formula for ES(�) derived in McNeil et al (2005, p 45),

e(y�) = �

�
�(z�)

1� �
� z�

�
;

where �(z) is the PDF at z of a standard normal variate. Evaluating 1=e(y�) then

gives the p lim of Hill�s estimator, which we will denote as H�: Table 3 shows H�

multiplied by � for typical values of �: The estimator improves, in the sense that its

p lim gets bigger, as � gets smaller, which is consistent with k=T ! 0: As � ! 0;

the log-normal tends towards a (degenerate) normal and H� ! 1: On the other

hand, as � increases, H� ! 0: The fall in H� corresponds to an increase in excess

kurtosis, which is exp(4�2) + 2 exp(3�2) + 3 exp(2�2) � 6: For � = 0:5; the excess

kurtosis is 5:90 whereas the skewness, (exp(�2)+2)
p
exp(�2)� 1; is 1: 75: For � = 1;

the skewness is far more pronounced and the excess kurtosis is 110: 94: Even with

� = 0:5; one might conclude, quite erroneously, that, on the basis of the 5% quantile,

the existence of �fth moment, and perhaps even the fourth, is in doubt. Even setting

� to the unrealistically small value of 0:001 gives a p lim of only twelve for Hill�s

estimator.

� 0:10 0:05 0:01 0:001

�H� 2:10 2:39 3:23 6:00

Table 3 Plim of Hill�s estimator (times �) for data from a lognormal distribution

for di¤erent quantiles, �:

The above analysis suggest that tail index estimates may be low even when the

true index is in�nite, with the index estimates being closer to zero the higher is the

kurtosis. The average tail indices computed from the logarithms of absolute values

of returns of a simulated EGB2 distribution are shown in Figure 6 and the results

con�rm this conjecture. For example, when � = 1; the Hill�s estimates are centred on
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Figure 6: Average estimates of tail index from the logarithms of absolute returns
plotted against � when data is EGB2(0; 1; �; �).

H0:05 ' 4:5 while the corresponding �gure for the OLS estimator is approximately

5:3:

6.3 Estimates of shape parameters from tail indices of resid-

uals

Tables 4 and 5 compare the ML estimates of the shape parameters for EGB2-

EGARCH and Beta-t-EGARCH models obtained in Section 5 with those implied

by the Hill�s and OLS estimates10 obtained from the standardized residuals of a

GARCH(1,1) model (estimated by QML, assuming normality). For Beta-t-EGARCH

the tail estimates are computed from the logarithms of absolute values. The implied

EGB2 shape parameter is given by solving the equation � = �
p
2 0(�), whereas the

degrees of freedom for the t is the tail index. As might be expected from Figure 4,

10In order to choose the optimal truncation point for the Hill�s and OLS estimators a commonly
suggested strategy is to plot the estimators for various truncation points and to choose one in
a region were the estimator is reasonably stable. A look at Hill�s plots showed them to be very
unstable in many cases. Nevertheless we report the maximum value obtained in this way (for
thresholds less than 20%).
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both Hill�s and OLS estimates tend to be much smaller than the ML estimates of

� in the t-distribution. This is not true of the estimates for the EGB2 distribution,

for the reasons given earlier. However, for emerging countries there are a number of

missing entries for EGB2 because the corresponding tail index estimate was below

the theoretical lower bound of
p
2; it comes as no surprise that most of these occur

when the ML procedure failed to converge. In such cases there is a clear indication

of fat tails.

Developed countries

Hill�s OLS EGB2-EGARCH

5% 10% max 5% 10% max � Implied kurtosis

AUD 0.93 1.08 1.11 - 0.20 0.56 1.29 0.94

CAD 1.73 1.60 1.93 1.16 1.41 1.45 1.71 0.70

CHF 1.24 1.36 1.40 - 0.57 0.82 1.05 1.15

DKK 1.46 1.12 1.47 0.46 0.80 0.95 1.12 1.08

EUR 2.10 1.44 2.10 1.50 1.58 1.60 1.46 0.83

GBP 2.03 1.55 2.11 2.00 1.85 2.35 2.30 0.51

JPY 0.35 0.53 0.73 - - 0.28 0.73 1.56

NOK 1.19 1.15 3.28 1.79 1.34 2.88 1.54 0.78

NZD 0.56 0.86 0.98 0.17 0.44 0.65 1.03 1.17

SEK 1.53 1.23 2.57 2.20 1.61 3.29 1.91 0.62

Table 4a Shape parameter estimates implied by tail index estimates for EGB2-

EGARCH.
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Developed countries

Hill�s OLS Beta-t-EGARCH

5% 10% max 5% 10% max � Implied kurtosis

AUD 4.52 3.88 4.70 4.30 4.23 4.33 9.22 1.15

CAD 5.20 4.30 6.60 5.54 5.07 6.55 12.64 0.69

CHF 4.79 4.17 5.90 4.98 4.68 5.01 8.47 1.34

DKK 5.11 3.88 6.19 5.19 4.72 5.20 8.87 1.23

EUR 5.68 4.16 6.47 5.81 5.14 6.73 11.13 0.84

GBP 5.49 4.24 7.17 6.13 5.24 8.05 16.01 0.50

JPY 3.89 3.33 4.26 4.01 3.72 4.33 6.14 2.80

NOK 4.64 3.92 8.99 5.92 4.65 9.10 11.03 0.85

NZD 4.01 3.67 4.67 4.39 4.06 4.95 7.77 1.59

SEK 4.98 3.95 7.52 6.33 4.85 9.32 13.18 0.65

Table 4b Tail index (degrees of freedom) estimates for Student�s t
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Emerging countries

Hill�s OLS EGB2-EGARCH

5% 10% max 5% 10% max � Implied kurtosis

BRL 0.68 0.85 1.13 0.12 0.45 0.70 1.08 1.12

CNY - - - - - - 0.35 2.35

HKD - - - - - - - -

INR - - - - - - - -

KRW 0.22 0.35 0.50 - - 0.03 0.33 1.04

LKR - - - - - - - 0.93

MXN 0.47 0.63 0.85 - 0.28 0.50 1.31 1.03

MYR - - - - - - 1.16 1.33

SGD 0.53 0.70 0.73 - 0.15 0.42 0.89 2.40

THB - 0.10 0.34 - - - 0.31 -

TWD - - - - - - - -

ZAR 0.84 0.99 1.27 0.92 0.89 1.25 1.18 2.45

Table 5a Shape parameter estimates implied by tail index estimates for EGB2-

EGARCH.
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Emerging countries

Hill�s OLS Beta-t-EGARCH

5% 10% max 5% 10% max � Implied kurtosis

BRL 4.00 3.44 4.83 4.11 3.89 5.37 8.30 1.40

CNY 2.60 2.02 2.92 2.58 2.37 2.58 5.37 4.38

HKD 2.42 2.14 2.85 2.39 2.33 2.39 2.29 -

INR 2.98 2.54 3.24 3.09 2.85 3.18 2.97 -

KRW 3.86 3.23 4.79 4.20 3.76 4.48 4.83 1.06

LKR 2.53 2.24 2.65 2.39 2.42 2.45 1.89 1.13

MXN 4.05 3.50 5.27 4.40 4.02 5.02 9.32 1.26

MYR 3.22 2.53 3.97 3.30 3.05 3.32 9.64 1.97

SGD 4.07 3.52 5.01 4.33 3.97 4.63 7.04 7.23

THB 3.47 3.08 4.25 4.00 3.51 4.60 4.26 -

TWD 3.05 2.65 3.33 3.12 2.93 3.18 2.72 -

ZAR 4.25 3.74 6.18 5.00 4.30 6.91 8.75 23.08

Table 5b Tail index (degrees of freedom) estimates for Student�s t

6.4 Tail index estimates for raw data

Although the tail index estimators are consistent when computed from raw data,

they are typically much lower the corresponding estimates obtained from residuals.

This is certainly true of the tail index estimates of the exchange rates of Section 5

as reported by Ibragimov et al. (2013). Even for the developed economies, the tail

index estimates are mostly less than four, implying in�nite fourth moments; see also

Loretan and Phillips (1994).

There is some work to suggest that for fat-tailed conditional distributions, a
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GARCH(1,1) process can lower the tail index when it is close to IGARCH; see

Mikosch and Starica (2000) and Huisman et al (2001, p212). However, some cal-

culations in McNeil et al (2005, p 296-7) suggest that, for plausible values of the

parameters, the reduction may be small. For a stationary Beta-t-EGARCH the

situation is perhaps more clear-cut in that a basic property of the model is that

the existence of moments, and hence the tail index of the conditional distribution,

is not changed by changing volatility. What does change, for EGB2 EGARCH as

well as Beta-t-EGARCH, is that the excess kurtosis increases. The increase can be

worked out and Table 6 shows the (proportional) increase for normal, Laplace and

t-distributions. Perhaps surprisingly the increase is bigger for Laplace, and to a

lesser extent normal, than it is for t when � = 0:999: It was noted in the previous

sub-section that tail index estimates can be quite low even when EGB2 �ts better

than t, and so the fact that the increase in kurtosis can be very large for a Laplace

distribution with persistent volatility is of some signi�cance.

Kurtosis Increase in kurtosis, K

� - .03 .06

� - .98 .99 .999 .98 .99 .999

normal 3 1.05 1.10 2.35 1.24 1.54 43.38

Laplace 6 1.10 1.28 5.51 1.54 2.36 1881

t 6 1.25 1.34 1.64 1.74 2.69 8.52

Table 6 Increase in kurtosis induced by changing volatility

7 Conclusions and extensions

Most �nancial returns time series exhibit non-normal behavior, which is often mod-

eled by a Student t distribution. This choice is strongly supported by tail index
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estimates, which almost invariably point to fat-tailed distributions. We argue here

that the fat-tailed distributions are not always appropriate and that for many re-

turns series a leptokurtic distribution which is light-tailed can give a better �t. The

EGB2 distribution provides a bridge between the normal and t-distribution in that

it exhibits excess kurtosis without having heavy tails. Unlike the general error dis-

tribution (apart from Laplace), it has a score function that is bounded when divided

by the variable. This property corresponds to the gentle form of Winsorizing that

is a feature of the EGB2 score for location. Both EGB2 and a modi�ed version of

the t-distribution are able to handle asymmetric distributions.

The EGB2 and Beta-t-EGARCH models were �tted to data on exchange rates

and stock returns. For the exchange rates of developed countries, the evidence for

fat-tails is unconvincing. On the whole the EGB2 �ts better than the t, with the tail

indices computed for both residuals and raw data being entirely consistent with the

kind of values indicated by our simulations. The case for fat-tails in the distributions

of developing country exchange rates is more persuasive. Similarly for most stock

prices a t-distribution seems to �t better than EGB2.

The raw tail indices are very misleading when the conditional distribution is not

fat-tailed. Even when the conditional distribution is best modeled by a Student�s t,

tail index estimates are typically much smaller than the degrees of freedom estimated

by maximum likelihood, probably because of the increase in kurtosis which changing

volatility induces. The low tail indices should be treated with caution if conclusions

about the existence of moments are to be drawn. On a more positive note, they

can be useful as an indicator of fat-tailed distributions with very small tail indices.

Similarly they can provide sensible starting values for shape parameters in the EGB2

distribution, because these parameters are typically quite small.

In summary, while it is undeniable that low tail index estimates are a feature of
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�nancial returns, we argue that this does not, in itself, provide strong evidence of

fat-tailed distributions. Our �ndings lend support to the cautionary note sounded

by Clauset et al (2009) on this matter. Placing too much store on nonparametric

estimates, particulary from raw data, is unwise.
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