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Abstract 

Forecasting aggregate demand is a crucial matter in all industrial sectors. In this paper, 
we provide the analytical prediction properties of top-down (TD) and bottom-up (BU) 
approaches when forecasting aggregate demand, using multivariate exponential smoothing 
as demand planning framework. We extend and generalize the results obtained by Widiarta, 
Viswanathan and Piplani (2009) by employing an unrestricted multivariate framework 
allowing for interdependency between the variables. Moreover, we establish the necessary 
and sufficient condition for the equality of mean squared errors (MSEs) of the two 
approaches. We show that the condition for the equality of MSEs also holds even when the 
moving average parameters of the individual components are not identical. In addition, we 
show that the relative forecasting accuracy of TD and BU depends on the parametric 
structure of the underlying framework. Simulation results confirm our theoretical findings. 
Indeed, the ranking of TD and BU forecasts is led by the parametric structure of the 
underlying data generation process, regardless of possible misspecification issues. 
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1 Introduction1

Forecasting aggregate demand is a crucial matter in all industrial sectors (see Zotteri and Kalch-

schmidt, 2007, and Kalchschmidt et al., 2006). Consider, for instance, a retail company which

offers a broad range of items to its customers. In order to reduce inventory costs and to manage

efficiently the supply chain planning process, the company has to rely on accurate predictions

for each demand segment and for the whole aggregate demand (see Kerkkänen et al., 2009, for

a discussion on the impacts that sales forecast errors have on the supply chain). In the field

of industrial maintenance, a related issue is faced when forecasting future spare parts demand,

which is needed in order to keep equipment operating properly. This problem is very relevant,

for instance, in military logistics, which represents one of the largest outlays of military budgets

(see Moon et al., 2012a, 2012b, for an analysis of demand for spare parts in the South Korean

Navy). A similar problem occurs in the automobile industry (Fliedner and Lawrence, 1995).

In the context of aggregate demand forecasting, one of the most important issues faced by

both theoretical and empirical literature can be summarized as in the abstract of Dunn et al.

(1976, p. 68): “Should statistical forecasts be constructed by aggregating data to each level for

which forecasts are required or aggregating the forecasts from the lower levels? The relevant

literature suggests no general answer”. Despite that this paper dates back to the seventies, the

question raised by the authors remains an open issue.

In general, the aggregate demand can be forecasted using different procedures. In this paper,

we compare the forecasting performance of top-down (TD) and bottom-up (BU) approaches

whose definition can be found, for example, in Zotteri et al. (2005, p. 480): ‘‘In the bottom-up

approach, individual forecasts for each demand segment (e.g., single stock-keeping unit, single

day, or single store) are combined to produce a forecast of aggregate demand (e.g., group of

products, week or group of stores). This is referred to as the cumulative forecast since it is the

sum of individual lower level forecasts. In the top-down process, aggregate demand data are used

to forecast aggregate demand, etc.”.

The goal of this article is to provide explicit analytical expressions for the TD and BU ap-

proaches when forecasting the aggregate demand. We assume as production planning framework

the multivariate version of the simple exponential smoothing. The simple exponential smooth-

ing, also known as exponentially weighted moving average (EWMA), has a long tradition in

forecasting economic time series (Muth, 1960).

Technically, an EWMA smoothing recursion leads to the same forecasts produced by an

IMA(1,1) model, which is the reduced form of a random walk plus noise structural time series

model (Harvey, 1989). Regarding the IMA(1,1), it is worth quoting the Nobel prize winner

Clive Granger: “This model provides a very good representation of a wide range of economic

1 While assuming the scientific responsibility for any errors in the paper, the authors wish to thank Luc

Bauwens, Christian M. Hafner, Marco Lippi, Helmut Lütkepohl and David Veredas for useful suggestions and

discussion. The paper is the responsibility of its authors and the opinions expressed here do not necessarily reflect

those of the Bank of Italy or the Eurosystem.
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time series [...] we do not advocate the adoption of this model in all occasions. However, if

some simple specific model is to be assumed on a priori grounds, we feel that the first-order

integrated moving average process is a serious candidate for economic time series in general.”

(the quotation is taken from Granger and Newbold, 1977, p. 203). Indeed, despite its simplicity,

exponential smoothing represents a strong candidate compared to other complex models as also

discussed by several authors (see for example Dekker et al., 2004, Fliedner and Lawrence, 1995,

Fliedner, 1999, Moon et al., 2012a, 2012b).

As a distinctive feature, we adopt a multivariate framework in order to allow for interdepen-

dencies in the demand environment, while most previous studies featured univariate demand

models (with few exceptions such as Chen and Blue, 2010, and Kremer et al. 2012). Therefore,

our results generalize the results achieved by Widiarta et al. (2009) by avoiding coefficient re-

strictions and allowing for interdependency among the individual components. This is relevant

since in empirical applications the concept of interdependency is usually neglected in order to

avoid complications.

Furthermore, we derive the necessary and sufficient condition for the equality of mean squared

errors (MSEs) of the TD and BU approaches. In particular, our results shed light on the

analytical properties of TD and BU when assuming a first order vector integrated moving average

model, which corresponds to the multivariate exponential smoothing with no restrictions on

parameters. To our knowledge, such a framework has never been used to compare TD and BU

approaches.

Recently, other papers have compared the forecasting properties of alternative demand plan-

ning approaches based on MSEs. For instance, Chen and Blue (2010) consider a bivariate first

order vector autoregressive framework. Moreover, Widiarta et al. (2009) assume simple expo-

nential smoothing as the forecasting technique for both TD and BU. They prove that TD and

BU are equally efficient in terms of MSE if the individual components follow univariate MA(1)

processes with identical MA coefficients and if the smoothing constants used for forecasting the

individual components are equal (p. 91). Whereas these authors give a condition for equal

efficiency, relying on rather strong restrictions, our results are valid in general, regardless of any

restrictions. Indeed, contrary to Widiarta et al. (2009), we relax the assumption of identical

parameters of the single subaggregate components. This is clearly more realistic since, in a

standard production planning context, the parametric structure of the components is hardly

ever identical.

The remainder of the paper is structured as follows. After a brief literature review in Section

2, in Section 3 we present the methodological framework, which is based on the multivariate

exponential weighted moving average. In Section 4 we derive the parameters and the MSE of

the TD approach, while in Section 5 we focus on the BU approach. In Section 6, we give the

necessary and sufficient condition for the equality of MSEs. Then, in Section 7, using a simple

bivariate model, we show that the mentioned condition can be achieved even when the single

components differ in dynamics. To this purpose, we provide conditions under which the equality
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of MSEs holds while the equality of predictors does not. In Section 8 we present results of a

simulation study to compare the out-of sample MSEs and mean absolute errors (MAEs) of TD

and BU. Section 9 concludes. All proofs are relegated to the Appendix.

2 Literature review

The literature on TD and BU approaches is wide and considers different frameworks. For this

reason, we do not attempt to survey all the contributions, but rather to give the main references

related to our work.

The first reference literature is the time series literature where TD and BU are often referred

to as aggregate and disaggregate specifications. When the data generation process is assumed to

be a vector ARMA model, the consequences of contemporaneous (cross-sectional) aggregation

have been discussed since the original contributions of Granger and Morris (1976) and Box and

Jenkins (1976). Most of the theoretical results on the aggregation of ARMA are collected in

Chapter 4 of Lütkepohl (1987), in Section 2.4 of Lütkepohl (2006) and in Lütkepohl (2009).

Other prominent contributions are those of Rose (1977), Tiao and Guttman (1980), Wei and

Abraham (1981), Kohn (1982), Lütkepohl (1984a, 1984b, 1987).

The second reference literature encompasses the demand planning studies focusing on the

effectiveness of TD and BU approaches. Fliedner (1999) argues that forecast performance is

dependent upon the statistical nature of the disaggregate items comprising the aggregate series:

In particular, higher positive/negative correlation leads to improved forecast performance at the

aggregate level. Weatherford et al. (2001) show that a fully disaggregated forecasting method

outperforms aggregated forecasts. More recently, Dekker et al. (2004) focus on seasonal demand

forecasts, while Moon et al. (2012a, 2012b) consider in detail alternative forecasting methods for

predicting the demand for spare parts by the South Korean Navy. In general, the choice between

competitive specifications seems to be based on the specific framework employed and case study

analyzed. Indeed, as argued by Zotteri et al. (2005) and Zotteri and Kalchschmidt (2007), the

choice of the appropriate aggregation level depends on the underlying data generation process.

Our contribution is related to these two types of literature focusing on the issue of forecasting

aggregated variables. One of the major gap left by the previous literature is the lack of analytical

results establishing conditions under which the TD approach outperforms the BU and vice versa.

This paper fills this gap by shedding light on the algebraic conditions determining the forecasting

performance of TD and BU assuming the multivariate exponential smoothing as the framework.

Clearly, this is only one of the possible production planning framework and therefore it can be

considered as the starting point to be further developed as future research.
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3 The demand planning framework

In this section we present our assumptions on the demand planning framework, the forecasting

problem and the methodology adopted.

We consider a system describing the demand estimates for i = 1, 2, . . . , N products at time

t = 1, 2, . . . , T . We assume that demand estimates follow an unrestricted multivariate exponen-

tial weighted moving average (EWMA) process where the vector xt is N -variate and x̂it denotes

the one-step ahead forecast of xit:













x̂1t

x̂2t

...

x̂Nt













= Φ













x̂1,t−1

x̂2,t−1

...
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+ (IN − Φ)
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(1)

with

Φ =













φ11 φ12 . . . φ1N

φ21 φ22 . . . φ2N

...
...

. . .
...

φN1 φN2 . . . φNN













and IN the identity matrix of size N . It is well known that the process in Eq. (1) can be reparam-

eterized as an integrated vector moving average of order one (a vector IMA(1,1)) representing

the reduced form of the multivariate EWMA (see Harvey, 1989, p. 432).2

Therefore, our focus is on the following system of equations:
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xN,t−1
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(1 − φ11L) −φ12L . . . −φ1NL

−φ21L (1 − φ22L) . . . −φ2NL
...

...
. . .

...

−φN1L −φN2L . . . (1 − φNNL)

























ε1t

ε2t
...

εNt













(2)

where L is the back shift operator such that Lxt = xt−1 and εt = xt − x̂t. In addition,

ε′t = (ε1t, ε2t, . . . , εNt) is a vector of white noise innovations such that E(εt) = 0 and

E(εtε
′

t) = Σ =













σ11 σ12 . . . σ1N

σ12 σ22 . . . σ2N

...
...

. . .
...

σ1N σ2N . . . σNN













It follows that E(εtε
′

s) = 0 for any s 6= t.

2In the univariate framework, it is well known that the EWMA is equivalent to an IMA(1,1) process. Yet, it

should be noted that EWMA captures an additional case: quoting from Hyndman et al. (2008), p. 169: “The

EWMA parameter space α ∈ (0, 2) corresponds exactly to the ARIMA parameter space |θ1| < 1. However, we

observe that the finite start-up assumption enables the EWMA scheme to handle α = 0, corresponding to a

constant mean; the ARIMA model does not include this case.”
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It is interesting to note that the specifications as in equations (1) and (2) represent the most

general framework in the context of multivariate exponential smoothing. In general it is assumed

that all eigenvalues of the matrix Φ are in modulus smaller than one. However, our results are

valid regardless of the invertibility condition of the system in (2). Therefore, the invertibility

assumption can be relaxed and the matrix Φ need not be restricted.

The main objective of our analysis consists of comparing top-down and bottom-up approaches

in forecasting the aggregated process zt = Fyit, where F is a (1 × N) vector of weights (i.e.,

F = [ω1 ω2 . . . ωN ]) and yit = (1 − L)xit. It is relevant to note that no restriction is

imposed on the values of the vector F . This means that several aggregation schemes can be

considered. Indeed, one can compare the forecasts of TD and BU for specific sub-aggregates.

Consider, for example, a firm producing three different items. In addition, assume that the

management aims at forecasting the aggregate demand for two items only. Then we have a

trivariate system for equations (1) and (2) and setting F =
[

1 1 0
]

allows focusing on the

simple sum of the first two components. At the same time, implicitly, our framework restricts

the analysis to flat hierarchies. Yet, a recent literature applicable to demand planning focuses

on hierarchical structures with two or more levels (Athanasopoulos et al., 2009; Hyndman et

al., 2011). Extending our analysis to generic K levels hierarchical structures is an interesting

development which we leave for further research.

As already pointed out by the previous literature (Wei and Abraham, 1981, and Lütkepohl,

1984b, 1987), when the data generation process is known and no estimation uncertainty is

faced, aggregating the forecasts of the multivariate process in (2) represents the “optimal”

procedure, since it makes use of the largest information set and delivers the smallest forecast

MSE (MSEopt = E(zt − F ŷit)
2 =

∑N
i=1

∑N
j=1 ωiσijωj)). On the other hand, TD and BU may

represent two sub-optimal procedures being MSETD ≥MSEopt and MSEBU ≥MSEopt. More

specifically, TD and BU may produce the optimal forecasts under specific conditions that we

provide in the next two sections.

Since, in general, the data generation process is unknown, most of the previous literature

has compared the forecasting performances of TD and BU. However, little indication has been

provided about the conditions allowing MSETD to be smaller, equal or larger than MSEBU .3

Only recently, Widiarta et al. (2009) present a sufficient condition for the equality of MSEs,

which is valid under strict homogeneous conditions.

In the next sections, the forecasting properties of TD and BU are fully investigated and

compared. A necessary and sufficient condition for the equality of MSEs is also shown, assuming

that the system in Eq. (2) represents the data generation process.

3See, for instance, the last section in Wei and Abraham (1981). These authors show examples when the

aggregate (TD) approach outperforms the disaggregate (BU) one and vice versa. Yet, they do not provide any

general conditions for the equality of MSEs.
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4 Parameters of the aggregated process: Top-Down approach

This section focuses on the TD approach, which refers to the process of forecasting the demand

for the aggregate of items.

In the vector IMA(1,1) model in (2), each component, as well as the aggregated data, follow

an IMA(1,1).4 Therefore, the aggregated process Fyit = F (1 − L)xit is an MA(1), that is:

zt = Fyit = ψ(L)at = (1 − ψL)at (3)

In addition, from the well known properties of the MA(1) process, we have that

E(z2
t ) = (1 + ψ2)σ2

a E(ztzt−1) = −ψσ2
a (4)

Defining αj =
∑N

i=1 φij , one can see that at =
∑N

i=1 εitωi −
∑N

i=1 αiεi,t−1ωi + ψat−1 is a white

noise process since: E(atat−1) =
∑N
i=1

∑N
j=1 −αiσijωiωj+ψE(a2t−1)

1−ψ2 = 0.

The αj (j = 1, 2, . . . , N) parameters have a precise interpretation. In general, the contribu-

tion of the j-th innovation at time t− 1 to the i-th variable at time t corresponds to the element

in row i and column j of the Φ matrix in Eq. (1). Thus, when considering the TD approach the

generic αj measures the impact of the j-th innovation at time t− 1 on the aggregate variable at

time t. The smaller the distance between the αj’s the more similar the impact of the innovations

in the TD specification. On the other hand, the wider the distance between the αj’s the more

different the impact of the innovations on the aggregate variables is.

We now derive the “macro” parameters (ψ and σ2
a) as functions of the “micro” parameters

of the system in (2), namely αj and σij. Consider the following equation:

δ =
E(z2t )

2E(ztzt−1)
= (1+ψ2)

−2ψ =
∑N
i=1

∑N
j=1 ωiσijωj+

∑N
i=1

∑N
j=1 αiαjσijωiωj

−2(
∑N
i=1

∑N
j=1 αiσijωiωj)

We can express ψ as function of δ as follows: ψ = δ ±
√
δ2 − 1. Note that, given that δ is

negative, the positive sign in front of the squared root guarantees that this solution is invertible

(i.e., 0 ≤ ψ < −1). Hence, the MA parameter in (4) is:

ψ =
∑N
i=1

∑N
j=1 ωiσijωj+

∑N
i=1

∑N
j=1 αiαjσijωiωj

−2(
∑N
i=1

∑N
j=1 αiσijωiωj)

+

√

(

∑N
i=1

∑N
j=1 ωiσijωj+

∑N
i=1

∑N
j=1 αiαjσijωiωj

−2(
∑N
i=1

∑N
j=1 αiσijωiωj)

)2

− 1

(5)

In addition, the innovations variance can be expressed as:

σ2
a = σ2

TD =
−2(

∑N
i=1

∑N
j=1 αiσijωiωj)

∑N
i=1

∑N
j=1

ωiσijωj+
∑N
i=1

∑N
j=1

αiαjσijωiωj

−2(
∑N
i=1

∑N
j=1

αiσijωiωj)
+

√

√

√

√

(

∑N
i=1

∑N
j=1

ωiσijωj+
∑N
i=1

∑N
j=1

αiαjσijωiωj

−2(
∑N
i=1

∑N
j=1

αiσijωiωj)

)2

−1

(6)

4A proof that the aggregate is also an MA(1) can be found in Lütkepohl (2007), p. 436. In general, summing

up across i moving average process of order qi lead to an MA(q*) where q∗ ≤ max(qi).
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Therefore, equations (5) and (6) represent two direct computational tools to recover the MA

parameter of the aggregated process and its variance, which corresponds to the variance of TD

(σ2
TD). In addition, it can easily be seen that the variance of the aggregated process achieves its

minimum value whenever α1 = α2 = . . . = αN . That is, when at = ω1ε1t + ω2ε2t + . . .+ ωNεNt,

TD has the same variance of the optimal forecasting procedure (i.e., σ2
TD =

∑N
i=1

∑N
j=1 ωiσijωj).

To see that, note that when the equality of αi (i = 1, 2, . . . , N) holds we can rewrite δ as

follows:

δ =
(1 + α2)(

∑N
i=1

∑N
j=1 ωiσijωj)

−2α(
∑N

i=1

∑N
j=1 ωiσijωj)

such that: ψ = α. This case represents the condition of equality of predictors provided by

Lütkepohl (1987, p. 107). As a consequence, the variance of the TD approach depends on the

distance among the αi. More specifically, the more α1 6= α2 6= . . . 6= αN , the higher the TD

variance.

Consider a bivariate version of the model in (2), in which for simplicity we let E(εtε
′

t) =
[

1 ρ

ρ 1

]

. Figure 1 displays the contour and three-dimensional plots of σ2
TD in (6) as a function

of the parameters of a bivariate vector IMA(1,1): α1 = (φ11 +φ21) and α2 = (φ12 +φ22). In both

panels, the extra-diagonal element of the covariance matrix of the innovations ρ is set equal to

0.3.

The three-dimensional plot of σ2
TD is clearly symmetric across the 45 degree line on the

(α1,α2) cartesian plane, and has its minima where α1 = α2, on the same plane. As we move

away from the 45 degree line, σ2
TD increases.

5 Parameters of the disaggregated process: Bottom-Up approach

This section describes the properties of BU approach. Here, the focus is on modeling and

forecasting equation by equation the system of multiple equations. In particular, this procedure

aims at forecasting ex-ante each of the equations contained in (2) and to aggregate ex-post the

forecasts. That is, considering the data generation process as in Eq. (2), we can rewrite the

system as follows:













y1t

y2t

...

yNt













=













(1 − θ1L) 0 . . . 0

0 (1 − θ2L) . . . 0
...

...
. . .

...

0 0 . . . (1 − θNL)

























η1t

η2t

...

ηNt













(7)

Let

δi =
E(y2

it)

2E(yityi,t−1)
=
σii +

∑N
j=1

∑N
k=1 φijφikσjk

−2
∑N

j=1 φijσij
(i = 1, 2, . . . , N)
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Figure 1: TD approach: contour and three-dimensional plots of σ2
TD
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Then, it follows that each of the θi (i = 1, 2, . . . , N) in (7) can be expressed as θi = δi+
√

δ2i − 1:

θi =
σii +

∑N
j=1

∑N
k=1 φijφikσjk

−2
∑N

j=1 φijσij
+

√

√

√

√

(

σii +
∑N

j=1

∑N
k=1 φijφikσjk

−2
∑N

j=1 φijσij

)2

− 1 (8)

Bearing in mind that ηit = εit − φi1ε1,t−1 − . . .− φiNεN,t−1 + θiηi,t−1, we have the following

expression for the variance of the disaggregate error:

E(η2
it) =

σii +
∑N

k=1

∑N
u=1 φikφiuσku − 2θi

∑N
k=1 φikσik

(1 − θ2
i )

Moreover, the covariance between the innovations is:

E(ηitηjt) =
σij+

∑N
k=1

∑N
u=1 φikφjuσku−θj

∑N
k=1 φikσjk−θi

∑N
k=1 φjkσik

(1−θiθj)

Therefore, the MSE of the BU approach can be computed as:

σ2
BU =

∑N
i=1

∑N
j=1

(

σij+
∑N
k=1

∑N
u=1 φikφjuσku−θj

∑N
k=1 φikσjk−θi

∑N
k=1 φjkσik

(1−θiθj)

)

ωiωj (9)

One can see that the variance of the BU approach process depends on the magnitude of

the extra-diagonal parameters φij (with i 6= j). First of all, it achieves the minimum whenever

φij = 0 (that is, when the micro units are independent processes). In other words, the BU

approach forecasts as well as the data generation process whenever εit = ηit, that is θi = φii

(this is the condition provided by Widiarta et al. 2009, p. 91). On the other hand, the variance

of BU increases with the magnitude of the extra diagonal parameters φij. In fact, it can be seen

that σ2
BU >

∑N
i=1

∑N
j=1 ωiσijωj whenever φij 6= 0 with i 6= j.

6 A comparison of the TD and BU predictors via forecast mean

squared errors

Notice that so far we have expressed the corresponding MSEs as a function of the parameters

of the data generation process as in Eq. (2). The structure and the parameter values of the

latter determine the accuracy of the forecasting procedures built on individual components and

on the contemporaneously aggregated process.

We are now able to rank the MSEs of the TD and BU approaches. In what follows, we

provide a condition that guarantees equal predictive efficiency. This is the main contribution of

the paper.

Theorem 1 Given the vector process in Eq. (2), Top-Down and Bottom-Up approaches have

identical MSE if and only if the following condition holds:
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−2(
∑N
i=1

∑N
j=1 αiσijωiωj)

∑N
i=1

∑N
j=1

ωiσijωj+
∑N
i=1

∑N
j=1

αiαjσijωiωj

−2(
∑N
i=1

∑N
j=1

αiσijωiωj)
+

√

√

√

√

(

∑N
i=1

∑N
j=1

ωiσijωj+
∑N
i=1

∑N
j=1

αiαjσijωiωj

−2(
∑N
i=1

∑N
j=1

αiσijωiωj)

)2

−1

=
∑N

i=1

∑N
j=1

(

σij+
∑N
k=1

∑N
u=1 φikφjuσku−θj

∑N
k=1 φikσjk−θi

∑N
k=1 φjkσik

(1−θiθj)

)

ωiωj

It is interesting to note that this condition is particularly flexible since the equality holds

regardless of the values of θi and ψ. Indeed, below we show that the equality holds even when

the values of θi are not identical.

To interpret Theorem 1, which is a highly non-linear function of several parameters, it can be

useful to fix some of them and set N = 2, moving the others and drawing the equality condition.

This latter can be viewed as an implicit function of the form: σ2
TD − σ2

BU = 0. As before, we

let E(εtε
′

t) =

[

1 ρ

ρ 1

]

.

Figures 2 and 3 display three-dimensional and contour plots of σ2
TD − σ2

BU , as a function of

the parameters of a bivariate vector IMA(1,1), i.e., φ11, φ21, φ12, φ22 and ρ. In the plots, two of

the parameters (i.e., φ11, φ22) vary while the other three parameters (i.e., ρ, φ12, φ21) are kept

fixed and set equal to the values reported below each panel.

[FIGURES 2 AND 3 ABOUT HERE]

Some interesting conclusions may be easily drawn from Figures 2 and 3. First, from panels

(a) in Figure 2 and (a) in Figure 3, we remark that as φ12 and φ21 move toward the point (0,

0) in absolute value, the function values increase, i.e., the performance of the BU approach is

improved. This is also evident by looking at panels (b) in Figure 2 and (b) in Figure 3, where the

level curves are depicted. Second, from a careful look at the contours sketched in panel (b) in

Figure 2, we note that for the chosen combination ρ = 0.3, φ12 = 0, φ21 = 0, the BU outperforms

the TD approach across all the displayed region. In particular, the difference between the MSEs

is almost zero close to the α1 = α2 line, and increases steadily as we move away from the 45

degree line. In panel (b) in Figure 3, for the chosen combination ρ = 0.3, φ12 = 0.8, φ21 = 0.8,

TD outperforms BU in a rather wide region, close to the α1 = α2 line and on the top left of the

graph, where the level curves are negative. As we move away from the 45 degree line toward

the bottom right of the graph, the contours become positive, and the ranking changes, i.e., BU

outperforms TD.

7 On the conditions for equal forecasting efficiency

In the context of VARMA models, Lütkepohl (1987) gives the necessary and sufficient condition

for the equality of h-step ahead predictors based on the individual components and on the
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aggregated process. That is, Corollary 4.1.1, case ii, p. 107 in Lütkepohl (1987) states that:

zBUt (h) = zTDt (h) ⇐⇒ FΘ(L) = ψ(L)F (10)

where, in our framework, Θ(L) is the disaggregate polynomial matrix on the RHS of (7) and

ψ(L) as in (3).

Condition (10) states that we get identical predictions for Fyit using TD and BU if and only

if the MA parameters of the individual components (θi) are equal to the MA parameter of the

aggregated process (ψ):5

θ1 = θ2 = . . . = θN = ψ (11)

Here it is crucial to note that although (11) is necessary and sufficient for the equality of

the predictors, it is sufficient but not necessary for the equality of the corresponding MSEs. To

show this, for simplicity, we consider a bivariate vector IMA(1,1) model. Note that the bivariate

framework has been widely used in the theoretical literature (see for instance Chen and Blue,

2010, who use a bivariate Vector AR(1)).

Assuming a bivariate vector IMA(1,1) model with σ12 = 0 and hence focusing on a diagonal

covariance matrix of the innovations, we introduce a condition for equal forecasting efficiency

that does not necessarily satisfy (11). That is, we are able to provide a condition that allows

MSETD = MSEBU whereas θ1 6= θ2.

Proposition 1 Consider the following bivariate system:

[

y1t

y2t

]

=

[

(1 + φ11L) φ12L

φ21L (1 + φ22L)

][

ε1t

ε2t

]

(12)

with σ11 = σ22 = 1 and σ12 = E(ε1tε2t) = 0. In addition, assume that the vector of weights is

F = [1 1]. If we impose φ12 = φ21, then

φ12 = ±φ22 − φ11

2
(13)

is a sufficient condition for the equality of MSEs of the TD and BU approaches.

The linear combination in (13) guarantees the equality of forecasting performance of the

competitive predictors despite that θ1 6= θ2. The proof of Proposition 1 is given in the Appendix.

Note that, given the above results, the conditions given in the Theorem in Widiarta et al. (2009)

5We briefly summarize the steps of the proof in Lütkepohl (1987) to show necessity of (10). Let us focus on

the bivariate framework of (2). To show that (10) is a necessary condition for the equality of one-step ahead

predictors, assume that zBUt (1) = zTDt (1) holds. Remind that zt+1 − zTDt (1) = at+1 and zt+1 − zBUt (1) = FyBUt+1

by construction. Hence zBUt (1) = zTDt (1) ⇒ FyBUt+1 = at+1.

FΘ(L)ηt := yt := ψ(L)at = ψ(L)Fηt

and thereby (10).
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are necessary and sufficient for the equality of predictors. However, they are sufficient but not

necessary for the equality of MSE.

It is interesting to note that all the illustrations and numerical examples proposed by the

aggregation literature focus on σ12 equal to zero (e.g., Wei and Abraham, 1981, Lütkepohl, 1984c,

1987, 2007). In other words, it is always assumed a diagonal covariance matrix of the innovations.

To our knowledge, nowhere in the literature is the case σij 6= 0 discussed and analyzed. Yet,

this latter case deserves particular attention due to its great practical importance in empirical

analysis since, very often, the individual components series are correlated. Here we present

another sufficient condition for equal forecasting performance in the bivariate case, which holds

when the innovations covariance matrix is full (not diagonal).

Proposition 2 Consider the system as in Eq. (12) with σ11 = σ22 = 1 and σ12 = ρ. In

addition, assume that the vector of weights is F = [1 1]. For any φ11, φ22 and assuming

σ12 = ρ, the following

φ21 = (φ11 − φ22)

(

1

2
+ ρ

)

φ12 =
φ11 − φ22

2
(14)

are sufficient conditions for the equality of MSEs of TD and BU approaches.

We defer the proof of Proposition 2 to the Appendix. The reader can check that when (14)

holds condition (11) is not met, since θ1 6= θ2.

It is worth focusing on the relevance of these results for the applied research. It is well

known that empirical forecasting accuracy is mainly based on the comparison of mean squared

errors of competitive models and not on the equality of predictors (being a particularly strong

condition). Therefore, our analysis has some direct consequences on the empirical debate on

the use of TD versus BU forecasts. Indeed, it is not possible to establish a priori which is the

best forecasting model, since both the TD and the BU predictors are sub-optimal procedures

if compared with the optimal procedure, i.e., aggregating the forecasts based on the original

data generation process in Eq. (2). In addition, Propositions 1 and 2 provide conditions for the

equality of MSEs when the IMA(1,1) parameters (i.e. θi) are not identical. They both reinforce

the fact that (11) is sufficient but not necessary for equal forecasting efficiency.

A relevant issue is to establish conditions under which the TD approach outperforms the

BU approach (i.e., σ2
TD < σ2

BU ) or the other way around (i.e., σ2
TD > σ2

BU ). This is given

by comparing equations (6) and (9). These equations are highly nonlinear with respect to

the demand planning framework parameters. Nevertheless, we can still identify two conditions

affecting the magnitude of the MSEs of the approaches. As of (6), one can see that the wider

(the narrower) the distance between the αi’s, the higher (the smaller) the MSE of the TD

approach. As of (9), the farther to zero (the closer to zero) the extra-diagonal parameters of

Φ, the higher (the smaller) the MSE of the BU approach. The next section will further clarify

these considerations.
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8 A simulation study

This section focuses on the main results from a Monte Carlo simulation. We adopt the framework

already suggested by Lütkepohl (1984c, 1987), taking into account the potential problems of

model misspecification and estimation uncertainty linked to small sample size.

More specifically, we consider a bivariate vector MA(1) process as the data generation process

(DGP):

[

y1t

y2t

]

=

[

1

1

]

+

[

1 + φ11L φ12L

φ21L 1 + φ22L

][

ε1t

ε2t

]

, t = 1, 2, . . . , T (15)

with

εεεt ∼ i.i.d. N

(

0,

[

1 ρ

ρ 1

])

.

Note that, in (15), we introduce a positive contemporaneous covariance between the innovations,

that is, ρ 6= 0. This is a novelty with respect to the Monte Carlo simulations presented in

Lütkepohl (1984c, 1987).

The structure of the parameters is the only feature that makes our analysis differ from

the previously mentioned Monte Carlo simulations. That is, we assume three different Data

Generation Processes (DGP):

• DGP 1 (σTD > σBU ): φ11 = 0.7 ; φ12 = 0 ; φ21 = 0 ; φ22 = −0.4; ρ = 0.3;

• DGP 2 (σTD = σBU ): φ11 = 0.7 ; φ12 = 0.2 ; φ21 = 0.32 ; φ22 = 0.3; ρ = 0.3;

• DGP 3 (σTD < σBU ): φ11 = 0.1 ; φ12 = 0.8 ; φ21 = 0.8 ; φ22 = 0.1; ρ = 0.3;

The implied parameters and forecast MSEs of BU and TD predictors are shown in Table 1

for DGP 1, DGP 2 and DGP 3.

All the processes are invertible. The DGP 1 represents the theoretical case when the BU

outperforms the TD approach. On the other hand, the DGP 3 is the case when the TD performs

better than the BU approach. DGP 2 satisfies condition (14). In fact, in this case, we have

shown that TD and BU have exactly the same one-step ahead forecasting performance in terms

of MSE. Note that for five-steps ahead the three DGPs are equivalent in terms of MSEs.

The aim of the experiment is to compare the accuracy of TD and BU approaches in fore-

casting the aggregate variable
[

1 1
]

[

y1t

y2t

]

= y1t + y2t.

For each DGP, the number of replications is 10,000. The number of observations used to

estimate the model in-sample is T = 30, 50, 100, 200, 500. Five observations are kept for out-

of-sample evaluation. Moreover, we assume that the data generation process is unknown and

we take into account possible model misspecification. That is, only autoregressive processes

are used to fit and forecast the simulated data. More specifically, as in Lütkepohl (1987), we
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Table 1: Implied parameters of BU and TD predictors using DGPs 1, 2, 3

DGP 1 DGP 2 DGP 3

σTD > σBU σTD = σBU σTD < σBU

BU PREDICTOR

θ1 0.70 0.70 0.21

θ2 -0.40 0.36 0.21

σ2
BU 2.60 2.80 3.90

TD PREDICTOR

ψ 0.13 0.70 0.90

σ2
TD 3.03 2.80 2.60

FORECAST ACCURACY

ln
(

MSETD

MSEBU

)

(h = 1) 0.16 0.00 -0.41

ln
(

MSETD

MSEBU

)

(h = 5) 0.00 0.00 0.00

employ AR(p) processes with p = 1, 2, ..., 6.6 This makes sense as the invertible MA(1) can be

closely approximated with an AR with finite lags. The standard information criteria are applied

for model selection (in particular, the Akaike Information Criterion, AIC, and the Schwartz

Information Criterion, BIC).

One-step ahead and five-steps ahead forecasts are considered. It should be noted that, given

the vector MA(1) as the framework, the MSEs of TD and BU correspond for h-steps ahead

forecasts with h ≥ 2. In other words, for h ≥ 2, the MSEs of TD and BU are equal to the MSE

resulting from the aggregation of the system in Eq. (2).7 That is the reason why in the last line

in Table 1 we have zeros for all three DGPs. On the other hand for one-step ahead Theorem 1

holds.

The out-of-sample mean squared error (MSE) and the mean absolute error (MAE) are used

for comparing the forecasting accuracy of TD and BU. The MSE is employed since all theoretical

results in this paper are based on the comparison of MSEs. However, since the use of the MSE

has been criticized by the previous literature (see for example Hyndman et al., 2008; Gardner,

2006; Tashman, 2000), we decide to employ also the ratio of MAEs.8 The use of different

measures of accuracy helps shedding light on comparing the forecasting performance of TD and

6According to Lütkepohl (1984c), six is not a severe restriction for the maximum AR order.
7Indeed, one can easily check that for any matrix Φ in Eq. (2), any positive definite variance covariance matrix

Σ in Eq. (2) and vector of weights F , when h ≥ 2 we have that MSETD = MSEBU =
∑N

i=1

∑N

j=1 ωiσijωj +
∑N

i=1

∑N

j=1 αiαjσijωiωj .
8An interesting discussion on the importance of selecting the most appropriate error measure for evaluating

the forecasting accuracy can be found in Davydenko and Fildes (2013).
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BU approaches.

Table 2: ln
(

MSETD
MSEBU

)

using DGPs 1, 2, 3

DGP 1 DGP 2 DGP 3

σTD > σBU σTD = σBU σTD < σBU

Sample Steps ahead AIC BIC AIC BIC AIC BIC

h=1 0.16 0.12 0.05 0.03 -0.14 -0.11

T=30 h=5 0.00 0.00 0.04 0.03 -0.01 -0.02

h=1 0.12 0.11 0.01 0.00 -0.13 -0.11

T=50 h=5 0.00 0.00 0.01 0.01 0.00 0.00

h=1 0.09 0.08 0.00 -0.01 -0.11 -0.08

T=100 h=5 0.02 0.00 0.01 0.01 0.00 -0.01

h=1 0.08 0.08 0.00 -0.01 -0.12 -0.09

T=200 h=5 0.00 0.00 0.01 0.01 0.00 0.00

h=1 0.10 0.10 0.00 0.00 -0.13 -0.12

T=500 h=5 0.01 0.00 0.01 0.00 0.01 0.00

Table 2 reports the Monte Carlo results using the three different DGPs: each cell contains

the natural log of the MSETD
MSEBU

ratio. Table 3 shows the natural log of the MAETD
MAEBU

ratio for the

different DGPs. Values greater than zero indicate that MSETD > MSEBU in Table 2 and

MAETD > MAEBU in Table 3. Values smaller than zero indicate the reverse. The use of

the logarithm is recommended by Dangerfield and Morris (1992) in order to reduce the bias

of summary statistics computed as simple ratios (which, since cannot be less than zero by

construction, are positively skewed – see Alexander and Francis, 1986).

Results relative to DGP 1 are clearly in favour of the BU predictor for one-step ahead

forecasts. This is true comparing both MSE and MAE when using both the Akaike and Schwartz

information criteria. On the contrary, for five-steps ahead there seems to be no evidence that

one approach outperforms the other. This result is expected given the last line of Table 1.

Focusing on DGP 3, on the other hand, we face the opposite situation in which the TD pre-

dictor outperforms the BU (this is evident in both Tables). More specifically, for one-step ahead

we observe negative outcomes for all T (indicating the better performance of TD predictor),

whereas for five-steps ahead the results are closed to zero (this is especially evident in Table 3).

Indeed no specific approach outperforms its competitor for five-steps ahead forecasts. Again,

this is in line with the results as in Table 1.

Looking at DGP 2, for which the condition of equality of predictors (14) holds, the MSE
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Table 3: ln
(

MAETD
MAEBU

)

using DGPs 1, 2, 3

DGP 1 DGP 2 DGP 3

σTD > σBU σTD = σBU σTD < σBU

Sample Steps ahead AIC BIC AIC BIC AIC BIC

h=1 0.08 0.07 0.02 0.01 -0.08 -0.06

T=30 h=5 0.00 -0.01 0.00 0.00 0.01 0.01

h=1 0.09 0.08 0.01 0.00 -0.13 -0.09

T=50 h=5 0.00 0.00 0.00 0.00 0.01 0.01

h=1 0.07 0.06 0.00 0.00 -0.12 -0.10

T=100 h=5 0.00 0.00 0.00 0.00 0.01 -0.01

h=1 0.09 0.08 0.01 0.00 -0.15 -0.15

T=200 h=5 0.00 0.00 0.00 0.00 -0.01 -0.01

h=1 0.08 0.07 0.00 0.00 -0.15 -0.14

T=500 h=5 0.00 0.00 0.00 0.00 0.00 0.00

results in Table 2 show that BU tends to perform slightly better than the TD in very small

samples, when T = 30, but not as much as observed for DGP 1. On the other hand, when T ≥ 50,

the forecasting performances are clearly the same. In general, when the number of observations

increases, the log of the ratio of MSEs is equal to zero using both AIC and BIC. This is true for

one-step ahead and for five-steps ahead forecasts. In summary, the differences between MSEs

are very small, especially in large samples, where estimation uncertainty is reduced. Results

comparing the MAE of TB and BU in Table 3 are similar to those for the MSE. Here, however,

even for T = 30, the differences between the MAE of the two competitors are very small. In

other words, the comparison based on the MAEs yields results that reinforce the equality of

forecasting performance of TB and BU.

These results deserve some interpretation. The necessary and sufficient condition in Theorem

1 has been derived assuming an IMA(1,1) model as the framework. In the experimental design,

only finite order AR(p) models – with p selected on the basis of standard information criteria –

are used to fit and forecast the simulated MA(1) data: In doing so, we take into account possible

model misspecification and estimation uncertainty. Indeed, it is well known that an invertible

MA(1) process corresponds to an infinite-order AR. For example, the process yt = et − αet−1

with |α| < 1 can be expressed as yt = et +
∑

∞

i=1 α
iyt−i. Therefore, the finite order AR(p)

represents a close approximation to the infinite-order AR process and hence to the MA(1).

Thus, the results suggest that, as long as the equality condition holds for the underlying
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vector IMA(1,1) as in Eq. (2), BU and TD perform almost identically when employing models

that closely approximate the data generation process. Similarly, when assuming a framework in

which BU outperforms TD (or vice versa), these differences stand out in the simulation results

even assuming a certain degree of misspecification. Clearly, these considerations might not hold

when using misspecified models that do not approximate the data generation process.

Although not reported, simulations have also been carried out assuming several values of

ρ, in order to check whether the correlation coefficient might influence the performances of BU

and TD approaches. The results, available upon request, show that all the previous results are

confirmed. For instance, when ρ = 0 and DGP 1 is considered, BU outperforms TD and the

differences between the two competitors are even more pronounced.

Overall, from this Monte Carlo experiment, we can conclude that the simulation results

confirm our theoretical findings and shed further light on the ρ parameter’s influence on the

accuracy of the competing predictors. In particular, DGP 1 and DGP 3 represent two opposite

frameworks in which one forecasting method clearly outperforms its competitor. Moreover,

Table 2 shows that when DGP 2 is considered the condition of equal forecasting performance in

terms of MSE in (14) is validated by simulations. This is true for both one and five-steps ahead

forecasts, regardless of misspecification issues.

9 Conclusions

Assuming an unrestricted multivariate exponential smoothing as the data generation process,

we show that the parameters of both top-down and bottom-up forecasting approaches can be

expressed as analytical functions of the parameters of the reduced form vector IMA(1,1) model.

In addition, after having analytically derived the forecasting properties of both top-down and

bottom-up, we provide the necessary and sufficient condition for the equality of their MSEs.

Our results are valid in general, regardless of restrictions on the parameters. We also show that

the condition for equality of predictors is sufficient but not necessary for the equality of MSEs.

Monte Carlo simulations seem to confirm all our theoretical achievements.

It is worth noting that our results are valid only when assuming the simple exponential

smoothing as the demand planning framework. This is clearly a limitation since we are aware

that this framework represents only one of the possible candidates for demand planning. De-

pending on the context, several other frameworks might be more appropriate. For example, for

conventional fast-moving consumer goods, models featuring seasonality should be considered.

The double exponential smoothing and trend versions are also very relevant: In particular, the

damped trend model has been shown to be a very strong contender. See Gardner (2006) and

McKenzie and Gardner (2010).

Moreover, the paper focuses on a sub-case of hierarchical forecasting, restricting the analysis

to flat hierarchies with only two levels. This represents another restriction since the recent

demand planning literature is extending the analysis to hierarchical structures with more levels
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(Athanasopoulos et al., 2009; Hyndman et al., 2011).

Finally, this paper contains useful results assuming full knowledge of the parameters of the

multivariate exponential smoothing. We are aware that this represents an ideal situation since,

in empirical analysis, practitioners do not have such information and misspecification issues do

usually arise.

However, we believe that our theoretical findings might have important practical implica-

tions. First of all, one general implication is that neither TD approach nor BU approach should

be preferred a priori in any empirical analysis. This is not only due to possible misspecification

issues but also because of the peculiar structure of the matrix of parameters that plays a crucial

role in determining the forecasting performance of the competitive approaches.

Secondly, we provide the conditions when the TD outperforms the BU and vice versa. This

is relevant information for empirical analysis when the system in (2) is estimated and TD and

BU are implied and compared. In other words, once the system is estimated, any industrial

managers can now easily evaluate which approach dominates in terms of MSE. We note that, in

empirical analysis, if the system in (2) is estimated and the forecasts of the aggregate demand are

implied, it is also worth estimating TD and BU specifications and comparing their forecasting

performance with those of the estimated multivariate model. In general, we expect our results to

hold also in empirical cases as suggested by the simulations. However, there might be empirical

cases where our results may not hold for specific reasons such as potential misspecification of

the demand planning framework or small sample estimation issues.

The simulation results represent a relevant finding. That is, if the demand planning frame-

work is the multivariate exponential smoothing, then the ranking of TD and BU forecasts seems

to be led by the underlying framework regardless of possible misspecification issues. Needless to

say that if the demand planning framework is not the one adopted in this paper, the previous

statement is not valid. In fact, our paper represents a first step in the analytical evaluation of

the forecasting properties of TD and BU. Future research might investigate the forecasting prop-

erties of TD and BU when the demand planning framework differs from (2). For example, our

results might be extended to more general trend exponential smoothing as well as damped trend

exponential smoothing models. Finally, extending our analysis to generic K levels hierarchical

structures would be an interesting development for further research.

22



References

[1] Alexander G.J., Francis J.C., 1986. Portfolio Analysis, 3rd edition. Englewood Cliffs: Prentice-Hall.

[2] Athanasopoulos G., Ahmed R.A., Hyndman R.J., 2009. Hierarchical forecasts for australian domestic

tourism. International Journal of Forecasting, 25 (1), 146–166.

[3] Box G.E.P., Jenkins G.M., 1976. Time Series Analysis: Forecasting and Control. San Francisco: Holden Day,

Inc.

[4] Chen A., Blue J., 2010. Performance analysis of demand planning approaches for aggregating, forecasting

and disaggregating interrelated demands. International Journal of Production Economics, 128 (2), 586–602.

[5] Dangerfield B.J., Morris J.S., 1992. Top-down or bottom-up: aggregate versus disaggregate extrapolations.

International Journal of Forecasting, 8 (2), 233–241.

[6] Davydenko A., Fildes R., 2013. Measuring forecasting accuracy: the case of judgmental adjustments to

SKU-level demand forecasts. International Journal of Forecasting. In Press.

[7] Dekker M., van Donselaar K.H., Ouwehand P., 2004. How to use aggregation and combined forecasting to

improve seasonal demand forecasts. International Journal of Production Economics, 90 (2), 151–167.

[8] Dunn D.M., Williams W.H., DeChaine T.L., 1976. Aggregate versus subaggregate models in local area

forecasting. Journal of the American Statistical Association, 71 (March), 68–71.

[9] Fliedner E.B., Lawrence B., 1995. Forecasting system parent group formation: an empirical application of

cluster analysis. Journal of Operations Management, 12 (2), 119–130.

[10] Fliedner E.B., 1999. An investigation of aggregate variable time series forecast strategies with specific sub-

aggregate time series statistical correlation. Computer and Operations Research, 26 (10-11), 1133–1149.

[11] Gardner E.S., 2006. Exponential smoothing: the state of the art – Part II. International Journal of Forecast-

ing, 22 (4), 637–666.

[12] Granger C.W.J., Morris M.J., 1976. Time series modelling and interpretation. Journal of the Royal Statistical

Society. Series A (General), 139 (2), 246–257.

[13] Granger C.W.J., Newbold P., 1977. Forecasting Economic Time Series. London: Academic Press.

[14] Harvey A.C., 1989. Forecasting, Structural Time Series and the Kalman Filter. Cambridge, UK: Cambridge

University Press.

[15] Hyndman R.J., Koehler A.B., Ord J.K., Snyder R.D., 2008. Forecasting with Exponential Smoothing: The

State Space Approach. Berlin: Springer.

[16] Hyndman R.J., Ahmed R.A., Athanasopoulos G., Shang H.L., 2011. Optimal combination forecasts for

hierarchical time series. Computational Statistics and Data Analysis, 55 (9), 2579–2589.

[17] Kohn R., 1982. When is an aggregate of a time series efficiently forecast by its past? Journal of Econometrics,

18 (3), 337–349.

[18] Kalchschmidt M., Verganti R., Zotteri G., 2006. Forecasting demand from heterogeneous customers. Inter-

national Journal of Operations and Production Management, 26 (6), 619–638.

[19] Kerkkänen A., Korpela J., Huiskonen J., 2009. Demand forecasting errors in industrial context: Measurement

and impacts. International Journal of Production Economics, 118, 43–48.

[20] Kremer M., Siemsen E., Thomas D.J., 2012. The sum and its parts: a behavioral investigation of top-down

and bottom-up forecasting processes. Mimeo.

[21] Lütkepohl H., 1984a. Linear aggregation of vector autoregressive moving average processes. Economics Let-

ters, 14 (4), 345–350.

23



[22] Lütkepohl H., 1984b. Linear transformations of vector ARMA processes. Journal of Econometrics, 26 (3),

283–293.

[23] Lütkepohl H., 1984c. Forecasting contemporaneously aggregated vector ARMA processes. Journal of Business

& Economic Statistics, 2 (3), 201-214.

[24] Lütkepohl H., 1987. Forecasting Aggregated Vector ARMA Processes. Berlin: Springer-Verlag.

[25] Lütkepohl H., 2006. Forecasting with VARMA models, in G. Elliott, C.W.J. Granger & A. Timmermann

(eds.), Handbook of Economic Forecasting, Volume 1, Elsevier, Amsterdam, 287–325.

[26] Lütkepohl H., 2007. New Introduction to Multiple Time Series Analysis. Berlin: Springer.

[27] Lütkepohl H., 2009. Forecasting aggregated time series variables: a survey. EUI Working Paper ECO No.

2009/17.

[28] McKenzie E., Gardner E.S., 2010. Damped trend exponential smoothing: a modelling viewpoint. Interna-

tional Journal of Forecasting, 26 (4), 661–665.

[29] Moon S., Hicks C., Simpson A., 2012a. The development of a hierarchical forecasting method for predicting

spare parts demand in the South Korean navy – a case study. International Journal of Production Economics,

140 (2), 794–802.

[30] Moon S., Simpson A., Hicks C., 2012b. The development of a classification model for predicting the perfor-

mance of forecasting methods for naval spare parts demand. International Journal of Production Economics.

In Press.

[31] Muth J.F., 1960. Optimal properties of exponentially weighted forecasts. Journal of the American Statistical

Association, 55 (June), 299–306.

[32] Rose D.E., 1977. Forecasting aggregates of independent ARIMA processes. Journal of Econometrics, 5 (3),

323–345.

[33] Tashman L.J., 2000. Out-of-sample tests of forecasting accuracy: an analysis and review. International

Journal of Forecasting, 16 (4), 437–450.

[34] Tiao G.C., Guttman I., 1980. Forecasting contemporal aggregates of multiple time series. Journal of Econo-

metrics, 12 (2), 219–230.

[35] Weatherford L.R., Kimes S.E., Scott D.A., 2001. Forecasting for hotel revenue management: testing aggre-

gation against disaggregation. Cornell Hotel and Restaurant Administration Quarterly, 42, 53–64.

[36] Wei W.W.S., Abraham B., 1981. Forecasting contemporal time series aggregates. Communications in Statis-

tics - Theory and Methods, A10, 1335–1344.

[37] Widiarta H., Viswanathan S., Piplani R., 2009. Forecasting aggregate demand: an analytical evaluation

of top-down versus bottom-up forecasting in a production planning framework. International Journal of

Production Economics, 118 (1), 87–94.

[38] Zotteri G., Kalchschmidt M., Caniato F., 2005. The impact of aggregation level on forecasting performance.

International Journal of Production Economics, 93-94 (1), 479–491.

[39] Zotteri G., Kalchschmidt M., 2007. A model for selecting the appropriate level of aggregation in forecasting

processes. International Journal of Production Economics, 108 (1-2), 74–83.

24



APPENDIX

Proof of Proposition 1

Let φ12 = φ21 = φ22−φ11

2
and ρ = 0. Similar results, mutatis mutandis, hold for φ12 = φ21 = φ11−φ22

2
and ρ = 0.

Bearing in mind equation (5), it is easy to see that θ1 and θ2 simplify to

θ1 =
4 + 5φ2

11 − 2φ11φ22 + φ2
22

8φ11
−
√

(4 + 5φ2
11 − 2φ11φ22 + φ2

22)
2

64φ2
11

− 1

and

θ2 =
4 + φ2

11 − 2φ11φ22 + 5φ2
22

8φ22
−
√

(4 + φ2
11 − 2φ11φ22 + 5φ2

22)
2

64φ2
22

− 1,

hence, θ1 6= θ2. The ψ parameter in (5) is equal to

ψ =
1

8φ22

(

(

4 + φ2
11 − 2φ11φ22 + 5φ2

22

)

−
√

(4 + φ2
11 − 2φ11φ22 + 5φ2

22 − 8φ22) (4 + φ2
11 − 2φ11φ22 + 5φ2

22 + 8φ22)

)

.

It differs from θ1. Moreover ψ = θ2.

Furthermore, when ρ = 0, the variance of the aggregated process is σ2
TD = 2φ22

ψ
, that is,

σ2
TD =

2φ22

θ2
.

The MSE of the optimal one-step ahead predictor of yt based on the univariate components of xt is given in

(9), which for φ12 = φ21 = φ22−φ11

2
and ρ = 0 becomes

σ2
BU =

φ11

θ1
+
φ22

θ2
+
φ22 − φ11

1 − θ1θ2
(φ11 + φ22 − θ1 − θ2) .

To have equal forecasting performance, it has to be σ2
BU = σ2

TD. For this condition to be verified, it must

hold

φ22

θ2
− φ11

θ1
=
φ22 − φ11

1 − θ1θ2
(φ11 + φ22 − θ1 − θ2) .

Hence, to be σ2
BU = σ2

TD, we need to show that

φ22θ1
φ11θ2

=
θ21 − φ11θ1 + 1

θ22 − φ22θ2 + 1
. (16)

Let us focus on the right-hand side (RHS) of (16). After some tedious calculations, we notice that the numerator

θ21 − φ11θ1 + 1 can be factorized as

1

32φ2
11

(

−2φ22φ11 + φ2
22 + 4 + φ2

11

)

×
(

4 + 5φ2
11 + φ2

22 − 2φ22φ11 −
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(φ2
22 + 4 − 8φ11 − 2φ22φ11 + 5φ2

11)(φ
2
22 + 4 + 8φ11 − 2φ22φ11 + 5φ2

11)

φ2
11

φ11

)

.

Similarly, the denominator θ22 − φ22θ2 + 1 may be factorized as

1

32φ2
22

(

−2φ22φ11 + φ2
22 + 4 + φ2

11

)

×
(

4 + 5φ2
22 + φ2

11 − 2φ22φ11 −
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(φ2
11 + 4 − 8φ22 − 2φ22φ11 + 5φ2

22)(φ
2
11 + 4 + 8φ22 − 2φ22φ11 + 5φ2

22)

φ2
22

φ22

)

.

Consequently we can express the ratio
θ2
1
−φ11θ1+1

θ2
2
−φ22θ2+1

as

φ2
22

(

4 + 5φ2
11 + φ2

22 − 2φ22φ11 −
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(φ2

22
+4−8φ11−2φ22φ11+5φ2

11
)(φ2
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11
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11

φ11

)

φ2
11

(

4 + 5φ2
22 + φ2

11 − 2φ22φ11 −
√

(φ2

11
+4−8φ22−2φ22φ11+5φ2

22
)(φ2

11
+4+8φ22−2φ22φ11+5φ2

22
)

φ2

22

φ22

) .

25



In addition, focus on the left-hand side (LHS) of (16). We can express θ2 as

θ2 =
1

8φ22

(

(

4 + φ2
11 − 2φ11φ22 + 5φ2

22

)

−
√

(4 + φ2
11 − 2φ11φ22 + 5φ2

22 − 8φ22) (4 + φ2
11 − 2φ11φ22 + 5φ2

22 + 8φ22)

)

.

(17)

Similarly to θ2, we can express θ1 as

θ1 =
1

8φ11

(

(

4 + 5φ2
11 − 2φ11φ22 + φ2

22

)

−
√

(4 + 5φ2
11 − 2φ11φ22 + φ2

22 − 8φ11) (4 + 5φ2
11 − 2φ11φ22 + φ2

22 + 8φ11)

)

.

(18)

From (18) and (17), it is immediately evident that the LHS and the RHS of (16) are equal. Therefore, the

result follows.

�

Proof of Proposition 2

We assume φ21 = (φ11 − φ22)(
1
2

+ ρ), φ12 = φ11−φ22

2
and ρ 6= 0. As stated in Proposition 2, in what follows we

are going to show that this linear combination of the DGPs parameters guarantees the equality of forecasting

performance of the competitive processes, no matter the values of φ11, φ22 and ρ.

Bearing in mind equation (5), it is easy to see that θ1 and θ2 simplify to

θ1 =
4+(5+4ρ)φ2

11
+φ2

22
−2φ11φ22(1+2ρ)
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√
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and
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(20)

As a consequence θ1 6= θ2. Some straightforward calculations show that the ψ parameter in (5) is equal to θ1.

Furthermore, the variance of the aggregated process is provided in (6), which for φ12 = φ11−φ22

2
and φ21 =

(φ11 − φ22)(1/2 + ρ) is

σ2
TD =

(1 + ρ)((2 + ρ)φ11 − ρφ22)

θ1
. (21)

The MSE of the optimal one-step ahead predictor of yt based on the univariate components of xt is given in

(9), which for φ12 = φ11−φ22

2
and φ21 = (φ11 − φ22)(1/2 + ρ) becomes

σ2
BU =

φ11+ 1

2
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+
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−2φ11(φ22+2(θ1+θ2))))

1−θ1θ2
(22)

To have equal forecasting performance, it has to be σ2
BU = σ2

TD. For this condition to be verified, on the

basis of (21) and (22), it must hold

1

2
(1+2ρ)((2+ρ)φ11−ρφ22)
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which yields

θ1θ2
1−θ1θ2

=

−2ρ2(φ11−φ22)(θ1−θ2)−ρ(φ11θ1−φ22θ1−5φ11θ2+φ22θ2)+2φ11θ2−2φ22θ1
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.

Let us focus on the first ratio θ1θ2
1−θ1θ2

. Substituting for (19) and (20), we get
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=
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.

After tedious calculations it is possible to see that we get exactly the same expression as above after plugging

(19) and (20) in the second ratio

−2ρ2(φ11−φ22)(θ1−θ2)−ρ(φ11θ1−φ22θ1−5φ11θ2+φ22θ2)+2φ11θ2−2φ22θ1
2ρ2(φ11−φ22)2+ρ(4+5φ2

11
+φ2

22
−2φ11(φ22+2(θ1+θ2)))+2(φ11−φ22)(φ11+φ22−θ1−θ2)

.

This completes the proof.

�
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Figure 2: Three-dimensional and contour plots of σ2
TD − σ2

BU when ρ = 0.3, φ12 = 0, φ21 = 0
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Three-dimensional and contour plots of σ2
TD − σ2

BU , i.e., the variance of the TD approach minus the variance

of the BU approach, as a function of the parameters of a bivariate vector IMA(1,1): α1 = (φ11 + φ21) and

α2 = (φ12 +φ22). In the figures, two of the parameters (i.e., φ11, φ22) vary while the other three parameters (i.e.,

ρ, φ12, φ21) are set equal to the values below each panel.
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Figure 3: Three-dimensional and contour plots of σ2
TD−σ2

BU when ρ = 0.3, φ12 = 0.8, φ21 = 0.8
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Three-dimensional and contour plots of σ2
TD − σ2

BU , i.e., the variance of the TD approach minus the variance

of the BU approach, as a function of the parameters of a bivariate vector IMA(1,1): α1 = (φ11 + φ21) and

α2 = (φ12 +φ22). In the figures, two of the parameters (i.e., φ11, φ22) vary while the other three parameters (i.e.,

ρ, φ12, φ21) are set equal to the values below each panel.
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