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TIME-VARYING VOLATILITY AND HEAVY-TAILED MODELS 

 
by Michele Leonardo Bianchi,* Frank J. Fabozzi‡ and Svetlozar T. Rachev† 

 
Abstract 

In this paper we consider several time-varying volatility and/or heavy-tailed models to 
explain the dynamics of return time series and to fit the volatility smile for exchange-traded 
options where the underlying is the main ‘Borsa Italiana’ stock index. Given observed prices 
for the time period we investigate, we calibrate both continuous-time and discrete-time 
models. First, we estimate the models from a time-series perspective (i.e. under the historical 
probability measure) by investigating more than ten years of daily index price log-returns. 
Then, we explore the risk-neutral measure by fitting the values of the implied volatility for 
numerous strikes and maturities during the highly volatile period from April 1, 2007 (prior to 
the subprime mortgage crisis in the U.S.) to March 30, 2012. We assess the extent to which 
time-varying volatility and heavy-tailed distributions are needed to explain the behavior of 
the most important stock index of the Italian market. 
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1 Introduction1

One phenomenon that is inconsistent with the Black-Scholes model is the so-called
“volatility smile” observed by option traders soon after the stock market crash
in October, 19 1987 referred to as “Black Monday”. Using implied volatility as
a measure of volatility, one observes that at-the-money put options had lower
volatility compared to both deep-in-the money and deep-out-of-the money put
options. The implication is that for each strike and for each maturity, there may
exist a different volatility assumption rather than a constant volatility assumption
as assumed in the Black-Scholes framework.

There is a general consensus that asset log-returns exhibit volatilities that
change through time, despite the classical Black-Scholes model assumption that
it is constant. It is reasonable to consider a volatility whose evolution is not
deterministic but depends on random events (i.e. a stochastic volatility or time-
dependent volatility) rather than employ a simplistic model that is inconsistent
with a stylized fact. Observed volatility moves in clusters (if it is high, it remains
high, and if it is low, it remains low) and for this reason it is important to find a way
to take such observed patterns into account when modeling asset prices. Stochas-
tic volatility models have been proposed to allow for a time-varying volatility in
a continuous-time framework. Alternatively, in the financial time-series literature,
GARCH models are a popular choice to model changing variances.

Additionally, the underlying assumption made in most financial models is that
the uncertainty in financial markets can be explained by a normal distribution.
However there is an extensive body of empirical evidence that indicates that the
normal distribution is not flexible enough to explain the dynamics of complex fi-
nancial products. The criticism of the normal model is by no means recent (see
Mandelbrot, 1963). Academic researchers, as well as practitioners, have increas-
ingly applied more complex non-normal distribution models in finance, particularly
since the turn of the century. The introduction of jumps and heavy tails into the
dynamics of stock returns was followed by the introduction of jumps in volatility
dynamics (see Rachev and Mittnik, 2000; Schoutens, 2003; Cont and Tankov, 2004;
and Rachev et al., 2011).

In this paper, we empirically investigate some well-known option pricing mod-
els: the Heston (1993) continuous-time model, enhancements of the Heston model
allowing for jumps proposed by Nicolato and Venardos (2003) and Yu et al. (2011),
and the Heston and Nandi (2000) discrete-time model. These models, together
with continuous-time and time-changed Lévy models (see Schoutens, 2003; Cont
and Tankov, 2004; and Rachev et al., 2011) are compared to discrete-time GARCH
models with normal and tempered stable innovations and with the non-parametric
model proposed by Barone Adesi et al. (2008). In practice, we consider several
continuous-time models: the classical tempered stable and the normal inverse
Gaussian Lévy model, the Heston model, and two modifications of the Heston
model that allow for jumps in stock log-returns, the Ornstein-Uhlenbeck stochas-

1 The authors are grateful to Giuseppe Ferrero, Nicoletta Olivanti, Pietro Tommasino, an two
anonymous referees at the Bank of Italy for their comments and suggestions. Michele Leonardo
Bianchi acknowledges that the views expressed in the article are those of the author and do not
involve the responsibility of the Bank of Italy.
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tic volatility model, and the time-changed classical tempered stable model. We
compare these models with different discrete-time models (i.e. the Heston and
Nandi GARCH model, the filtered historical simulation Glosten-Jagannathan-
Runkle model, the normal NGARCH model, and an alternative NGARCH model
with asymmetric and heavy-tailed innovations).

Most empirical testing of European option pricing models has focused on the
S&P 500 index given the ability to implement the necessary hedging strategy and
the very active futures market for the index. In this paper we study instead
the benchmark stock market index in Italy, the Financial Times Stock Exchange
Milano Indice di Borsa (FTSE MIB), using a large data set of implied volatilities
related to options written on this index. The FTSE MIB index is the reference
index for numerous structured bonds, covered warrants, and certificates traded in
Italy. Given this key role in the Italian financial market, a correct calibration of
the smile is needed for pricing and hedging these products where this stock market
index serves as the reference index. Notwithstanding there have been some recent
papers that have dealt with an analysis of the Italian option market (see Ciccone
et al., 2011; Muzzioli, 2011; and Centanni and Ongaro, 2011), to our knowledge we
believe our paper is the first extensive empirical study that analyzes the statistical
properties of daily log-returns and volatility surfaces of the major Italian index.

The principal purpose of this paper is to assess the extent to which the incor-
poration of stochastic volatility and heavy tails are needed to explain the behavior
of the FTSE MIB index and to properly calibrate the related implied volatility
surface. To do this, we consider two methodologies. First, we compare different
time-varying volatility models in terms of fitting performance and computational
tractability by extracting the historical volatility directly from daily log-returns.
Second, we compare all models proposed in terms of calibration performance and
computing time by fitting on a daily basis the implied volatility surface.

More specifically, after analyzing the distributional properties of FTSE MIB
daily log-returns from a historical time-series perspective, we find that the models
based on the normality assumption do not provide a reliable explanation of the
historical distribution of returns. The empirical evidence indicates that, for the
index that we analyze and for the time period that we investigate, the tempered
stable GARCH model has better explanatory power in fitting daily log-returns
compared to standard models based on the normal distribution assumption and
other continuous-time models of the Heston type.

As far as the smile calibration is concerned, our findings indicate that there are
not remarkable differences in terms of fitting errors between the continuous-time
models analyzed. Although the discrete-time models show less flexibility in fitting
the observed implied volatility surfaces compared to the continuous-time models,
they exhibit a more stable calibration error over time. In most of the trading days
analyzed, the overall error is around 6% for continuous-time models and slightly
more for the discrete-time ones. However, all continuous-time models have spikes in
the behavior of the pricing error corresponding to the three recent market turmoils
(Lehman Brothers bankruptcy in September 2008, the worsening of the Greek
sovereign debt crisis, and the Italian sovereign debt crisis in 2011 when the 10-year
yield spread between Italian government bonds relative to German government
bonds exceeded 550 basis points). Indeed, the dates for which the error is the
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greatest are located in the heart of the crisis. Note that, as it has already been
shown in similar studies (e.g. Guillaume, 2012), our study confirms that models
based on Lévy processes performed poorly during the crisis period. The GARCH
models allowing for heavy tails are only partially affected by those events.

The remainder of this paper is organized as follows. Section 2 reviews the
various continuous-time and discrete-time models considered in the empirical study.
In Section 3 we describe the data analyzed in the empirical study and identify some
computational issues. The historically based estimation and the calibration of the
volatility surface together with the empirical results are discussed in Sections 3.1
and 3.2, respectively. Section 4 summarizes the principal conclusions of the paper
and Appendix A contains the details of the main theoretical results.

2 Modeling stock price returns

2.1 The continuous-time framework

In this section we describe five models under a continuous-time framework. Given
a probability space (Ω,F ,P) and a filtration {Ft} satisfying the usual conditions,
the dynamics of stock price returns is defined as the exponential of a continuous
process (Xt)t≥0

2 starting from 0

St = S0 exp(Xt) (2.1)

and where S0 is the stock price at time 0. In the following we indicate the mar-
ket measure by P (with parameters Θ) and the risk-neutral measure by Q (with
parameters Θ∗). Since we are interested in calibrating both the market measure
and the risk-neutral one, we will describe the relation between the two measures
and the dynamics of stock price log-returns under P which is used to conduct an
analysis from a time-series perspective, and under Q which is used to calibrate
implied volatilities. However, as we describe in Section 3, we do not perform a
jointly calibration of the model by fitting at the same time both the time series of
index log-returns and the cross-section of implied volatilities. Instead, we calibrate
the two measures separately.

2.1.1 The Lévy model

First we consider a simple Lévy based model with constant volatility in order to
empirically prove whether we need a model that allows for stochastic volatility. As
described by Kim and Lee (2007), the model can be written as

dXt = (µt − ψJ(−i))dt+ dJt (2.2)

where µt represents the deterministic drift at time t, Jt is a classical tempered stable
(CTS) process (see Rachev et al., 2011), and ψJ is the characteristic exponent of
J1.3 Under a possible risk-neutral measure, we obtain the following equality

dXt = (rt − dt − ψJ∗(−i))dt+ dJ∗t (2.3)

2 For simplicity in the following we refer to (Xt)t≥0 as Xt.
3 The characteristic exponent is defined in Appendix A.1.
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where rt and dt represent the deterministic risk-free rate and the dividend yield at
time t and J∗t is a CTS process under Q. Under this setting, the equality

µt − ψJ(−i) = rt − dt − ψJ∗(−i) (2.4)

has to be fulfilled for each time t. This result directly follows from Theorem A.2
in the Appendix. The process Jt is said to be a CTS process with parameters (α,
C, λ+, λ−, m) if its characteristic exponent is given by

ψCTS(u) = logE[exp(iuXt)] = iut(m− CΓ(1− α)(λα−1
+ − λα−1

− ))

+ CtΓ(−α)((λ+ − iu)α − λα+ + (λ− + iu)α − λα−)
(2.5)

where α, C, λ+, and λ− are positive constants, 0 < α < 2, and m ∈ R is the mean.
We refer to this model as the CTS model.

In the empirical study we also consider a Lévy model based on the normal
inverse Gaussian (NIG) process; that is, in equations (2.2) and (2.3) Jt (and J∗t ) is
assumed to be a NIG process with parameters (α, β, δ, m),4 given by

ψNIG(u) = iut
(
m− δβ(α2 − β2)−

1
2

)
+ δt

(√
α2 − β2 −

√
α2 − (β + iu)2

) (2.6)

We refer to this model as the NIG model.
Additionally, we add to the dynamic described in equation (2.2) a Brownian

component, thereby obtaining a model with one more parameter (α, C, λ+, λ−,
σ, m) where σ represents the constant volatility of a standard Brownian motion.
That is, under the risk-neutral measure the dynamic of the model is

dXt = (rt − dt −
1

2
σ2 − ψJ∗(−i))dt+ σWt + dJ∗t . (2.7)

We refer to this model as the Bls-CTS model. As demonstrated in Appendix A.1,
the pure jumps CTS models enhanced by adding a diffusion component gives a
more flexible change of measure.

2.1.2 The Heston model

A widely used approach among practitioners to price exotic and structured prod-
ucts has been proposed by Heston (1993) and analyzed in depth by Guillaume and
Schoutens (2012). Heston extended the Black-Scholes model by making the volatil-
ity parameter σ stochastic. More specifically, the stock price process Xt follows
the well-known Black-Scholes stochastic differential equation

dXt = (rt − dt)dt+ σtdWt

dσ2
t = κ(η − σ2

t )dt+ ϑσtdW̃t,
(2.8)

where rt and dt represent the deterministic risk-free rate and the dividend yield at
time t, respectively, Wt and W̃t are correlated Brownian motions with correlation

4 In both the CTS and NIG cases we select a truncation function h, as defined in the Appendix
A.1, such that if m = 0, than the process has zero mean.
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ρ, σ0 > 0, the mean reversion rate κ, the long-run variance η and the volatility of
the variance ϑ are positive parameters. Additionally, one has 2κη > ϑ2 in order to
ensure that the origin is inaccessible, that is, the volatility process does not reach
zero. The dynamics of σt is the well-known Cox-Ingersoll-Ross (CIR) process, that
is a positive mean-reverting process driven by a Brownian motion. As described
by Christoffersen et al. (2010), a possible risk-neutral dynamic is given by

dXt = (rt − dt)dt+ σtdW
∗
t

dσ2
t = (κ− λ)

(
κη

κ− λ
− σ2

t

)
dt+ ϑσtdW̃

∗
t ,

(2.9)

where λσ2 is the volatility risk premium and W ∗
t and W̃ ∗

t are correlated Brownian
motions with correlation ρ under the risk-neutral measure. We refer to this model
as the Heston model. The characteristic exponent of this model with parameters
(κ, η, ϑ, ρ, σ0, m) can be computed in closed form by (see Albrecher et al., 2007)

ψHeston(u) = logE[exp(iuXt)]

= iutm+ ηκϑ−2

(
(κ− ρϑiu− g1)t− 2 log

(
1− g2e

−g1t

1− g2

))
+
σ2

0ϑ
−2(κ− ρϑiu− g1)(1− e−g1t)

1− g2e−g1t

g1 =
√

(ρϑui− κ)2 + ϑ2(iu+ u2)

g2 =
κ− ρϑiu− g1

κ− ρϑiu+ g1

(2.10)

2.1.3 A jump-diffusion stochastic volatility model

The previously described stochastic volatility Heston model can be enhanced by
adding a jump component Jxt to the return dynamics (jump diffusion stochastic
volatility - JD-SV). In this paper we explore the jump-diffusion stochastic volatil-
ity model recently defined by Yu et al. (2011); that is, the stochastic differential
equation defining Xt has the following form

dXt = µtdt+ σtdWt + dJxt

µt = rt − dt −
1

2
σ2
t − ψ

Q
Jx(−i) + λσ2

t

dσ2
t = κ(η − σ2

t )dt+ ϑσt(ρdWt +
√

1− ρ2dW̃t),

(2.11)

where µt is a deterministic function of the time t, respectively, Wt and W̃t are
independent Brownian motions, σ0 > 0, and κ, η and ϑ are positive parameters,
where, one has 2κη > ϑ2 in order to ensure that the origin is inaccessible for
the CIR component of the volatility. The parameter ρ measures the correlation
between volatility and returns. Additionally, ψQ

Jx is the characteristic exponent of
the return jump component and λσ2 represents the volatility premium. It can be
proven that under the risk-neutral measure the stock price model is described by
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the following stochastic differential equation

dXt =

(
rt − dt −

1

2
σ2
t − ψ

Q
Jx(−i)

)
dt+ σtdW

∗
t + dJxt

∗

dσ2
t = (κ− λ)

(
κη

κ− λ
− σ2

t

)
dt+ ϑσt(ρdW

∗
t +

√
1− ρ2dW̃ ∗

t ),

(2.12)

where W ∗
t and W̃ ∗

t are independent under the risk-neutral measure Q and Jxt
∗ is

the jump process under Q.
Yu et al. (2011) considered that Jxt is a variance gamma (VG)5 process with

parameters (C,G,M), that is

ψV G(u) = iu(m− C(λ− − λ+)λ−1
+ λ−1

− )

− C log(λ+λ− + (λ+ − λ−)iu+ u2) + C log(λ+λ−).
(2.13)

By applying Theorem A.2 of Appendix A.1 we would find that the parameter C has
to be the same under both measures P and Q while the parameters G and M can
freely change. As observed by Cont and Tankov (2004), the presence of a diffusion
component provides considerable freedom in changing both the Lévy measure and
the drift, while preserving the equivalent condition between the two measures. In
practice this means that a different choice for µt is also possible. The model can
be easily enhanced by assuming that Jxt is a CTS process with parameters α, C,
λ+, and λ−. Under this assumption, it can be proven that α and C have to be the
same under both measures P and Q, and, as in the above considered VG case, the
parameters λ+ and λ− can freely change.

Yu et al. (2011) shows that the characteristic exponent of this model under the
risk-neutral measure has the following form

ψJDSV (u) = iut(rt − dt − ψQ
Jx(−i)) + ψQ

Jx(u))− b(t)σ0 − c(t)

b(t) =
(iu+ u2)(1− e−δt)

δ + κM + (δ − κM)e−δt

c(t) =
κη

ϑ

(
2 log

2δ − (δ − κM)(1− e−δt)
2δ

+ (δ − κM)t

)
κM = κ− λ− iuϑρ

δ =
√
κ2
M + (iu+ u2)ϑ2

(2.14)

We refer to these models as the Heston-VG model when the jump component
is VG distributed, and the Heston-CTS model when the jump component is CTS
distributed.

2.1.4 Ornstein-Uhlenbeck stochastic volatility model

The CIR model can be enhanced by adding jumps by considering the so-called
jump diffusion CIR (JCIR) model as described by Brigo and Mercurio (2006)

5 A VG process can be viewed as the limiting case of a CTS with α going to zero.
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and by Lando (2004). Alternatively, one can consider pure jumps mean reverting
processes of the Ornstein-Uhlenbeck family. Over the past decade, non-Gaussian
Ornstein-Uhlenbeck (OU) processes introduced by Barndorff-Nielsen and Shephard
(2001) have been widely studied by practitioners and academia from both empir-
ical and theoretical points of view and used in applications in finance, economics,
engineering, and other applied sciences. This family of processes can capture im-
portant distributional properties observed in real data and offer a more flexible
structure with respect to Gaussian-based models. This flexibility, the possibility
to explain certain stylized facts of financial time series, and a suitable degree of
computational tractability have increased the number of applications in finance, in
particular, to stochastic volatility (see Nicolato and Venardos, 2003, among others)
together with a vast amount of theoretical research papers.

As defined by Barndorff-Nielsen and Shephard (2001), an OU process vt is a
solution of a stochastic differential equation of the form6

dvt = −λvtdt+ dZλt. (2.15)

If Zt is an increasing Lévy process with finite variation starting from 0 and if v0 > 0,
it can be proven that the process vt is strictly positive and bounded from below by
v0 exp(−θt). If vt is an OU process with marginal law D,7 then it is referred to as
a D-OU process. Under certain assumptions8 and given a marginal law for D, one
can compute the characteristic function of the process Zt (the so-called background
driving Lévy process (BDLP)). The process vt (σ2

t in the following) can be used to
model volatility.

In this part of the paper, we assume that volatility can be described by a
Gamma-OU process with parameters (λ, C, a).9 This choice is also motivated by
the fact that this leads to a closed-form solution for the characteristic function of
Xt. Under the market measure P the model has the following dynamics

dXt =

(
µt −

1

2
σ2
t

)
dt+ σtdWt + ρdZλt

µt = rt − dt − λψ∗Z(ρ)

dσ2
t = −λσ2

t dt+ dZλt

(2.16)

where µt is a deterministic function of time t, Wt is a Brownian motion, Zt is the
BDLP corresponding to the Gamma-OU process, σ0 > 0, λ is a positive parameter,
and ρ ≤ 0. Under the risk-neutral measure Q it becomes

dXt =

(
rt − dt − λψ∗Z(ρ)− 1

2
σ2
t

)
dt+ σtdW

∗
t + ρdZ∗λt

dσ2
t = −λσ2

t dt+ dZ∗λt

(2.17)

6 The unusual timing λt is deliberately chosen so that the marginal distribution of vt is
independent of the choice of θ (see Barndorff-Nielsen and Shephard, 2001).

7 This means that if one starts the process with an initial value sampled from the D distribu-
tion, at each future time t, vt is distributed as D.

8 One has to assume the law D self-similar. For the definition of self-similarity, see Sato
(1999).

9 See Schoutens (2003) and Bianchi (2012) for more details on this process.
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where rt and dt represent the deterministic risk-free rate and the dividend yield
at time t, respectively, W ∗

t is a Brownian motion, Zt is the BDLP corresponding
to the Gamma-OU process, σ0 and λ are positive parameters, and ρ ∈ R. Also
in this case Theorem A.2 of Appendix A.1 allows one to find the relation between
parameters under the two measures P and Q. We point out that the presence of
the diffusion component allows us to freely change the drift while preserving the
equivalent condition between measures. In practice this means that a different
choice for µt is also possible. In the IG-OU and Gamma-OU cases, the relations
between market and risk-neutral parameters are given by Corollary 3.3 in Nicolato
and Venardos (2003). In particular, in the Gamma-OU case the parameters C and
a can freely change. The characteristic exponent of this model with parameters
(ρ, λ, C, a, σ0, m) has been evaluated by Nicolato and Venardos (2003) and its
closed form is given by

ψJDSV (u) = iut

(
m− λCρ

a− ρ

)
− b(t)g(u)σ2

0

+
C

a− f2(u)

(
a log

a− f1(u)

a− iuρ
+ λtf2(u)

)
b(t) =

1− e−λt

λ

g(u) =
1

2
(u2 + iu)

f1(u) = iuρ− λg(u)b(t)

f2(u) = iuρ− g(u)

(2.18)

In the following, we refer to this model as the SV-GammaOU model.

2.1.5 The time-changed classical tempered stable model

A large part of modern finance has been concerned with modeling the evolution of
return processes over time. By subordination, it is possible to capture empirically
observed anomalies that contradict the classical log-normality assumption for asset
prices. In periods of high volatility, time runs faster than in periods of low volatility.
The subordinator models operational time and provides the so-called fat-tail effects,
often observed in financial markets. The subordination approach has been widely
studied in the literature (see Hurst et al., 1997; Hurst et al., 1999; Geman et al.,
2001; and Geman et al., 2002). In periods of high volatility, time runs faster than
in periods of low volatility.

We conclude this section by describing another well-known technique to build
stochastic volatility models. Indeed we define under the market measure the fol-
lowing log-return process

dXt = µtdt+ dJTt

Tt =

∫ t

0

λsds

dλs = −θλsds+ dZθs

(2.19)

14



where λs is an an Ornstein-Uhlenbeck process as defined in Section 2.1.4 and µt is
a deterministic function of time. Since we do not perform an historical calibration
on this model, we do not provide further details on the choice of µt. If the char-
acteristic function of both processes Jt and Tt is known in closed form and if they
are independent, then it is possible to compute the charactiristic function of the
process Xt. A possible log-return price dynamics under the risk-neutral measure
is given by the following stochastic differential equation

dXt = (rt − dt − ψJ∗
T
(−i))dt+ dJ∗Tt

Tt =

∫ t

0

λsds

dλs = −θλsds+ dZ∗θs

(2.20)

where J∗Tt and Z∗θs are the processes defined under the risk-neutral measure. The
characteristic exponent of the model which assumes that Jt is a CTS process with
parameters (C, λ+, λ−, α, m) and Tt is an integrated Gamma-OU process with
parameters (θ, a, b) starting from λ0 can be computed in closed form. It is given
by (see Cont and Tankov, 2004)

ψCTS−Gamma−OU(u) = logE[exp(iuXt)] = logψT (−iψCTS(u)) (2.21)

where ψCTS is defined in equation (2.5) and the characteristic exponent of the
integrated Gamma-OU process T is given by

ψInt Gamma−OU(u) = exp

(
− iuλ0

θ
(1− exp(−θt))

+
θa

iu− θb

(
b log

(
b

b− iuθ−1(1− exp(−θt)

)
− iut

))
.

(2.22)

We refer to this model as the CTS-GammaOU model.

2.2 The discrete-time framework

In this section, we review three parametric GARCH models and a nonparametric
GARCH model. First we consider the classical normal based Heston and Nandi
GARCH model, then the filtering historical simulation GARCH model where the
empirical innovation needed for pricing purposes is extracted by a likelihood based
estimation on historical returns time series, and finally we describe under both
a normal and a heavy tails framework the nonlinear GARCH dynamic for the
conditional volatility proposed by Engle and Ng (1993).

As shown by Kim et al. (2010), the GARCH stock price model is defined over
a filtered probability space (Ω, F , (Ft)t∈N, P) which is constructed by considering
the σ-algebras generated by a sequence (εt)t∈N of independent and identically dis-
tributed (i.i.d.) real random variables, such that εt is a random variable with zero
mean and unit variance, and assume that E[exεt ] <∞ where x ∈ (−a, b) for some
a, b > 0. A similar condition on the moments is necessary for the construction of
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exponential Lévy models, see Cont and Tankov (2004). Thus, we assume that the
stock price log-returns have the form

log

(
St
St−1

)
= g(rt, dt, λt, σt) + σtεt, 1 ≤ t ≤ T

and the conditional variance process is defined as

σ2
t = h(σt−1, εt−1; Θ), 1 ≤ t ≤ T, ε0 = 0.

The function g explains the behavior of the log-returns, while the function h pro-
vides the conditional variance dynamic depending on parameters Θ. This second
function h defines the behavior of the conditional variance varying over time.

In the following we deal with three different dynamics. The process rt represents
the interest rate and the process dt represents the dividend yield process. The
process λt may be viewed as the market price of risk that we consider constant. A
market price of risk varying over the time is difficult to estimate. To do this one
has to jointly analyze both the return distributions implicit in the time series of
returns and option prices. We do not perform this joint calibration in this paper.
The product σtεt represents the error term with zero mean and variance σt. In the
normal case it is simple to prove that for each t it is normally distributed with zero
mean and conditional variance σt.

2.2.1 The Heston-Nandi GARCH model

In the normal based model we empirically investigate the well-known models for
option pricing with GARCH proposed by Heston and Nandi (2000), where the
stock price log-returns under the market measure are as follows

log

(
St
St−1

)
= rt − dt + λσt +

σt
2
− σ2

t

2
+ σtεt, 1 ≤ t ≤ T (2.23)

and the conditional variance is defined as

σ2
t = α0 + α1(εt−1 − γσt)2 + β1σ

2
t−1, t ∈ N. (2.24)

and we refer to it as the HN-GARCH model. We assume β1 + α1γ
2 < 1 in order

to guarantee the existence of a strong stationary solution with finite mean and
variance. The set of constant parameters is (α0, α1, β1, λ, γ). The particular
conditional volatility structure allows one to obtain a recursive formula to calculate
the price of a European option.

A possible risk-neutral dynamic, as proposed by Duan (1995), is

log

(
St
St−1

)
= rt − dt −

σ2
t

2
+ σtξt, 1 ≤ t ≤ T

where the conditional variance has the form

σ2
t = α∗0 + α∗1(ξt−1 − ω∗σt)2 + β∗1σ

2
t−1, t ∈ N

where ω∗ = γ∗ + λ∗ + 1/2 and ξt is standard normally distributed.
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2.2.2 A nonparametric GARCH model

A possible alternative to the classical parametric GARCH models where a distri-
butional assumption is always assumed is the filtering historical simulation (FHS)
approach. This algorithm has been applied to the study of option pricing in the
GARCH framework by Barone Adesi et al. (2008). Permutations of the historical
series are considered as the source of the randomness without the necessity of any
distributional assumption. The idea comes from the observation that Monte Carlo
simulations drawn from a particular distribution impose the risk structure that one
is supposed to investigate. In particular, with the normal distribution hypothesis
we cannot incorporate excess skewness and kurtosis, and cannot capture extreme
events. Empirical studies show that residuals are not normally distributed; there-
fore, one possibility to overcome this drawback is not to impose any theoretical
distribution. Historical simulations usually sample from past data assuming that
returns are i.i.d.. Thus, one needs to remove any serial correlation and volatility
clusters present in the historical series.

Under the market measure, the stock price has the following dynamics

log

(
St
St−1

)
= µ+ ηt (2.25)

where ηt = σtεt. Additionally, Barone Adesi et al. (2008) assume the asymmetric
Glosten-Jagannathan-Runkle (GJR) model for the conditional variance, that is

σ2
t = α0 + α1η

2
t−1 + γIt−1η

2
t−1 + β1σ

2
t−1 (2.26)

where It−1 = 1 for negative residuals, otherwise it is zero. The set of constant
parameters is (α0, α1, β1, γ). If γ > 0, then the model considers the leverage effect,
that is, bad news raises the future volatility more than good news. This information
is captured by the indicator function It, since volatility increases when a negative
event occurs. In order to obtain a strong stationary solution, it is necessary to
assume that (α1 + γ/2) + β1 < 1. Furthermore, the model requires the condition
α1 + γ ≥ 0.

The empirical innovation density captures potential non-normalities in the true
innovation density. In order to use the estimated residuals for historical simulation,
one needs to scale them with respect to the volatility, that is εt = ηt/σt. It is clear
that the first step is the estimation of the model’s parameters by assuming that
ηt is normally distributed with zero mean and variance σ2

t , and then extracting
the estimated residuals. The historical simulation is provided by a random choice
within the set of estimated residuals after an opportune scaling by σt as explained
above. For each step t, the value of the innovation εt is choosen and the conditional
variance is updated until the entire path is generated.

The dynamic under the risk-neutral measure is

log

(
St
St−1

)
= µ∗ + ηt

σ2
t = α∗0 + α∗1η

2
t−1 + γ∗It−1η

2
t−1 + β∗1σ

2
t−1.

(2.27)

Note that εt is the same under both the market and risk-neutral measures. This
means that the set of parameters of this model is (α∗0, α∗1, β∗1 , γ∗). The empiri-
cal martingale simulation method proposed by Duan and Simonato (1998) ensures
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that parameter µ∗ is chosen so that under the risk-neutral measure Q the equality
E[St/St−1|Ft−1] = ert holds. We note that the log-returns of the market prices
of the underlying asset are used to estimate parameters of the risk-neutral model.
More specifically, random choices of the estimated innovation process εt are gener-
ated to simulate the underlying stock price process under the risk-neutral measure.
In the following, we refer to this model as the FHS model.

2.2.3 The classical tempered stable NGARCH model

By following the approach of Kim et al. (2010), we propose the following stock
price dynamics under the market measure

log

(
St
St−1

)
= rt − dt + λtσt − lεt(σt) + σtεt, t ∈ N, (2.28)

where εt is CTS distributed with zero mean and unit variance (stdCTS) and the
function l is the log-Laplace transform of εt, that is, l(u) = log(E[euεt ]).10 The
one-period ahead conditional variance σ2

t follows a NGARCH(1,1) process with a
restriction 0 < σt < b, i.e,

σ2
t = (α0 + α1σ

2
t−1(εt−1 − γ)2 + β1σ

2
t−1) ∧ ρ, t ∈ N, ε0 = 0, (2.29)

where α0, α1, β1, and γ are non-negative, α1 + β1 < 1, α0 > 0, and 0 < ρ < b2.
Now we briefly describe the behavior of the stock price process under a risk-

neutral measure. Further details are provided by Rachev et al. (2011). The stock
price dynamics under a possible risk-neutral measure can be written as

log

(
St
St−1

)
= rt − dt − lξt(σt) + σtξt, 1 ≤ t ≤ T

and the variance process has the form

σ2
t = (α∗0 + α∗1σ

2
t−1(ξt−1 − kt)2 + β∗1σ

2
t−1) ∧ ρ, 1 ≤ t ≤ T, ξ0 = 0.

where for each 1 ≤ t ≤ T , Pt is a measure under which εt is stdCTS distributed with
parameters Θ and Qt is a measure under which ξt = εt + kt is stdCTS distributed
with parameters Θ∗t , where kt is defined as

kt := λt + γ +
1

σt
(lξt(σt)− lε(σt)) (2.30)

and T ∈ N is the time horizon (see Kim et al., 2010). We refer to this model
as the CTS-NGARCH model. Furthermore, in order to assess whether the CTS
innovation distributional assumption plays a role in the modelling of stock price
returns, we also consider the NGARCH model with normal innovation and refer to
it as the NGARCH model. Since the normal distribution has exponential moments
of any order, the restriction 0 < σt < b is always satisfied because under the normal
distributional assumption b =∞.

10 A stdCTS law has distribution with zero mean and unit variance (see Scherer et al., 2012).
In the following we will refer to it as stdCTS with parameters (λ−, λ+, α).
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3 The empirical study

Here we provide a description of the data used in the empirical analysis. We
obtained from Bloomberg the implied volatilities11 extracted from European call
and put options written on the FTSE MIB index from April 1, 2007 to March
30, 2012 with a maturity between one month and two years and with moneyness
between 80% and 120%. We obtained more than 70,000 observations (from April
1, 2007 to June 1, 2009 we have only options with moneyness between 90% and
110%). We also obtained the closing prices of the FTSE MIB index and the
estimated 1-year dividend yield for that index. The time period in this study
includes the high volatility period after the Lehman Brothers filing for Chapter 11
bankruptcy protection (September 15, 2008) and the recent sovereign debt crisis in
November 2011 when the 10-year Italian BTP was more than 500 basis points over
the German bund with the same maturity. Risk-free interest rates are extracted
from the EURIBOR swap rate for short term maturities up to nine months and
the EU swap curve for maturities from one year to two years. For each observation
day and for each maturity, the discount factor is computed by linear interpolation
of the risk-free term structure.

For each maturity, the implied dividend is extracted by considering the well-
known put-call parity (see Chapter 13 in Hull, 2002) for stocks (or indexes) pro-
viding a continuous dividend yield equal to q

C +Ke−rT = P + S0e
−qT (3.1)

and the estimated 1-year dividend yield provided by Bloomberg is used as starting
point for the algorithm that finds a value for q such that the equality given by (3.1)
is fulfilled.12

There are two possible methodologies to estimate a continuous-time option
pricing model: (1) one can fit the model to the daily implied volatilities calculated
from market prices and check both the model capabilities and the stability of the
parameters, or; (2) one can calibrate both daily returns and implied volatilities by
using a filter. The Kalman filter and its extensions can be taken into consideration
when the model is Gaussian, otherwise a more sophisticated framework has to be
applied (see Christoffersen et al., 2010; Yu et al., 2011; and Li, 2011).

The first approach can be viewed as a short-term static estimation, for the
purpose of pricing and hedging on a daily basis, and for this reason we refer to it
as the market maker approach. Under this approach at a given point in time model
prices have to be as close as possible to the market prices observed and even if the
market is quoting unreasonable prices, market makers have to find the parameters
that replicate those prices. The market maker needs to achieve static consistency
in order to provide at each given point in time two-sided quotes.

The second approach is a long-term dynamic estimation where the stock price
process is estimated by filtering the information coming from the stock market
by looking at the underlying under the market measure and from the derivatives

11 We consider the market implied volatility surface and not Bloomberg evaluations (see Cui
and Zhang, 2011).

12 We use the Matlab r2011a function fzero.
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market by looking at the implied volatilities under the risk-neutral measure for the
purpose of assessing the long-term behavior. Estimated model parameters can be
used to make projections on price movements and then used to trade the difference
between the model prediction and the market quotes. These investment strategies
(known as statistical arbitrage strategies) are commonly used by hedge funds and
banks’ proprietary trading desks and, for this reason, we refer to this second es-
timation methodology as the long-term convergence trader approach. Under this
second approach, one assumes that the model can beat the market, or, more pre-
cisely, one trusts the model prices and tries to find possible arbitrage opportunities
by looking at the differences between model and market prices. Dynamic consis-
tency is important for long-term convergence trading and pricing errors represent
trading opportunities (see Wu, 2008).

A similar approach can be also considered under a discrete-time setting. By
taking into consideration a suitable change of measure (or pricing kernel), Christof-
fersen et al. (2013) jointly analyze both the return distributions implicit in the time
series of returns and option prices and calibrate a GARCH model by maximizing
the sum of the return likelihood and a likelihood based on successive cross-sections
of option prices. They fit their proposed model to weekly data.

As already pointed out, the computational cost of the calibration of stochastic
volatility models under the dynamic approach is much greater than under the
static approach. Even if the computational cost strictly depends on both the
hardware and on the software employed, most of the theoretical research works on
more complex models that apply a nonstandard statistical algorithm to calibrate
both daily returns and implied volatilities, does not report the computational time
needed for the calibration. We suspect that in some cases the computational
time is so high that the algorithm cannot be implemented without having a huge
computational power (i.e. a cluster) and it is difficult to use such models in practice,
for example when a daily estimation is needed for the valuation of a derivatives
portfolio. Mainly for this reason, in this paper we consider only a static approach to
determine the differences between the 12 competitor models we test in this paper.

In Table 1 we briefly summarize the main distinctive features of the mod-
els analyzed in the empirical study. We start from continuous-time Lévy mod-
els (NIG, CTS and Bls-CTS), then we study stochastic volatility models without
jumps (Heston) and with jumps (Heston-CTS, Heston-VG, SV-GammaOU, CTS-
GammaOU), and finally we analyze GARCH models without heavy tails (HN-
GARCH, NGARCH) and with heavy tails (FHS, CTS-NGARCH).

3.1 The historical volatility

The empirical analysis we conduct starts from the estimation of the historical
volatility, that is the volatility extracted by considering only the time series of the
FTSE MIB index log-returns. This empirical study is motivated by the need that
under the discrete-time setting, the first value of the instantaneous volatility σ0 will
be the starting value of the option pricing algorithm. Additionally, for both the
FHS and the CTS-GARCH models the innovation estimates based on the historical
data will be used in the valuation of option prices. More specifically, in the FHS
model the risk-neutral innovations are randomly drawn by taking into account the
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historical one and in the CTS-GARCH model the parameter of the CTS innovations
are assumed to be the same under both the market and the risk-neutral measures.

We estimate the parameters of the discrete-time models using the classical
maximum likelihood estimation (MLE) procedure. The log-likelihood function to
be maximized is of the form

logL(Θ) =
T∑
t=1

1

σt
log f

(
yt −

g(rt, dt, λt, σt)

σt

)
(3.2)

where yt = log(St/St−1) and f is the density function of the innovation. Such
function can be easily written in the normal case, but in general it has a complex
structure or cannot be written in analytic form. Note that because the condi-
tional volatility σt strictly depends on parameters Θ, the likelihood function to be
maximized is viewed as a function of this set of parameters.

In order to find the parameters of these discrete-time models that allow for
volatility clustering, we have to maximize the likelihood function (3.2). In the
optimization problem, the log-likelihood function could be evaluated using the
following recursive method:

1. Set a starting point Θ0 for the model’s parameters and let us consider t = 1.

2. Choose a value for σ0 and set ε0 = 0.

3. Calculate εt = g(rt,dt,λt,σt)2

σt−1
.

4. Calculate σ2
t = h(σt−1, εt−1; Θ) and the sum in equation (3.2) until t.

5. If t = T , return logL(Θ), otherwise go to the next step.

6. Set t = t+ 1 and return to step 3.

The optimization procedure will move the starting point in a suitable direction
until it reaches the optimal solution of the problem. Since in the CTS-GARCH
model only the characteristic function is known, a discrete evaluation of the density
function f together with an interpolation algorithm is used. That is, by means of
the classical fast Fourier transform procedure, the characteristic function is inverted
to calculate the density function (see Scherer et al., 2012). For the CTS-NGARCH
model, the one-step MLE procedure which estimates both GARCH parameters
and innovation parameters at the same time is a complex optimization problem
(see also Rachev et al., 2011). For this reason, we first estimate the NGARCH
parameters by assuming that the innovation is normally distributed. Then, we find
the parameters of the stdCTS distribution that better fit the innovation extracted
under the normal NGARCH model. This two-step procedure is more efficient,
stable, and provides similar estimates to the one-step MLE procedure, in which one
calibrates all the CTS-NGARCH parameters together through the maximization
of (3.2). The results of these two estimation approaches are reported in Table 2.

After having dealt with the four different GARCH models, we want to compare
these estimates with the historical volatility estimated by considering continuous-
time stochastic volatility models. As observed by Christoffersen et al. (2010),
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the empirical challenge in stochastic volatility models is that the unobserved spot
volatility σt is a latent factor. Thus, in order to extract the volatility, we need
to apply to these models a filtering technique using observed index log-returns.
Filtering methods are standard tools for exploring the behavior of the unobservable
factors from observed data and they have been successfully applied to finance
particularly in interest rate term structure and in stochastic volatility models (see,
for example, Bhar, 2010). Inference with filtering methods has been widely studied,
see for example the work of Lopes and Tsay (2010), and applied in engineering and
finance.

In continuous-time stochastic volatility models, the unobserved volatility can be
inferred by the observed stock returns. Since one deals with discrete observations,
in our case with daily returns, the model has to be discretized. More specifically,
the model can be written as

vt = f(vt−1,Θ, ξt−1)

yt = h(vt,Θ, εt)
(3.3)

where vt = σ2
t , t is the day counter and vt is the state variable modeled as a

Markov process with initial distribution p(v0) and transition law p(vt|vt−1). The
state variable follows the dynamics described by the transition function f . The
variable yt represents the set of given observations (in our case the observed index
log-returns). It is assumed to be conditionally independent given the state vt and
with distribution p(yt|vt). Then, ξt−1 depends on the volatility dynamics and the
noise εt is normally distributed noise with mean zero and unit variance, at least
in the stochastic volatility models we are going to study. The function h is the
so-called measurement function, that in our case is given by the stock price returns
model and Θ is a set of static parameters.

If the measurement function h is linear and the state is Gaussian, one can use
the Kalman filter for state and parameter estimation. In all cases we are interested
in, we have a non-Gaussian state and for this reason we apply the the particle
filter (PF) approach. The PF algorithm relies on the approximation of the true
density of the state vt by a set of particles that are updated iteratively through
the dynamics described by the functions f and h in the system defined in equation
(3.3). Given equation (3.3) and since εt is normally distributed, one has a simple
way to evaluate the likelihood that the observation yt+1 has been generated by vt+1.
Hence, one is able to compute the weight given to each particle and to recursively
evaluate the likelihood to be maximized in order to obtain a state and parameters
estimation. The algorithm is briefly described in Appendix A.2 and the estimated
parameters are reported in Table 2.

The two Heston models allowing for jumps in the returns (Heston-VG and
Heston-CTS) can be also estimated by considering similar arguments. In these
two cases, the algorithm that simulates the particles has to generate the CIR
dynamics for the volatility and VG or CTS random numbers for the dynamics
of stock returns. Drawing VG random numbers is of minor concern as they can
be generated as the difference between gamma random numbers: a VG process
can be viewed as the difference between two independent gamma processes (see
Schoutens, 2003). More challenging is the simulation of CTS random numbers,
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but they can be efficiently drawn by the algorithm described in the Appendix A.3.
The estimation of the two Heston models allowing for jumps in log-return dynamics
is more challenging and ad-hoc algorithms may be more efficient and provide better
convergence properties, as discussed by Yu et al. (2011). However, an exhaustive
analysis of all computational issues with which one has to deal in estimating these
models is beyond the scope of this paper.

In Figure 1 we show the dynamics of three GARCH models (HN-GARCH, FHS,
and NGARCH) and four continuous-time stochastic volatility models (three Heston
based and SV-GammaOU). When it is possible, we compare them with the FTSE
MIB index implied volatility extracted from at-the-money options with the shortest
maturity (one month). Even if each model provides distinctive features, the pattern
of the historical-based spot volatility is not far from that of the implied volatility
considered here (except for the HN-GARCH model). The volatility estimated
under the SV-GammaOU model and all GARCH models shows jumps larger than
the Heston-based model, mainly because by construction they concentrate more
probability mass on tail events. Recall that for both the Heston-VG and Heston-
CTS models the jumps are only in the return dynamics and not in the volatility.

In Table 2, we report the estimated parameters and the value of the log-
likelihood for all competitor models. We consider 5,000 particles in all continuous-
time models. Besides estimating the parameters, we apply the Akaike information
criterion (AIC) and the Bayesian information criterion (BIC) to identify the supe-
rior model. The AIC and the BIC are evaluated as

AIC = 2np− 2LL

and
BIC = np log(no)− 2LL

where np is the number of parameters, no is the number of observations, and
LL is the model’s log-likelihood. According to both the AIC and the BIC, the
CTS-NGARCH model is better because its AIC and BIC values are smaller com-
pared with all other competitor models. Regarding the continuous-time models,
the Heston-VG model slightly improves the Heston model, at least for the data
considered in this study.

We conducted an empirical study on all discrete-time models by considering
1,271 rolling windows containing 1,500 daily observations. That is, for each trading
day in which the implied volatility data are available, all GARCH models are
estimated by considering the time series of log-returns of the previous 1,500 trading
days. As we will discuss later, these market estimates will be used in Section
3.2. Table 3 provides summary statistics of the results of the empirical study
conducted over time and across the four GARCH models. As already observed in
previous empirical studies (e.g., see Kim et al., 2010), the CTS-NGARCH model
outperforms its competitors models. In particular, the values of the Kolmogorov-
Smirnov (KS) statistic show the better fit performances of the non-normal model
analyzed here. In the CTS-based GARCH model, since λ+ is always greater than
λ−, the fitted CTS is always skewed to the left. Additionally, the difference between
λ+ and λ− is large (1.6, on average). This difference between the positive and
negative tails in the CTS-GARCH model seems to be the factor that decreases
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the estimation error in terms of KS distance and likelihood function value. We
point out that the asymmetry of the innovation process is captured also by the
non-parametric FHS model. To visualize this phenomenon, in Figure 2 we show
the histogram based on 5 million random simulated innovations drawn from the
NGARCH, FHS, and CTS-GARCH model based on the parameters estimated from
the historical time-series of FTSE MIB log-returns between January 4, 2000 to
March 30, 2012. Recall that FHS innovations are drawn by randomly selecting
from the finite set of historical returns.

3.2 The calibration of the implied volatilities

We consider in the empirical study the market maker approach, in order to study
the pricing performance on a daily basis and pricing error during market downturns.
From a practical perspective, on each trading day we minimize the root mean
square error (RMSE) given by

RMSE(Θ∗) =

√√√√∑
Ti

∑
Kj

(iV olmarketTiKj
− iV olmodelTiKj

(Θ∗))2

NumObs
(3.4)

where Ti (with i =1,. . . ,7) and Kj (with j =1,. . . ,9) are the different maturities
and strikes, respectively, NumObs is the number of observations (63), and Θ∗ is
the parameter vector according to a given model.

In practice, we want to find a Θ∗ such that the model implied volatility (iV olmodel)
is as close as possible to the market implied volatility (iV olmarket). Since the min-
imization of equation (3.4) with respect to the parameters vector Θ∗ has neither
a closed-form solution nor a global minimum, a numerical optimization routine is
needed to find a local minimum.13 As already observed by Fang et al. (2010), the
minimization of equation (3.4) is a well-known ill-posed problem, mainly because
the solution is not necessarily unique and there is no guarantee that a solution
exists. Consequently, it is not a simple numerical procedure. For this reason we
consider a regularization term of the form

f(Θ) = ρ‖(Θ∗ −Θ0)‖2 (3.5)

where ρ is a given constant parameter, Θ0 is a given set of model parameters, and
the optimization problem becomes

Θ̂ = min
Θ∗

(
RMSE(Θ∗)2 + ρ‖(Θ∗ −Θ0)‖2

)
. (3.6)

Furthermore, this approach leads to more parameter stability over time (Fang
et al., 2010). Note that while in the first calibration day t = 1 we set ρ = 0, in the
following days t we set Θ0 equal to the parameters estimated on the previous day,
that is Θ0 = Θ∗t−1.

13 We use the Matlab r2011a function fmincon for the optimization routine and the function
blsimpv to find the implied volatilities from the values of option prices. The procedure was run
on an 8 cores AMD FX processor with 16GB of Ram with a Linux based 64-bit operating system.
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The choice of the parameter ρ influences the model calibration; however, ρ
cannot be fixed in advance but depends on the data at hand and the level of error
present in the data (see Cont and Tankov, 2004). In the calibration exercise, we
consider two different values for ρ. First, we solve the optimization problem (3.6)
without regularization techniques, that is ρ = 0. Then, we solve it with ρ = 1. This
last value for ρ shows a good balance between pricing performance and parameter
stability. In the following we show the results only under the regularized approach,
as the regularized approach shows satisfactory performance compared to the no-
regularized one in terms of calibration error and parameters stability over time. A
similar approach was considered in Bianchi (2012).

Contrary to the classical Black-Scholes case, in the continuous-time models we
note that there is no explicit formula for European call and put option prices.
However, one does not need to recur to Monte Carlo simulation since, thanks to
the closed-form solution for the characteristic functions of models we consider, we
can follow the widely-known analytical (up to an integration) pricing method for
standard vanilla options proposed by Carr and Madan (1999) (see also Schoutens,
2003).

In the discrete-time case, we consider a Monte Carlo simulation routine to find
the price of the options and, thus, the implied volatilities. The simulation algorithm
is inserted into the optimization procedure to find a solution to the problem in
equation (3.4).14 As already noted, the value of the initial conditional variance is
obtained by the historical time series estimation. As already observed in Section
3.1, in the CTS-GARCH model we assume that the parameters of the stdCTS
innovations are the same under both the market and the risk-neutral measure; all
other model parameters are estimated by solving the optimization problem (3.4).
At each time step, we simulate 20,000 random paths for each model that are kept
fixed in the optimization algorithm in order to reduce the variance in the option
valuation and increase the computational speed. At each time step, three matrices
of dimension 20,000× 517 are allocated: the first contains standard normal random
numbers for both the HN-GARCH and the NGARCH model, the second randomly
selected innovations for the FHS model, and the third stdCTS random numbers.
The computational cost needed to simulate the innovations is negligible compared
to the time needed to find a solution for the optimization problem: 0.24 seconds
in the normal case, 0.53 seconds in the FHS case, and 2.23 seconds in the CTS
case. The random stdCTS innovations are simulated by considering the inverse
transform algorithm described in Appendix A.3.

Even though for the HN-GARCH model one may use a recursive formula (see
Heston and Nandi, 2000), we prefer to consider the same simulation algorithm
for all four models in order to have a more precise model comparison that is not
influenced by numerical issues. As observed by Barone Adesi et al. (2008), the
computational time of the Monte Carlo pricing algorithm is roughly the same as
for the competing GARCH pricing models proposed by Heston and Nandi (2000),
where one considers a recursive pricing algorithm and whether Monte Carlo op-

14 As in the continuous-time case, we use the Matlab r2011a function fmincon for the optimiza-
tion routine and the function blsimpv to find the implied volatilities from the values of option
prices.
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tion prices are sufficiently accurate for pricing purposes will be reflected in the
empirical pricing performance of our approach. As we will observe in the following
of the section, given the wide range of moneyness and maturities considered, the
calibration is quite satisfactory.

Based on the average relative percentage error (ARPE)15 over the entire sample
on successive cross-sections of implied volatilities, the CTS-GammaOU model is
the best performing model (ARPE equal to 5.56%), and the HN-GARCH model
is the worst one (ARPE equal to 8.99%). All other continuous-time models have
an ARPE of about 6% and the other discrete-time models of about 8%.

As observed by Lehar et al. (2002), the calibration error varies across moneyness
and maturity. In Tables 4 and 5 we show the value of the ARPE across moneyness
and maturities for each model analyzed. The model parameters are calibrated on
a daily basis by considering the whole volatility surface. For the continuous-time
models, the best results are obtained for moneyness between 100% and 105%. For
moneyness between 80% and 120%, the error is larger. For all other moneyness,
the error increases as one moves away from the moneyness 100-105%. Regarding
maturity, for most of the models, the 6-month implied volatility is the best cali-
brated in term of pricing error. As already observed, the best performing model
is the CTS-GammaOU model across almost all moneyness and maturities, with
errors less than 6% in most of the cases.

The diffusion component in the Bls-CTS model slightly enhances the pure
jumps CTS model. Surprisingly, the pure jumps CTS model shows results compa-
rable to the stochastic volatility models. The addition of jumps into the Heston
model does not markedly affect the performance of the model in term of pricing
error, at least for the data and the estimation method considered in this study.16

The calibration of both the Heston-VG and the Heston-CTS models is not an easy
task as the number of parameters increases dramatically. The NGARCH model
based on the normality assumption of the innovation shows similar results com-
pared to the heavy-tailed CTS-NGARCH model based on the stdCTS assumption.
We observe that under our setting, the parameters of the stdCTS innovation are
calibrated on the time series of the index log-returns and not on the cross-section of
implied volatilities. In Figure 4, we report the implied volatility surface estimates
on a randomly selected date for all models analyzed and they are compared to the
market surface; as also shown in Table 4, for the 80% moneyness the calibration
error is large in all discrete-time models.

The pricing error varies across time as shown in Figure 3. The three GARCH
models seem to be more stable over time with pricing error greater than 15% in
few cases compared with the other competitor models. There were only five times

15 ARPE is defined as

ARPE =
1

NumObs

∑
Ti

∑
Kj

|iV olmarket
TiKj

− iV olmodel
TiKj

|
iV olmarket

TiKj

.

16 As discussed above, Yu et al. (2011) showed that the Heston-VG model can efficiently be
applied to capture the joint dynamics of stock and short-term options closest to the money (i.e.,
with a strike-to-spot price ratio close to one). Here we consider a larger option dataset in terms
of moneyness and maturities on a different underlying.
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that the FHS model error exceeded 15% (17 times for both the NGARCH and
the CTS-NGARCH model). There were 19 times that the CTS-GammaOU model
error exceeded 15%. For all other models, there were more than 46 times that
the ARPE was greater than 15% with a maximum for the HN-GARCH model (63
times). On September 29, 2008 all models had a large calibration error, as the
volatility surface was particularly undulating. Additionally, as shown in Figure 3,
all continuous-time models had three spikes in the behavior of the pricing error
corresponding to the Lehman Brothers bankruptcy, the worsening of the Greek
sovereign debt crisis, and the recent Italian sovereign debt crisis when the 10-year
BTP-bund spread exceeded 550 basis points. The three GARCH models (FHS,
NGARCH, and CTS-GARCH models) were only partially affected by those events.
The FHS model seems to be the best performing among the four GARCH models
analyzed.

In Table 6 we report the risk-neutral parameters estimates and the computing
time (median, 2.5th and 97.5th percentile) across 1,271 trading days. The calibra-
tion on a daily basis is not able to capture the dynamics of the volatility surface
over time and, for this reason, the values reported in Table 6 may differ from those
reported in Table 2. As proposed in Yu et al. (2011), a joint calibration of index
log-returns and implied volatilities has to be considered in order to explore the
dynamics of the historical volatility together with those of the volatility surface.

The NIG model is the best performing in terms of computing time: to calibrate
an observed volatility surface one needs, in median, 168.9 seconds. The computing
time increases if one considers more complex models less parsimonious in terms of
the number of parameters. The Heston-based models have a larger computational
complexity, greater, in median, than 319 seconds in all cases analyzed. For all
GARCH models, the time needed for the calibration is in median less than 500
seconds. The SV-GammaOU model has an acceptable calibration time, in me-
dian less than 249 seconds. The time necessary to calibrate these models generally
increases if one does not consider regularization techniques,17 additionally, allow-
ing one to obtain more stable parameters over time. The calibration algorithm
becomes faster if one fits directly the option prices without inverting the Black-
Scholes formula to obtain the implied volatility. The procedure that involves direct
valuation of option prices without finding the corresponding implied volatility is
seven times faster than the procedure used in this study. However, our choice of
objective function in the optimization problem (i.e., equation (3.4)) is an integral
part of model specification (see also Christoffersen et al., 2010).

As far as the behavior of the risk-neutral estimated parameters over time is
concerned, as expected, more parsimonious models in terms of number of parame-
ters show more stable dynamics over time because, in general, they are simpler to
calibrate, at least with the algorithm considered in this study. The choice of the
regularization function in equation (3.5) implies that the parameters with greater
values are generally more stable over time compared to those with smaller values.
Although for each model an ad-hoc choice of the regularization function is needed
to obtain a similar stability across all model parameters, our results are sufficiently
accurate even with the regularized function in equation (3.5).

17 See Bianchi (2012) and the references therein for a discussion on this topic.
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4 Conclusions

The objective of this paper is twofold. First, we analyzed the dynamics of the
FTSE MIB index log-returns volatility from a historical time-series perspective
by considering both continuous-time and discrete-time stochastic volatility mod-
els. Second, we analyzed the pricing error in calibrating on a daily basis the ob-
served implied volatility surface of a wide range of models that allow for stochastic
volatility and/or heavy tails. The calibration exercise is conducted on the implied
volatilities related to options with a maturity between one month and two years,
with moneyness between 80% and 120% and traded in the period April 1, 2007
and March 30, 2012. We are aware that a proper risk analysis should take into
account a dynamic joint calibration of both the time series of historical returns
and the cross-section of implied volatilities. However, more efficient algorithms
and huge computational power are needed to conduct this kind of empirical study
in real-world applications. Mainly for these reasons, we analyzed the time series of
historical returns and the cross-section of implied volatilities for options separately.

Regarding the historically based estimation, among discrete-time and contin-
uous-time models the CTS-NGARCH is the best performing in terms of both the
Akaike and Bayesian information criterion and it can be effectively used to explain
the dynamics of historical volatility. The estimation algorithm related to the CTS-
NGARCH model is simpler to implement and faster to run in comparison to the
competitor continuous-time stochastic volatility models analyzed in this study.
Stochastic volatility and heavy-tailed models can be useful to explain observed
patterns of the Italian index we investigated.

As far as the implied volatility risk-neutral calibration is concerned, our find-
ings indicate that there are not remarkable differences in terms of pricing errors
between pure jumps Lévy models and continuous-time stochastic volatility models
of the Heston type. However, in theory, the presence of a diffusion component
offers more flexibility to the change of measure needed to jointly analyze the time
series of historical returns and the cross-section of implied volatilities for options.
Although the discrete-time models show less flexibility in fitting the observed smirk
compared to the competitor continuous-time models, they exhibit a more stable
calibration error over time. In calibration exercises of this type an algorithm that
considers a regularization technique is needed to obtain stable parameters over
time, particularly then the number of parameters to be estimated is large. As
expected, more parsimonious models in terms of number of parameters show more
stable parameters over time and they are the best performing in terms of com-
puting time. In general, they are simpler to calibrate, at least with the algorithm
considered in this study.

Since we show that the skewness and fat-tail properties of the Italian daily
log-returns are important to explain the index historical dynamics and to explain
the shape of the implied volatility surface, these empirical findings should be taken
into consideration for pricing and hedging of financial instruments related to the
major Italian market index and for a proper risk assessment of these products.
Not properly accounting for these stylized facts can result in models that may
incorrectly assess the tail risk related to this market.
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A Appendix

A.1 Change of measure for Lévy process

Before explaining how to find a proper change of measure between the market
measure P and the risk-neutral measure Q, we review, some useful definitions.

Theorem A.1 (Lévy-Khintchine formula). A probability law µ of a real-valued
random variable X on R is infinitely divisible with characteristic exponent ψ,∫

R
eiθxµ(dx) = eψ(θ) for θ ∈ R

if and only if there exists a triple (ah, σ, ν) where ah ∈ R, σ ≥ 0, ν is a measure
on R\{0} satisfying ∫

R\{0}
(1 ∧ x2)ν(dx) <∞

and h is a given truncation function such that

ψ(θ) = iaθ − 1

2
σ2θ2 +

∫
R\{0}

(eiθx − 1− iθh(x))ν(dx) (A.1)

for every θ ∈ R.

We say that our infinitely divisible distribution µ has Lévy triplet (ah, σ, ν). The
measure ν is called the Lévy measure of µ, σ represents the Gaussian component,
and a is a constant depending from the truncation function h. If the Lévy measure
is of the form ν(dx) = u(x)dx, we call u(x) the Lévy density. If µ is an infinitely
divisible distribution, there exists a Lévy process (Xt)t≥0 such that the distribution
of X1 is µ. Conversely, if (Xt)t≥0 is a Lévy process, there is always a Lévy triplet
(ah, σ, ν), such that E[eiuXt ] = etψ(u).

Now, we want to find conditions under which the Lévy process Xt under the
measure P is still a Lévy process under a new measure Q. In order to find an
equivalent measure, we will consider the general result of density transformation
between Lévy processes proven in Sato (1999). Even if we restrict our attention to
structure-preserving measures, the class of probabilities equivalent to a given one
is surprisingly large. Nonetheless, as stated in the following theorem (statement
3.), we cannot freely change the drift ah if a diffusion component is not present,
that is if σ = 0.

Theorem A.2. Let (Xt,P) and (X∗t ,Q) be Lévy processes on R with generating
triplets (ah, σ, ν) and (a∗h, σ

∗, ν∗), respectively. Then, P and Q are equivalent for
each t if and only if

1. σ = σ∗;

2. The following integral is finite∫
R
(eϕ(x)/2 − 1)2ν(dx) <∞,

with the function ϕ(x) defined by dν̃
dν

= eϕ(x);
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3. The constant b is such that

a∗h − ah −
∫
R
h(x)(ν∗ − ν)(dx) = bσ2

if σ > 0 and zero if σ = 0.

Proof. See Theorem 33.1 in Sato (1999) and Cont and Tankov (2004).

A.2 Particle filter

In continuous-time stochastic volatility models, the unobserved volatility can be
inferred by the observed stock returns. Since in most of the cases one deals with
daily returns the model has to be discretized. In all the cases we are interested in,
the model can be written as

vt = f(vt−1,Θ, ξt−1)

yt = h(vt,Θ) +
√
vtεt

where vt = σ2
t , t is the day counter, vt is the square of the stochastic volatility

modeled as a Markov process with initial distribution p(v0), and transition law
p(vt|vt−1). Both p and the transition function f depends on the dynamics de-
scribed by model chosen. The variable yt represents the set of given observations
(in our case the observed index log-returns). It is assumed to be conditionally
independent given the state vt and with distribution p(yt|vt). Then, ξt−1 depends
on the volatility dynamics and the noise εt is normally distributed noise with mean
zero and unit variance, at least in the stochastic volatility models we are interested
in studying. The function h is the so-called measurement function, that in our case
is given by the stock price returns model and Θ is a set of static parameters.

Particle filter is a sequential Monte Carlo method for recursively approximating
the posterior density p(vt|y1:t) by assuming a known measurement density h(yt|vt)
and the ability to simulate from the Markov transition density f(vt+1|vt). The
algorithm estimates the posterior density by considering a set of random samples
with associated weights {vit, wit}Ni=1 where N is the number of samples at each given
point in time t. The algorithm, also known as the bootstrap filter, includes three
main steps: (a) sampling, (b) weights computation, and (c) resampling. In our
empirical test we proceed as follows:

1. we sample vit from the distribution p(vt|vt−1) with i ranges from 1 to N , where
N is equal to 5,000;

2. we compute the weight as follows

wit = − 1√
2πvit

exp

(
−(yobservedt − h(vit,Θ))2

2vit

)
,

evaluate the likelihood estimate

L̂t =
1

N

N∑
i=1

wit

and then normalize the weights in order to have
∑N

i=1w
i
t = 1.
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3. we resample by taking into consideration the smooth resampling algorithm
(see Douc and Cappé, 2005; and Malik and Pitt, 2011) and we obtain a
new set of samples ṽit approximately distributed according to p(vt|y1:t) and
evaluate the state

v̂t =
1

N

N∑
i=1

vit;

To estimate the parameters Θ, we build the joint log-likelihood over the entire
observation period, that is

LL(Θ, y1:T ) =
T∑
t=1

log
(
L̂t

)
,

and, finally, we insert this function into an optimization procedure. We use the
Matlab r2011a function fmincon as the optimization routine. The classical Heston
and the SV-GammaOU models have a better convergence property compared to
other competitor stochastic volatility continuous-time models. This is mainly due
to the number of parameters to be estimated.

A.3 Simulate classical tempered stable random numbers

The simulation of a tempered stable random draw is not a simple task. A series
representation algorithm has been proposed in Rosinski (2007) and empirically
studied in Bianchi et al. (2010) and Imai and Kawai (2011). Since there exists an
efficient algorithm to draw random samples from stable distributions (see Chambers
et al., 1976), the problem of generating random numbers from a tempered stable
law X can be solved by using a stable law Y possessing a probability density g
similar to the probability density f of X. One can generate a value for Y and
accept (reject) this value, if a given condition is satisfied (not satisfied). This
acceptance-rejection simulation method has been widely studied in the literature
(see Kawai and Masuda, 2011a, 2011b, 2012, and references therein). By applying
this algorithm, one can sample tempered stable random numbers in an exact (or
approximate) way if the tail index α is less (or greater) than 1. The computational
cost strictly depends on the parameters. In the case when α < 1, a double rejection
sampling algorithm that does not depend upon the model parameters has been
proposed by Devroye (2009).

Furthermore, one can use a similar acceptance-rejection algorithm proposed by
Rosinski (2001) and based on a comparison between the Lévy measures of stable
and tempered stable laws. In general, the probability of an acceptance event
depends on the parameters of the tempered stable distribution to simulate.

Alternatively, one can consider the inverse transform algorithm: that is, given
the cumulative distribution function F , one can use the following three-step pro-
cedure:

1. generate a sequence U1, . . . , Un of i.i.d. uniform variables;

2. find a root Xi of the equation F (Xi)− Ui = 0 for each i = 1, . . . , n;
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3. return the sequence X1, . . . , Xn.

In the tempered stable case, it easy to see that the function F is not available in
closed form. To find values of F , first we have to invert the characteristic function,18

to find both the density (f) and the cumulative distribution (F ), and then find
the value Xi satisfying the equality F (Xi) − Ui = 0. Even if this method may
seem computational demanding, an efficient procedure can be written in order
to increase the speed and make the time necessary for the simulation of large
matrices of minor concern. This approach can be efficiently applied for all values
of the parameters and can compete with the acceptance-rejection method when a
huge matrix of tempered stable random numbers have to be drawn (see also the
recent work of Ballotta and Kyriakou, 2011). To prove this statement, we test both
the acceptance-rejection and the inverse transform algorithm by drawing stdCTS
random numbers. We consider three different parameter sets (α, λ+, λ−): (0.75,
0.5, 0.5), (1.5, 1, 0.5), and (1.75, 0.1, 0.05).19 The computational time needed for
generating a matrix with dimension 20,000 × 1000 is 15 (56, and 11) seconds with
the acceptance-rejection algorithm, slightly more than 5 seconds with the inverse
algorithm in all the cases considered.

Since the computational cost of the inverse transform algorithm is not influ-
enced by the parameter values of the stdCTS distribution and is of minor concern
compared with the cost of the optimization algorithm, we consider it in the cali-
bration of implied volatility under the CTS-GARCH model.

18 Here the term inversion means Fourier inversion. More details on this method can be found
in Scherer et al. (2012) and Bianchi et al. (2013).

19 The computational time can be much greater if one selects other parameters.
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Figure 1: Maximum likelihood estimated historical annualized volatilities from FTSE MIB
index log-returns data between January 4, 2000 to March 30, 2012: (1) HN-GARCH, (2) FHS,
(3) NGARCH, (5) Heston, (6) Heston-VG, (7) Heston-CTS, (8) SV-GammaOU. The estimated
volatilities are compared with the (4) in-the-money 30 days implied volatility, available since
April 1, 2007.
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Figure 2: Histogram of the simulated innovations for the (1) NGARCH model, (2) FHS model,
(3) CTS-GARCH model. Estimates are based on the historical time-series of FTSE MIB log-
returns between January 4, 2000 to March 30, 2012. On the left (right) side, a detail of the left
(right) tail is shown.
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Figure 3: Implied volatility calibration error for all models analyzed. The calibration was
conducted on a daily basis for each trading between April 1, 2007 and March 30, 2012.
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Figure 4: Implied volatility surface market data and estimates for all models analyzed on
September 30, 2010. The surface estimated by the Bls-CTS model is not shown because it is
similar to that of the CTS model. The moneyness ranges from 80% to 120% and the maturity
ranges from one month to two years.
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Historical market estimates

HN
β1 α1 α0 λ γ LL AIC BIC

0.8923 1.37e-5 1.18e-6 -0.5000 50.0000 9179.13 -18348.26 -18318.04

FHS
β1 α1 α0 λ γ LL AIC BIC

0.9225 2.78e-3 1.39e-6 0.1319 -3.69e-5 9314.24 -18618.48 -18588.27

NGARCH
β1 α1 α0 λ γ LL AIC BIC

0.8582 0.0721233562 2.17e-6 1.01e-6 0.9298 9315.86 -18621.71 -18591.50

CTS-innovation
λ− λ+ α LL AIC BIC

1.7140 3.1407 0.7502 9353.15 -18690.31 -18641.96

CTS-NGARCH
β1 α1 α0 λ γ λ− λ+ α LL AIC BIC

0.8590 0.0718 1.76e-6 1.00e-3 0.9551 1.6948 3.1162 0.7500 9354.17 -18692.33 -18643.99

Heston
κ η ϑ ρ LL AIC BIC

0.3048 0.0015 0.0303 -0.6894 9276.87 -18545.74 -18521.56

Heston-CTS
κ η ϑ ρ C λ+ λ− α LL AIC BIC

0.2979 0.0016 0.0305 -0.6517 0.0106 0.7513 1.8577 1.5253 9235.93 -18463.86 -18439.69

Heston-VG
κ η ϑ ρ C λ+ λ− LL AIC BIC

0.3068 0.0016 0.0306 -0.6844 0.5491 11.9661 18.1258 9284.58 -18561.16 -18536.99

SV-GammaOU
λ a b ρ LL AIC BIC

4.0117 0.8021 3340.5647 -0.9215 9244.17 -18486.63 -18462.46

Table 2: Market parameters estimated using the MLE approach considering the time series
of the FTSE MIB log-returns from January 1, 2000 to March 30, 2012. In the CTS-innovation
case, we fit the stdCTS distribution to the innovations extracted by the NGARCH model. In
the CTS-NGARCH case, we jointly estimate the GARCH dynamics and the stdCTS innovation
parameters. For each model the value of the log-likelihood (LL), of the Akaike information
criterion (AIC) and the Bayesian information criterion (BIC) are reported.
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GARCH parameter estimates

KS p-value LL

HN-GARCH
β1 α1 α0 λ γ

median 0.8887 1.06e-5 7.63e-7 -0.4964 49.9997 0.0598 4.18e-5 4703.45
2.5th percentile 0.8695 6.36e-6 6.98e-8 -0.5393 49.9630 0.0504 2.91e-7 4232.31
97.5th percentile 0.9188 1.93e-5 3.10e-6 -0.4686 50.0000 0.0722 9.33e-4 4884.34

FHS
β1 α1 α0 λ γ

median 0.9061 0.0000 1.70e-6 0.1543 1.92e-4 4798.54
2.5th percentile 0.8928 0.0000 1.16e-6 0.1148 -2.66e-4 4280.12
97.5th percentile 0.9270 0.0063 2.35e-6 0.1875 2.92e-4 4944.45

NGARCH
β1 α1 α0 λ γ

median 0.8425 0.0676 2.19e-6 0.0038 0.9942 0.0459 0.0034 4799.79
2.5th percentile 0.7614 0.0298 1.55e-6 1.01e-6 0.8741 0.0304 0.0002 4287.69
97.5th percentile 0.8605 0.0837 3.30e-6 2.10e-2 2.3535 0.0561 0.1226 4937.31

CTS-NGARCH
λ− λ+ α

median 1.5882 3.3189 0.6375 0.0164 0.8082 4831.04
2.5th percentile 0.6880 1.8673 0.2501 0.0131 0.3876 4306.01
97.5th percentile 2.4629 4.3740 1.4000 0.0232 0.9553 4975.31

Table 3: FTSE MIB market parameters estimated using the MLE approach for each trading
day from April 1, 2007 to April 1, 2012. For each trading day, a window of fixed size is considered
(1,500 trading days) for a total of 1,271 rolling windows estimations for each GARCH model. For
each model, the median, minimum and maximum values of the parameters, Kolmogorv-Smirnov
statistic (with the corresponding p-value), and the log-likelihood (LL) are reported. For the non-
parametric FHS model, the log-likelihood of the GJR-GARCH model with normal innovation is
reported.
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Moneyness

80% 90% 95% 97.5% 100% 102.5% 105% 110% 120% all

NIG 0.0749 0.0602 0.0575 0.0584 0.0530 0.0520 0.0525 0.0725 0.1129 0.0631
CTS 0.0738 0.0603 0.0574 0.0585 0.0527 0.0517 0.0523 0.0702 0.1107 0.0625
Bls-CTS 0.0753 0.0594 0.0555 0.0552 0.0498 0.0496 0.0522 0.0708 0.1106 0.0612
Heston 0.0714 0.0596 0.0564 0.0577 0.0529 0.0524 0.0525 0.0691 0.1115 0.0620
Heston-CTS 0.0708 0.0580 0.0549 0.0570 0.0519 0.0505 0.0511 0.0693 0.1112 0.0610
Heston-VG 0.0718 0.0595 0.0561 0.0574 0.0530 0.0530 0.0531 0.0695 0.1113 0.0622
SV-GammaOU 0.0695 0.0624 0.0643 0.0661 0.0553 0.0484 0.0476 0.0699 0.1136 0.0637
CTS-GammaOU 0.0739 0.0488 0.0446 0.0477 0.0441 0.0451 0.0483 0.0694 0.1097 0.0556
HN 0.1413 0.1299 0.0988 0.0897 0.0744 0.0699 0.0682 0.0727 0.0830 0.0899
FHS 0.1445 0.1160 0.0829 0.0726 0.0608 0.0655 0.0689 0.0768 0.0815 0.0826
NGARCH 0.1338 0.1141 0.0810 0.0698 0.0561 0.0597 0.0644 0.0759 0.0956 0.0801
CTS-NGARCH 0.1356 0.1139 0.0806 0.0694 0.0558 0.0601 0.0646 0.0752 0.0922 0.0798

Table 4: Average relative percentage error (ARPE). For each model, the ARPE as a function
of the moneyness is reported. The daily calibration is performed from April 1, 2007 to March 30,
2012.
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Maturity

1M 2M 3M 6M 1Y 1.5Y 2Y all

NIG 0.0990 0.0537 0.0436 0.0433 0.0563 0.0688 0.0767 0.0631
CTS 0.0973 0.0534 0.0433 0.0427 0.0559 0.0685 0.0761 0.0625
Bls-CTS 0.0963 0.0512 0.0426 0.0438 0.0576 0.0704 0.0668 0.0612
Heston 0.0934 0.0539 0.0441 0.0430 0.0554 0.0682 0.0763 0.0620
Heston-CTS 0.0898 0.0532 0.0442 0.0428 0.0547 0.0672 0.0751 0.0610
Heston-VG 0.0939 0.0542 0.0440 0.0430 0.0555 0.0682 0.0764 0.0622
SV-GammaOU 0.0911 0.0634 0.0527 0.0431 0.0541 0.0673 0.0744 0.0637
CTS-GammaOU 0.0810 0.0451 0.0419 0.0493 0.0533 0.0568 0.0621 0.0556
HN 0.1200 0.0903 0.0792 0.0680 0.0638 0.0881 0.1198 0.0899
FHS 0.1041 0.0711 0.0638 0.0653 0.0664 0.0920 0.1157 0.0826
NGARCH 0.1063 0.0768 0.0681 0.0650 0.0638 0.0783 0.1023 0.0801
CTS-NGARCH 0.1036 0.0707 0.0623 0.0615 0.0646 0.0816 0.1056 0.0798

Table 5: Average relative percentage error (ARPE). For each model, the ARPE as a function
of the maturity is reported. The daily calibration is performed from April 1, 2007 to March 30,
2012.
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Risk-neutral estimates

NIG α β δ time
median 18.55 -9.86 0.72 168.9
2.5th percentile 13.36 -13.66 0.25 105.9
97.5th percentile 24.70 -6.54 3.61 281.1

CTS C λ− λ+ α time
median 0.86 7.12 26.63 0.72 221.0
2.5th percentile 0.01 2.78 21.56 0.38 149.9
97.5th percentile 2.48 8.37 28.95 1.95 395.5

BlsCTS C λ− λ+ α σ time
median 0.38 5.62 28.10 1.00 0.02 330.8
2.5th percentile 0.01 1.41 22.23 0.46 0.00 181.0
97.5th percentile 2.90 9.14 31.56 1.95 0.32 849.4

Heston κ η ϑ ρ σ0 time
median 5.11 0.07 0.48 -0.55 0.08 319.0
2.5th percentile 1.70 0.01 0.13 -1.00 0.01 161.6
97.5th percentile 6.70 0.22 0.80 -0.39 0.63 607.9

Heston-CTS κ η ϑ ρ σ0 C λ− λ+ α time
median 0.53 0.13 0.25 -0.68 0.01 0.76 34.86 99.01 0.74 458.8
2.5th percentile 0.01 4.41e-3 0.05 -1.00 0.01 0.10 34.51 99.00 0.25 252.0
97.5th percentile 0.95 0.67 0.48 -0.44 0.20 2.10 34.93 99.10 1.37 1020.3

Heston-VG κ η ϑ ρ σ0 C λ− λ+ time
median 1.67 0.07 0.24 -0.58 0.03 88.54 1100.25 1470.68 349.1
2.5th percentile 0.12 2.50e-3 0.05 -1.00 0.01 88.54 1100.24 1470.68 213.3
97.5th percentile 2.84 0.28 0.52 -0.41 0.34 88.54 1100.25 1470.69 625.4

SV-GammaOU λ a b ρ σ0 time
median 0.22 6.40 9.39 -0.75 0.20 249.0
2.5th percentile 0.10 0.69 1.49 -1.22 0.12 151.1
97.5th percentile 0.36 10.00 14.92 -0.17 0.43 411.6

CTS-GammaOU C λ− λ+ α λ a b time
median 0.09 2.09 198.07 1.45 0.93 0.18 2.09 370.6
2.5th percentile 0.03 0.01 197.12 0.91 0.10 0.10 0.10 177.9
97.5th percentile 1.05 3.80 198.52 1.71 1.98 0.80 3.99 841.7

HN β1 α1 α0 λ + γ time
median 0.98 1.00e-6 1.01e-8 26.68 387.4
2.5th percentile 0.50 1.00e-6 1.00e-8 -1.00 162.9
97.5th percentile 0.99 5.25e-5 1.00e-4 58.80 857.7

FHS β1 α1 α0 γ µ time
median 0.95 2.96e-2 1.43e-6 1.48e-6 4.18e-4 354.7
2.5th percentile 0.87 1.00e-10 1.00e-10 1.00e-10 -4.93e-2 178.7
97.5th percentile 0.95 0.05 1.00e-5 0.09 0.05 760.0

NGARCH β1 α1 α0 λ + γ time
median 0.97 1.03e-6 1.02e-6 25.26 371.7
2.5th percentile 0.75 1.00e-6 1.00e-10 1.91 200.6
97.5th percentile 0.99 1.43e-2 5.03e-5 99.97 780.8

CTS-NGARCH β1 α1 α0 λ + γ time
median 0.97 1.03e-6 9.47e-7 25.28 484.3
2.5th percentile 0.75 1.00e-6 1.00e-10 1.89 252.4
97.5th percentile 0.99 1.09e-2 5.16e-5 99.96 1093.7

Table 6: Risk-neutral parameters estimated on the FTSE MIB implied volatility and computing
time to solve the optimization problem. Median, 2.5th, and 97.5th percentile values for each
model evaluated over 1,271 implied volatility surface observations.
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