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Abstract 

A standard model based trend-cycle decomposition of Italian GDP yields a likelihood 
function that is relatively flat and has two local maxima. A Bayesian estimation of the model 
identifies output gap and trend components that match the features of the Italian business 
cycle well. In a bivariate output and Phillips curve model it is found that: (i) the median 
value of the semi-elasticity of prices to the output gap is 0.5 after 20 quarters, (ii) the 
inflation cycle lags GDP on average by about 3 quarters.  
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1 Introduction

The identification of long-run and cyclical fluctuations in a time series leads
to a fundamental trade-off in the degree of volatility assigned to each com-
ponent. In the well-known Hodrick-Prescott (HP) filter the smoothness of
the trend function is governed by a single bandwidth parameter, chosen in
advance according to the observation frequency; the output gap is then de-
fined as deviation of actual GDP from the HP trend. Similarly, band-pass
filters as in Baxter and King (1999) are non-parametric methods aimed at
extracting the time series fluctuations over given subsets of spectral fre-
quencies, representing the long-run or the business cycle periodicity. These
techniques have been widely adopted in empirical macroeconomic modelling
but they have been also criticized as they might not properly account for
the stochastic properties of the series. Harvey and Jaeger (1993) argue that
stylized facts should better be based on models written in terms of compo-
nents that have a direct interpretation. A model-based approach offers the
further advantage of estimating the degree of trend smoothing. The dangers
of using ad-hoc filtering are also examined in Canova (1998) and Marcet and
Ravn (2004).

Economic interpretation of the extracted components calls for a suffi-
ciently smooth trend function since its slope represents the growth of po-
tential output, not driven by demand shocks. The output gap should then
satisfactorily match the peaks and troughs of the fluctuations of economic
activity over the business cycle.

This paper first considers the stochastic trend plus cycle unobserved com-
ponents model proposed by Harvey (1989) for the series of Italian GDP.
Maximum likelihood estimation of the model yields an objective function
that is relatively flat and presents two local maxima. The optimization al-
gorithm may converge to either maxima, depending on the initial conditions
on the parameters. Interestingly, the local, but not global maximum, pro-
vides a trend-cycle decomposition that is very similar to that obtained by
the HP filter. The output gap component implied by the global maximum
instead appears more in line with the evidence provided by other business
cycle indicators for the Italian economy.

In this context of a relatively flat likelihood function, Bayesian estimation
appears a natural way to help with the identification of the components. A
further advantage of the Bayesian approach is that it immediately yields
measures of uncertainty surrounding the estimates and thus it allows to
make probabilistic statements over the business cycle developments. We
consider a Bayesian estimation algorithm that broadly corresponds to that
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in Harvey, Trimbur and Van Dijk (2007). A very mildly informative prior is
adopted for the cyclical frequency parameter; full details of the convergence
properties of the MCMC routine used in the estimation are provided. The
median estimates of the parameters and the components are in line with the
global maximum of the likelihood function.

Then a bivariate unobserved components model of GDP and inflation is
estimated, to assess the relationship between output gap and price devel-
opments over the cycle. We find that: (i) the trend-cycle decomposition
implied by this model is very close to that in the univariate case; (ii) the
median response of prices to a 1% shock to the output gap is equal to 0.5
after 20 quarters; (iii) the inflation cycle lags the GDP cycle by about three
quarters on average.

In summary, the paper proceeds as follows. Section 2 contains the clas-
sical and Bayesian estimation results for a univariate trend-cycle decom-
position of Italian GDP. The bivariate model for output and inflation is
considered in section 3. Section 4 provides concluding remarks and hints at
possible extensions.

2 Univariate trend-cycle extraction for Italian GDP

We start by considering the univariate stochastic trend plus cycle model of
Harvey (1989),

yt = µt + ct + εt, (1)

µt = µt−1 + βt−1, (2)

βt = βt−1 + ωt, (3)[
ct
c∗t

]
= ρ

[
cos(λ) sin(λ)
− sin(λ) cos(λ)

] [
ct−1

c∗t−1

]
+

[
κt
κ∗t

]
, (4)

(εt, ωt, κt, κ
∗
t )
′ ∼ NIID

(
0, diag

(
σ2
ε , σ

2
ω, σ

2
κ, σ

2
κ

))
, (5)

where the observable series, yt, is the log of real GDP in Italy; the nota-
tion NIID(0,Σ) stands for Gaussian disturbances that are independent and
identically distributed with mean 0 and variance-covariance matrix Σ .

The trend component µt is an integrated random walk which, when es-
timated, tends to be relatively smooth. A more general form of the trend
allows for a stochastic disturbance in the equation (2); however imposing
some degree of smoothness is an advantage since the slope of the trend
function is interpreted as the growth rate of potential output that suppos-
edly should be slowly varying across time. The cyclical component ct has an
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ARMA (2,1) representation with complex roots; this is a stationary process
if ρ < 1 with a peak in the spectrum at frequency λ, which determines the
(pseudo) cyclical behaviour.1 Harvey et al. (2007) consider Bayesian esti-
mation of this model with application to US data. Clark (1987) estimates
by maximum likelihood a similar model, but with an AR(2) cycle, for US
GDP and industrial production; a Bayesian extension was considered by
Planas, Rossi and Fiorentini (2008) as a model for output gap in the Euro
area. Proietti (2009) illustrates a Bayesian procedure for the estimation of
a bivariate model of GDP and inflation for the U.S. economy.

The trend and output gap components for the Italian GDP over the
period 1982-2011 are extracted using model (1)-(5). The two subsections
below deal with, respectively, maximum likelihood and Bayesian estimation
of the model. The third subsection relates these estimates to the main
features of the Italian business cycle.

2.1 Maximum likelihood estimation: local and global max-
ima

Maximum likelihood estimation of the model (1)-(5) yields an objective func-
tion that is relatively flat and presents two local maxima. The optimization
algorithm may converge to either maxima, depending on the initial condi-
tions on the parameters. The first two columns of table 1 reports the value
of the model’s parameters at the two maxima. At the global maximum the
trend is smoother (σ2

ω is lower) while the output gap component is more per-
sistent (higher ρ and lower λ). The period of the stochastic cycle, given by
P = 2π/λ, is equal to 10.5 (6.4) years in the global (local) maximum. In the
second column we report the posterior mode obtained through a Bayesian
estimation of the unobserved component model.

Table 1 - Estimates for main parameters

MLE Bayesian*
local global univariate

σω - slope .088 .030 .04
σκ - cycle .455 .499 .82
λ - frequency .244 .149 .133
ρ - persistence .916 .962 .93

* posterior mode

1Harvey and Trimbur (2003) obtain a model-based representation of low pass and
band pass filters by a similar, but more general, specification of the trend and cyclical
components.
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Figure 1: Likelihood function - σω

Figure 1 shows a ’slice’ of the likelihood function across the two maxima,
projected into the σω axis, that confirms the flatness of the function around
the two maxima. The resulting trend-cycle decompositions are however
rather different at the two maxima; the trend slope (which can be taken as
a measure of potential output growth) and the output gap components are
showed in figure 2 where the slope is given in annual terms. Interestingly,
the local maximum corresponds to a decomposition similar to that implied
by the HP filter. On the other hand the Bayesian estimation algorithm
described in the next subsection identifies components that broadly match
those corresponding to the global maximum. Although both trend-cycle
decompositions appear reasonable, we will argue in subsection 2.3 that the
global maximum provides a better description of the long-run and cyclical
properties of the Italian economy.

2.2 Bayesian estimation

In the context of a flat likelihood function, Bayesian estimation can help
identifying the components by specifying a prior distribution p(θ) for the pa-
rameter vector θ = [ρ, λ, σ2

ε , σ
2
ω, σ

2
κ]. According to the Bayes rule, the poste-

rior distribution of θ is p(θ|Y ) = L(θ|Y )p(θ)∫
L(θ|Y )p(θ)dθ

where L(θ|Y ) is the likelihood.
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Figure 2: Components - ML estimation
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We assume that all parameters are mutually independent a priori, that al-
lows to write the prior distribution as p(θ) = p(ρ)p(λ)p(σ2

ε)p(σ
2
ω)p(σ2

κ).
The prior distributions p(σ2

ε), p(σ
2
ω) and p(ρ) are assumed to be uninfor-

mative; specifically, σ2
ε and σ2

ω are uniformly distributed over the interval
]0,+∞[, while ρ evolves according to a Beta(aρ, bρ), with aρ = bρ = 1,
which is equivalent to a uniform distribution restricted to the interval [0, 1[,
in order to ensure stationarity of the cycle. The prior distribution for the
frequency parameter λ is a Beta(aλ, bλ), with aλ = 2 and bλ = 6.37, so
that it has a mode corresponding to a cycle of 10 years but with a fairly
large variance.2 The distribution of σ2

κ is assumed to be an inverted gamma
IG(aκ, bκ), with aκ = 10 and bκ = 50; note that this guarantees that the
variance of the stochastic cycle component is bounded away from zero.3

Overall, these prior distributions reflect very loose restrictions, letting the
data “speak”.

The likelihood function L(θ|Y ) can be calculated from the prediction
error decomposition, using the output of the Kalman filter, applied to the
state space model (1)-(5). Monte Carlo Markov Chain (MCMC) methods
are used to simulate draws from the posterior distribution, which is not
available in closed form. In particular, we use a Gibbs sampling, with a
Metropolis step for λ and ρ.4

In figure 3 we show the marginal posterior distributions of ρ and λ, to-
gether with the priors; marginal posteriors for the variance parameters σ2

ε ,
σ2
ω and σ2

κ are reported in figure 4. Whenever the prior distribution is unin-
formative it is not shown in the graph; for σ2

κ the prior distribution is such
that it places a very tiny probability on small values (below 0.001) and it is
almost flat for values between 0.001 and + ∞.

For all parameters, the posterior distributions are more concentrated than
the corresponding priors, even in those cases where the latter have been
chosen to be informative. The cycle is stationary, but quite persistent, with
the posterior of the autoregressive parameter ρ peaking between 0.9 and 0.95.
The density of the parameter λ is concentrated around the low frequencies
and it displays a peak corresponding to a cycle of around 11 years. Posterior
densities for the variance of the slope and the irregular components are

2The prior is consistent with the business cycle dating reported in the next subsection
which point towards relatively long cycles.

3Compared with Harvey et al. (2007) we impose an informative prior on σ2
κ; in our

case this is needed in order to rule out outcomes that are too similar to the local ML max-
imum; note that imposing a prior on λ is not sufficient, due to the difficulty of separately
identifying the parameters defining the variance of the cycle λ, ρ and σ2

κ.
4See the Appendix for details.
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asymmetric, concentrated near zero. The posterior distribution of the cycle
component σ2

κ, which is defined on a strictly positive support, appears on
the other hand symmetric, signalling that prior restriction is not binding.

2.3 Characteristics of the Italian business cycle

The trend slope and the output gap components extracted by maximum
likelihood estimation and by the Bayesian algorithm are graphed in figure
2: as anticipated in section 2.1, the Bayesian estimates are very close to
those implied by the global maximum of the likelihood function, while the
local maximum provides a decomposition similar to the HP filter. For the
Bayesian case, figure 5 shows the smoothed estimate of the output gap
together with the 68% and 90% posterior intervals.

In terms of economic interpretation of our estimates, the stochastic slope
component changes very slowly at the global maximum (ranging from nearly
2.5% in the eighties to between 0 and 0.5% since the 2008-2009 recession)
and thus it can be seen as a reasonable measure of potential growth; on the
other hand, the large negative underlying growth rate of output in 2009-
2011 obtained at the local maximum is not coherent with this interpreta-
tion. Furthermore, the sequence of peaks and troughs of the output gap
component identified at the global maximum are more closely related to the
ISCO-ISAE-ISTAT official dating of the Italian business cycle, that is based
on several indicators; see ISTAT (2011) for details. Table 2 reports the
complete cycles identified by the MLE’s, by the Bayesian estimates and by
ISCO-ISAE-ISTAT. According to the ISCO-ISAE-ISTAT dating, the Italian
economy experienced four complete cycles, with troughs located at 1983Q1,
1993Q3, 1996Q4, 2003Q2 and 2009Q2. Four of them corresponds to the
troughs identified at the global maximum (which however considers a sin-
gle cycle the 10 year period 1993Q3-2003Q2), while the output gap implied
by the local maximum finds two additional cycles of shorter periodicity
(1991Q3-1993Q3 and 1999Q3-2003Q3). At the end of the sample the out-
put gap remains negative at the global maximum, signalling that the Italian
economy has not yet recovered from the deep recession of 2008-2009, while
it already turns positive in the other case. Note that the dating based on
the Bayesian estimate of the output gap is somewhat in between the dating
based on the two MLE maxima. Overall, the model’s parameters evaluated
at the global maximum and at the Bayesian estimates seem to match more
closely the official dating of the Italian business cycle than those at the local
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maximum.5

Table 2 - Dating of the Italian business cycle

MLE (global) MLE (local) Bayesian ISCO-ISAE-ISTAT
trough peak trough peak trough peak trough peak

1983q2 1989q4 1983q2 1989q4 1983q2 1989q4 1983q1 1992q1
1993q3 - 1993q3 1996q1 1993q3 - 1993q3 1995q4

- - 1996q4 1997q4 - 1997q4 1996q4 -
- 2001q4 1998q4 2001q4 1998q4 2001q1 - 2000q4

2003q2 2007q3 2003q3 2008q1 2003q2 2007q3 2003q2 2007q3
2009q2 - 2009q1 2011q3 2009q2 - 2009q2 -

The pseudo-real time estimates of the output gap component are also
plotted in figure 5: in most cases they are within the 68% confidence
band/posterior interval of the smoothed component. The higher variability
of the smoothed estimates of the output gap reflects the fact that the corre-
sponding potential output estimates are less volatile than the filtered ones.
In order to appraise the extent to which the uncertainty is reduced when
new data are used for the estimation, we have plotted in figure 6 the filtered
and smoothed estimates of the Italian potential output and output gap in
2009Q4. The uncertainty surrounding the filtered estimates is quite large:
the posterior density of the potential output growth ranges from positive
numbers to very large negative ones. The output gap ranges from less than
-5% to almost 0. Once new information becomes available, the uncertainty
is considerably lower: the density of the smoothed estimate using informa-
tion up to 2011Q4 is concentrated on the positive support, with potential
output growth varying between 0.5 and -1.5% and the output gap in the
range from -2.0 to -4.5%.

Further insights on the characteristics of the Italian business cycle can be
gathered by looking at its amplitude. Figure 7 shows the average amplitude
(across M draws) of the Italian cycle (together with 90% confidence bands),
which for period t is computed, as in Harvey et al. (2007), by the following:

5A popular non-parametric approach to date the business cycle is the algorithm pro-
posed in Bry and Boschan (1971); see the evidence for Italy reported in Bassanetti, Caivano
and Locarno (2010). That method identifies a level cycle rather similar to the local max-
imum of the likelihood function of our model.
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At =
1

M

M∑
j=1

√
c

2(j)
t + c

∗2(j)
t . (6)

The plot highlights a temporary increase in the amplitude of the business
cycle during the 2008-09 recession, with a median estimate of around 4.5%
(against values between 1.5 and 3.5% for the other periods).

3 Bivariate models of output gap and inflation

In this section the univariate trend-cycle decomposition of GDP is aug-
mented with a model for inflation. We follow Harvey (2011) where inflation
is modelled as the sum of a slowly changing component (trend) and a station-
ary cycle, the latter related to the GDP fluctuations6; a simpler univariate
random walk plus noise model was considered in Stock and Watson (2007).

6Harvey (2011) shows that -under some conditions on the output gap process- this
simple model for inflation is consistent with forward looking behaviour as in the hybrid
New Keynesian Phillips curve of Gali and Gertler (1999).
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Specifically, let yt and πt be the observed series of output (the logarithm of
real GDP) and inflation (the change of the logarithm of the GDP deflator7).
The model is as follows:

yt = µy,t + ct + εy,t, (7)

πt = µπ,t + δct + δ∗c∗t + επ,t, (8)

µy,t = µy,t−1 + βy,t−1, (9)

βy,t = βy,t−1 + ωy,t, (10)

µπ,t = µπ,t−1 + ζπ,t, (11)

[
ct
c∗t

]
= ρ

[
cos(λ) sin(λ)
− sin(λ) cos(λ)

] [
ct−1

c∗t−1

]
+

[
κt
κ∗t

]
(12)

(εy,t, επ,t, ωy,t, ζπ,t, κt, κ
∗
t )
′ ∼ NIID

(
0, diag

(
σ2
εy , σ

2
επ , σ

2
ωy , σ

2
ζπ , σ

2
κ, σ

2
κ

))
.

(13)
Unlike Harvey (2011) our model allows for a phase shift in the infla-

tion cycle with respect the GDP cycle if δ∗ 6= 0. This is measured by
ξ = −λ−1atan( δ

∗

δ ), where a positive (negative) value indicates that the
inflation cycle leads (lags) the output cycle; see Runstler (2004) for the de-
tails. The cross-correlation between the inflation and output cycles at the
lag s is given by Corr(y, π|s) = ρ|s|sign(δ)cos(λ(s+ ξ)), where sign(x) = 1
if x ≥ 0 and 0 otherwise.

The parameter vector of the model (7)-(13) is

θMV 1 ≡ [ρ, λ, δ, δ∗, σ2
εy , σ

2
επ , σ

2
ωy , σ

2
ζπ
, σ2

κ]′.

As in the univariate case, we specify prior distributions for the unknown
parameters to be mutually independent and, for the most part, uninforma-
tive. All parameters are assumed to be uniformly distributed a priori, with
the exception of λ, which again evolves according to a Beta(2,6.37) and σ2

κ,

7We use the GDP deflator instead of consumer prices as a proxy for inflation in order to
focus on domestic inflationary pressures, which are those directly related to the evolution
of the output gap.
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Figure 8: Posterior distributions: ρ, λ, δ, δ∗

which is distributed as an IG(10, 90). 8 Prior restrictions on the remaining
parameters have been imposed in the form of boundaries of the prior distri-
butions, which, in the case of variances, are not allowed to take non-positive
values and, in the case of the autoregressive parameter ρ, are restricted to
the [0,1[ interval.

As in the univariate case, we employ an MCMC routine to draw from
the posterior distribution of the parameter vector. The estimated marginal
posteriors are displayed in figures 8-10; a full set of convergence diagnostics
of the MCMC routine is provided in the appendix.

It can be noticed that the estimates of the parameters governing the
evolution of the cycle are not too different from the univariate case: the
posterior distribution of λ still displays a peak at a frequency consistent
with a cycle of about 11 years, but it is somehow more dispersed. The

8Parameter estimates are robust to changes in the prior distributions: robustness checks
performed with an uninformative prior on λ yield a broadly unchanged posterior. Using a
tighter prior does not change the results either, unless the mode of the prior distribution
is considerably displaced from the one we have used in the baseline prior specification.
Compared to the univariate model, the prior assumption for σ2

κ is tighter; this is needed
to rule out a too volatile potential output estimate (similar to the one obtained by ML at
the local maximum), as it does not conform with the features of the Italian business cycle
as described by independent estimates, such as the ISCO-ISAE-ISTAT indicator.
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persistence of the cycle is also similar to the univariate case. At the same
time, the estimate of the variance of the innovation of the cycle process
κt is somewhat larger, overall implying a higher variability of the GDP
cycle. The parameter δ, measuring the co-movement between the GDP
cycle and inflation, is positive, as expected, and turns out to be identified
rather precisely. The average lag of inflation with respect to the output cycle
exceeds 3 quarters, with a peak at around 2 quarters (fig 11, top panel); the
cross-correlation between the two cycles is very high, with a peak at 1.

Figure 12 shows the smoothed estimate of the Italian potential output
(top-left panel), of core inflation (top-right panel), of the potential output
growth (bottom-left panel) and of the output and inflation cycles (bottom-
right panel), computed on the basis of the posterior median of the parame-
ters. The trend cycle decomposition of GDP is not too different from that
of the univariate model, although both the potential output and the out-
put gap are somewhat less smooth, with the latter displaying larger swings,
especially at the end of the sample.

Finally, figure 13 shows the cyclical response of inflation to a 1% tempo-
rary increase in the output gap innovation. On impact, the effect on inflation
(top panel) is given by the parameter δ, which has an average value of about
0.3; the effect of the shock dies out after 16 quarters. The impact on the
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price level can be appraised in the bottom panel, where it is shown that the
price semi-elasticity to the output gap is 0.5% after 20 quarters.9

4 Conclusion

Unobserved component models for output and inflation have been estimated
for the Italian economy. We have showed that the adoption of a Bayesian
perspective is effective in the context of a flat likelihood function and it
helps in formulating probabilistic statements regarding business cycle devel-
opments. Our estimates broadly match the official dating of the business
cycle. The estimation of a bivariate model highlighted the features in the
transmission of output gap shocks to prices.

The analysis carried out in this paper could be further extended in at
least two directions. First, it could take into account additional variables
that may help identifying long run and cyclical components and provide
additional insights on the link between the output and inflation. Second,
the models could be extended to allow for structural changes in the long run
and/or the cyclical components, such as the possibility of a trend break at

9The response of the price level is given by the partial cumulated sums of the response
of inflation rescaled by the cumulated response of the output gap.
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Figure 13: Response of inflation and prices to a 1% temporary increase in
the output gap; dashed lines: 68% posterior bands

the time of the Great Recession of 2009. We leave these issues for future
research.
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Appendices

A The Bayesian estimation algorithm

In this appendix we illustrate the details of our Bayesian estimation algo-
rithm for the bivariate model (7)-(13).

A.1 Priors

The unknowns of the model are represented by the sequence of unobserved
components {αt}Tt=1 ≡ {µy,t, ct, c∗t , µπ,t, βt}Tt=1 and by the parameters σ2

εy ,

σ2
επ , σ2

ω, σ2
ζ , σ

2
κ, λ, ρ, δ and δ∗.

We now define the set Ψ ≡ {{αt}Tt=1, σ
2
εy , σ

2
επ , σ

2
ω, σ

2
ζ , σ

2
κ, λ, ρ, δ, δ

∗} and
denote by Ψj the j-th element of Ψ and by Ψ−j all elements of Ψ but the
j-th.

We assume that the prior distributions of the elements of Ψ are mutually
independent, i.e. that p(Ψ) =

∏
j p(Ψj). The prior distributions for the

time-invariant parameters are as follows:

λ ∼ Beta(aλ, bλ), (14)

ρ ∼ Beta(aρ, bρ), (15)

δ ∼ N(µδ, σ
2
δ ), (16)

δ∗ ∼ N(µδ∗ , σ
2
δ∗), (17)

σ2
κ ∼ IG(aκ, bκ), (18)

and the prior distributions of all other variance parameters are assumed
to be U(ε, S), with ε and S being small and large values, respectively, that
ensure that the variance remains positive and bounded.

The prior distribution of the sequence {αt}Tt=1 is implicitly defined by the
priors on the time-invariant parameters and by that on the initial condition
of the sequence, which is assumed to be diffuse.
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A.2 The MCMC routine

The posterior distribution p(Ψ|Y ) can be obtained by Bayes rule combining

the data density p(Y |Ψ) with the prior p(Ψ): p(Ψ|Y ) =
p(Y |Ψ)p(Ψ)∫
p(Y |Ψ)p(Ψ)dΨ

.

Given the form of the model and the assumptions about prior distributions,
such posterior cannot be derived in closed form and needs to be simulated
using an MCMC routine. We implement a Gibbs algorithm with Metropo-
lis steps for the parameters λ and ρ. Given our prior assumptions it can
be showed that the conditional posteriors needed to implement the Gibbs
sampler are as follows: draws from the conditional density p(αt

T
t=1|Ψαt) can

be obtained using the simulation smoother of Durbin and Koopman (2002).
For time-invariant parameters:

p(σ2
εy |Y,Ψ−σ2

εy
) ∝ IG(ãσy , b̃σy) (19)

where ãσy = T
2 − 1 and b̃σy =

∑T
t=1 ε̂

2
y,t

2 .

p(σ2
επ |Y,Ψ−σ2

επ
) ∝ IG(ãσπ , b̃σπ), (20)

with ãσπ = T
2 − 1 and b̃σπ =

∑T
t=1 ε̂

2
π,t

2 .

p(σ2
ω|Y,Ψ−σ2

ω
) ∝ IG(ãσω , b̃σω), (21)

with ãσω = T
2 − 1 and b̃σω =

∑T
t=1 ω̂

2
t

2 .

p(σ2
ζ |Y,Ψ−σ2

ζ
) ∝ IG(ãσζ , b̃σζ ), (22)

with ãσζ = T
2 − 1 and b̃σζ =

∑T
t=1 ζ̂

2
t

2 .

p(σ2
κ|Y,Ψ−σ2

κ
) ∝ IG(ãσκ , b̃σκ), (23)

with ãσκ = T + aσκ and b̃σζ = K̂
2 + bσκ .

p(δ|Y,Ψ−δ) ∝ N
([∑

t π̂1,tĉt
σ2
επ

+
µδ
σ2
δ

]
s, s

)
, (24)

where π̂1,t ≡ πt − µ̂π,t − δ∗ĉ∗t and s ≡
(∑

t ĉ
2
t

σ2
επ

+ 1
σ2
δ

)−1
.

p(δ∗|Y,Ψ−δ∗) ∝ N

([∑
t π̂2,tĉ∗t
σ2
επ

+
µδ∗

σ2
δ∗

]
s∗, s∗

)
, (25)
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where π̂2,t ≡ πt − µ̂π,t − δĉt and s∗ ≡
(∑

t ĉ
∗2
t

σ2
επ

+ 1
σ2
δ∗

)−1
.

For λ and ρ it is not possible to derive a conditional posterior distribution
in closed form, as their prior are Beta distribution (which are not conjugate
with the conditional likelihood); furthermore, λ enters the model in a non-
linear fashion. Therefore, for those parameters we resort to a Metropolis
step with random walk proposal. We ran the MCMC routine for 1000000
draws in the case of the univariate model and for 2000000 draws for the
multivariate model.

A.3 Convergence diagnostics

Provided that certain regularity conditions are satisfied, with MCMC tech-
niques it is possible to sample from the posterior distribution of the param-
eters, after an initial burn-in period; while there is no certain answer to
whether the Markov chain defined by algorithm has converged to its sta-
tionary distribution (i.e. to the joint posterior), a number of diagnostics can
be performed.

Simple diagnostics, such as a visual inspection of the path of the draws,
are often used to determine whether the draws resemple those that would
have been generated by an iid process. As this type of check is at best
subjective, in this paper we resort to more formal statistics to assess the
convergence properties of our chain. In particular, we use the Brooks (1998)
convergence diagnostics to determine the burn-in period and refine the sam-
ple of draws used for inference and double-check the results of the Brooks’
diagnostics by the Geweke (1992) stationarity test.

Brooks (1998) test is based upon the CUSUM diagnostics proposed by
Yu and Mykland (1998). The latter diagnostics is computed as follows:

• for a chain of N draws choose a statistics g(Ψj) and after a burn-in

period of N0 < N iterations compute the mean µN =

∑N
i=N0+1 g(Ψ

(i)
j )

N−N0
;

• for l = N0 + 1, N0 + 2, ..., N compute the so-called CUSUM quantity

CSl =
∑l

i=N0+1[g(Ψ
(i)
j )− µN ].

Yu and Mykland (1998) suggest to visually inspect the way it converges
to the total sum. Note that CSN = 0 by construction; however, for a
well-mixing chain CSl should converge to 0 fast and be displaying small
random fluctuations around 0. Any clear pattern in the plot of CSl against
l would on the contrary be an indication of a slow-mixing chain. Brooks
(1998) proposes a formal statistics to give a quantitative assessment of the
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indications provided by the CUSUM series of partial sums. In particular,
Brooks (1998) suggests to compute:

dt =

{
1 if CSl−1 < CSl > CSl+1 or CSl−1 > CSl < CSl+1

0 otherwise

for all t = n0 + 1, ..., n− 1 (with n0 representing the burn-in period and
n the total number of draws). Then, the quantity

Dn =
1

n− n0

n−1∑
t=n0+1

dt

can be treated as a binomial random variable with mean 1
2 and variance

1
4(n−n0) . For large n0 this will approach a normal random variable with the
same mean and variance, so a lack of convergence could be detected if the

absolute value of Dn lies outside the interval 1
2 ± zα/2

√
1

4(n−n0) . The latter

result would hold if the draws were effectively iid and generated by a sym-
metric distribution. This is not the case for many of our parameters as the
draws are by construction autocorrelated (they are the outcome of a Markov
chain) and are likely to lead in many cases to asymmetric distributions. In
addition, the length of the burn-in period is not known a priori. Brooks
(1998) suggests to deal with the asymmetry problem by computing the CS
quantities with respect to the sample median instead of the sample mean
µN , while the autocorrelation can be removed by ”thinning” the sample
of draws, i.e. by selecting draws so that in the chain they are distanced
by a ”thin” factor H. Brooks’ statistics can be used both for determining
the burn-in period and the most appropriate value for the ”thin” factor H.
Brooks (1998) shows that a necessary condition for convergence is that the
statistics Dn remains stable for different values of n. Therefore, we have
computed the statistics for 100 samples of draws of length n, with burn-in
n0 = n/2, with n = 500000, 505000, 510000, ..., 1000000 for the univariate
model and n = 1000000, 1010000, 1020000, ..., 2000000 for the multivariate
model. The results are shown in the figures (14)-(15).

For all models, the Dn statistics appears to stabilize around the 60th
sample, corresponding to burn-in of 400000 draws for the univariate model
and 800000 for the multivariate ones.

The draws remaining after burn-in still display a considerable autocorre-
lation, as it can be checked by the correlograms reported in figures (16)-(17).

We therefore thin the sample of draws by a thin factor of H, which
will be determined, again, on the basis of the Dn statistics. The optimal
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Figure 14: Dn statistics - univariate model - Italy

Figure 15: Dn statistics - multivariate model - Italy
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Figure 16: Correlogram - univariate model - Italy

Figure 17: Correlogram - multivariate model - Italy
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Figure 18: Dn statistics for different thin factors - univariate model - Italy

thin factor will be such that the statistics remain inside the 95% bounds
of a normal random variable with mean 1

2 and variance 1
4(n−n0) , given by

1
2 ± zα/2

√
1

4(n−n0) . In figures (18)-(19) we plot Dn against the thin factor

H, with H = 1, 2, ..., 200. In order to keep the width of the 95% confidence
interval constant, we compute the Dn statistics over samples of equal length.
So, for instance, in the case of the univariate model, when H = 1 we compute
Dn for the sample of 3000 draws from the 400001th to the 403000th, when
H=2 we pick one draw out of 2 from the 400001th to the 406000th, and so
on. A similar procedure is applied to the multivariate model.

For almost all parameters a thin factor of 100 appears to be sufficient for
the Dn statistics to remain inside the asymptotic 95% interval and only in
a few cases a thin factor of 200 is required. We choose the latter factor for
all parameters, which implies that the total number of draws we retain for
inference is 3000 for the univariate model and 6000 for the multivariate one.

As a further check of the convergence of the chain we compute, for the
samples of draws selected above, the convergence diagnostics suggested by
Geweke (1992). Geweke’s test of stationarity of the distribution aims at
comparing the behavior of the chain at the beginning and at the end of the
sample (after burn-in); according to Geweke (1992), if we have a sequence of
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Figure 19: Dn statistics for different thin factors - multivariate model - Italy

N = n−n0 draws (i.e. N draws after burn-in n0) for the parameter Ψj , given
a function g(Ψj) we can construct mean values of the function for the first

nA and the last nB draws ḡA =
∑nA

1=1 g(Ψ
(i)
j )

nA
and ḡB =

∑n
1=nB+1 g(Ψ

(i)
j )

nB
and get

consistent estimates of the variance of ḡA and ḡB by their spectral densities
at the 0 frequency SA(0) and SB(0), respectively. Then, if nA + nB < N
the distribution of the statistics

d =
ḡA − ḡB√

SA(0)
nA

+ SB(0)
nB

, (26)

approaches a standard normal as N → ∞. Geweke (1992) suggests to
use nA = .1N and nB = .5N .

We compute Geweke’s statistics for the mean of the parameters and re-
port the results in table A.1. As it can be easily checked for all parameters
the statistics are well inside the 95% bounds of a standard normal ±1.96,
thus providing further evidence in favour of the fact that our chain has
converged.
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Table A.1 - Geweke’s statistics

Univariate model Multivariate model
sample whole thinned whole thinned

ρ -0.016 0.023 -0.026 -0.017
λ 0.012 0.102 -0.018 -0.011
δ - - 0.005 -0.108
δ∗ - - -0.004 0.074
σ2
εy -0.008 0.086 0.017 0.098

σ2
επ - - -0.004 0.040
σ2
ω 0.003 0.035 0.013 0.031
σ2
ζ - - 0.015 0.056

σ2
κ 0.006 -0.005 0.007 0.008
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