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A DYNAMIC DEFAULT DEPENDENCE MODEL 
 

by Sara Cecchetti* and Giovanna Nappo† 
 

Abstract 

We develop a dynamic multivariate default model for a portfolio of credit-risky 
assets in which default times are modelled as random variables with possibly different 
marginal distributions, and Lévy subordinators are used to model the dependence among 
default times. In particular, we define a cumulative dynamic hazard process as a Lévy 
subordinator, which allows for jumps and induces positive probabilities of joint defaults. We 
allow the main asset classes in the portfolio to have different cumulative default probabilities 
and corresponding different cumulative hazard processes. Under this heterogeneous 
assumption we compute the portfolio loss distribution in closed form. Using an 
approximation of the loss distribution, we calibrate the model to the tranches of the iTraxx 
Europe. Once the multivariate default distribution has been estimated, we analyse the 
distress dependence in the portfolio by computing indicators of systemic risk, such as the 
Stability Index, the Distress Dependence Matrix and the Probability of Cascade Effects. 
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1 Introduction1

This paper aims to contribute to the literature on the pricing of portfolios of credit derivatives (such
as CDOs or basket CDSs) where the goal is to compute the joint probability of default of a portfolio
of risky assets. The risk of default of each asset in the portfolio depends mainly on two sources of
randomness: an individual risk factor and a common market factor. The latter represents the uncertainty
affecting all assets simultaneously. Our objective is to model the aggregate portfolio risk and compute
related systemic risk measures. Such main themes are fundamental in finance, both for the valuation of
many credit derivatives and for extracting information from market prices that can be relevant from a
macro-prudential point of view (such as estimating joint probabilities of default or probabilities of default
conditional on other assets being in default). In finance, the market for credit default swap (CDS) indexes
quickly developed from 2004 on and market operators began to buy and sell so-called CDO tranches for
hedging or speculative strategies on the credit derivatives market. The well-known Gaussian one-factor
copula model of Li (2000) and Hull and White (2004) often cannot explain the spread of the tranches
observed on the market (over the counter), partly because it does not attribute proper weights to extreme
events. In the last decade, many distributional hypothesis for the dependence structure of the default
times have been proposed in the financial literature to try to replicate the tranche spread observed on
the market. For example, Andersen et al. (2003) looked at the Student-t distribution. Later, Laurent
and Gregory (2005) and Andersen and Sidenius (2005) proposed models based on the factor copulas,
while Kalemanova et al. (2007) and Eberlein et al. (2008) assumed that synthetic CDOs could be
calibrated with the one-factor Lévy model using the normal inverse Gaussian (NIG) distribution and
the more flexible generalized hyperbolic (GH) distribution, respectively. In particular, one-factor Lévy
(or one-factor infinitely divisible) models have been introduced by Albrecher et al. (2007).2

The recent international financial crisis has highlighted the lack of correct models for valuing credit
derivatives as CDOs. From the theoretical point of view we want to develop a dynamic multivariate
default model. Our model is inspired by a recent paper of Mai and Scherer (2009a) that uses a stochastic
time change to introduce dependence in a portfolio of credit-risky assets. In that paper the default
times are modelled as random variables with possibly different marginal distributions. By restricting the
time change to suitable Lévy subordinators the authors can separate the dependence structure and the
marginal default probabilities. Using a so-called time normalization they compute the survival copula
of all default times. In order to compute the portfolio loss distribution and apply their model to the
pricing of CDO tranches, a homogeneous portfolio is assumed, in which all the default times share the
same marginal distribution: basically, the time change considered by Mai and Scherer implies that all the
default times have the same cumulative hazard rate. Our model develops the ideas of Mai and Scherer
(2009a) by assuming possibly different cumulative hazard rates for the default times; we aim to introduce
heterogeneity in the model by allowing for a heterogeneous portfolio, as in the implied copula model of
Hull and White (2010). In particular, we define and model a cumulative dynamic hazard process as

1We thank Antonio Di Cesare for his comments and suggestions. The views expressed in the article are those of the
authors and do not involve the responsibility of the Bank of Italy.

2Among other relevant papers on this subject are Luciano (2007), Garcia et al. (2009), Donnelly and Embrechts (2010),
Masol and Schoutens (2011), and Choros-Tomczyk et al. (2012).
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a Lévy subordinator, which allows for jumps and induces positive probabilities of joint defaults, and
we model the dependence structure by the implied survival copula, which is related to the choice of
the subordinator. In our model we allow the asset classes in the portfolio to have different cumulative
default probabilities and corresponding different cumulative hazard processes. We find an analytical
closed formula for the distribution of the portfolio loss process under this heterogeneous assumption and
we prove an approximation formula for the loss distribution that is useful for empirical applications.
Moreover, this model is dynamic in the sense that it allows us to update the portfolio loss distribution at
a posterior time, given the portfolio loss distribution at a prior time, by simply computing conditioned
default probabilities.

Once we have specified a suitable Lévy subordinator, our model can be calibrated to portfolio CDS
spreads and CDO tranche spreads, appropriately choosing the model parameters that determine the
dependence structure.

From an empirical point of view we calibrate the parameters of our model to the tranches of the iTraxx
Europe, which is a basket of 125 CDSs on European firms. We consider the index as a portfolio and we
divide it into two classes: financial firms and non-financial firms. Thanks to our heterogeneous model,
once we have estimated the multivariate default distribution of the companies included in the iTraxx,
we can follow Segoviano and Goodhart (2009) and Segoviano and Goodhart (2010) and analyse the
distress dependence in the portfolio by computing indicators of systemic risk that incorporate changes
in distress dependence consistent with the economic cycle. Examples of these stability measures are:
1) the Stability Index, which reflects the expected number of firms becoming distressed given that at
least one firm has become distressed; 2) the Distress Dependence Matrix, in which we estimate the set of
pairwise conditional probabilities of distress; 3) the Probability of Cascade Effects, that characterizes the
likelihood of one or more institutions becoming distressed given that a specific firm becomes distressed.
These stability measures can be used to verify which firms are more systemically relevant for the index
as a whole.

The paper is organized as follows. In Section 2 we briefly describe the financial products used
to calibrate the parameters of our model. Section 3 provides mathematical notions related to the Lévy
subordinators.3 In Section 4 we explain the construction of the heterogeneous multivariate default model,
we explore the implied dependence structure, and we derive the closed formula for the loss distribution
as well as the related approximation that will be used in the applications. Section 5 describes the
pricing applications, explaining the pricing formulas, presenting the calibration of the models to iTraxx
index market data, and showing the related results. In Section 6 we decribe the Distress Dependence
measures to which we apply our model, and we show the estimation results at seven significant dates from
January 2007 to November 2010. Finally, Section 7 concludes. Mathematical proofs of the theorems4

and propositions are shown in Appendix B.

3Other mathematical preliminaries are available in Appendix A.
4With the exception of the main theorem, i.e. Theorem 4.1, relating to the portfolio-loss distribution approximation.
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2 Credit derivatives

A credit derivative is a derivative security whose payout is conditional on the occurrence of a credit event.
It is used primarily to transfer, hedge or manage credit risk. The company for which credit protection
is bought is called the reference entity. The credit event is defined with respect to the credit asset(s)
issued by a reference entity. If the credit event occurs, a default payment has to be made by one of the
counterparties. A credit event is a precisely defined default event, such as bankruptcy, failure to pay,
obligation default, repudiation/moratorium, rating downgrade below a given threshold, or changes in
the credit spread. A default payment is the payment which has to be made if a credit event happens.

A particular case of credit derivatives is represented by Credit Default Swaps (CDSs). In a single-
name CDS the protection seller B agrees to pay the default payment to the protection buyer A if a
default occurs. The default payment is structured to replace the loss that a typical lender would incur
in the event of a credit event affecting the reference entity. If there is no default of the reference security
until the maturity of the default swap, counterpart B pays nothing. On the other hand, the protection
buyer A pays a fee for the default protection. In the most common version, the fee is paid at regular
intervals until default or maturity. If a default occurs between two fee payment dates, the buyer A has
to pay the fraction of the fee payment that has accrued up to the time of default.

2.1 Portfolio credit derivatives and CDOs

When dealing with a portfolio, we need to consider the risk of a clustering of defaults and of joint defaults.
Portfolio credit derivatives are instruments used to manage risks of this type.

Collateralized Debt Obligations (CDOs) are financial products designed to securitize portfolios of
defaultable assets: loans, bonds or credit default swaps. The assets are sold to a special purpose vehicle
(SPV) and investors are offered the opportunity to invest in notes issued by this company. These
obligations are collateralized by the underlying debt portfolio. The different notes are structured so as
to offer risk/return profiles that are specifically targeted to the risk appetite and investment restrictions
of different investor groups. A simple CDO has the following components:

• The underlying portfolio is composed of defaultable assets issued by issuers Ci with notional
amounts Ki, i = 1, ..., I. The total notional is K =

∑I
i=1 Ki.

• The portfolio is transferred to a special created company, the special purpose vehicle (SPV).

• The SPV issues notes:

an equity (or first-loss) tranche with notional KE;

several mezzanine tranches with notional KM1 , KM2 , KM3 , etc.;

a senior tranche with notional KS.

• If during the existence of the CDO one of the bonds in the portfolio defaults, the recovery payments
are reinvested in default-free securities or reimbursed.
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• At maturity of the CDO, the portfolio is liquidated and the proceeds are distributed to the tranches,
according to their seniority ranking.

The key point of the CDO is the final redistribution of the portfolio value according to the seniority
of the notes. The senior tranche is served first. If the senior tranche can be fully repaid, the most senior
mezzanine tranche is then repaid. If this tranche can also be fully repaid, then the next tranches are paid
off in the order of their seniority, until finally the equity tranche is paid whatever is left of the portfolio’s
value. The payouts are a function of the losses.

1. The first losses hit the equity tranche alone. Until the cumulative loss amount has reached the
equity’s notional KE, the other tranches are protected by the equity tranche.

2. Cumulative losses exceeding KE affect the first mezzanine tranche until its notional is used up.

3. Then the subsequent mezzanine tranches are hit in the order of their seniority.

4. Only when all the other tranches have absorbed their share of the losses will the senior tranche
suffer any losses.

In the standard CDOs the underlying portfolio can consist of bonds (collateralized bond obligation,
or CBO) or loans (collateralized loan obligation, or CLO). We have a synthetic CDO when credit default
swaps are used instead of bonds or loans in the underlying portfolio.

Basically, once a CDO is constructed by partitioning the credit portfolio into tranches with different
seniority, a tranche represents a certain loss piece of the overall portfolio which is defined by its lower
and upper attachment points. The protection seller receives periodic premium payments depending on
the remaining nominal value and the spread of this tranche, while the protection buyer is compensated
for the losses affecting this tranche. The pricing of a tranche corresponds to an assessment of the spread
such that the expected discounted payment streams of this tranche for the protection buyer and the
protection seller agree.

3 Mathematical preliminaries

3.1 Lévy subordinator

Let (Ω,F ,P) be a probability space. A one-dimensional Lévy process on this probability space is a càdlàg
stochastic process Λ = {Λt}t≥0 starting at Λ0 = 0, which has independent and stationary increments.
A Lévy subordinator is a particular Lévy process in which almost all paths are non-decreasing.5 It can
be shown that a Lévy subordinator has just two characteristics, a drift µ ≥ 0 and a positive measure ν
(called the Lévy measure) on (0,∞), via the Lévy-Khintchine formula

Ψ(λ) = µλ+

∫ ∞
0

(eλ t − 1) ν(dt), λ ≤ 0, t ≥ 0.

5See Appendix A for a more detailed definition, and Applebaum (2004) as a reference for the study of Lévy processes.
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Basically, a Lévy subordinator is a process that grows linearly with a constant drift and is affected by
random upward jumps. The process drift is µ ≥ 0, while the expected number of jumps greater than or
equal to x within a unit of time is given by the Lévy measure ν of the interval [x,∞).

The function Ψ is the Laplace exponent of Λ that completely determines the process via its Laplace
transform

E
(
eλΛt

)
= etΨ(λ).

Note that the function Ψ has negative values, Ψ(0) = 0 and, unless Λt ≡ 0, is strictly increasing.
In this paper we take into consideration the Inverse Gaussian subordinator. Basically, we choose

this Lévy subordinator because, as we will see in the following section, it depends on a small number
of parameters (that need to be estimated for the practical implementation) and allows us to develop
explicit computations. Moreover, this is the subordinator with the best performance in Mai and Scherer
(2009a).6

3.1.1 The inverse Gaussian subordinator

The inverse Gaussian (IG) subordinator ΛIG = {ΛIG
t }t≥0 belongs to the class of infinite activity subor-

dinators, meaning that processes of this class jump infinitely often within a unit interval of time. The
IG Lévy measure as well as the density of the underlying infinitely divisible distribution are well known.
In particular, given an IG subordinator with parameters η, β > 0, we have that ΛIG

t follows an Inverse
Gaussian IG(βt, η)-distribution with density

fIG(x) =
βt√
2π
x−

3
2 eηβte−

1
2

(
β2t2

x
+η2x

)
1{x>0}.

The corresponding Lévy measure is given by

νIG(dx) =
1√
2π
βx−

3
2 e−

1
2
η2x1{x>0}dx.

4 The multivariate default model

In this section we develop a model that is an extension of the Mai and Scherer model (2009a).
Consider n defaultable firms with random default times τ1, τ2, . . . , τn. In Mai and Scherer (2009a)

these default times are supposed to be characterized by individual factors, given by their marginal
distribution functions Gi(t) (with Gi(0) = 0, Gi(t) < 1 for each t ≥ 0, i = 1, . . . , n), and affected by a
common factor, a Lévy subordinator Λt with Laplace exponent Ψ(λ) that infers the dependence structure.
In particular, for each firm we consider the related cumulative hazard function hi(t) = − log(1−Gi(t));
this function hi(t) : [0,∞) → R is non negative, strictly increasing and continuous, with hi(0) = 0 and
such that limt→∞ hi(t) = ∞. The firms’ survival functions are defined as Gi(t) := e−hi(t), t ≥ 0. In

6A brief description of the other two subordinators used by Mai and Scherer (2009a) is found in Appendix D, while the
results obtained with the calibration of our model using these other two subordinators will be object of further investigation.
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the model of Mai and Scherer (2009a) the following time normalization condition is needed to separate
the marginal distributions and the dependence structure, which is given by a copula that, under such
condition, does not depend on the marginal distributions.

Definition 4.1 (Time normalization (TN)). Let F be a cumulative distribution function with F (0) = 0.
Let Λ = {Λt}t≥0 be a stochastic process which is almost surely non-decreasing and such that Λ0 = 0. We
say that Λ satisfies (TN) for the distribution F if E

[
F (Λt)

]
= F (t), for each t ≥ 0.

If, for example, we consider the cumulative distribution function of an exponential random variable
with parameter (−λ) > 0, F (t) = (1− eλt)1{t>0} and a Lévy subordinator Λ with characteristics (µ, ν),
we have that

Λ satisfies (TN) for F ⇔ Ψ(λ) = λ.

For each firm the default occurs when the related stochastic process goes beyond a certain threshold. In
particular, in order to construct default times that have the pre-specified marginal distributions and the
dependence structure given by the subordinator, as threshold factors are considered n exponential times
Ei, i.i.d. exponential random variables with parameter 1, also independent on the Lévy subordinator
(Λt)t≥0 satisfying (TN) for the unit exponential law, and so with Laplace exponent Ψ satisfying Ψ(−1) =
−1. In Mai and Scherer (2009a) the i-th default time is defined by

τi = inf{t > 0 : Λhi(t) > Ei},

and so can be considered the first jump time of a Poisson process with the stochastic clock {Λhi(t)}t≥0.7

4.1 The completely heterogeneous case

In this paper we consider the existence of other individual factors that, together with the individual
hazard function and the common subordinator, define the default times as

τi = inf{t > 0 : ai Λhi(t) + bi hi(t) > Ei}.

In other words, for each i = 1, . . . n there exists a Lévy subordinator

Λi(t) = ai Λt + bi t

and an increasing function hi such that

τi = inf{t > 0 : Λi(hi(t)) > Ei}.

Working with the survival distributions, we can compute the marginal distributions and the joint
distribution.

7See Appendix A for the definition of stochastic clock.
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4.1.1 The marginal distributions

Setting
Gi(t) := 1−Gi(t) and Gi(t) := e−hi(t), i = 1, . . . n,

for each default time the marginal survival distribution is given by

F i(t) := P(τi > t) = E
(
P(τi > t|FΛ

∞)
)

= E
(
e−Λi(hi(t))

)
= E

(
e−aiΛhi(t)−bi hi(t)

)
= eΨ(−ai)hi(t)−bi hi(t) = e−(bi−Ψ(−ai))hi(t) =

(
Gi(t)

)bi−Ψ(−ai)
.

Remark 4.1. Let us observe that assuming the parameters constraint bi−Ψ(−ai) = 1, we would obtain
that the default times marginal distributions are in fact Gi(t).

We can also obtain the inverse function

F
−1

i (u) = h−1
i

(
− log u

bi −Ψ(−ai)
)
,

as can easily be seen by observing that

F
−1

i (u) = t(u) ⇔ e−(bi−Ψ(−ai))hi(t(u)) = u ⇔ −(bi −Ψ(−ai))hi(t(u)) = log u

m

hi(t(u)) = − log u

bi −Ψ(−ai)
(1)

which means, as hi is strictly increasing and continuous and so invertible,

F
−1

i (u) = h−1
i

(
− log u

bi −Ψ(−ai)
)
.

Note that equation (1) is fundamental in computing the survival joint copula, as we will see later.

4.1.2 The joint distribution

Let us define the permutation σi(t) = σi(t1, . . . , tn) such that

h(i)(t) := hσi(t)(tσi(t))

is a reordering of hi(ti), which means that

h(i−1)(t) ≤ h(i)(t), i = 1, . . . n,

where we assume by convention h(0)(t) = 0.
Let us also introduce the following notation:

θj(t) =
n∑
i=j

aσi(t), j = 1, . . . n

11



Proposition 4.1. The joint survival distribution is given by

F τ1,...,τn(t1, . . . , tn) = e
−

∑n
j=1

(
Ψ(−θj(t)+aσj(t))−Ψ(−θj(t))+bσj(t)

)
hσj(t)(tσj(t)). (2)

Alternately, introducing the permutation σ−1
j (t), i.e. the inverse permutation of σj(t), we have the

following equivalent proposition:

Proposition 4.2. The joint survival distribution of the default times can be computed as

F τ1,...,τn(t1, . . . , tn) =
n∏
j=1

(
F τj(tj)

)Ψ(−
∑n

i=σ−1
j

(t)
aσi(t)

+aj)−[Ψ(−
∑n

i=σ−1
j

(t)
aσi(t)

)−Ψ(−aj)]

bj−Ψ(−aj)
+1

=
n∏
j=1

(
F τj(tj)

)Ψ(−θ
σ−1
j

(t)
(t)+aj)−[Ψ(−θ

σ−1
j

(t)
(t))−Ψ(−aj)]

bj−Ψ(−aj)
+1
. (3)

Remark 4.2. Note that equation (3) can be rewritten in terms of the functions Gi(t) as

F τ1,...,τn(t1, . . . , tn) =
n∏
j=1

(
Gj(tj)

)Ψ
(
−θ

σ−1
j

(t)
(t)+aj

)
−Ψ
(
−θ

σ−1
j

(t)
(t)
)

+bj
,

and in particular, when bj −Ψ(−aj) = 1, for all j = 1, . . . n

F τ1,...,τn(t1, . . . , tn) =
n∏
j=1

(
Gj(tj)

)1+Ψ
(
−θ

σ−1
j

(t)
(t)+aj

)
+Ψ(−aj)−Ψ

(
−θ

σ−1
j

(t)
(t)
)
.

If the permutation is uniquely determined, i.e. when hi(ti), i = 1, . . . , n, are n distinct numbers, then

θσ−1
j (t)(t)− aj =

1,n∑
i 6=j:

hi(ti)≥hj(tj)

ai and θσ−1
j (t)(t) =

1,n∑
i:

hi(ti)≥hj(tj)

ai.

If the permutation is not uniquely determined, i.e. when hi(ti), i = 1, . . . , n, are not n distinct numbers,
without loss of generality we can take the permutation with the least number of inversions: more precisely,
if we consider a partition of {1, 2, . . . , n} in the subsets I, J = {j1, . . . , js} and K,8, with

hi(ti) < hj1(tj1) = hj2(tj2) = . . . = hjs(tjs) < hk(tk) ∀i ∈ I, ∀k ∈ K
8Note that the sets I, J and K of the partition depend on the vector t = (t1, t2, . . . , tn).
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then we take σ|I|+1 < σ|I|+2 < . . . < σ|I|+s, or equivalently, assuming that j1 < j2 < . . . < js, we take
σ|I|+1 = j1, σ|I|+2 = j2, . . . , σ|I|+s = js. Then we can say that, for all j = jl ∈ J = {j1, . . . , js}

θσ−1
j (t)(t)− aj =

∑
k∈K

ak +

1,s∑
v:jv>jl

ajv =
∑
k∈K

ak +
s∑

v=l+1

ajv ,

θσ−1
j (t)(t) =

∑
k∈K

ak +

1,s∑
v:jv≥jl

ajv =
∑
k∈K

ak +
s∑
v=l

ajv .

Furthermore, observe that
Gj(tj) = Gj1(tj1) ∀j ∈ J,

so that in the case bi −Ψ(−ai) = 1, for all i = 1, . . . n,

F τ1,...,τn(t1, . . . , tn)

=
∏
i∈I∪K

(
Gi(ti)

)1+Ψ(−θ
σ−1
i

(t)
(t)+ai)+Ψ(−ai)−Ψ(−θ

σ−1
i

(t)
(t))

·
∏
j∈J

(
Gj1(tj1)

)1+Ψ(−
∑
k∈K ak−

∑1,s
v:jv>j

ajv )+Ψ(−aj)−Ψ(−
∑
k∈K ak−

∑1,s
v:jv≥j ajv )

=
∏
i∈I

(
Gi(ti)

)1+Ψ(−θ
σ−1
i

(t)
(t)+ai)+Ψ(−ai)−Ψ(−θ

σ−1
i

(t)
(t))

·
(
Gj1(tj1)

)|J |+∑
j∈J Ψ(−aj)+Ψ(−

∑
k∈K ak)−Ψ(−

∑
k∈K ak−

∑
j∈J aj)

·
∏
k∈K

(
Gk(tk)

)1+Ψ(−θ
σ−1
k

(t)
(t)+ak)+Ψ(−ak)−Ψ(−θ

σ−1
k

(t)
(t))

.

4.1.3 The survival copula

The survival copula9 is defined as

Ĉτ1,...,τn(u1, . . . , un) = F τ1,...,τn(F
−1

τ1
(u1), . . . , F

−1

τn (un))

= F τ1,...,τn(t1(u1), . . . , tn(un)) = F τ1,...,τn(t(u))

where t(u) is the vector with components ti(ui), by which we mean F
−1

τi
(ui). So we have

Ĉτ1,...,τn(u1, . . . , un) = e
−

∑n
j=1

(
Ψ(−θj(t(u))+aσj(t(u)))−Ψ(−θj(t(u)))+bσj(t(u))

)
hσj(t(u))(tσj(t(u))(uσj(t(u))))

9See Appendix A for the definition of copula functions and their main properties, and Nelsen (1999) and Cherubini and
Vecchiato (2004) for details.
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Let us introduce the following notation:

σ̂j(u) := σj(t(u))

and the following characterization, directly in terms of the vector u:

si(u) := − 1

bi −Ψ(−ai)
log ui = log(ui)

− 1
bi−Ψ(−ai) .

Thanks to the relationship (1), to arrange hi(ti(ui)) in order of increasing magnitude we can put in
an increasing order − log ui

bi−Ψ(−ai) ; we consider the permutation σ̂j(u) as the permutation (not necessarily

unique) such that

− log uσ̂j−1(u)

bσ̂j−1(u) −Ψ(−aσ̂j−1(u))
≤ − log uσ̂j(u)

bσ̂j(u) −Ψ(−aσ̂j(u))
j = 2, . . . , n.

It follows that, considering the following reordering for si(u)

s(1)(u) ≤ s(2)(u) ≤ . . . ≤ s(n)(u),

the permutation σ̂j(u) is defined by

− log uσ̂j(u)

bσ̂j(u) −Ψ(−aσ̂j(u))
= s(j)(u).

Let us also introduce the following notation:

θ̂j(u) := θj(t(u)) =
n∑
i=j

aσi(t(u)) =
n∑
i=j

aσ̂i(u),

For the copula computation we have the following lemma:

Lemma 4.1. The survival copula of the vector τ1, . . . , τn is given by

Ĉτ1,...,τn(u1, . . . , un) = e

∑n
j=1

(
Ψ(−θ̂j(u)+aσ̂j(u))−Ψ(−θ̂j(u))+bσ̂j(u)

) log uσ̂j(u)

bσ̂j(u)−Ψ(−aσ̂j(u))

=
n∏
j=1

u

Ψ

(
−θ̂j(u)+aσ̂j(u)

)
−Ψ

(
−θ̂j(u)

)
+bσ̂j(u)

bσ̂j(u)−Ψ

(
−aσ̂j(u)

)
σ̂j(u)

=
n∏
j=1

((
uσ̂j(u)

) 1

bσ̂j(u)−Ψ

(
−aσ̂j(u)

))Ψ(−θ̂j(u)+aσ̂j(u))−Ψ(−θ̂j(u))+bσ̂j(u)

.

In our model we will assume the parameter constraint bi−Ψ(−ai) = 1, by which the marginal survival
distributions are exactly Gi. We will calibrate the model as in Mai and Scherer (2009a) in two steps: we
first calibrate the marginal distributions and then the copula.
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4.2 Heterogeneous case with r different homogeneous classes

Let us in general suppose that, according to a certain criterion, our n firms can be divided into r different
classes with the related r parameters ai, bi and hazard functions hi. In this case we can consider the first
m1 firms of type 1, other m2 firms of type 2, and so on up to the remaining mr firms of class r, with
n = m1 +m2 + . . .+mr. In other words, denoting M1 = m1, M2 = m1 +m2, M` =

∑l
i=1mi = M`−1 +m`,

` ≤ r, we assume
ai = a(1), bi = b(1), and hi(t) = h(1)(t), for i = 1, . . . ,m1 = M1

ai = a(2), bi = b(2), and hi(t) = h(2)(t), for i = M1 + 1, . . . ,m1 +m2 = M2

. . .
ai = a(r), bi = b(r), and hi(t) = h(r)(t), for i = Mr−1 + 1, . . . ,Mr(= n).

Let us denote the classesM` := {Ml−1 + 1, ...,Ml}, for ` = 1, . . . , r, so that the previous assumption
may be rewritten shortly as

ai = a(`), bi = b(`), and hi(t) = h(`)(t), for i ∈M`, ` = 1, . . . , r. (∗m)

For each firm in M`, we denote the common subordinator as

Λ(`)(t) := a(`)Λh(`)(t) + b(`)h(`)(t).

Furthermore, we assume that

b(`) −Ψ(−a(`)) = 1 ⇔ b(`) = 1 + Ψ(−a(`)), ` = 1, . . . , r. (∗p)
Remark 4.3. The previous assumption (∗p) is equivalent to the assumption that

Gi(t) = e−hi(t) = G
(`)

(t) = e−h
(`)(t), for i ∈M`, ` = 1, . . . , r.

Indeed, as explained in Remark 4.1, if we assume bi−Ψ(−ai) = 1 for each i, then we get that the survival
marginals are Gi(t) = e−hi(t).
This assumption allows us to calibrate first the marginals, or equivalently the hazard functions h(`), and
then the coefficients a(`) and the Laplace exponent Ψ(x). Indeed, if assumption (∗p) does not hold, then for

each i ∈ M`, ` = 1, . . . , r, the survival marginals are given by
(
G

(`)
(t)
)b(`)−Ψ(−a(`))

= e−[b(`)−Ψ(−a(`))]h(`)(t)

and one has to calibrate simultaneously the hazard functions h(`), the coefficients Ψ(−a(`)) and b(`).

Another reasonable assumption about the r classes is that the related hazard functions h(`)(t) are
such that, for each t,

h(1)(t) ≤ h(2)(t) ≤ . . . ≤ h(r)(t) (∗h).

Our assumptions imply that, if i ∈ M` and j ∈ M`′ , with ` ≤ `′, we have the survival distributions
stochastic ordering

P(τi > t) = Gi(t) = e−h
(`)(t) ≥ P(τj > t) = Gj(t) = e−h

(`′)(t).

In other words, the default risk classes M` are ordered such that the first class is the least risky, while
the last class is the most risky.

15



Remark 4.4. Without the assumption (∗p), in order to have the classes ordered in terms of default risk,
one could assume, besides (∗h),

a(1) ≤ a(2) ≤ . . . ≤ a(r) (∗a)

and
b(1) ≤ b(2) ≤ . . . ≤ b(r) (∗b)

so that, for any 1 ≤ ` ≤ `′ ≤ r,

Λ(`)(t) = a(`)Λh(`)(t) + b(`)h(`)(t) ≤ a(`′)Λh(`′)(t) + b(`′)h(`′)(t) = Λ(`′)(t)

Then, clearly, under (∗a), (∗b), and (∗h) (but without assuming (∗p)) we automatically get that, for
0 ≤ ` ≤ `′ ≤ r,(

G
(`)

(t)
)b(`)−Ψ(−a(`))

= e−[b(`)−Ψ(−a(`))]h(`)(t) ≥
(
G

(`′)
(t)
)b(`′)−Ψ(−a(`′))

= e−[b(`
′)−Ψ(−a(`′))]h(`′)(t).

As we will see, our assumptions (∗h) and (∗p) simplify the computation of the portfolio loss distri-
bution and in particular allow us to compute easily the survival probability involving all the variables
τi

P(τ1 > t, τ2 > t, . . . τn > t).

In fact we have the following result:

Proposition 4.3. Under assumptions (∗h) and (∗p) on the parameter constraints, we get

P(τ1 > t, τ2 > t, . . . , τn > t) = e−
∑r
j=1

(
Ψ(−

∑r
`=j+1 m` a

(`))−Ψ(−
∑r
`=j m` a

(`))+mj b
(j)
)
h(j)(t) (4)

and more in general, for each Ij ⊆Mj, j = 1, . . . , r,

P
(
τi > t, ∀i ∈ Ij, ∀j = 1, . . . r

)
= e−

∑r
j=1

(
Ψ(−

∑r
`=j+1 k` a

(`))−Ψ(−
∑r
`=j k` a

(`))+kj (Ψ(−a(j))+1)
)
h(j)(t) (5)

where kj = |Ij|.
Let us remark that, due to condition (∗p), this formula depends on the parameters a(j) but not on

b(j) (so that the number of parameters to estimate is reduced).

4.2.1 The correlation coefficient

An interesting computation involves the default correlation of firms i and j up to time t.
Let us define the stochastic processes Ai = {Ait}t≥0 for i = 1, ..., n by

Ait := 1{Ei<Λi(hi(t))}

so that the i-th default time can be defined by

τi = inf{t > 0 : Ei < Λi(hi(t))} = inf{t > 0 : Ait = 1}.
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Proposition 4.4. Consider two firms i and j in the rating classesMm andMn respectively, with m < n;
the covariance Cov[Ait, A

j
t ] is given by

Cov[Ait, A
j
t ] = G

(m)
(t)G

(n)
(t)

((
G

(m)
(t)
)(Ψ(−a(m))+Ψ(−a(n))−Ψ(−(a(m)+a(n)))

)
− 1

)
.

while the correlation coefficient Corr[Ait, A
j
t ] is given by

Corr[Ait, A
j
t ] =

√
G

(m)
(t)

√
G

(n)
(t)

((
G

(m)
(t)
)(Ψ(−a(m))+Ψ(−a(n))−Ψ(−(a(m)+a(n)))

)
− 1

)
√

1−G(m)
(t)

√
1−G(n)

(t)

.

If, instead, i and j (i 6= j) are in the same rating class Mm we have

Cov[Ait, A
j
t ] = G

(m)2
(t)(G

(m)
(t)(2Ψ(−a(m))−Ψ(−2a(m))) − 1).

and

Corr[Ait, A
j
t ] =

G
(m)

(t)
(
G

(m)
(t)(2Ψ(−a(m))−Ψ(−2a(m))) − 1

)
1−G(m)

(t)
.

4.2.2 The loss distribution

Let us assume a homogeneous portfolio in which each firm has the same weight. The zero-recovery loss
process Ln = {Ln(t)}t≥0 is defined as

Ln(t) :=
1

n

n∑
i=1

Ait. (6)

Thus Ln(t) gives the fraction of defaulted names in the portfolio up to time t.
To compute the portfolio loss distribution we want to compute, for k ∈ {0, . . . , n},

P(nLn(t) = k)

which represents the probability that k of the n institutions in the portfolio default.
We have the following result:

Proposition 4.5. The distribution of Ln(t) is given by

P(nLn(t) = k)

=
∑
· · ·
∑

0≤kj≤mj
k1+...+kr=n−k

k∑
v=0

(−1)v
∑
· · ·
∑

v1+···+vr=v
0≤vj≤mj−kj

r∏
j=1

mj!

kj!vj!(mj − kj − vj)!
(
G

(j)
(t)
)Φ(j)

,

where

Φ(j) = Ψ(−
r∑

`=j+1

(k` + v`) a
(`))−Ψ(−

r∑
`=j

k` a
(`)) + kj (Ψ(−a(j) + 1).
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Once we have computed the closed formula for the portfolio-loss distribution, we also prove an
approximation of that formula, valid for large portfolios, that will be fundamental from a practical point
of view, as we will see in Section 5.

Theorem 4.1 (Portfolio-loss distribution approximation). Let us denote L
(i)
mi(t) the fraction of defaulted

names in the rating class Mi (with respectively mi firms) of the portfolio up to time t

L(i)
mi

(t) :=
1

mi

mi∑
j=1

A
Mi−1+j
t

and let us denote
L(i)
∞ (t) := 1− e−(a(i)Λ

h(i)(t)
+b(i)h(i)(t))

Under P(.|FΛ
∞),

miL
(i)
mi

(t) ∼ Bin(mi, 1− e−(a(i)Λ
h(i)(t)

+b(i)h(i)(t))
) = Bin(mi, 1− e−Λ(i)(h(i)(t))).

Moreover, for fixed t ≥ 0, L
(i)
mi(t) tends to the variable L

(i)
∞ (t) in L2 as mi tends to infinity.

Let us now consider the overall portfolio (6), which can be written as

Ln(t) =
1

n

r∑
i=1

miL
(i)
mi

(t).

Let us denote the portfolio loss conditioned average by L̂n(t) := E[Ln(t)|FΛ
∞].

Then we have

L̂n(t) =
1

n

r∑
i=1

mi(1− e−Λ(i)(h(i)(t)))

and
Ln(t)− L̂n(t) −→n→∞ 0,

in L2 for each t. So we can use L̂n(t) as an approximation ofLn(t) and in particular, for the approxi-

mation error, we have the upper bound of
∑r

i=1

√
mi
n

.

Proof of theorem 4.1. In each rating class Mi the firms are homogeneous and conditionally inde-
pendent. So we have that under P(.|FΛ

∞), {AMi−1+j
t }j=1,...,mi are independent and follow a Bernoulli

distribution with success probability given by

P(A
Mi−1+j
t = 1|FΛ

∞) = P(Ej < Λ(i)(h(i)(t))|FΛ
∞) = E[P(Ej < Λ(i)(h(i)(t))|Λ(i)(h(i)(t))] = 1− e−Λ(i)(h(i)(t))

for j = Mi−1 + 1, . . . ,Mi and for i = 1, . . . , r.

To show the L2-convergence of L
(i)
mi(t) we compute

E[L(i)
mi

(t)] = G(i)(t),
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E[L(i)
mi

(t)(1− e−Λ(i)(h(i)(t)))] = E[(1− e−Λ(i)(h(i)(t)))2],

E[(L(i)
mi

(t))2] =
G(i)(t)

mi

+
mi − 1

mi

E[(1− e−Λ(i)(h(i)(t)))2].

It thus follows that

E[(L(i)
mi

(t)− (1− e−Λ(i)(h(i)(t))))2]

= E[(L(i)
mi

(t))2]− 2E[L(i)
mi

(t)(1− e−Λ(i)(h(i)(t)))] + E[(1− e−Λ(i)(h(i)(t)))2]

=
G(i)(t)

mi

+
mi − 1

mi

E[(1− e−Λ(i)(h(i)(t)))2]− E[(1− e−Λ(i)(h(i)(t)))2]

=
1

mi

G(i)(t)− 1

mi

E[(1− e−Λ(i)(h(i)(t)))2]→mi→∞ 0.

Similarly, for the overall portfolio loss approximation, we want to prove the L2 convergence. We have

Ln(t) =
1

n

n∑
l=1

Alt =
1

n

r∑
i=1

mi∑
j=1

A
Mi−1+j
t

and so

L̂n(t) = E[Ln(t)|FΛ
∞] =

1

n

r∑
i=1

mi∑
j=1

E[A
Mi−1+j
t |FΛ

∞] =
1

n

r∑
i=1

mi∑
j=1

(1−e−Λ(i)(h(i)(t))) =
1

n

r∑
i=1

mi(1−e−Λ(i)(h(i)(t))).

E[(Ln(t)− L̂n(t))2] = E
[(

1

n

r∑
i=1

mi

mi

mi∑
j=1

A
Mi−1+j

t − 1

n

r∑
i=1

mi(1− e−Λ(i)(h(i)(t)))

)2]

= E
[( r∑

i=1

mi

n
(

1

mi

mi∑
j=1

A
Mi−1+j
t − (1− e−Λ(i)(h(i)(t))))

)2]
.

According to our notation we can write the previous formula as

E
[( r∑

i=1

mi

n
(L(i)

mi
(t)− L(i)

∞ (t))

)2]
Thus, the thesis follows by using the Minkowsky inequality, as we have

‖
r∑
i=1

mi

n
(L(i)

mi
− L(i)

∞ )‖L2 ≤
r∑
i=1

‖mi

n
(L(i)

mi
− L(i)

∞ )‖L2 −→mi,n→∞ 0.

About the upper bound for the approximation error we have

‖L(i)
mi
− L(i)

∞‖2
L2 =

1

mi

G(i)(t)− 1

mi

E[(1− e−Λ(i)(h(i)(t)))2] ≤ 1

mi
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and so

‖
r∑
i=1

mi

n
(L(i)

mi
− L(i)

∞ )‖L2 ≤
r∑
i=1

mi

n

√
1

mi

=
r∑
i=1

√
mi

n
.

5 Applications

We apply our dependence model between default times to the iTraxx Europe, which can be considered
a synthetic CDO on an equally weighted portfolio of CDS contracts on 125 European firms.

5.1 Pricing CDO tranches

As mentioned before, CDOs are constructed by partitioning the credit portfolio in tranches with different
seniority: each tranche represents a certain loss piece of the overall portfolio and is defined via its lower
and upper attachment points. In particular, in the iTraxx Europe there are J = 6 tranches defined by
the following lower and upper attachment points lj and uj, j = 1, . . . , 6:

[0%, 3%], [3%, 6%], [6%, 9%], [9%, 12%], [12%, 22%], [22%, 100%].

The protection seller receives periodic premium payments depending on the remaining nominal and the
spread of the tranche, while the protection buyer is compensated for losses affecting his tranche. Let us
fix a quarterly payment schedule for five years

T = {t0 = 0 < t1 < . . . < tM = 5} (M = 20)

and assume a constant recovery rate R = 40% for all companies. The loss L
(j)
t affecting tranche j up to

time t is linked to the overall portfolio loss (1−R)Lnt via

L
(j)
t = min(max(0, (1−R)Lnt − lj), uj − lj),

where uj − lj is a cap to the potential loss equal to the whole tranche. The residual nominal value of
the portfolio at time t is given by Nomt = 1 − Lnt , while the residual nominal value of tranche j is

Nom
(j)
t = uj − lj − L(j)

t .
Pricing a tranche corresponds to assessing the fair spread such that the expected discounted payment

streams of the tranche agree. Defining the expected discounted default leg for tranche j (EDDL(j)) as
the compensations for defaults that affect tranche j

EDDL(j) =
∑
tk∈T

e−rtk(E[L
(j)
tk

]− E[L
(j)
tk−1

]) (7)
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and the expected discounted premium leg (EDPL(j)) as the periodic payments depending on the re-
maining nominal of tranche j

EDPL(j) =
∑
tk∈T

∆tke
−rtks

(j)
T (uj − lj − E[L

(j)
tk

]/2− E[L
(j)
tk−1

]/2) (8)

the fair spread is thus given by the following ratio:

s
(j)
T =

∑
tk∈T e

−rtk(E[L
(j)
tk

]− E[L
(j)
tk−1

])∑
tk∈T ∆tke−rtk(uj − lj − E[L

(j)
tk

]/2− E[L
(j)
tk−1

]/2)
, (9)

where e−rtk are the discount factors and ∆tk = tk − tk−1.
Up to January 2009 the CDS spread for each tranche was quoted in basis points and the previous

equation was true for each tranche except the first, the so-called equity tranche, for which market
convention was to use a running spread of 500 basis points plus an upfront payment quoted as a percentage
of the nominal; for this first tranche we had

UpF (1) = (EDDL(1) − EDPL(1)(500))/u1, (10)

where we denote by EDPL(1)(500), equation (8) with s
(1)
T = 500bp.

However, in the last four years pricing conventions have changed several times and upfronts of different
sizes have been considered even for tranches other than the equity; moreover, sometimes the levels of
these tranches have been quoted in percentage of notional, while at other times in basis points. Without
entering into details,10 we can write the upfront for these other tranche respectively as

UpF (j)
perc = (EDDL(j) − EDPL(j)(fixed))/uj, (11)

UpF
(j)
bps = (EDDL(j) − EDPL(j)(fixed)), (12)

where we denote by EDPL(j)(fixed) equation (8) with s
(j)
T = fixed, and fixed may be equal to 100bp,

300bp, or 500bp, according to the case.
For the pricing of each tranche we need to compute

E[L(j)(t)] = E[min(max(0, (1−R)Ln(t)− lj), uj − lj)] (13)

=
n∑
k=0

P
(
Ln(t) =

k

n

)
∗
(

min

(
max

(
0, (1−R)

k

n
− lj

)
, uj − lj

))
.

We can use either the exact formula above or the formula obtained with the approximation L̂n(t) for the
portfolio loss distribution:

E[L(j)(t)] ≈ E
[

min

(
max

(
0, (1−R)

(
1

n

r∑
i=1

mi(1− e−Λ(i)(h(i)(t)))

)
− lj

)
, uj − lj

)]
. (14)

In both cases we need to specify the Lévy subordinator that we use to model the dependence structure.

10See the Markit website for details: http://www.creditfixings.com/CreditEventAuctions/itraxx.jsp.(See also Section
5.3.)
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5.2 The Lévy subordinator

For our applications we use the inverse Gaussian subordinator described in Section 3. Let us recall that
this Lévy subordinator only depends on two parameters (η, β). In case of only two classes (r = 2), we
can rewrite equation (14) as

E[L(j)(t)] ≈ E
[

min

(
max

(
0, (1−R)

(
m1

n
(1− e−a

(1)Λ
h(1)(t)

−b(1)h(1)(t)
) +

m2

n
(1− e−a

(2)Λ
h(2)(t)

−b(2)h(2)(t)
)

)
− lj

)
, uj − lj

)]
≈ E

[
min

(
max

(
0, (1−R)

(
1− m1

n
e
−a(1)Λ

h(1)(t)
−b(1)h(1)(t) − m2

n
e
−a(2)Λ

h(2)(t)
−b(2)h(2)(t)

)
− lj

)
, uj − lj

)]
.

(15)

The previous expected value corresponds to a double integral in the case of the inverse Gaussian
subordinator.

We can write
Λh(2)(t) = Λh(1)(t) + (Λh(2)(t) − Λh(1)(t))

and considering that h(1)(t) < h(2)(t), observe that, since the subordinator is a process with stationary
increments, we have

Λh(2)(t) − Λh(1)(t) ∼ Λ(h(2)(t)−h(1)(t)).

Finally, also taking into account the independent increments property, we have

Λh(1)(t) ⊥ Λh(2)(t) − Λh(1)(t).

Let us denote
Λ̃(t) := Λh(1)(t), (16)

∆Λ̃(t) := Λh(2)(t) − Λh(1)(t), (17)

and

F (t, x, y) := min

(
max

(
0, (1−R)

(
1− m1

n
e−a

(1)x−b(1)h(1)(t) − m2

n
e−a

(2)x−a(2)y−b(2)h(2)(t)

)
− lj

)
, uj − lj

)
. (18)

With this notation we can rewrite equation (15) as

E[F (t, Λ̃(t),∆Λ̃(t))] =

∫ ∞
0

∫ ∞
0

F (t, x, y) · fΛ̃(x) · f∆Λ̃(y)dxdy, (19)

where fΛ̃ and f∆Λ̃ denote the density functions of Λ̃ and ∆Λ̃ respectively. In the case of the Inverse
Gaussian subordinator, we have

Λ̃(t) ∼ IG(βh(1)(t), η) (20)

and
∆Λ̃(t) ∼ IG(β(h(2)(t)− h(1)(t)), η) (21)

so that

fΛ̃(x) =
β(h(1)(t))√

2π
x−

3
2 eηβ(h(1)(t))e−

1
2

(
β2(h(1)(t))2

x
+η2x

)
1{x>0}
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and

f∆Λ̃(y) =
β(h(2)(t)− h(1)(t))√

2π
y−

3
2 eηβ(h(2)(t)−h(1)(t))e−

1
2

(
β2(h(2)(t)−h(1)(t))2

y
+η2y

)
1{y>0}.

As the numerical integration of the double integral in equation (19) may be difficult (mainly because
the upper integration extremes are infinite), we use a proper truncation. For the case of the Inverse
Gaussian subordinator, we consider the following truncation:11

E[F (t, Λ̃(t),∆Λ̃(t))] =

∫ Mx(h(1)(t))

0

∫ My(h(2)(t)−h(1)(t))

0

F (t, x, y) · fΛ̃(x) · f∆Λ̃(y)dxdy, (22)

where

Mx(h
(1)(t)) := inf

m

{
e−

1
2
η2m

m
1
2

≤ 10−4

√
2π

2βh(1)(t)eβηh(1)(t)

}
and

My(h
(2)(t)− h(1)(t)) := inf

m

{
e−

1
2
η2m

m
1
2

≤ 10−4

√
2π

2β(h(2)(t)− h(1)(t))eβη(h(2)(t)−h(1)(t))

}
.

In this way we know a priori that the error deriving from the truncation is always inferior12 to 2 ∗ 10−4.

5.2.1 Parameter constraints

Whatever the choice of the subordinator, in general the dependence structure is determined by the pair
of parameters (η, β), while µ is indirectly specified by the Lévy measure of the subordinator via the (TN)
condition for the unit exponential distribution.

In particular, in this paper, having defined the subordinator for each class as Λ(i)(h(i)(t)) = a(i)Λh(i)(t)+

b(i)h(i)(t), without loss of generality we can assume µ = 0. Indeed, denoting

Ψ0(x) := Ψ(x)− µx

and
b

(i)
0 := b(i) + µa(i)(≥ 0),

then, taking into account that
Ψ0(−a(i)) := Ψ(−a(i)) + µa(i),

the parameter constraint b(i) − Ψ(−a(i)) = 1 is equivalent to b
(i)
0 − Ψ0(−a(i)) = 1. At this point we can

consider µ = 0 and therefore Ψ0(x) = Ψ(x) and b
(i)
0 = b(i). Finally, the condition b

(i)
0 ≥ 0 holds if and

only if
Ψ0(−a(i)) ≥ −1,

11An alternative method could be to perform a change of variable so that the domain of integration is finite: this method
is developed in Appendix C.

12See Appendix C for details.
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which gives the constraint on the parameters a(i).
Once we have (η, β), we can compute the Laplace exponent Ψ0(x) for the subordinator. Then the
constraint on the value of Ψ0(−a(i)) is translated into a constraint for the parameters (η, β).

For the inverse Gaussian subordinator we have:

Ψ0,IG(−a(i)) =

∫ ∞
0

(e−a
(i)s − 1)νIG(ds)

=
1√
2π
β

∫ ∞
0

(e−a
(i)s − 1)s−

3
2 e−

1
2
η2sds

= β

(
η −

√
2a(i) + η2

)
.

The constraint Ψ0(−a(i)) ≥ −1 is translated into the following constraint for (η, β):

η > 0, 0 < β ≤
√

2π∫∞
0

(1− e−a(i)s)s−
3
2 e−

1
2
η2sds

=
1

−η +
√

2a(i) + η2

for each i = 1, . . . , r, and so, denoting amax := max {a(i)}i=1,...,r, we need to impose the constraint

η > 0, 0 < β ≤ 1

−η +
√

2amax + η2
.

5.3 The calibration to iTraxx quotes

According to the iTraxx conventions the payment streams for the calibration are quarterly premium
payments with the previously specified attachment points for the tranches. The discount factors required
as input are obtained from risk-free par yields.13 The market quotes to which the model is calibrated
comprise the portfolio CDS spreads with maturities 3 and 5 years and the spreads for the tranches.
In particular, we use the CDS spreads to calibrate the marginal distributions and the tranche spreads
to calibrate the subordinator parameters. Seven data,14 from June 2007 to December 2010 (this time
interval comprises Lehman Brothers’ bankruptcy and the start of the recent financial crisis) are used
from the 9th series of iTraxx Europe with maturity 5 years, and a calibration is run for each of the
selected days. Different pricing formulae for the different tranches have been considered during this time

13Source: Datastream. This choice is common in the literature and is the same that Mai and Scherer (2009a) use; an
alternative choice could be the LIBOR curve. However, different curves should not change the substance of the results.

14Free data are available on the website http : //www.creditfixings.com/CreditEventAuctions/itraxx.jsp with only
bimonthly frequency. We report only the results related to some significant dates, but we have calibrated our model in all
the available bimonthly dates in the time series considered, and the results are coherent with those reported.

24



interval, as in the last four years the iTraxx price maker Markit has changed the rules of the tranche
pricing convention several times, according to market conditions.

We divide our basket of 125 firms into two classes considering the class of the 25 financial firms and
the class of the remaining 100 firms.15

The calibration procedure can be split into two different steps: the first step involves the calibration
of the marginal distributions, while the second step involves the calibration of the parameters of the
subordinator, related to the dependence structure.

For the marginal distributions Gi, {i = 1, . . . , 125}, we assume a piecewise linear intensity. In
particular, we consider a CDS with a maturity of 3 years and a CDS with a maturity of 5 years. For
each firm we have

1−Gi(t) = e−hi(t) = e−
∫ t
0 λi(s)ds

where we assume the default intensity hi(t) given by

hi(t) =

∫ t

0

λi(s)ds =

∫ t

0

(
λ3
imin{s, 3}+ λ5

i (s− 3)1{s>3}
)
ds,

with λ3
i and λ5

i being positive intensity parameters that are calibrated to the portfolio-CDS spreads
for the 3-year and 5-year contracts, respectively. To be consistent with the assumption (∗m) (i.e. the
assumption that the firms in the same class have the same hazard rate), we need to assume λ3

i = λ3
(`)

and λ5
i = λ5

(`), i ∈ M`, ` = 1, 2, and we estimate these parameters by using least square method. In
particular we compute the 3-year CDS spread and the 5-year CDS spread using the discrete formula

modelCDSspread
(3)
(`) =

1−R
(1+r1)

p
(`),3
1 + 1−R

(1+r2)2p
(`),3
2 + 1−R

(1+r3)3p
(`),3
3

1 +
1−p(`),3

1

1+r1
+

1−p(`),3
1 −p(`),3

2

(1+r2)2

and

modelCDSspread
(5)
(`) =

1−R
(1+r1)

p
(`),3
1 + 1−R

(1+r2)2p
(`),3
2 + 1−R

(1+r3)3p
(`),3
3 + 1−R

(1+r4)4p
(`),5
4 + 1−R

(1+r5)5p
(`),5
5

1 +
1−p(`),3

1

1+r1
+

1−p(`),3
1 −p(`),3

2

(1+r2)2 +
1−p(`),3

1 −p(`),3
2 −p(`),3

3

(1+r3)3 +
1−p(`),3

1 −p(`),3
2 −p(`),3

3 −p(`),5
4

(1+r4)4

.

where

• p(`),·
t , t ≥ 1, are the discrete default probabilities for the event “For firm i in the class M` there

will be default in year t”, that we compute from our G(`)(t) as

p
(`),·
t = G(`)(t)−G(`)(t− 1)

with G(`)(0) = 0;

15Two other criteria to divide the portfolio into two classes could be to consider firms with higher average spread and
firms with lower average spread, or to consider firms with lower rating and firms with higher rating. The choice of two
classes is mainly for computational issues; however, a calibration with a higher number of classes would be possible and
could be the object of further applications.
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• rt, t ≥ 1, are the risk free interest rates with maturity t used for the discount factors: we used the
discount factors related to the Germany zero curves downloaded from Datastream.

Note that, due to the assumption on the form of h(t), we can see that p
(`),3
t is a function of λ3

(`) for

t ≤ 3, and p
(`),5
t is a function of (λ3

(`), λ
5
(`)) for t > 3; it follows that we can consider modelCDSspread

(3)
(`)

and modelCDSspread
(5)
(`) as functions of λ3

(`), and (λ3
(`), λ

5
(`)), respectively:

modelCDSspread
(3)
(`) = modelCDSspread(3)(λ3

(`)),

and
modelCDSspread

(5)
(`) = modelCDSspread(5)(λ3

(`), λ
5
(`)).

We first estimate the intensity parameters λ3
(`) for the two classes as

λ3
(`) = argminλ3

1

m`

m∑̀
i=1

(
marketCDSspread

(3)
i −modelCDSspread(3)(λ3)

)2
,

then, using the obtained value λ3
(`), we estimate λ5

(`) as

λ5
(`) = argminλ5

1

m`

m∑̀
i=1

(
marketCDSspread

(5)
i −modelCDSspread(5)(λ3

(`), λ
5)
)2
.

The second step involves the calibration of the parameters of the subordinator for the two classes in
which the iTraxx underlying firms are divided. The intensity parameters for each class, λ3

(`) and λ5
(`),

are thus fixed and from them we compute the hazard rates h(`)(t) for each class.16 Mai and Scherer
(2009a) consider an alternative procedure that consists in directly calibrating the average hazard rate to
the iTraxx index market price. However, we have chosen this procedure for two main reasons:

1. The first is that we divide our portfolio into the financial class and the non-financial class, and
while the iTraxx Financial Index exists, there is no a index for non-financial institutions: therefore
we do not have the related market price against which to calibrate the average hazard rate for the
non-financial class.

2. The second reason is that in this way we take into account the financial feature of the iTraxx that
the iTraxx price is slightly lower than the average of the CDS prices of the underlying institutions.To
understand this inequality let us consider the following example in which we assume that the iTraxx
has only two underlying institutions with related CDS prices equal to 100 and 20: two protection
sellers sell respectively 1 iTraxx and 2 underlying CDSs; let us assume that the institution with

16Another procedure could be to calibrate the parameters λ3
i and λ5

i for each firm by imposing that

modelCDSspread(3)(λ3
i ) = marketCDSspread

(3)
i and modelCDSspread(5)(λ3

i , λ
5
i ) = marketCDSspread

(5)
i to compute

the related hi(t); then we could compute h(`)(t) for the two considered classes by taking the average value in each class, as
h(`)(t) = 1

m`

∑m`
i=1 hi(t).
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a CDS price (=100), that is higher than the average of the CDS prices (=60) defaults: the seller
of the iTraxx pays 1

2
· 60 to the buyer, while the seller of the single contracts pays 1

2
· 100; let

us now assume that the institution with a lower CDS price (=20) than the average of the CDS
prices (=60) defaults: the seller of the iTraxx pays 1

2
· 60 to the buyer, while the seller of the single

contracts pays 1
2
· 20; as the CDS with price 100 is much more likely to default, on average the

default seller of the iTraxx will have to pay less than the protection seller of the single contracts:
as a compensation for this the iTraxx price is lower than the average of the CDS prices.

The parameters of the subordinator, (η, β), specifying the dependence, as well as the parameter values
a(i), are calibrated to observed market spreads of the tranches of the CDO. We follow the procedure
suggested by Mai and Scherer (2009a). Without loss of generality we fix a(1) = 1 and we consider
different values for a(2) (from 0.6 to 1.4). For each couple (a(1), a(2)) we define a grid for η. Given η, our
subordinator parameter constraint (deriving from the (TN) condition) defines an interval for β. On this
interval, β is chosen so that the upfront payment of the tranche equity is perfectly matched. Finally,
among the possible parameters obtained, (a(2), η, β) are chosen to minimize the sum of square deviations
of market to model spreads over all tranches17 j = 2, . . . , 5, i.e. the root mean squared error (RMSE).
For this we solve, using Matlab, the minimization problem min

(η,β,a(2))
RMSE, with the root mean squared

error defined as

RMSE :=

√√√√1

4

5∑
j=2

∣∣marketspread(j) − s(j)
T

∣∣2 (23)

where marketspread(j) is observed on Markit and s
(j)
T is computed using (9), (11), or (12), according to

the pricing convention for the related tranche in the different times. In particular:

• until January 2009: the levels for 0-3 tranches are upfront with a fixed 500bps spread and are
quoted in terms of percentage of notional; the levels for all the other tranches are in bps with no
fixed running spread.

• from March 2009 to January 2010: the levels for 0-3, 3-6 and 6-9 tranches are upfront with a fixed
500bps spread and are quoted in terms of percentage of notional; the levels for all the the other
tranches are in bps with no fixed running spread.

• in March 2010: tranches 0-3 are upfront with a fixed 500bps spread and are quoted in terms of
percentage of notional; tranches 3-6 and 6-9 are upfront with a fixed 300bps spread and are quoted
in bps; tranches 9-12 and 12-22 are upfronts with a fixed 100bps spread and are quoted in bps.

• from May 2010: tranches 0-3, 3-6 and 6-9 are upfront with a fixed 500bps spread and are quoted
in percentage of notional; tranches 9-12 and 12-22 are upfronts with a fixed 100bps spread and are
quoted in bps.

17We do not consider the super senior tranche [22%, 100%] as this tranche is traded very rarely and we have no market
quotes for it.
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5.3.1 Results

Figure 1 shows the hazard rates h(F )(t) and h(NF )(t) obtained for the two classes (the financial and the
non-financial firms, respectively) at five different dates, once the intensity parameters λ3

(`) and λ5
(`) have

been calibrated and consequently the default intensities for each class h(`)(t) computed. We can see
the inversion of average riskiness of the two classes: in 2007 the financial class was less risky than the
non-financial and our results show that this was the case up to November 2009; starting in January 2010,
the non-financial class became the least risky. The hazard rates of both classes reached their peaks in
the period after Lehman-Brothers’ bankruptcy, decreasing back down in 2009 and increasing again after
the beginning of the recent sovereign debt crisis in the euro area.

The results of the calibration of the parameters of the subordinator, at seven significant dates, are
shown in Table 1, which contains the market quotes for the upfront payments (in per cent) and the
tranche spreads (in basis points) (denoted by si, i = 1, . . . , 5), and the related estimated quotes given by
the inverse Gaussian model.18 We also report the deviations of model to market spreads, i.e. the root
mean squared errors (RMSE, in basis points) as defined in equation (23).

Let us note that the equity tranche is always perfectly matched, due to the estimation procedure
for the parameters η and β. Unfortunately, the price errors relating to the other tranches are larger in
times of financial distress, but this may be explained by considering that in these periods the tranches
are less liquid and sometimes their reported prices are not actual prices but interpolated values of more
liquid tranches.19 Moreover, these errors could be further minimized by considering a larger range for
the parameters of the subordinator.

18The fitted dependence parameters (a(1), a(2), η, β), calibrated for the implemented model, are available by contacting
the authors.

19It would be interesting to compare the results obtained with our model to those that could be obtained using other
models in the literature, such as Albrecher et al. (2007), Hofert and Scherer (2011), or Kalemanova et al. (2007). However,
this comparison was made by Mai and Sherer (2009a) using the results for June 2007. Our results for periods in which the
tranches were liquid are very satisfying and comparable to those obtained by Mai and Scherer (2009a).
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Figure 1: Hazard rates for the two classes at different dates
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Date s1 s2 s3 s4 s5 RMSE

2007-06-26

Market price 11.87% 63.70bp 37.74bp 7.35bp 3.18bp

Model price 11.87% 64.01bp 36.21bp 24.00bp 12.37bp 27.7bp

2008-05-30

Market price 34.03% 300.92bp 188.92bp 126.96bp 61.63bp

Model price 34.03% 276.00bp 191.00bp 154.00bp 114.00bp 32.0bp

2008-11-25

Market price 64.03% 1175.83bp 600.56bp 325.00bp 127.33bp

Model price 64.03% 1077.00bp 731.00bp 578.00bp 419.00bp 210.0bp

2009-11-30

Market price 36.27% -0.73% -7.80% 134.81bp 54.31bp

Model price 36.27% -0.73% -7.73% 253.00bp 173.00bp 84.0bp

2010-01-29

Market price 28.81% -4.00% -10.48% 104.83bp 41.33bp

Model price 28.81% -4.24% -9.69% 225.00bp 160.00bp 94.0bp

2010-05-27

Market price 41.39% 7.43% 3.45% 189.75bp 77.30bp

Model price 41.39% 11.38% 1.21% 39.00bp 71.00bp 239.0bp

2010-11-30

Market price 29.80% 0.08% -2.29% 106.50bp 49.67bp

Model price 29.80% 5.17% -2.25% 34.00bp 62.00bp 257.0bp

Table 1: Calibration results for the parameter values
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6 Distress dependence and systemic risk

From the multivariate default distribution it is possible to calculate the joint probability of distress, which
is the probability of all the institutions in the system (portfolio) becoming distressed (i.e. the tail risk of
the system). It is an empirical fact that the banks in the system experience large losses simultaneously
in times of financial distress. In particular, in such periods the financial system’s joint probability of
distress may experience larger non linear increases than those experienced by the average probabilities
of default of the individual institutions. After having estimated the multivariate default distribution of
the companies included in the iTraxx, we follow Segoviano and Goodhart (2010) to analyse the distress
dependence in the portfolio by computing a set of indicators of systemic risk. In particular, we estimate
three stability measures that incorporate changes in distress dependence that we show to be consistent
with the economic cycle. The stability measures that we use are:

1. The Stability Index ;

2. The Distress Dependence Matrix ;

3. The Probability of Cascade Effects.

Once these stability measures have been computed we could employ them to verify which firms are more
systemically relevant for the index as a whole.

6.1 The Stability Index

The Stability Index (SI) is a measure of the tail risk of the system, i.e. the common distress of the
financial institutions in the system. The SI is based on the conditional expectation20 and measures
the expected number of institutions that fall into distress given that at least one specific institution has
become distressed (i.e. defaults). The SI represents a probability measure that conditions any institution
becoming distressed without indicating the specific bank. In the simplest case of two financial institutions
with default times τi and τj, let κt stand for the number of the institutions in default at time t, i.e.
κt = 1{τi≤t} + 1{τj≤t}. Our extreme linkage indicator is the conditional expectation E[κt|κt ≥ 1]. From
elementary probability theory we have

SI = E[κt|κt ≥ 1] =
P{τi ≤ t, τj > t}+ P{τi > t, τj ≤ t}+ 2P{τi ≤ t, τj ≤ t}

P{τi ≤ t or τj ≤ t}

=
P{τi ≤ t}+ P{τj ≤ t}
1− P{τi > t, τj > t} .

This measure can be intrepreted as a relative measure of the system linkage: the system linkage is
weak when SI is close to 1, while the system linkage increases as the value of the SI increases.

In our portfolio of 125 firms corresponding to the institutions in the iTraxx, we consider the classes of
the 25 financial institutions and 100 non-financial institutions and denote byM1 andM2 the class with

20See the measure developed by Huang (1992).
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lower and higher average hazard rates respectively and with m1 and m2 the number of elements in each
class. In practice, the least risky classM1 corresponds to the financial class up to the end of 2009, while
since January 2010 the financial class has become riskier than the class of non-financial institutions. Let
us denote by X

(`)
t :=

∑m`
i=1 1{τ (`)

i ≤t}
, ` = 1, 2 (where τ `i represents the default time of institution i in the

class M`). We can compute the stability index in the following cases:

E[X
(i)
t′ |X

(j)
t ≥ 1] i, j = 1, 2 t ≤ t′. (24)

In this sense the model is dynamic, allowing us to estimate the number of defaults at a posterior date
t′ given the number of defaults at a prior date t, and in general to update the portfolio loss distribution
at t′ given the portfolio loss distribution at t.

Proposition 6.1. In the different cases we have respectively

1)− 2) E[X
(`)
t′ |X

(`)
t ≥ 1] ` = 1, 2

= m` ·
1− e−h(`)(t′)

(
b(`)−Ψ(−a(`))

)
1− e−h(`)(t)

(
m`b(`)−Ψ(−m`a(`))

)
−m` ·

e−h
(`)(t)

(
m`b

(`)−Ψ(−m`a(`))
)(

1− e−
(
h(`)(t′)−h(`)(t)

))
1− e−h(`)(t)

(
m`b(`)−Ψ(−m`a(`))

)
= m` ·

1−G(`)
(t′)−

(
G

(`)
(t)
)m`+m`Ψ(−a(`))−Ψ(−m`a(`))

(
1− e−

(
h(`)(t′)−h(`)(t)

))
1−

(
G

(`)
(t)
)m`+m`Ψ(−a(`))−Ψ(−m`a(`))

.

(25)
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3) E[X
(1)
t′ |X

(2)
t ≥ 1]

= m1 ·
1− e−h(1)(t′)

(
b(1)−Ψ(−a(1))

)
− e−h(2)(t)

(
m2b(2)−Ψ(−m2a(2))

)
1− e−h(2)(t)

(
m2b(2)−Ψ(−m2a(2))

)
+m1 ·

e−h
(1)(t′)

(
b(1)−Ψ(−a(1))

)
e−h

(2)(t)
(

Ψ(−a(1))+m2b(2)−Ψ(−a(1)−m2a(2))
)

1− e−h(2)(t)
(
m2b(2)−Ψ(−m2a(2))

) · 1{h(1)(t′)≥h(2)(t)}

+m1 ·
e−h

(1)(t′)
(
b(1)+Ψ(−m2a(2))−Ψ(−a(1)−m2a(2))

)
e−h

(2)(t)
(
m2b(2)−Ψ(−m2a(2))

)
1− e−h(2)(t)

(
m2b(2)−Ψ(−m2a(2))

) · 1{h(1)(t′)<h(2)(t)}

= m1 ·
1−G(1)

(t′)−
(
G

(2)
(t)
)m2+m2Ψ(−a(2))−Ψ(−m2a(2))

1−
(
G

(2)
(t)
)m2+m2Ψ(−a(2))−Ψ(−m2a(2))

+m1 ·
G

(1)
(t′)
(
G

(2)
(t)
)Ψ(−a(1))+m2+m2Ψ(−a(2))−Ψ(−a(1)−m2a(2))

1−
(
G

(2)
(t)
)m2+m2Ψ(−a(2))−Ψ(−m2a(2))

· 1{G(1)
(t′)≤G(2)

(t)}

+m1 ·
(
G

(1)
(t′)
)1+Ψ(−a(1))+Ψ(−m2a(2))−Ψ(−a(1)−m2a(2))(

G
(2)

(t)
)m2+m2Ψ(−a(2))−Ψ(−m2a(2))

1−
(
G

(2)
(t)
)m2+m2Ψ(−a(2))−Ψ(−m2a(2))

· 1{G(1)
(t′)>G

(2)
(t)}.

(26)

4) E[X
(2)
t′ |X

(1)
t ≥ 1]

= m2 ·
1− e−h(2)(t′)

(
b(2)−Ψ(−a(2))

)
− e−h(1)(t)

(
m1b(1)−Ψ(−m1a(1))

)
1− e−h(1)(t)

(
m1b(1)−Ψ(−m1a(1))

)
+m2 ·

e−h
(2)(t′)

(
b(2)−Ψ(−a(2))

)
e−h

(1)(t)
(

Ψ(−a(2))+m1b(1)−Ψ(−a(2)−m1a(1))
)

1− e−h(1)(t)
(
m1b(1)−Ψ(−m1a(1))

) .

= m2 ·
1−G(2)

(t′)−
(
G

(1)
(t)
)m1+m1Ψ(−a(1))−Ψ(−m1a(1))

1−
(
G

(1)
(t)
)m1+m1Ψ(−a(1))−Ψ(−m1a(1))

+m2 ·
G

(2)
(t′)
(
G

(1)
(t)
)Ψ(−a(2))+m1+m1Ψ(−a(1))−Ψ(−a(2)−m1a(1))

1−
(
G

(1)
(t)
)m1+m1Ψ(−a(1))−Ψ(−m1a(1))

.

(27)

(See Appendix B for the proof.)
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If we denote byMF the class of financial institutions and byMNF the class of non-financial institu-
tions and denote by X

(`)
t :=

∑m`
i=1 1{τ (`)

i ≤t}
, ` = F,NF (where τ `i represents the default time of institution

i in the class M`), we can also compute the SI as E[X
(`′)
t′ |X

(`)
t ≥ 1] for `′ 6= or = `.

Figure 2 represents the Stability Index evaluated at seven different dates, using the results of Propo-
sition 6.1 and the calibration for the values of the parameters (see Table 1); we consider the case in which
time t′ is equal to time t and equal to 1year.

Figure 2: Stability Index at different dates
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6.2 The Distress Dependence Matrix

The Distress Dependence between two companies is the probability that one institution becomes dis-
tressed conditional on the other becoming distressed. This measure is useful to analyse financial stability
as it can measure the time-varying inter-linkages between two institutions or two groups of companies,
showing how spillover effects may change over time. The distress dependence matrix is a matrix which
collects pairwise probabilities of financial institutions experiencing distress conditional on other insti-
tutions being in distress. It thus accounts for the relationship between the institutions. For each pair
of institutions in the portfolio, we estimate the pairwise conditional probabilities of distress based on
market data: the probability of distress of institution i at time t′ conditional on institution j becoming
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distressed at time t (t ≤ t′) is computed as

P(τi ≤ t′|τj ≤ t) =
P(τi ≤ t′, τj ≤ t)

P(τj ≤ t)
.

Even if conditional probabilities do not imply causation, this set of pairwise conditional probabilities can
provide important insights into interlinkages and the likelihood of contagion between the institutions in
the system.

Let us denote P(τi ≤ t′|τj ≤ t) := P(Firmi(t′)|Firmj(t)); the pairwise conditional probabilities of
distress are represented in the following Distress Dependence Matrix: basically, the elements of the
matrix show the conditional probabilities of distress of the institution in the row at time t′, given that
the institution in the column falls into distress at time t.

Firm 1 Firm i (i = 2, . . . , 124) Firm 125

Firm 1 1 P(Firm1(t′)|Firmi(t)) P(Firm1(t′)|Firm125(t))
Firm i (i = 2, . . . , 124) P(Firmi(t′)|Firm1(t)) 1 P(Firmi(t′)|Firm125(t))
Firm 125 P(Firm125(t′)|Firm1(t)) P(Firm125(t′)|Firmi(t)) 1

Anyway, as we have divided our portfolio into two classes, in practice we can get the following 2× 2
matrix:

Firms in class M1 Firms in class M2

Firms in class M1 P(τ
(1)
i ≤ t′|τ (1)

j ≤ t) P(τ
(1)
i ≤ t′|τ (2)

j ≤ t)

Firms in class M2 P(τ
(2)
i ≤ t′|τ (1)

j ≤ t) P(τ
(2)
i ≤ t′|τ (2)

j ≤ t)

where P(τ
(1)
i ≤ t′|τ (1)

j ≤ t) is the probability that institution i in class M1 becomes distressed at time t′

given that institution j in the same class M1 becomes distressed at time t, while P(τ
(1)
i ≤ t′|τ (2)

j ≤ t)
is the probability that one specific institution (institution i) in class M1 becomes distressed at t′ given
that one specific institution (institution j) in class M2 becomes distressed at t.
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Proposition 6.2. We have

1)− 2) P(τ
(`)
i ≤ t′|τ (`)

j ≤ t) =
1− e−h(`)(t′)

(
b(`)−Ψ(−a(`))

)
− e−h(`)(t)

(
b(`)−Ψ(−a(`))

)
1− e−h(`)(t)

(
b(`)−Ψ(−a(`))

) ` = 1, 2

+
e−h

(`)(t)
(

2b(`)−Ψ(−2a(`))
)
e−(h(`)(t′)−h(`)(t))

(
b(`)−Ψ(−a(`))

)
1− e−h(`)(t)

(
b(`)−Ψ(−a(`))

)
=

1−G(`)
(t′)−G(`)

(t) +
(
G

(`)
(t)
)1+2Ψ(−a(`))−Ψ(−2a(`))

G
(`)

(t′)

1−G(`)
(t)

.

(28)

3) P(τ
(1)
i ≤ t′|τ (2)

j ≤ t)

=
1− e−h(1)(t′)

(
b(1)−Ψ(−a(1))

)
− e−h(2)(t)

(
b(2)−Ψ(−a(2))

)
1− e−h(2)(t)

(
b(2)−Ψ(−a(2))

)
+
e−h

(1)(t′)
(
b(1)−Ψ(−a(1))

)
e−h

(2)(t)
(

Ψ(−a(1))+b(2)−Ψ(−a(1)−a(2))
)

1− e−h(2)(t)
(
b(2)−Ψ(−a(2))

) · 1{h(1)(t′)≥h(2)(t)}

+
e−h

(1)(t′)
(
b(1)+Ψ(−a(2))−Ψ(−a(1)−a(2))

)
e−h

(2)(t)
(
b(2)−Ψ(−a(2))

)
1− e−h(2)(t)

(
b(2)−Ψ(−a(2))

) · 1{h(1)(t′)<h(2)(t)}.

=
1−G(1)

(t′)−G(2)
(t)

1−G(2)
(t)

+
G

(1)
(t′)
(
G

(2)
(t)
)1+Ψ(−a(1))+Ψ(−a(2))−Ψ(−a(1)−a(2))

1−G(2)
(t)

· 1{G(1)
(t′)≤G(2)

(t)}

+

(
G

(1)
(t′)
)1+Ψ(−a(1))+Ψ(−a(2))−Ψ(−a(1)−a(2))

G
(2)

(t)

1−G(2)
(t)

· 1{G(1)
(t′)>G

(2)
(t)}.

(29)

4) P(τ
(2)
i ≤ t′|τ (1)

j ≤ t) =
1− e−h(2)(t′)

(
b(2)−Ψ(−a(2))

)
− e−h(1)(t)

(
b(1)−Ψ(−a(1))

)
1− e−h(1)(t)

(
b(1)−Ψ(−a(1))

)
+
e−h

(2)(t′)
(
b(2)−Ψ(−a(2))

)
e−h

(1)(t)
(

Ψ(−a(2))+b(1)−Ψ(−a(2)−a(1))
)

1− e−h(1)(t)
(
b(1)−Ψ(−a(1))

)
=

1−G(2)
(t′)−G(1)

(t)

1−G(1)
(t)

+
G

(2)
(t′)
(
G

(1)
(t)
)Ψ(−a(2))+1+Ψ(−a(1))−Ψ(−a(2)−a(1))

1−G(1)
(t)

.

(30)
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(See Appendix B for the proof.)

With the same notation used for the Stability Index, we can compute

Firms in class MF Firms in class MNF

Firms in class MF P(τ
(F )
i ≤ t′|τ (F )

j ≤ t) P(τ
(F )
i ≤ t′|τ (NF )

j ≤ t)

Firms in class MNF P(τ
(NF )
i ≤ t′|τ (F )

j ≤ t) P(τ
(NF )
i ≤ t′|τ (NF )

j ≤ t)

Figure 3 represents the entries of this Distress Dependence Matrix at seven different significant dates,
computed by using Proposition 6.2 and the calibration results for the values of the parameters (see Table
1). We consider the case t′ = t = 1year.

Figure 3: Distress Dependence Matrix at different dates
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6.3 The Probability of Cascade Effects

The Probability of Cascade Effects is an indicator that measures the likelihood that at least one institu-
tion becomes distressed given that a specific institution becomes distressed. In this way it quantifies the
potential “cascade” effects in the system given the distress of a specific institution and so this measure

37



can be considered an indicator that allows us to quantify the systemic importance of a specific institution
if it becomes distressed. For this systemic risk indicator we could divide our portfolio into four groups
(having performed the calibration for only two groups, we describe this case only from a theoretical point
of view): the group of financial institutions with lower spread (denoted by (F,L)), the group of financial
institutions with higher spread (denoted by (F,H)), the group of non-financial institutions with lower
spread (denoted by (N,L)) and the group of non-financial institutions with higher spread (denoted by
(N,H)).

In general we could denote by

• τ (F,L)
i the default time of institution i in the class of financial firms with lower spread,

• τ (F,H)
i the default time of institution i in the class of financial firms with higher spread,

• τ (N,L)
i the default time of institution i in the class of non-financial firms with lower spread,

• τ (N,H)
i the default time of institution i in the class of non-financial firms with higher spread,

and consequently define

X
(F,L)
t =

∑
i

1
(τ

(F,L)
i ≤t)

X
(F,H)
t =

∑
i

1
(τ

(F,H)
i ≤t)

X
(N,L)
t =

∑
i

1
(τ

(N,L)
i ≤t)

X
(N,H)
t =

∑
i

1
(τ

(N,H)
i ≤t).

We could compute the probability of cascade effects by computing

P[X
(k,s)
t′ ≥ 1|τ (k′,s′)

i ≤ t],

where k, k′ ∈ {F,N} and s, s′ ∈ {L,H}. For example

P[X
(N,L)
t′ ≥ 1|τ (F,H)

i ≤ t] = P
[
min
j
τ

(N,L)
j ≤ t′|τ (F,H)

i ≤ t

]
. (31)

In the simpler case of the two classes (class with lower hazard rate (1) and class with higher hazard

rate (2)), we denote X
(1)
t :=

∑
i 1(τ

(1)
i ≤t)

and X
(2)
t :=

∑
i 1(τ

(2)
i ≤t)

and we can compute the probability of

cascade effects by computing

P[X
(j)
t′ ≥ 1|τ (k)

i ≤ t] j, k = 1, 2, i ∈Mk, t ≤ t′.
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Proposition 6.3. In the different cases we have

1)− 2) P[X
(`)
t′ ≥ 1|τ (`)

i ≤ t] = P
[
min
j
τ

(`)
j ≤ t′|τ (`)

i ≤ t

]
= 1 ` = 1, 2. (32)

3) P[X
(1)
t′ ≥ 1|τ (2)

i ≤ t] = P
[
min
j
τ

(1)
j ≤ t′|τ (2)

i ≤ t

]
=

1− e−h(2)(t)(b(2)−Ψ(−a(2))) − e−h(1)(t′)(m1b1−Ψ(−m1a1))

1− e−h(2)(t)(b(2)−Ψ(−a(2)))

+
e−h

(1)(t′)(m1b(1)−Ψ(−m1a(1)))e−h
(2)(t)(b(2)+Ψ(−m1a(1))−Ψ(−a(2)−m1a1))

1− e−h(2)(t)(b(2)−Ψ(−a(2)))
1{h(1)(t′)≥h(2)(t)}

+
e−h

(1)(t′)(Ψ(−a(2))+m1b(1)−Ψ(−m1a(1)−a(2)))e−h
(2)(t)(b(2)−Ψ(−a(2)))

1− e−h(2)(t)(b(2)−Ψ(−a(2)))
1{h(1)(t′)<h(2)(t)}

=
1−G(2)

(t)−
(
G

(1)
(t′)
)m1+m1Ψ(−a(1))−Ψ(−m1a1))

1−G(2)
(t)

+

(
G

(1)
(t′)
)m1+m1Ψ(−a(1))−Ψ(−m1a(1))(

G
(2)

(t)
)1+Ψ(−a(2))+Ψ(−m1a(1))−Ψ(−a(2)−m1a(1))

1−G(2)
(t)

1{G(1)
(t′)≤G(2)

(t)}

+

(
G

(1)
(t′)
)Ψ(−a(2))+m1+m1Ψ(−a(1))−Ψ(−m1a(1)−a(2))

G
(2)

(t)

1−G(2)
(t)

1{G(1)
(t′)>G

(2)
(t)}.

(33)

4) P[X
(2)
t′ ≥ 1|τ (1)

i ≤ t] = P
[
min
j
τ

(2)
j ≤ t′|τ (1)

i ≤ t

]
=

1− e−h(1)(t)(b(1)−Ψ(−a(1))) − e−h(2)(t′)(m2b2−Ψ(−m2a(2)))

1− e−h(1)(t)(b(1)−Ψ(−a(1)))

+
e−h

(2)(t′)(m2b(2)−Ψ(−m2a(2)))e−h
(1)(t)(b(1)+Ψ(−m2a(2))−Ψ(−a(1)−m2a(2)))

1− e−h(1)(t)(b(1)−Ψ(−a(1)))

=
1−G(1)

(t)−
(
G

(2)
(t′)
)m2+m2Ψ(−a(2))−Ψ(−m2a2))

1−G(1)
(t)

+

(
G

(2)
(t′)
)m2+m2Ψ(−a(2))−Ψ(−m2a(2))(

G
(1)

(t)
)1+Ψ(−a(1))+Ψ(−m2a(2))−Ψ(−a(1)−m2a(2))

1−G(1)
(t)

.

(34)

The results in equation (32) are obvious, while to prove the conditioned probabilities in equations
(33) and (34) we can follow the same kind of computation to get equation (26) (see (B.5)).
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As for the previous measures, if we denote by

X
(`)
t =

∑
i

1
(τ

(`)
i ≤t)

, ` = F,NF.

we can compute the PCE as

P[X
(`)
t′ ≥ 1|τ (`′)

i ≤ t], `, `′ = F,NF, ` 6= `′, t ≤ t′.

Figure 4 represents the Probability of Cascade Effects in these two cases at seven different significant
dates, computed by using Proposition 6.3 and the calibration results for the values of the parameters
(see Table 1). We consider the case t′ = t = 1year.
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Figure 4: Probability of Cascade Effects at different dates
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6.4 The evidence from these measures

Results for the different systemic risk measures show that the probability of contagion was higher at
the end of 2010 compared with the post-Lehman period, even if the individual default probabilities were
lower (as previously shown in Figure 1).

In particular, all the four stability indices considered (Figure 2) show that the expected number of
institutions of a certain class (financial or non-financial) that would fall into distress within one year, given
the default of at least one specific institution in the same class or in the other class, reached high values in
November 2008, that is after the Lehman bankruptcy. These indices decreased afterwards but started an
upward trend after the beginning of the sovereign debt crisis in the euro area, reaching maximum values in
November 2010 (that is, the last date considered). The stability indices also show that the contagion from
a financial institution has always had more influence, inducing a higher expected number of defaults than
contagion from a non-financial insitution. Let us note that even if the expected number of non-financial
institutions that would go into distress is higher than the number of financial institutions, in percentage
terms the results are comparable (the two classes having 100 and 25 components, respectively).

Moreover, the conditioned default probabilities expressed by the distress dependence matrix (Figure
3) reached their peaks in November 2010, after the high values registered in the post-Lehman bankruptcy
period; an exception is the the default probability of a non-financial institution given the default of a
financial institution, which reached its maximum value in November 2008: this evidence may be justified
by the high default probability of financial institutions in the last period (November 2010), which appears
in the denominator of the conditioned default probability computation.

Analogous considerations are valid for the probability of cascade effects (Figure 4): in fact, while
the probability of having at least one default in the class of financial institutions, given the default of
a non-financial institution, increased considerably at the end of the time period considered and reached
its peak in November 2010, vice versa the probability of having at least one default of a non-financial
institution given the default of a financial institution decreased considerably after the maximum values
reached in November 2008 and January 2010.

The following table shows some results relating to the risk measures considered, estimated at two
different significant dates: in November 2008, that is after the Lehman bankruptcy, and in November
2010, after the start of the sovereign debt crisis in the euro area.

November 2008 November 2010

E[X
(F )
1y |X(F )

1y ≥ 1] 3 6

E[X
(NF )
1y |X(NF )

1y ≥ 1] 7 10

P(τ
(F )
i ≤ 1y|τ (F )

j ≤ 1y) 52% 57%

P(X
(F )
1y ≥ 1|τ (NF )

i ≤ 1y) 51% 91%
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7 Conclusions

We constructed a multivariate default times model for a portfolio of assets exposed to credit risk using a
conditional independence approach with a stochastic time-change as common factor. We kept the depen-
dence structure separate from the parameters of the marginal default probabilities by choosing a suitable
Lévy subordinator as stochastic clock. Thanks to this separation between the univariate marginals and
the dependence structure, we could explicitly compute the implied copula of the default times. Under
the assumption of a heterogeneous portfolio, we obtained a closed formula for the portfolio loss distribu-
tion and we presented an approximation for large portfolios. We demonstrated the model efficiency by
calibrating it to the market quotes of the CDSs and the tranches of the iTraxx index, using the Inverse
Gaussian subordinator. To this end we considered the iTraxx index a portfolio and we divided it into two
classes: financial institutions and non-financial institutions. The fit to market data is satisfactory, but
it could be improved by considering a larger range in the calibration of the parameters. Although the
calibration results are comparable with the results of the homogeneous model,21 the main contribution of
our heterogeneous model is to allow us to compute three measures of portfolio systemic risk, monitoring
the Portfolio Distress Dependence through time. The results in the time interval considered seem to
be coherent with the evolution of tensions on the financial markets in recent years and show that the
proposed model provides accurate estimates of the Distress Dependence of a portfolio. In particular, this
analysis shows that during the recent financial crisis the likelihood of contagion between the two classes
increased considerably. The model could thus be used to monitor the evolution of risk measures based
on the distribution of the joint default probability.

21Actually we cannot compare our results perfectly with those of Mai and Scherer as their market data for the third
tranche are different from the Bloomberg market data that we use and because the procedure that we follow for the
calibration of the hazard rates is not the same one that they use.
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A Appendix: Mathematical definitions

Copula functions

Definition A.1 (Copula function). A copula is an n-dimensional distribution function C : [0, 1]n → [0, 1]
of a random vector (U1, . . . , Un), where the marginal law of Ui is the uniform distribution on [0, 1] for all
i ∈ {1, . . . , n}.

Copula functions are very popular in the study of multivariate distribution functions thanks to their
role in imposing a dependence structure on predetermined marginal distributions. Their importance de-
rives from Sklar’s theorem, which proves that any multivariate distribution function can be characterized
by a copula and that copula functions, together with univariate marginal distribution functions, can be
used to construct multivariate distribution functions.

Theorem A.1 (Sklar’s theorem). Let H be an n-dimensional distribution function with marginals
F1, . . . , Fn.

Then an n-copula C exists such that, for each x ∈ Rn,

H(x1, . . . , xn) = C(F1(x1), . . . , Fn(xn)).

If the marginals F1, . . . , Fn are all continuous, then C is unique; otherwise C is univocally determined
on (RanF1×RanF2×RanFn) (where RanFi denotes the rank of Fi). Conversely, if C is an n-copula and
F1, . . . , Fn are distribution functions, then the function H defined above is an n-dimensional distribution
function with marginals F1, . . . , Fn.

The proof of this theorem can be found in [21].
The main feature of Sklar’s theorem is that for continuous multivariate distribution functions, the

univariate marginals and the multivariate dependence structure can be separated and the dependence
structure can be represented by a copula.

Let F be an univariate distribution function. Let us recall that the generalized inverse of F is defined
as F−1(t) = inf{x ∈ R|F (x) ≥ t} for each t in [0, 1], with the usual convention that inf(∅) = −∞.

An important corollary of Sklar’s theorem, which is fundamental in the study of copulas and their
applications, is the following:

Corollary A.1. Let H be an n-dimensional distribution function with continuous marginals 11, . . . , 1n
and copula C. Then for each u ∈ [0, 1]n,

C(u1, . . . , un) = H(F−1
1 (u1), . . . , F−1

n (un)).

Lévy processes

Definition A.2 (Lévy process). A Lévy process is any continuous-time stochastic process X = {Xt :
t ≥ 0} such that
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1. X0 = 0 almost surely;

2. It has independent increments: for any n ≥ 2 and 0 ≤ t1 < t2 < . . . < tn < ∞, the increments
Xt2 −Xt1, Xt3 −Xt2, . . ., Xtn −Xtn−1 are independent;

3. It has stationary increments: for any s < t, Xt −Xs is equal in distribution to Xt−s;

4. t→ Xt is almost surely right continuous with left limits.

The best-known examples of Lévy processes are the Wiener process and the Poisson process.

Stochastic clock

Definition A.3 (Stochastic clock). Consider a stochastic process T (t) with increasing paths and starting
form 0. Consider another random process X(s). When we consider the process Y (t) = X(T (t)), i.e. we
compute the process X in the random time T (t), then T (t) is called “random clock”.

B Appendix: Mathematical proofs

Proof of Proposition 4.1

By conditioning with respect to FΛ
∞ we have

F τ1,...,τn(t1, . . . , tn) := P(τi > ti, i = 1, . . . , n) = E
(
P(τi > ti, i = 1, . . . , n|FΛ

∞)
)

= E
( n∏
i=1

e−Λi(hi(ti))
)

= E
( n∏
i=1

e−aiΛhi(ti)−bi hi(ti)
)

= E
( n∏
i=1

e−aiΛhi(ti)
)
e−

∑n
i=1 bi hi(ti).

To compute the expected value

E
( n∏
i=1

e−aiΛhi(ti)
)

= E
(
e−

∑n
i=1 aiΛhi(ti)

)
we consider the permutation σi(t) = σi(t1, . . . , tn) such that

h(i)(t) := hσi(t)(tσi(t))

is a reordering of hi(ti), which means that

h(i−1)(t) ≤ h(i)(t), i = 1, . . . n,
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where we assume by convention h(0)(t) = 0.
By using the notation

θj(t) =
n∑
i=j

aσi(t), j = 1, . . . n

we have that
θj+1(t) = θj(t)− aσj(t), j = 1, . . . n

where we assume by convention that θn+1(t) = 0.

So we have

n∑
i=1

aiΛhi(ti) =
n∑
i=1

aσi(t) Λhσi(t)(tσi(t))
=

n∑
i=1

aσi(t)Λh(i)(t)

=
n∑
i=1

aσi(t)

i∑
j=1

(
Λh(j)(t) − Λh(j−1)(t)

)
=

n∑
j=1

(
Λh(j)(t) − Λh(j−1)(t)

) n∑
i=j

aσi(t)

=
n∑
j=1

(
Λh(j)(t) − Λh(j−1)(t)

)
θj(t).

Now, as a subordinator is a process with independent increments, we can compute

E
( n∏
i=1

e−aiΛhi(ti)
)

= E
(
e−

∑n
i=1 aiΛhi(ti)

)
= E

(
e
−

∑n
j=1

(
Λh(j)(t)−Λh(j−1)(t)

)
θj(t))

=
n∏
j=1

E
(
e
−θj(t)

(
Λh(j)(t)−Λh(j−1)(t)

))
=

n∏
j=1

eΨ(−θj(t))
(
h(j)(t)−h(j−1)(t)

)
= e

∑n
j=1 h(j)(t)

(
Ψ(−θj(t))−Ψ(−θj+1(t))

)
where in the last equation we consider that h(0)(t)) = 0, θn+1(t) = 0 and so Ψ(−θn+1(t)) = 0. Finally,
considering also the relationship between θj+1(t) and θj(t), we can compute
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F τ1,...,τn(t1, . . . , tn) := P(τi > ti, i = 1, . . . , n) = E
( n∏
i=1

e−aiΛhi(ti)
)
e−

∑n
i=1 bi hi(ti)

= e−
∑n
j=1 h(j)(t)

(
Ψ(−θj+1(t))−Ψ(−θj(t))

)
e−

∑n
i=1 bi hi(ti)

= e
−

∑n
j=1 h(j)(t)

(
Ψ(−θj(t)+aσj(t))−Ψ(−θj(t))

)
e−

∑n
i=1 bσi(t) hσi(t)(tσi(t))

= e
−

∑n
j=1

(
Ψ(−θj(t)+aσj(t))−Ψ(−θj(t))+bσj(t)

)
hσj(t)(tσj(t)).

Note that, for the monotonicity property of the Laplace exponent, we have

Ψ(−θj(t) + aσj(t))−Ψ(−θj(t)) + bσj(t) > 0.

�

Proof of Proposition 4.2

F τ1,...,τn(t1, . . . , tn) = e
−

∑n
j=1

(
Ψ(−θ

σ−1
j

(t)
(t)+aj)−Ψ(−θ

σ−1
j

(t)
(t))+bj

)
hj(tj)

=
n∏
j=1

Gj(tj)
Ψ(−θ

σ−1
j

(t)
(t)+aj)−Ψ(−θ

σ−1
j

(t)
(t))+bj

=
n∏
j=1

Gj(tj)
Ψ(−θ

σ−1
j

(t)
(t)+aj)−Ψ(−θ

σ−1
j

(t)
(t))+Ψ(−aj)+bj−Ψ(−aj)

=
n∏
j=1

(
Gj(tj)

(bj−Ψ(−aj))
)Ψ(−θ

σ−1
j

(t)
(t)+aj)−[Ψ(−θ

σ−1
j

(t)
(t))−Ψ(−aj)]

bj−Ψ(−aj)
+1

=
n∏
j=1

(
Gτj(tj)

)Ψ(−θ
σ−1
j

(t)
(t)+aj)−[Ψ(−θ

σ−1
j

(t)
(t))−Ψ(−aj)]

bj−Ψ(−aj)
+1
.

�

Proof of Proposition 4.3

We have
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n∑
i=1

aiΛhi(t) =
r∑
`=1

m` a
(`) Λh(`)(t)

=
r∑
`=1

m` a
(`)

i∑
j=1

(
Λh(j)(t) − Λh(j−1)(t)

)
=

r∑
j=1

(
Λh(j)(t) − Λh(j−1)(t)

) r∑
i=j

m` a
(`)

=
n∑
j=1

(
Λh(j)(t) − Λh(j−1)(t)

)
θrj ,

where

θrj :=
r∑
`=j

m` a
(`).

We can thus compute

P(τ1 > t, τ2 > t, . . . , τn > t) = E
( n∏
i=1

e−aiΛhi(t)
)
e−

∑n
i=1 bi hi(t)

= e−
∑r
j=1 h

(j)(t)
(

Ψ(−θrj+mj a
(j))−Ψ(−θrj

)
e−

∑r
i=1 b

(j) h(j)(t)

= e−
∑r
j=1

(
Ψ(−θrj+mj a

(j))−Ψ(−θrj )+mj b
(j)
)
h(j)(t)

= e−
∑r
j=1

(
Ψ(−

∑r
`=j+1 m` a

(`))−Ψ(−
∑r
`=j m` a

(`))+mj b
(j)
)
h(j)(t), (B.1)

i.e. formula (4) and similarly

P
(
τi > t, ∀i ∈ Ij, ∀j = 1, . . . r

)
= e−

∑r
j=1

(
Ψ(−

∑r
`=j+1 k` a

(`))−Ψ(−
∑r
`=j k` a

(`))+kj b
(j)
)
h(j)(t)

= e−
∑r
j=1

(
Ψ(−

∑r
`=j+1 k` a

(`))−Ψ(−
∑r
`=j k` a

(`))+kj (Ψ(−a(j))+1)
)
h(j)(t) (B.2)

where kj = |Ij|, i.e. formula (5). �

Proof of Proposition 4.4

Before starting the proof of the proposition, let us note that the parameter constraint (∗p) simplifies
the formula for the survival copula (see Lemma 4.1): first of all, with this constraint, the numbers
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uσ̂j(u) are in decreasing order, i.e., uσ̂1(u) ≥ uσ̂2(u) ≥ · · · ≥ uσ̂n(u), and furthermore Ĉτ1,...,τn(u1, . . . , un) =∏n
j=1 u

1−αj(u)

σ̂j(u) , where

αj(u) := Ψ(−θ̂j(u))−Ψ(−θ̂j(u) + aσ̂j(u))−Ψ(−aσ̂j(u)) =

∫ ∞
0

(1− e−θ̂j(u)+aσ̂j(u)s)(1− e−aσ̂j(u)s)ν(ds)

is positive and does not depend on the value of µ. Moreover, the parameter constraint implies that
αj(u) ≤ 1. We have in fact

αj(u) ≤
∫ ∞

0

(1− e−aσ̂j(u)s)ν(ds) = −Ψ(−aσ̂j(u))− µaσ̂j(u) = 1− bσ̂j(u) − µaσ̂j(u) ≤ 1.

Observing that θ̂n(u) = aσ̂n(u), Ψ(0) = 0 and θ̂n(u) = aσ̂n(u) + aσ̂n−1(u), we have respectively

αn(u) = Ψ(−θ̂n(u))−Ψ(−θ̂n(u) + aσ̂n(u))−Ψ(−aσ̂n(u)) = 0,

αn−1(u) = Ψ(−θ̂n−1(u))−Ψ(−θ̂n−1(u) + aσ̂n−1(u))−Ψ(−aσ̂n−1(u))

= Ψ(−aσ̂n(u) − aσ̂n−1(u))−Ψ(−aσ̂n(u))−Ψ(−aσ̂n−1(u)).

As a consequence, we can immediately deduce that the survival copula of τi and τj is

Ĉτi,τj(u, v) = (u ∨ v)1−αi,j (u ∧ v),

where
αi,j := Ψ(−ai − aj)−Ψ(−ai)−Ψ(−aj) ∈ [0, 1],

that is a Cuadras-Augé copula.22 Indeed, by taking ui = u, uj = v and uk = 1 for k 6= i, j, we get
uσ̂j(u) = 1 for j = 1, · · · , n− 2, uσ̂n−1(u) = u ∨ v, uσ̂n(u) = u ∧ v.

At this point the proof of the proposition is straightforward. First of all observe that for two different
indexes i and j and two times ti and tj, we have

Cov[Aiti , A
j
tj ] = Cov[1− Aiti , 1− A

j
tj ]

= P(τi > ti, τj > tj)− P(τi > ti)P(τj > tj)

= F τi,τj(ti, tj)−Gi(ti)Gj(tj)

= Ĉτi,τj
(
Gi(ti), Gj(tj)

)
−Gi(ti)Gj(tj)

Then as the survival copula Ĉτi,τj is a Cuadras-Augé copula

=
(
Gi(ti) ∨Gj(tj)

)1−αi,j (Gi(ti) ∧Gj(tj)
)
−Gi(ti)Gj(tj)

= Gi(ti)Gj(tj)
((
Gi(ti) ∨Gj(tj)

)−αi,j − 1
)

22See Mai and Scherer (2009b) for details.

51



where αi,j := Ψ(−ai − aj)−Ψ(−ai)−Ψ(−aj) ∈ [0, 1]. Furthermore, obvioulsy

V ar(Ait) = V ar(1− Ait)
= P(τi > t)(1− P(τi > t) = Gi(t)(1−Gi(t)).

From the above formulas the results immediately follows. Indeed in the case i ∈ Mm, j ∈ Mn, with
m < n, we have

ai = a(m) aj = a(n),

bi = b(m) bj = b(n),

hi = h(m) ≤ hj = h(n),

Gi(t) = G
(m)

(t) = e−h
(m)(t), Gj(t) = G

(n)
(t) = e−h

(n)(t),

G
(m)

(t) = max
(
G

(m)
(t), G

(n)
(t)
)
,

and

αi,j = Ψ(−a(m) − a(n))−Ψ(−a(m))−Ψ(−a(n))

while in the case i, j ∈ Mm, in the previous formula we have obviously a(m) = a(n), G
(m)

(t) = G
(n)

(t),
and αi,j = Ψ(−2a(m))− 2Ψ(−a(m)).
�

Proof of Proposition 4.5

To compute the portfolio loss distribution we use formulas (4) and (5). We have

P(nLn(t) = n− k) =
∑
· · ·
∑

0≤kj≤mj
k1+...+kr=k

P(∀j = 1, . . . , r ∃Ij : |Ij | = kj , τi > t, ∀i ∈ Ij , ; τi′ ≤ t, ∀i′ ∈Mj\Ij)

where Mj = {Mj−1 + 1, . . . ,Mj}

=
∑
· · ·
∑

0≤kj≤mj
k1+...+kr=k

r∏
j=1

(
mj

kj

)
P(τi > t, τi′ ≤ t, Mj−1 < i ≤Mj−1 + kj , Mj−1 + kj < i′ ≤Mj , j = 1, . . . , r)

Considering that

P(τi > t, τi′ ≤ t, Mj−1 < i ≤Mj−1 + kj , Mj−1 + kj < i′ ≤Mj , j = 1, . . . , r)

= P(A ∩Bc) = P(A)− P(A ∩B)
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where
A = {τi > t, Mj−1 < i ≤Mj−1 + kj, j = 1, . . . , r}

and
Bc = {τi′ ≤ t, Mj−1 + kj < i′ ≤Mj, j = 1, . . . , r}

so that
B =

⋃
j=1,...,r

⋃
Mj−1+kj<i′≤Mj

{τi′ > t}

we have
P(A)− P(A ∩B) = P(A)− P

( ⋃
j=1,...,r

⋃
Mj−1+kj<i′≤Mj

A ∩ {τi′ > t}
)

and, using the inclusion/exclusion formula, we get

= P(A)−
n−k∑
v=1

∑
· · ·
∑

v1+···+vr=v
0≤vj≤mj−kj

(−1)v+1

r∏
j=1

(
mj − kj
vj

)
P(A, τi′ > t, Mj−1+kj < i′ ≤Mj−1+kj+vj, j = 1, . . . , r)

(where by {A, , τi′ > t, etc.} we mean A ∩ {τi′ > t, etc.})
n−k∑
v=0

∑
· · ·
∑

v1+···+vr=v
0≤vj≤mj−kj

(−1)v
r∏
j=1

(
mj − kj
vj

)
P(A, τi′ > t, Mj−1 + kj < i′ ≤Mj−1 + kj + vj, j = 1, . . . , r)

having used

P(A) =
∑
· · ·
∑

v1+···+vr=0
0≤vj≤mj−kj

(−1)0

r∏
j=1

(
mj − kj
vj

)
P(A, τi′ > t, Mj−1 + kj < i′ ≤Mj−1 + kj + vj, j = 1, . . . , r)

P(A) =
∑
· · ·
∑

vj=0,j=1,...,r

(−1)0

r∏
j=1

(
mj − kj

0

)
P(A, τi′ > t, Mj−1 + kj < i′ ≤Mj−1 + kj + 0, j = 1, . . . , r)

where the condition τi′ > t, Mj−1 + kj < i′ ≤ Mj−1 + kj + 0 is pointless as it does not involve any
index i′.

With our assumption (∗h) on the functions h(i)(t) we obtain
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P(nLn(t) = n− k)

=
∑
· · ·
∑

0≤kj≤mj
k1+...+kr=k

r∏
j=1

(
mj

kj

)
P(τi > t, τi′ ≤ t, Mj−1 < i ≤Mj−1 + kj , Mj−1 + kj < i′ ≤Mj , j = 1, . . . , r)

=
∑
· · ·
∑

0≤kj≤mj
k1+...+kr=k

n−k∑
v=0

(−1)v
∑
· · ·
∑

v1+···+vr=v
0≤vj≤mj−kj

r∏
j=1

(
mj

kj

) r∏
j=1

(
mj − kj
vj

)
P(τi > t, Mj−1 < i ≤Mj−1 + kj + vj , j = 1, . . . , r)

=
∑
· · ·
∑

0≤kj≤mj
k1+...+kr=k

n−k∑
v=0

(−1)v
∑
· · ·
∑

v1+···+vr=v
0≤vj≤mj−kj

r∏
j=1

mj !

kj !vj !(mj − kj − vj)!
P(τi > t, Mj−1 < i ≤Mj−1 + kj + vj , j = 1, . . . , r)

=
∑
· · ·
∑

0≤kj≤mj
k1+...+kr=k

n−k∑
v=0

(−1)v
∑
· · ·
∑

v1+···+vr=v
0≤vj≤mj−kj

r∏
j=1

mj !

kj !vj !(mj − kj − vj)!

e−
∑r
j′=1

(
Ψ(−

∑r
`=j′+1

(k`+v`) a
(`))−Ψ(−

∑r
`=j′ k` a

(`))+kj′ b
(j′)
)
v(j
′)(t)

and in the same way we get

P(nLn(t) = k)

=
∑
· · ·
∑

0≤kj≤mj
k1+...+kr=n−k

r∏
j=1

(
mj

kj

)
P(τi > t, τi′ ≤ t, Mj−1 < i ≤Mj−1 + kj , Mj−1 + kj < i′ ≤Mj , j = 1, . . . , r)

=
∑
· · ·
∑

0≤kj≤mj
k1+...+kr=n−k

k∑
v=0

(−1)v
∑
· · ·
∑

v1+···+vr=v
0≤vj≤mj−kj

r∏
j=1

(
mj

kj

) r∏
j=1

(
mj − kj
vj

)
P(τi > t, Mj−1 < i ≤Mj−1 + kj + vj , j = 1, . . . , r)

=
∑
· · ·
∑

0≤kj≤mj
k1+...+kr=n−k

k∑
v=0

(−1)v
∑
· · ·
∑

v1+···+vr=v
0≤vj≤mj−kj

r∏
j=1

mj !

kj !vj !(mj − kj − vj)!
P(τi > t, Mj−1 < i ≤Mj−1 + kj + vj , j = 1, . . . , r)

=
∑
· · ·
∑

0≤kj≤mj
k1+...+kr=n−k

k∑
v=0

(−1)v
∑
· · ·
∑

v1+···+vr=v
0≤vj≤mj−kj

r∏
j=1

mj !

kj !vj !(mj − kj − vj)!

e−
∑r
j′=1

(
Ψ(−

∑r
`=j′+1

(k`+v`) a
(`))−Ψ(−

∑r
`=j′ k` a

(`))+kj′ b
(j′)
)
v(j
′)(t).
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Let us note that the final exponential factor can be written as

e−
∑r
j′=1

(
Ψ(−

∑r
`=j′+1(k`+v`) a

(`))−Ψ(−
∑r
`=j′ k` a

(`))+kj′ b
(j′)
)
v(j′)(t)

=
r∏

j′=1

(
e−v

(j′)(t)
)Ψ(−

∑r
`=j′+1(k`+v`) a

(`))−Ψ(−
∑r
`=j′ k` a

(`))+kj′ b
(j′)

=
r∏

j′=1

(
G

(j′)
(t)
)Ψ(−

∑r
`=j′+1(k`+v`) a

(`))−Ψ(−
∑r
`=j′ k` a

(`))+kj′ b
(j′)

so the final result is

P(nLn(t) = k)

=
∑
· · ·
∑

0≤kj≤mj
k1+...+kr=n−k

k∑
v=0

(−1)v
∑
· · ·
∑

v1+···+vr=v
0≤vj≤mj−kj

r∏
j=1

mj !

kj !vj !(mj − kj − vj)!
(
G

(j)
(t)
)Ψ(−

∑r
`=j+1(k`+v`) a

(`))−Ψ(−
∑r
`=j k` a

(`))+kj b
(j)

.

�

Proof of Proposition 6.1

First of all we observe that, for ` = 1, 2,

X(`)(t) =

m∑̀
i=1

1{τ(`)
i ≤t}

and
{X(`)(t) ≥ 1} = { min

1≤j≤m`
τ

(`)
j ≤ t}.

In the first case we have (we prove only the first case, ` = 1, since the proof for ` = 2 is identical)

E[X
(1)
t′ |X

(1)
t ≥ 1] =

m1∑
i=1

P(τ
(1)
i ≤ t′| min

1≤j≤m1

τ
(1)
j ≤ t) =

m1∑
i=1

P
(
τ

(1)
i ≤ t′, min

1≤j≤m1

τ
(1)
j ≤ t

)
P
(

min
1≤j≤m1

τ
(1)
j ≤ t

)
=

m1∑
i=1

P({τ (1)
i ≤ t′} ∩ (∪m1

j=1{τ1
j ≤ t})

)
P
(

min
1≤j≤m1

τ
(1)
j ≤ t

) =

m1∑
i=1

P({τ (1)
i ≤ t′} ∩ (∩m1

j=1{τ1
j > t})c

)
P
(

min
1≤j≤m1

τ
(1)
j ≤ t

)
=

m1∑
i=1

P
(
{τ (1)
i ≤ t′}

)
− P

(
{τ (1)
i ≤ t′} ∩ (∩m1

j=1{τ1
j > t})

)
P
(

min
1≤j≤m1

τ
(1)
j ≤ t

)
=

m1∑
i=1

P
(
{τ (1)
i ≤ t′}

)
− P

(
{t < τ

(1)
i ≤ t′} ∩ (∩1,m1

j 6=i {τ1
j > t})

)
P
(

min
1≤j≤m1

τ
(1)
j ≤ t

)
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= m1 ·
E
[
1− e−a

(1)Λ
h(1)(t′)−b

(1)h(1)(t′)
]

E
[
1− e−m1a(1)Λh(1)(t)−m1b(1)h(1)(t)

]
−m1 ·

E
[(
e
−a(1)Λ

h(1)(t)
−b(1)h(1)(t) − e−a

(1)Λ
h(1)(t′)−b

(1)h(1)(t′))
e
−(m1−1)a(1)Λ

h(1)(t)
−(m1−1)b(1)h(1)(t)

]
E
[
1− e−m1a(1)Λh(1)(t)−m1b(1)h(1)(t)

]
= m1 ·

1− e−b(1)h(1)(t′)eh
(1)(t′)Ψ(−a(1))

1− e−h(1)(t)
(
m1b(1)−Ψ(−m1a(1))

)
−m1 ·

e−h
(1)(t)

(
m1+m1Ψ(−a(1))−Ψ(−m1a

(1))
)(

1− e−
(
h(1)(t′)−h(1)(t)

))
1− e−h(1)(t)

(
m1b(1)−Ψ(−m1a(1))

)
where we have used the fact that

E
[(
e
−a(1)Λ

h(1)(t)
−b(1)h(1)(t) − e−a

(1)Λ
h(1)(t′)−b

(1)h(1)(t′))
e
−(m1−1)a(1)Λ

h(1)(t)
−(m1−1)b(1)h(1)(t)

]
= E

[
e
−a(1)Λ

h(1)(t)
−b(1)h(1)(t)

e
−(m1−1)a(1)Λ

h(1)(t)
e−(m1−1)b(1)h(1)(t)

]
− E

[
e
−a(1)

(
Λ
h(1)(t′)−Λ

h(1)(t)
+Λ

h(1)(t)

)
−b(1)

(
h(1)(t′)−h(1)(t)+h(1)(t)

)
e
−(m1−1)a(1)Λ

h(1)(t)
−(m1−1)b(1)h(1)(t)

]
= E

[
e
−m1

(
b(1)h(1)(t)+a(1)Λ

h(1)(t)

)]
− E

[
e
−a(1)

(
Λ
h(1)(t′)−Λ

h(1)(t)

)
−b(1)

(
h(1)(t′)−h(1)(t)

)
e
−m1a

(1)Λ
h(1)(t)

−m1b
(1)h(1)(t)

]
= e−m1b

(1)h(1)(t)eh
(1)(t)Ψ(−m1a

(1))

− e−b(1)
(
h(1)(t′)−h(1)(t)

)
−m1b

(1)h(1)(t)e

(
h(1)(t′)−h(1)(t)

)
Ψ(−a(1))+h(1)(t)Ψ(−m1a

(1))

= e−m1b
(1)h(1)(t)eh

(1)(t)Ψ(−m1a
(1))
(

1− e−
(
h(1)(t′)−h(1)(t)

)(
b(1)−Ψ(−a(1))

))
= e−h

(1)(t)
(
m1b

(1)−Ψ(−m1a
(1))
)(

1− e−
(
h(1)(t′)−h(1)(t)

)(
b(1)−Ψ(−a(1))

)
= e−h

(1)(t)
(
m1+m1Ψ(−a(1))−Ψ(−m1a

(1))
)(

1− e−
(
h(1)(t′)−h(1)(t)

))
.

In the third case we have

E[X
(1)
t′ |X

(2)
t ≥ 1] =

m1∑
i=1

P
(
τ

(1)
i ≤ t′| min

1≤j≤m2

τ
(2)
j ≤ t

)

=

m1∑
i=1

P
(
{τ (1)
i ≤ t′} ∩ { min

1≤j≤m2

τ
(2)
j ≤ t}

)
P
(

min
1≤j≤m2

τ
(2)
j ≤ t

) .

(B.3)
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The denominator of equation (B.3) can be written as

P
(

min
1≤j≤m2

τ
(2)
j ≤ t

)
= 1− P

(
min

1≤j≤m2

τ
(2)
j > t

)
= 1− P

(m2⋂
j=1

{τ (2)
j > t}

)

= 1− E
[
P
(m2⋂
j=1

{τ (2)
j > t}|∞Λ

∞

)]
= 1− E

[
P
(
τ

(2)
j > t|∞Λ

∞

)m2
]

= 1− E
[(
e
−a(2)Λ

h(2)(t)
−b(2)h(2)(t)

)m2
]

= 1− E
[
e
−m2a

(2)Λ
h(2)(t)

−m2b
(2)h(2)(t)

]
.

(B.4)

In the numerator we have instead

P
(
{τ (1)
i ≤ t′} ∩ { min

1≤j≤m2

τ
(2)
j ≤ t}

)
= P

(
τ

(1)
i ≤ t′

)
− P

(
{τ (1)
i ≤ t′} ∩

m2⋂
j=1

{τ (2)
j > t}

)

= 1− P
(
τ

(1)
i > t′

)
− P

(
{τ (1)
i ≤ t′} ∩

m2⋂
j=1

{τ (2)
j > t}

)

= 1− P
(
τ

(1)
i > t′

)
− E

[
P
(
{τ (1)
i ≤ t′} ∩

m2⋂
j=1

{τ (2)
j > t}|∞Λ

∞

)]
= 1− E

[
e
−a(1)Λ

h(1)(t′)−b
(1)h(1)(t′)]− E

[
e
−m2a

(2)Λ
h(2)(t)

−m2b
(2)h(2)(t)]

+ E
[
e
−a(1)Λ

h(1)(t′)−b
(1)h(1)(t′)

e
−m2a

(2)Λ
h(2)(t)

−m2b
(2)h(2)(t)]

.

(B.5)

We can thus rewrite equation (B.3) as

E[X
(1)
t′ |X

(2)
t ≥ 1]

= m1 ·
1− E

[
e
−a(1)Λ

h(1)(t′)−b
(1)h(1)(t′)]− E

[
e
−m2a

(2)Λ
h(2)(t)

−m2b
(2)h(2)(t)]

E
[
1− e−m2a(2)Λh(2)(t)−m2b(2)h(2)(t)

]

+m1 ·
E
[
e
−a(1)Λ

h(1)(t′)−b
(1)h(1)(t′)

e
−m2a

(2)Λ
h(2)(t)

−m2b
(2)h(2)(t)]

E
[
1− e−m2a(2)Λh(2)(t)−m2b(2)h(2)(t)

] · 1{h(1)(t′)≥h(2)(t)}

+m1 ·
E
[
e
−a(1)Λ

h(1)(t′)−b
(1)h(1)(t′)

e
−m2a

(2)Λ
h(2)(t)

−m2b
(2)h(2)(t)]

E
[
1− e−m2a(2)Λh(2)(t)−m2b(2)h(2)(t)

] · 1{h(1)(t′)<h(2)(t)}
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= m1 ·
1− e−h(1)(t′)

(
b(1)−Ψ(−a(1))

)
− e−h(2)(t)

(
m2b

(2)−Ψ(−m2a
(2))
)

1− e−h(2)(t)
(
m2b(2)−Ψ(−m2a(2))

)
+m1 ·

e(h(1)(t′)−h(2)(t))Ψ(−a(1))eh
(2)(t)Ψ(−a(1)−m2a

(2))e−h
(1)(t′)b(1)−m2b

(2)h(2)(t)

1− e−h(2)(t)
(
m2b(2)−Ψ(−m2a(2))

) · 1{h(1)(t′)≥h(2)(t)}

+m1 ·
eh

(1)(t′)Ψ(−a(1)−m2a
(2))e(h(2)(t)−h(1)(t′))Ψ(−m2a

(2))e−h
(1)(t′)b(1)−m2b

(2)h(2)(t)

1− e−h(2)(t)
(
m2b(2)−Ψ(−m2a(2))

) · 1{h(1)(t′)<h(2)(t)}

= m1 ·
1− e−h(1)(t′)

(
b(1)−Ψ(−a(1))

)
− e−h(2)(t)

(
m2b

(2)−Ψ(−m2a
(2))
)

1− e−h(2)(t)
(
m2b(2)−Ψ(−m2a(2))

)
+m1 ·

e−h
(1)(t′)

(
b(1)−Ψ(−a(1))

)
e−h

(2)(t)
(

Ψ(−a(1))+m2b
(2)−Ψ(−a(1)−m2a

(2))
)

1− e−h(2)(t)
(
m2b(2)−Ψ(−m2a(2))

) · 1{h(1)(t′)≥h(2)(t)}

+m1 ·
e−h

(1)(t′)
(
b(1)+Ψ(−m2a

(2))−Ψ(−a(1)−m2a
(2))
)
e−h

(2)(t)
(
m2b

(2)−Ψ(−m2a
(2))
)

1− e−h(2)(t)
(
m2b(2)−Ψ(−m2a(2))

) · 1{h(1)(t′)<h(2)(t)}.

Finally in the fourth case, by interchanging the role of the firm in classM1 andM2, and taking into
account that h(1)(t) ≤ h(2)(t) ≤ h(2)(t′) for t ≤ t′, we have

E[X
(2)
t′ |X

(1)
t ≥ 1]

= m2 ·
1− E

[
e
−a(2)Λ

h(2)(t′)−b
(2)h(2)(t′)]− E

[(
1− e−a

(2)Λ
h(2)(t′)−b

(2)h(2)(t′))
e
−m1a

(1)Λ
h(1)(t)

−m1b
(1)h(1)(t)]

E
[
1− e−m1a(1)Λh(1)(t)−m1b(1)h(1)(t)

]

= m2 ·
1− e−h(2)(t′)

(
b(2)−Ψ(−a(2))

)
− e−h(1)(t)

(
m1b

(1)−Ψ(−m1a
(1))
)

1− e−h(1)(t)
(
m1b(1)−Ψ(−m1a(1))

)
+m2 ·

e−h
(2)(t′)

(
b(2)−Ψ(−a(2))

)
e−h

(1)(t)
(

Ψ(−a(2))+m1b
(1)−Ψ(−a(2)−m1a

(1))
)

1− e−h(1)(t)
(
m1b(1)−Ψ(−m1a(1))

) .

(B.6)

�
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Proof of Proposition 6.2

In the first case we have (we prove only the first case, ` = 1, since the proof for ` = 2 is identical)

P(τ
(1)
i ≤ t′|τ (1)

j ≤ t) =
P
(
{τ (1)
i ≤ t′} ∩ {τ 1

j ≤ t}
)

P
(
τ

(1)
j ≤ t

)
=

E
[(

1− e−a
(1)Λ

h(1)(t′)−b
(1)h(1)(t′))(

1− e−a
(1)Λ

h(1)(t)
−b(1)h(1)(t))]

E
[
1− e−a(1)Λ

h(1)(t)
−b(1)h(1)(t)

]
=

E
[
1− e−a

(1)Λ
h(1)(t′)−b

(1)h(1)(t′) − e−a
(1)Λ

h(1)(t)
−b(1)h(1)(t)

]
E
[
1− e−a(1)Λ

h(1)(t)
−b(1)h(1)(t)

]
+

E
[
e
−a(1)Λ

h(1)(t′)−b
(1)h(1)(t′)

e
−a(1)Λ

h(1)(t)
−b(1)h(1)(t)

]
E
[
1− e−a(1)Λ

h(1)(t)
−b(1)h(1)(t)

]
=

1− e−h(1)(t′)
(
b(1)−Ψ(−a(1))

)
− e−h(1)(t)

(
b(1)−Ψ(−a(1))

)
1− e−h(1)(t)

(
b(1)−Ψ(−a(1))

)
+
e−h

(1)(t)
(

2b(1)−Ψ(−2a(1))
)
e−(h(1)(t′)−h(1)(t))

(
b(1)−Ψ(−a(1))

)
1− e−h(1)(t)

(
b(1)−Ψ(−a(1))

) .

(B.7)

where we have used the fact that

E
[
e
−a(1)Λ

h(1)(t′)−b
(1)h(1)(t′)

e
−a(1)Λ

h(1)(t)
−b(1)h(1)(t)

]
= E

[
e
−a(1)(Λ

h(1)(t′)−Λ
h(1)(t)

)
e
−2a(1)Λ

h(1)(t)e−b
(1)(h(1)(t′)−h(1)(t))e−2b(1)h(1)(t)

]
.

In the third case we have

P(τ
(1)
i ≤ t′|τ (2)

j ≤ t) =
P
(
{τ (1)
i ≤ t′} ∩ {τ (2)

j ≤ t}
)

P
(
τ

(2)
j ≤ t

) . (B.8)

The denominator of equation (B.8) can be written as

P
(
τ

(2)
j ≤ t

)
= 1− P

(
τ

(2)
j > t

)
= 1− E

[
P
(
τ

(2)
j > t|FΛ

∞
)]

= 1− E
[(
e
−a(2)Λ

h(2)(t)
−b(2)h(2)(t))]

= 1− e−h(2)(t)(b(2)−Ψ(−a(2))).

(B.9)
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In the numerator we have instead

P
(
{τ (1)
i ≤ t′} ∩ {τ (2)

j ≤ t}
)

= E
[
P
(
{τ (1)
i ≤ t′} ∩ {τ (2)

j ≤ t}|FΛ
∞

)]
= E

[(
1− e−a

(1)Λ
h(1)(t′)−b

(1)h(1)(t′))(
1− e−a

(2)Λ
h(2)(t)

−b(2)h(2)(t))]
= E

[
1− e−a

(1)Λ
h(1)(t′)−b

(1)h(1)(t′) − e−a
(2)Λ

h(1)(t)
−b(2)h(2)(t)]

+ E
[(
e
−a(1)Λ

h(1)(t′)−b
(1)h(1)(t′))(

e
−a(2)Λ

h(2)(t)
−b(2)h(2)(t))]

= 1− E
[
e
−a(1)Λ

h(1)(t′)−b
(1)h(1)(t′)]− E

[
e
−a(2)Λ

h(2)(t)
−b(2)h(2)(t)]

+ E
[
e
−a(1)Λ

h(1)(t′)−b
(1)h(1)(t′)

e
−a(2)Λ

h(2)(t)
−b(2)h(2)(t)] · 1{h(1)(t′)≥h(2)(t)}

+ E
[
e
−a(1)Λ

h(1)(t′)−b
(1)h(1)(t′)

e
−a(2)Λ

h(2)(t)
−b(2)h(2)(t)] · 1{h(1)(t′)<h(2)(t)}

= 1− e−h(1)(t′)
(
b(1)−Ψ(−a(1))

)
− e−h(2)(t)

(
b(2)−Ψ(−a(2))

)
+ e(h(1)(t′)−h(2)(t))Ψ(−a(1))eh

(2)(t)Ψ(−a(1)−a(2))e−b
(1)h(1)(t′)−b(2)h(2)(t) · 1{h(1)(t′)≥h(2)(t)}

+ eh
(1)(t′)Ψ(−a(1)−a(2))e(h(2)(t)−h(1)(t′))Ψ(−a(2))e−b

(1)h(1)(t′)−b(2)h(2)(t) · 1{h(1)(t′)<h(2)(t)}

= 1− e−h(1)(t′)
(
b(1)−Ψ(−a(1))

)
− e−h(2)(t)

(
b(2)−Ψ(−a(2))

)
+ e−h

(1)(t′)
(
b(1)−Ψ(−a(1))

)
e−h

(2)(t)
(

Ψ(−a(1))+b(2)−Ψ(−a(1)−a(2))
)
· 1{h(1)(t′)≥h(2)(t)}

+ e−h
(1)(t′)

(
b(1)+Ψ(−a(2))−Ψ(−a(1)−a(2))

)
e−h

(2)(t)
(
b(2)−Ψ(−a(2))

)
· 1{h(1)(t′)<h(2)(t)}.

(B.10)

We can thus rewrite equation (B.8) as

P(τ
(1)
i ≤ t′|τ (2)

j ≤ t)

=
1− e−h(1)(t′)

(
b(1)−Ψ(−a(1))

)
− e−h(2)(t)

(
b(2)−Ψ(−a(2))

)
1− e−h(2)(t)(b(2)−Ψ(−a(2)))

+
e−h

(1)(t′)
(
b(1)−Ψ(−a(1))

)
e−h

(2)(t)
(

Ψ(−a(1))+b(2)−Ψ(−a(1)−a(2))
)

1− e−h(2)(t)
(
b(2)−Ψ(−a(2))

) · 1{h(1)(t′)≥h(2)(t)}

+
e−h

(1)(t′)
(
b(1)+Ψ(−a(2))−Ψ(−a(1)−a(2))

)
e−h

(2)(t)
(
b(2)−Ψ(−a(2))

)
1− e−h(2)(t)

(
b(2)−Ψ(−a(2))

) · 1{h(1)(t′)<h(2)(t)}.

(B.11)

Finally in the fourth case, by interchanging the role of the firm in class M1 and M2 and taking into
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account that h(1)(t) ≤ h(2)(t) ≤ h(2)(t′) for t ≤ t′, we have

P
(
τ

(2)
i ≤ t′|τ (1)

i ≤ t
)

=
1− E

[
e
−a(2)Λ

h(2)(t′)−b
(2)h(2)(t′)]− E

[(
1− e−a

(2)Λ
h(2)(t′)−b

(2)h(2)(t′))
e
−a(1)Λ

h(1)(t)
−b(1)h(1)(t)]

E
[
1− e−a(1)Λh(1)(t)−b(1)h(1)(t)

]

=
1− e−h(2)(t′)

(
b(2)−Ψ(−a(2))

)
− e−h(1)(t)

(
b(1)−Ψ(−a(1))

)
1− e−h(1)(t)

(
b(1)−Ψ(−a(1))

) +
e−h

(2)(t′)
(
b(2)−Ψ(−a(2))

)
e−h

(1)(t)
(

Ψ(−a(2))+b(1)−Ψ(−a(2)−a(1))
)

1− e−h(1)(t)
(
b(1)−Ψ(−a(1))

) .

(B.12)
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C Appendix: Numerical computations

Truncation error

To compute the expectation in (19) we compute

E[F (t, Λ̃(t),∆Λ̃(t))] =

∫ Mx(h(1)(t))

0

∫ My(h(2)(t)−h(1)(t))

0

F (t, x, y) · fΛ̃(x) · f∆Λ̃(y)dxdy, (C.1)

where F (t, x, y) is the function defined in (18), by properly choosing the upper integration extremes so that the truncation
error is less than 2× 10−4. To do so we consider that in general, for a non-negative function F (x, y), we can write

E[F (X,Y )] =

∫ ∞
0

dx

∫ ∞
0

dyF (x, y)fX(x)fY (y)

=

∫ MX

0

dx

∫ MY

0

dyF (x, y)fX(x)fY (y)

+

∫ ∞
MX

dx

∫ ∞
0

dyF (x, y)fX(x)fY (y)

+

∫ ∞
0

dx

∫ ∞
MY

dyF (x, y)fX(x)fY (y)

−
∫ ∞
MX

dx

∫ ∞
MY

dyF (x, y)fX(x)fY (y).

(C.2)

So we have

0 ≤ E[F (X,Y )]−
∫ MX

0

dx

∫ MY

0

dyF (x, y)fX(x)fY (y) ≤
∫ ∞
MX

dx

∫ ∞
0

dyF (x, y)fX(x)fY (y)

+

∫ ∞
0

dx

∫ ∞
MY

dyF (x, y)fX(x)fY (y).

(C.3)

In our case, being 0 ≤ F (t, x, y) ≤ 1, we get the following inequality:

0 ≤ E[F (t, Λ̃(t),∆Λ̃(t))]−
∫ MX

0

dx

∫ MY

0

dyF (t, x, y) · fΛ̃(x) · f∆Λ̃(y) ≤
∫ ∞
MX

fΛ̃(x)dx+

∫ ∞
MY

f∆Λ̃(y)dy. (C.4)
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In the case of the inverse Gaussian subordinator, being

X ∼ IG(βh(1)(t), η)

and
Y ∼ IG(β(h(2)(t)− h(1)(t)), η),

we have ∫ ∞
MX

fΛ̃(x)dx =

∫ ∞
MX

β(h(1)(t))√
2π

x−
3
2 eηβ(h(1)(t))e−

1
2

(
β2(h(1)(t))2

x +η2x
)
1{x>0}dx

≤ β(h(1)(t))eηβ(h(1)(t))

√
2π

∫ ∞
MX

1

x3/2
e−

1
2η

2MX

=
β(h(1)(t))eηβ(h(1)(t))

√
2π

· 2

M
1/2
X

e−
1
2η

2MX

(C.5)

and ∫ ∞
MY

f∆Λ̃(y)dy =

∫ ∞
MY

β(h(2)(t)− h(1)(t))√
2π

y−
3
2 eηβ(h(2)(t)−h(1)(t))e−

1
2

(
β2(h(2)(t)−h(1)(t))2

y +η2y
)
1{y>0}dy

≤ β(h(2)(t)− h(1)(t))eηβ(h(2)(t)−h(1)(t))

√
2π

∫ ∞
MY

1

y3/2
e−

1
2η

2MY

=
β(h(2)(t)− h(1)(t))eηβ(h(2)(t)−h(1)(t))

√
2π

· 2

M
1/2
Y

e−
1
2η

2MY

=
β(h(2)(t)− h(1)(t))eηβ(h(2)(t)−h(1)(t))

√
2π

· 2

M
1/2
Y

e−
1
2η

2MY

(C.6)

We can easily verify that, by choosing

MX = inf
m

{
e−

1
2η

2m

m
1
2

≤ 10−4

√
2π

2βh(1)(t)eβηh(1)(t)

}
and

MY = inf
m

{
e−

1
2η

2m

m
1
2

≤ 10−4

√
2π

2β(h(2)(t)− h(1)(t))eβη(h(2)(t)−h(1)(t))

}
,

we have ∫ ∞
MX

fX(x) ≤ 10−4

and ∫ ∞
MY

fY (y)dy ≤ 10−4

so that

E[F (t, Λ̃(t),∆Λ̃(t))]−
∫ MX

0

dx

∫ MY

0

dyF (t, x, y) · fΛ̃(x) · f∆Λ̃(y) < 2× 10−4.
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Integration on a bounded domain

The aim of this paragraph is to rewrite (13) as an integral on a bounded domain. First of all let us consider that the
function denoted in (13) can also be written as

E[L(j)(t)] = E[min(max(0, (1−R)Ln(t)− lj), uj − lj)]

= E
[(

(1−R)Ln(t)− lj
)
1{ lj

1−R<L
n(t)≤ uj

1−R

} +
(
uj − lj

)
1{ uj

1−R<L
n(t)
}], (C.7)

as we have

• Ln(t) >
uj

1−R ⇐⇒ (1−R)Ln(t) > uj > lj

so that, in this case,
max

(
0, (1−R)Ln(t)− lj

)
= (1−R)Ln(t)− lj

and
min

(
(1−R)Ln(t)− lj , (uj − lj)

)
= uj − lj ;

• lj

1−R < Ln(t) ≤ uj

1−R ⇐⇒ lj < (1−R)Ln(t) ≤ uj

so that, in this case,
max

(
0, (1−R)Ln(t)− lj

)
= (1−R)Ln(t)− lj

and
min

(
(1−R)Ln(t)− lj , (uj − lj)

)
= (1−R)Ln(t)− lj ;

• Ln(t) ≤ lj

1−R ⇐⇒ (1−R)Ln(t) ≤ lj

so that, in this case,
max

(
0, (1−R)Ln(t)− lj

)
= 0

and
min

(
0, uj − lj

)
= 0.

To perform numerical computation we use a change of variables so that the double integral in equation (19) is on a
compact support. Let us denote

X = X(x) := e−a
(1)x−b(1)h(1)(t)

and
Y = Y (x, y) := e−a

(2)y−a(2)x−b(2)h(2)(t).

We can easily verify that

lim
x→∞

X(x) = 0, lim
x→0

X(x) = e−b
(1)h(1)(t),
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and, for all x,

lim
y→∞

Y (x, y) = 0, lim
y→0

Y (x, y) = e−b
(2)h(2)(t)−a(2)x,

so that for all x and y

0 < X(x) < e−b
(1)h(1)(t) < 1 (C.8)

and

0 < Y (x, y) < e−b
(2)h(2)(t)−a(2)x < 1. (C.9)

This change of variable is basically given by the bivariate function Φ that relates the variables (x, y) and (X,Y ) by[
X
Y

]
= Φ

[
x
y

]
=

[
e−a

(1)x−b(1)h(1)(t)

e−a
(2)y−a(2)x−b(2)h(2)(t)

]
,

and consequently [
x
y

]
= Φ−1

[
X
Y

]
=

[ − 1
a(1)

(
logX + b(1)h(1)(t)

)
− 1
a(2)

(
logY + b(2)h(2)(t)

)
+ 1

a(1)

(
logX + b(1)h(1)(t)

) ] .
Taking into account the above formulas,(C.8) and (C.9), the integration domain can be expressed as

0 < X < e−b
(1)h(1)(t) < 1 (C.10)

and

0 < Y < e
−b(2)h(2)(t)+ a(2)

a(1)

(
logX+b(1)h(1)(t)

)
< 1. (C.11)

In order to compute equation (19) in terms of the new variables we need to compute

|JΦ−1(X,Y )| =
∣∣∣∣[ − 1

a(1)X
0

1
a(1)X

− 1
a(2)Y

]∣∣∣∣ =
1

a(1)a(2)XY
.

By denoting f(x, y) := fΛ̃(x) · f∆Λ̃(y) in equation (19), we can thus finally rewrite the expected value in (19) in terms of
(X,Y ) as ∫ 1

0

∫ 1

0

F̃ (t,X, Y ) · f
(
Φ(−1)(X,Y )

)
· |JΦ−1(X,Y )|dXdY, (C.12)

where

F̃ (t,X, Y ) = min

(
max

(
0, (1−R)

(
1− m1

n
X − m2

n
Y

)
− lj

)
, uj − lj

)
and

f
(
Φ(−1)(X,Y )

)
= fΛ̃

(
− 1

a(1)

(
logX + b(1)h(1)(t)

))
· f∆Λ̃

(
− 1

a(2)

(
logY + b(2)h(2)(t)

)
+

1

a(1)

(
logX + b(1)h(1)(t)

))
.
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In particular, in case of the inverse Gaussian subordinator, considering (20) and (21), we have

fΛ̃

(
− 1

a(1)

(
logX + b(1)h(1)(t)

))
=
β(h(1)(t))√

2π

(
− 1

a(1)

(
logX + b(1)h(1)(t)

))− 3
2

× eηβ(h(1)(t))e

a(1)

2

(
β2(h(1)(t))2

logX+b(1)h(1)(t)

)

× e
η2

2a(1)

(
logX+b(1)h(1)(t)

))
× 1{

− 1

a(1)

(
logX+b(1)h(1)(t)

)
>0
}

(C.13)

and

f∆Λ̃

(
− 1

a(2)

(
log Y + b(2)h(2)(t)

)
+

1

a(1)

(
logX + b(1)h(1)(t)

))
=
β(h(2)(t)− h(1)(t))√

2π

×
(
− 1

a(2)

(
log Y + b(2)h(2)(t)

)
+

1

a(1)

(
logX + b(1)h(1)(t)

))− 3
2

× eηβ(h(2)(t)−h(1)(t))

× e
− β2(h(2)(t)−h(1)(t))2

2∗
(
− 1

a(2)
(log Y+b(2)h(2)(t))+ 1

a(1)
(logX+b(1)h(1)(t))

)
× e
− η

2

2

(
− 1

a(2)

(
log Y+b(2)h(2)(t)

)
+ 1

a(1)

(
logX+b(1)h(1)(t)

))
× 1{

− 1

a(2)

(
log Y+b(2)h(2)(t)

)
+ 1

a(1)

(
logX+b(1)h(1)(t)

)
>0
}.

(C.14)

In terms of the new random variables
X(ω) := X(Λ̃(ω)),

Y (ω) := Y (Λ̃(ω),∆Λ̃(ω)),

and with some manipulation equation (C.7) can be rewritten as

E[L(j)(t)] ≈ E
[(

(1−R)(1− m1

n
X(ω)− m2

n
Y (ω))− lj

)
1{ lj

1−R<1−m1
n X(ω)−m2

n Y (ω)≤ uj

1−R

}
+ (uj − lj)1{ uj

1−R<1−m1
n X(ω)−m2

n Y (ω)
}]

= (1−R− lj)E
[
1{

1−
uj

1−R≤
m1
n X(ω)+

m2
n Y (ω)≤1− lj

1−R

}]
− (1−R)E

[(m1

n
X(ω) +

m2

n
Y (ω)

)
1{

1−
uj

1−R≤
m1
n X(ω)+

m2
n Y (ω)≤1− lj

1−R

}]
+ (uj − lj)E

[
1{m1

n X(ω)+
m2
n Y (ω)≤1− uj

1−R

}].

(C.15)

Using equation (C.12), (C.10) and (C.11), the latter expectation becomes
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E[L(j)(t)] ≈ (1−R− lj)
∫ e−b

(1)h(1)(t)

0

dX

∫ e
−b(2)h(2)(t)+ a

(2)

a(1)

(
logX+b(1)h(1)(t)

)
0

dY 1{
1−

uj
1−R≤

m1
n X+

m2
n Y≤1− lj

1−R

}
× fΛ̃

(
− 1

a(1)

(
logX + b(1)h(1)(t)

))
× f∆Λ̃

(
− 1

a(2)

(
logY + b(2)h(2)(t)

)
+

1

a(1)

(
logX + b(1)h(1)(t)

))
× 1

a(1)a(2)XY

− (1−R)

∫ e−b
(1)h(1)(t)

0

dX

∫ e
−b(2)h(2)(t)+ a

(2)

a(1)

(
logX+b(1)h(1)(t)

)
0

dY

(
m1

n
X +

m2

n
Y

)
× 1{

1−
uj

1−R≤
m1
n X+

m2
n Y≤1− lj

1−R

}
× fΛ̃

(
− 1

a(1)

(
logX + b(1)h(1)(t)

))
× f∆Λ̃

(
− 1

a(2)

(
logY + b(2)h(2)(t)

)
+

1

a(1)

(
logX + b(1)h(1)(t)

))
× 1

a(1)a(2)XY

+ (uj − lj)
∫ e−b

(1)h(1)(t)

0

dX

∫ e
−b(2)h(2)(t)+ a

(2)

a(1)

(
logX+b(1)h(1)(t)

)
0

dY 1{(m1
n X+

m2
n Y
)
≤1− uj

1−R

}
× fΛ̃

(
− 1

a(1)

(
logX + b(1)h(1)(t)

))
× f∆Λ̃

(
− 1

a(2)

(
logY + b(2)h(2)(t)

)
+

1

a(1)

(
logX + b(1)h(1)(t)

))
× 1

a(1)a(2)XY
.

(C.16)
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The previous equation can also be written as

E[L(j)(t)] ≈ (1−R− lj)
∫ 1

0

dX

∫ 1

0

dY 1{
1−

uj
1−R≤

m1
n X+

m2
n Y≤1− lj

1−R

}
× fΛ̃

(
− 1

a(1)

(
logX + b(1)h(1)(t)

))
× f∆Λ̃

(
− 1

a(2)

(
logY + b(2)h(2)(t)

)
+

1

a(1)

(
logX + b(1)h(1)(t)

))
× 1

a(1)a(2)XY
× 1{

0<X<e−b
(1)h(1)(t), 0<Y<e

−b(2)h(2)(t)+ a
(2)

a(1)

(
logX+b(1)h(1)(t)

)}
− (1−R)

∫ 1

0

dX

∫ 1

0

dY

(
m1

n
X +

m2

n
Y

)
× 1{

1−
uj

1−R≤
m1
n X+

m2
n Y≤1− lj

1−R

}
× fΛ̃

(
− 1

a(1)

(
logX + b(1)h(1)(t)

))
× f∆Λ̃

(
− 1

a(2)

(
logY + b(2)h(2)(t)

)
+

1

a(1)

(
logX + b(1)h(1)(t)

))
× 1

a(1)a(2)XY
× 1{

0<X<e−b
(1)h(1)(t), 0<Y<e

−b(2)h(2)(t)+ a
(2)

a(1)

(
logX+b(1)h(1)(t)

)}
+ (uj − lj)

∫ 1

0

dX

∫ 1

0

dY 1{(m1
n X+

m2
n Y
)
≤1− uj

1−R

}
× fΛ̃

(
− 1

a(1)

(
logX + b(1)h(1)(t)

))
× f∆Λ̃

(
− 1

a(2)

(
logY + b(2)h(2)(t)

)
+

1

a(1)

(
logX + b(1)h(1)(t)

))
× 1

a(1)a(2)XY
× 1{

0<X<e−b
(1)h(1)(t), 0<Y<e

−b(2)h(2)(t)+ a
(2)

a(1)

(
logX+b(1)h(1)(t)

)}.

(C.17)

D Appendix: Other Lévy subordinators

Two other subordinators considered by Mai and Sherer (2009a)23 are

• the gamma subordinator, which, like the inverse Gaussian subordinator, is in the class of the infinite activity
subordinators;

• the compound Poisson subordinator.

23Other subordinators will be object of further investigation.
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The gamma subordinator

The gamma (Γ) subordinator ΛΓ = {ΛΓ
t }t≥0 is another Lévy process that belongs to the class of infinite activity subordi-

nators. In a gamma subordinator with parameters η, β > 0, ΛΓ
y follows a gamma Γ(βt, η)-distribution with density

fΓ(x) =
ηβt

Γ(βt)
xβt−1e−xη1{x>0},

where

Γ(y) =

∫ ∞
0

ty−1e−tdt.

The corresponding Lévy measure is given by

νΓ(dx) = βe−ηx
1

x
1{x>0}dx.

The compound Poisson subordinator

The compound Poisson subordinator is of the form

Λt = µt+

Nt∑
k=1

Jk,

where {Jk}k∈N are i.i.d. random variables with a cumulative distribution function D with support on the positive axis,
and N = {Nt}t≥0 is a Poisson process with intensity β which is independent of {Jk}k∈N. The Lévy measure corresponding
to this Lévy subordinator has the form νP (dy) = βdD(y). This subordinator has upward jumps of random magnitude Jk
and the expected number of jumps within a unit time interval is β. For instance, one can assume that D is the exponential
distribution with parameter η > 0, so that the subordinator depends only on parameters η and β.

The Laplace exponent and the parameter constraint for these two subordinators are the following.
For the gamma subordinator we have:

Ψ0,Γ(−a(i)) =

∫ ∞
0

(e−a
(i)s − 1)νΓ(ds)

= β

∫ ∞
0

(e−a
(i)s − 1)

1

s
e−ηsds

= β ln

(
η

a(i) + η

)
and the constraint Ψ0(−a(i)) ≥ −1 is translated into the following constraint for (η, β):

η > 0, 0 < β ≤ 1∫∞
0

(1− e−a(i)s) 1
se
−ηsds

=
1

ln [a
(i)+η
η ]

for each i = 1, . . . , r, and so, as amax = max {a(i)}i=1,...,r, we want

η > 0, 0 < β ≤ 1

ln [amax+η
η ]

.
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For the compound Poisson subordinator, we have

Ψ0,P (−a(i)) =

∫ ∞
0

(e−a
(i)s − 1)νP (ds)

= β

∫ ∞
0

(e−a
(i)y − 1)dD(y)

= βE[e−a
(i)J1 − 1]

= − a(i)β

a(i) + η
.

and the constraint for (η, β) becomes

η > 0, 0 < β ≤ 1

1− E[e−amaxJ1 ]
=
amax + η

amax
.
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