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Abstract 

Most of the important models in finance rest on the assumption that randomness is 
explained through a normal random variable because, in general, the use of alternative 
models is obstructed by the difficulty of calibrating and simulating them. In this paper, we 
empirically study models for pricing credit default swaps under a reduced-form framework, 
assuming different dynamics for the default intensity process. After reviewing the most 
recent results on this subject, we explore both pricing performance and parameter stability 
during the highly volatile period from 30 June 2008 to 31 December 2010 for different 
classes of processes: one driven by the Brownian motion, three driven by non-Gaussian Lévy 
processes, and the last one driven by a Sato process. The models are analysed from both a 
static and dynamic perspective. 
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1 Introduction1

Credit derivatives are relatively new financial instruments compared with stock
options or interest rate derivatives. Even if each product has distinctive features,
the mathematical setting needed for the pricing of credit derivatives can be viewed
as a slight modification of models employed to price those derivatives with a longer
history. Most of the approaches studied to improve market standard models in the
area of stock options or interest rate derivatives have also been extended to obtain
more reliable credit derivative pricing engines. In particular, certain arguments
widely discussed in the literature, such as the analysis of risk premia, of the change
of measure problem, of affine processes, of jumps in the underlying, or of a suitable
dependence structure for multivariate modelling, have been treated and extended
in the context of credit derivatives. The extraordinary growth of the market for
credit-linked products has led to increasing interest in the sector.2

The debate between academia, financial industry and regulators has examined
whether the mathematical and statistical tools employed in risk management and
valuation of complex financial instruments played a role in the recent crisis. In
particular, models to measure the default probabilities of baskets of loans have been
placed at the centre of the discussion and used to criticize both the mathematics
and the quantitative models extensively employed in the industry (readers are
referred to Donnelly and Embrechts (2010) for a discussion on this topic).

A correct understanding of different pricing models has implications not only
from the methodological standpoint but also for proper financial reporting. Both
International Financial Reporting Standards (IFRS) and US Generally Accepted
Accounting Principles (US GAAP) allow the so-called mark-to-model valuation for
financial instruments not having an active market, that is, a particular valuation
technique (i.e. a pricing model) can be used to compute the fair value of these
instruments (see FASB (2006)).

From a practical perspective, the fair value of complex financial derivatives,
such as exotic options or baskets of credit default swaps, can be computed in two
steps: (1) calibration of the parameters to the prices of liquid instruments traded
in an active market; and (2) use of the parameters coming out of the previous
calibration exercise to price more complex derivatives. This procedure implies that
the fair value depends on the model’s assumptions in both the calibration exercise
and the evaluation part. Therefore, the use of different models can lead to different
fair valuations. For this reason, the first property a model must have is the ability
to explain the prices of liquid financial instruments traded on active and regulated
markets, first, to ensure a proper risk assessment, then, to limit possible arbitrage
opportunities in more complex derivatives. Additionally, a model must be flexible
enough to explain certain stylized facts observed in financial markets but, at the

1 The author is grateful to Agostino Chiabrera, Carlo Gola, Antonio Ilari, two anonymous
referees, and participants at the XIII Workshop on Quantitative Finance for their comments and
suggestions; he would like to thank Christine Stone and Carla Lucidi for the linguistic revision
of the paper. The views expressed in the article are those of the author and do not involve the
responsibility of the Bank of Italy.

2 To have an idea of the phenomenon readers are referred to the website www.defaultrisk.

com.
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same time, it must possess a satisfactory degree of computational tractability (see
Cont (2001)).

Even though there exists a vast amount of research on the pricing of complex
credit derivatives, such as first-to-default swaps or synthetic collateralized debt
obligations (CDOs), there are only a few empirical studies of the behaviour of
credit default swap (CDSs) pricing models during the last financial downturn.
Although CDSs are the building blocks of more complex credit derivatives, most of
the quantitative models proposed by the industry to price synthetic CDOs do not
consider a framework consistent with the CDS prices quoted in the market. In fact,
standard factor models for the valuation of CDOs usually assume that all firms in
the portfolio have the same default probability and that the dependence between
firms can be explained through a single parameter (see Eberlein et al. (2008)).
This lack of consistency is mostly due to the absence of proper data and models
to calibrate a dependence structure between default events for a large number of
different entities, the inherent difficulty in dealing with these complex products,
the computational intractability caused by the dimensionality of the problem, and
the too fast growth of the market for these products in the last decade without a
correct understanding of their associated risks (for a further discussion see Brigo
et al. (2010)).

It is within this context that we discuss in this paper the performance of some
pricing models to evaluate the spreads of CDSs observed in the market. More
precisely, risk-neutral parameters are extracted from the term structure of CDS
spreads for more than one hundred companies included in the Markit iTraxx Eu-
rope Index by considering five different models (one driven by the Brownian motion,
three driven by non-Gaussian Lévy processes, and the last one driven by a Sato
process) and we compare their pricing errors in the period from 30 June 2008 to
31 December 2010. In other terms, starting from three different classes of pro-
cesses we analyse reduced-form or intensity-based models by assuming five different
distributional hypotheses.

The underlying assumption made in most models is that the uncertainty in
the financial markets can be explained through a normal distribution. However,
there is considerable empirical evidence that the normal distribution is not flexible
enough to explain the dynamics of complex financial products. The drawbacks
of the normal model are by no means recent. The first fundamental criticism
came in the 1960s from Mandelbrot (1963). He strongly rejected normality as a
distributional model for asset returns based on his study of commodity returns and
interest rates. For this reason, particularly in the last decade, both academia and
the industry have started applying more complex mathematical tools to finance, in
order to deal with possible mispricing caused by the use of normal-based models.
The introduction of jumps and heavy-tails in the dynamics of stock returns (see
Rachev and Mittnik (2000), Schoutens (2003), Cont and Tankov (2004), Rachev
et al. (2011)) has been followed by the introduction of jumps in default modelling.
Jumps in credit risk models can be introduced in two ways: (1) they can be
included in the dynamics of the firm value process or (2) they can be included in
the dynamics of the intensity process (Schoutens and Cariboni (2009)).3 We focus

3 There is also the possibility of assuming a stochastic interest rate and adding jumps in both
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on this second approach.
In the empirical analysis we investigate the classical Cox, Ingersoll and Ross

(CIR) process applied to the modelling of default probabilities as proposed by
Duffie and Singleton (1999); we then study Ornstein-Uhlenbeck (OU) default in-
tensity processes completely driven by jumps. Finally, we analyse a different frame-
work where the default probability is explained via a Sato process, as proposed by
Kokholm and Nicolato (2010). In practice, we compare three different families of
stochastic processes in our empirical study: (1) the Brownian motion driving the
CIR process; (2) Ornstein-Uhlenbeck processes based on Lévy processes,4 that is,
non-Gaussian processes with independent and homogeneous increments (gamma,
inverse Gaussian and variance gamma); and (3) additive processes (Sato), that is
processes with independent but non-necessary homogeneous increments (see Sato
(1999)). Jumps are introduced in the default intensity dynamics because CDS
spreads exhibit large fluctuations and therefore it is necessary to account for this
heavy-tailed nature of the risk (see Cont (2010)) characterized by rare events and
irregular jumps.

We consider two methodologies to estimate the proposed models: (1) we fit the
models to the daily spreads observed in the market and check both the models’
capabilities and the parameter stability (we refer to it as static estimation); and (2)
we extract the unobservable default intensity process using filtering methods (we
refer to it as dynamic estimation). Regarding the stability of the parameters, the
static analysis shows that the Sato based model outperforms its competitors and
the parameter stability can be improved by incorporating regularization techniques
into the optimization procedure. For the CDS spreads that we analyse and for the
time period that we investigate, under the static perspective the variance gamma
based model seems to be satisfactory in terms of calibration error compared with
all other competitor models, and from the dynamics perspective it explains CDS
behaviour better than the CIR model. Thus, we empirically assess that the skew-
ness and fat-tail properties of the default intensity process are also important for
the pricing of CDSs.

The remainder of this paper is organized as follows. In Section 2 we discuss
the more recent approaches proposed in the literature to model single-name credit
default swaps. A brief review showing the mathematical framework of intensity-
based models is reported in Section 3 and the stochastic processes employed in
the empirical analysis are described in Section 4. In Section 5 we describe the
data considered in the empirical study and in Section 6 we discuss two different
estimation methodologies, the first based on calibration on a daily basis, the second
based on filtering methods that make use of the entire sample over the observed
period. We then report and discuss the results. Section 7 concludes.

the instantaneous interest rate process and the default intensity process.
4 The Brownian motion is a special case of Lévy process. It can be proved that it is the only

Lévy process with continuous path.

7



2 Actual vs risk-neutral default probability

In this section we discuss the change of measure problem in the context of default
risk valuation to provide an explanation of default risk premia. Before doing this,
we briefly recall the history of credit risk models.

It is well known that models for the valuation of single-name credit deriva-
tives are divided in two categories: firm value or structural models pioneered by
Merton (1974) and reduced-form or intensity-based models originating with Jar-
row and Turnbull (1992). The former approach is built on the idea that a default
occurs when the value of the firm reaches a certain threshold, the latter directly
models the default time as the first jump of a Poisson process with a given inten-
sity λt. In practice, the firm value model may consider both balance-sheet and
historical default frequencies, while the intensity-based model generally deals only
with financial instrument market information (see also Jarrow and Protter (2004)).
Each approach has its drawbacks and advantages. For a more detailed comparison
between the two approaches see the recent work of Jarrow (2011).

Firm value models use a larger set of information, in particular balance-sheet
data, historical default frequencies, and market information, and they can be used
to compute the real world (actual or actuarial based) default probability. For this
reason these models are often used by rating agencies like Moody’s and Fitch (see
Dwyer and Qu (2007), and Liu et al. (2007)). However, the firm value process is
unobservable, as recently pointed out also by Duan and Fulop (2009). It can be
extracted only by considering the observable equity value (or stock price) process,
and by taking into consideration that the equity value can be viewed as a contingent
claim written on the firm value. Then, there is no general consensus on the data
to be considered as inputs for the pricing engine, and on the way to transform the
actual probability into a risk-neutral probability to compute the value of default-
based derivatives. This last point is of extreme importance for those models that
allow for jumps in the dynamics of the firm value process. Similar arguments about
the change of measure problem in the context of option pricing can be extended
to credit risk models, as discussed by Le Courtois and Quittard-Pinon (2006).

Reduced-form models allow for a relatively simple parameter estimation based
on financial instruments traded in the market, such as defaultable bonds or credit
default swaps. However, this procedure extracts a probability measure which is by
construction risk-neutral. By doing so, the risk premia embedded in the prices of
traded instruments cannot be evaluated without a suitable change of measure, that
is without a function that combines both information coming from historical data
(i.e. historical default frequencies) and information provided by an active market
of derivative securities.

As has already been observed for equity options, risk premia are inherently
hard to measure (see Jarrow (2012)). A possible approach to evaluating default
risk premia has been proposed by Berndt et al. (2008).5 Starting from the real
world default probability provided by Moody’s, the authors estimate the param-
eters of a Black-Karasinski default intensity process under the actual probability
measure and the risk-neutral intensity process is extracted from the spreads of CDS

5 An interesting study in a structural setting has recently been proposed by Berg (2010).
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traded in the market. By exploring the rich structure of all possible changes of
measure (see Jarrow et al. (2005)), the authors show that the ratio of risk-neutral
to actual default intensities can be viewed as a proxy for the default risk premium.
As observed above, default risk premia can only be analysed by combining differ-
ent sources of information, that is, historical default probabilities, market implied
probabilities, and the relations between them.

In this paper we investigate the pricing performance of five different distribu-
tional assumptions directly under the risk-neutral measure, but we do not analyse
the behaviour of default risk premia, principally because their estimation is very
difficult (see Jarrow (2012)). Pricing a derivative following this route is therefore
a case of relative pricing as defined by Rebonato (2004), and nothing can be said
about the real world probability. The purpose of these models is the pricing and
hedging of derivatives without allowing arbitrage opportunities.

3 Evaluate CDS spreads

We consider a reduced-form approach to model the default probability, and we
assume that the default intensity is a stochastic process (see Duffie et al. (2003)).
There is a general consensus in assuming a stochastic intensity instead of a deter-
ministic intensity to model uncertainty about the future dynamics of the credit risk
of a given reference entity. A similar framework has been used to price interest
rate derivatives. However, in the credit derivatives case one models the default
intensity process while in the interest rate derivatives case one models the spot
rate or the factors explaining the term structure. More in detail, in a reduced-form
model one assumes that the time of default is determined by the first jump time of
a Cox process Nt starting from zero and with a stochastic intensity rate λt, where
0 ≤ t ≤ T . Under this setting the default time τ is defined as

τ = inf {t > 0|Nt > 0} = inf {t > 0|At > E1} ,

where the process At is usually defined as an integrated process, i.e.

At =

∫ t

0

λs ds

where λt is often a stationary affine process and E1 is an exponential random
variable with mean equal to 1. It follows that the survival probability up to time
t is equal to

PSurv(τ > t) = E [exp(−At)] = φAt(i),
6 (1)

where φAt(u), with u ∈ R, is the characteristic function relative to At and i =
√
−1.

By assuming a model for the intensity process λt we can compute the corresponding
survival probability. If one knows the characteristic function of the process At, it
is straightforward to compute the expectation in equation (1).

Recently, Kokholm and Nicolato (2010) analysed a reduced-form approach
where the default time is defined by the direct modelling of the process At. In

6 The characteristic function of a random variable X is defined as φX(u) = E [exp(iuX)],
u ∈ R.
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their paper the default is driven by an increasing and additive process, that is a
process At with independent but not necessarily stationary increments.

By following the computations reported in O’Kane and Turnbull (2003), given
a model for survival probability, one can easily derive the fair spread of a CDS
expiring at time T ,

cCDST =
(1−R)

∑n
i D(0, ti)(PSurv(ti−1)− PSurv(ti))∑n

i D(0, ti)PSurv(ti)∆ti + 1
2

∑n
i D(0, ti)(PSurv(ti−1)− PSurv(ti))∆ti

, (2)

where R is the recovery rate (usually assumed equal to 40 per cent), D(0, t) is the
discount factor, t1, . . . , tn = T represent the dates of payment at the end of each
period ti until maturity T .7 Fee and loss payments are assumed to be made at the
end of each period. Furthermore, it is taken into account that if default occurs
between some payment dates, the fee has to be paid only for the portion between
the last payment date and the time of default as the insurance buyer is protected
only for that period.

The extension of equation (1) to the sum of two or more default intensity factors
λ1
t , . . . , λ

n
t is straightforward when pairwise independence is assumed between

factors.8 The formula in equation (1) becomes

PSurv(τ > t) = φA1
t
(i) · · ·φAnt (i). (3)

However, if one considers dependent factors, the decomposition in equation (3) no
longer holds. Normal-based models may still have a closed-form solution, but in
general, if one assumes a richer dependence structure (for example, a multivari-
ate model or a copula allowing for tail dependence), Monte Carlo simulations or
numerical methods are needed to evaluate the survival probability.9

4 Cox-Ingersoll-Ross, Ornstein-Uhlenbeck and

Sato reduced-form models

In this section we describe different models based on the short-rate process ap-
proach first defined in the interest rate context. However, there are two main
differences between interest rate and credit derivatives. First, as observed by Cont
(2010), unlike the interest rate swap, the payoff of a CDS has a binary nature,
that is, while the mark-to-market value of a CDS position prior to default may
be small, the actual exposure upon default may represent a large fraction of the

7 Here we assume a deterministic discount factor. Chen et al. (2008, forthcoming) considered
a stochastic interest rate, and Dunbar (2008) proposed a framework with stochastic factors to
model interest rate and liquidity.

8 Feldhütter and Lando (2008) proposed a model with six independent factors to calibrate
Treasury bonds, corporate bonds, and swap rates using both cross-sectional and time-series prop-
erties of the observed yields. This indepedence assumption may be restrictive, although the ad-
vantage is that pricing formulas have explicit solutions, and the model is more parsimonious with
fewer parameters to estimate.

9 A multi-factor Lévy based short-rate model has been proposed by Zhang (2006). He con-
sidered three dependent factors driven by non-normal processes and calibrate the model to fixed
income derivatives.
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notional. Second, as outlined by Brigo and El-Bachir (2010), while the interest
rate derivatives market is one of the most active financial markets with a large
number of caps/floors, swaptions and other derivatives, the single-name default
swap market presents a very small number of traded derivatives and the calibra-
tion of any model with a large number of parameters (for example, Rebonato et al.
(2010)) becomes unfeasible. In view of these differences, we start with the classical
CIR model and extend the short-rate approach by modifying the distributional
assumption without significantly increasing the number of parameters.

4.1 The CIR process

A well-known way to model the default intensity process is to assume the CIR
dynamics by considering the following mean-reverting process

dλt = κ(η − λt)dt+ ϑ
√
λtdWt, (4)

with λ0 > 0, κ, η and ϑ positive parameters, and 2κη > ϑ2 in order to ensure that
the origin is inaccessible, that is, the intensity process does not reach zero. Under
the CIR assumption there exists a closed-form expression for the characteristic
function of the integrated CIR process and the survival probability in equation (1)
can be computed as follows

PCIR
Surv(τ > t) =

exp(κ2ηt/ϑ2) exp(−2λ0/(κ+ γ coth(γt/2)))

(coth(γt/2) + κ sinh(γt/2)/γ)2κη/ϑ2
, (5)

where γ =
√
κ2 + 2ϑ2.10

4.2 Ornstein-Uhlenbeck processes

The CIR model can be enhanced by adding jumps and by considering the so-
called jump diffusion CIR (JCIR) model as described by Brigo and Mercurio (2006)
and by Lando (2004). Alternatively, one can consider pure jumps mean-reverting
processes of the Ornstein-Uhlenbeck family. Over the past decade non-Gaussian
Ornstein-Uhlenbeck (OU) processes introduced by Barndorff-Nielsen and Shephard
(2001) have been widely studied by practitioners and academies from both empir-
ical and theoretical points of view and used in finance, economics, engineering and
other applied sciences. This family of processes can capture important distribu-
tional properties observed in real data and offers a more flexible structure with
respect to Gaussian-based models. This flexibility, the possibility to explain cer-
tain stylized facts of financial time series, and a suitable degree of computational
tractability have increased the number of applications to finance, in particular,
to stochastic volatility and interest rate models, together with a vast amount of
theoretical research papers.

As defined by Barndorff-Nielsen and Shephard (2001), an OU process λt is a
solution of a stochastic differential equation of the form11

dλt = −θλtdt+ dzθt. (6)

10 See Schoutens and Cariboni (2009) and references therein for the derivation of the formula.
11 The unusual timing θt is deliberately chosen so that the marginal distribution of λt is

independent of the choice of θ (see Barndorff-Nielsen and Shephard (2001)).
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If zt is an increasing Lévy process with finite variation starting from 0 and if
λ0 > 0, it can be proved that the process λt is strictly positive and bounded from
below by λ0 exp(−θt). If λt is an OU process with marginal law D,12 then it is
named a D-OU process. Under certain assumptions13 and given a marginal law
for D, one can compute the characteristic function of the process zt (the so-called
background driving Lévy process - BDLP).14 The definition can be extended to non-
increasing processes, as introduced by Barndorff-Nielsen (1997) and widely studied
in academia (see the recent work of Rosiński and Sinclair (2010)).

In the rest of this section we describe OU processes with only positive jumps
based on the gamma and on the inverse Gaussian (IG) distributional assumption
and an enhancement allowing for both positive and negative jumps based on the
variance-gamma distributional assumption.

4.2.1 Mean-reverting processes with only positive jumps

In the following we consider two examples of OU processes: the Gamma-OU and
the IG-OU. Both hypotheses are particularly convenient as the characteristic func-
tions of both the integrated Gamma-OU and the integrated IG-OU process are
known in closed-form. Furthermore, there exist efficient algorithms to draw ran-
dom paths by assuming these dynamics (see Barndorff-Nielsen and Shephard (2001)
and Zhang and Zhang (2008)).

Without further analysis of the properties of these processes, we provide the
necessary formulas to evaluate the survival probability under these distributional
assumptions.15 In the Gamma-OU, case by assuming a Γ(a, b) process it can be
proved that

PGamma−OU
Surv (τ > t) = exp

(
− λ0

θ
(1− exp(−θt))

− θa

1 + θb

(
b log

(
b

b+ θ−1(1− exp(−θt)

)
+ t

))
,

(7)

In the IG-OU case by assuming a IG(a,b) process it can be proved that

P IG−OU
Surv (τ > t) = exp

(
−λ0

θ
(1− exp(−θt)− 2a

bθ
A(t)

)
, (8)

where

A(t) =
1 +

√
1 + κ(1− exp(−θt))

κ

+
1√

1 + κ

(
arctanh

(√
1 + κ(1− exp(−θt))√

1 + κ

)
− arctanh

(
1√

1 + κ

))
,

with κ = 2
b2θ

.

12 This means that if one starts the process with an initial value sampled from the D distribu-
tion, at each future time t, λt is distributed as D.

13 One has to assume the law D self-similar. For the definition of self-similarity readers are
referred to Sato (1999).

14 See Section A.1 in the Appendix.
15 See Schoutens and Cariboni (2009) for the derivation of the formula.
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4.2.2 Mean-reverting processes with two-sided jumps

In this section we describe the variance-gamma Ornstein-Uhlenbeck process in the
context of default modelling. As discussed in Section 6.2, under a state-space
framework the use of a OU mean-reverting process with only positive jumps is not
sufficient to obtain a satisfactory calibration error in the pricing of observed CDS
spreads. To obtain greater flexibility in the calibration exercise we introduce a
two-sided jumps Lévy-based OU model. This mean-reverting process belongs to
the class of tempered stable as well as of hyperbolic Ornstein-Uhlenbeck processes
(see Bibby and Sørensen (2003)). This process can be viewed as the two-sided
extension of the Gamma-OU process and also in this case equation (1) can be
written in closed-form. Let C, λ+, λ− be positive constants, the law X is said
to have a variance-gamma (VG) distribution if the characteristic function of X is
given by

φX(u) = E[exp(iuX)] =

(
λ+λ−

λ+λ− + (λ+ − λ−)iu+ u2

)C
. (9)

The VG distribution can be viewed as the difference between two independent
gamma distributions Γ(C, λ+) and Γ(C, λ−). Given a VG distribution, one can
define the corresponding VG-OU process by assuming VG(C, λ+, λ−) and it can
be proved that16

P V G−OU
Surv (τ > t) = exp

(
− λ0

θ
(1− exp(−θt))

− θC

1 + θλ+

(
λ+ log

( λ+

|λ+ + θ−1(1− exp(−θt))|

)
+ t

)
+

θC

1− θλ−

(
λ− log

( λ−
|λ− − θ−1(1− exp(−θt))|

)
− t
))

.

(10)

Even if the process may become negative, the asymmetric shape of the VG
distribution and the additional assumption λ+ < λ− make the VG-OU process
proper in many empirical applications. Furthermore, the inequalities λ+ < λ− and
λ0 > 0 ensure that the survivor probability in equation (10) is well-defined.

4.3 The Sato family

Sato processes can be viewed as an enhancement of Lévy processes as they have
still independent but not necessarily stationary increments. This class of processes
was introduced by Sato (1991), but it has been applied to finance only recently
by Carr et al. (2007). As observed in Section 3, Kokholm and Nicolato (2010)
analysed a reduced-form approach where the default time is defined by the direct
modelling of the process At. In the previous Sections 4.1 and 4.2, the increasing
process At has been modelled as the integral of a OU process. In this section, the
process At is assumed increasing and additive, that is, a process with independent

16 See Appendix A.1 for the derivation of the formula.
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but not necessarily stationary increments. Here we review the construction of Sato
processes, starting from the definition of self-similarity. A process At is self-similar
if

Aαt = αγAt, (11)

where the equality is in distribution and γ is named the self-similarity coefficient.
Given a self-decomposable law17 and a parameter γ, one can construct a self-similar
process. By equation (11) the following equalities

E
[
eiuAt

]
= E

[
eiut

γA1
]

= φA1(ut
γ) (12)

hold. If one knows the characteristic function of A1, it is possible to have a closed-
form expression for (12) and thus for (1). Furthermore, the proposed model has a
deterministic intensity process given by the equality

λt =
d

dt
log E

[
e−At

]
. (13)

Both the gamma and the IG random variable are self-decomposable, and the expec-
tation in (12) has a closed-formula. If A1 is a Γ(a, b) random variable, At is named
a Sato-Gamma process, and if A1 is a IG(a,b) random variable, At is named a
Sato-IG process. As these processes are similar we consider only the Sato-Gamma
assumption in the empirical analysis. In the Sato-Gamma model it can be proved
that18

P Sato−Gamma
Surv (τ > t) =

1

(1 + tγb−1)a
. (14)

5 The data

This section provides a description of the data used in the empirical analysis. We
consider CDS spread data for 117 companies included in the Markit iTraxx Europe
Index (Series 12)19 from 30 June 2008 to 31 December 2010. The dataset includes
the highly volatile period after Lehman Brothers filed for Chapter 11 bankruptcy
protection (15 September 2008).

Mid, bid and ask spreads for maturities 1, 3, 5, 7, and 10 years are obtained from
Bloomberg. We are aware of the fact that (1) Bloomberg data does not necessarily
refer to real transactions because it picks up market quotes (and not transaction
prices) provided by its contributors, (2) the collected bid-ask difference could not
reflect the real liquidity of the market, (3) the data can be different among data
providers, as recently observed by Mayordomo et al. (2010), and, furthermore, (4)
the transactions generally involve the 5-year maturity contracts as described in
Amadei et al. (2011). Eight companies have been discarded as the spreads are
not available for the entire period; therefore we analyse the default term structure
for a total of 117 companies. For each company and for each maturity we have
655 observations, for a total of more than 380,000 CDS spreads. Table 1 provides
summary statistics on the distribution of the companies analised in the sample

17 Readers are referred to Sato (1999) for further details.
18 See the work of Kokholm and Nicolato (2010).
19 The index includes a total of 125 companies.
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period. In general, for all companies and for all maturities, spreads increased
sharply after Lehman’s failure and bid-ask spreads widened, particularly for the
shortest maturity. Recall that on 17 September 2008, Bloomberg reported that

U.S. Treasury three-month bill rates dropped to the lowest since World
War II as a loss of confidence in credit markets worldwide prompted
investors to abandon higher-yielding assets for the safety of the shortest-
term government securities.

and in the same days the EURIBOR-OIS spread20 reached unexpected levels. Figu-
re 1 shows the behaviour of the mean and the median of CDS and bid-ask spreads
in the period analysed.

Note that the use of a one-factor model is justified by the fact that the principal
component analysis, conducted using the covariance matrix of the spread levels for
5-year maturity, shows that the first principal component accounts for at least 81
per cent of the variation in all spreads. Pan and Singleton (2008) observed that
the use of a stochastic interest rate model does not greatly modify the estimates;
for this reason, we assume the risk-free term structure to be known. Risk-free rates
are extracted from the LIBOR swap rate for short-term maturities up to 9 months
and the EU swap curve for maturities from 1 year to 30 years.21 At each given day
and for each maturity the discount factor is computed by a linear interpolation of
the risk-free term structure.

6 The empirical study: parameter estimation

There are two possible methodologies to estimate a reduced-form model: (1) one
can fit the model to the daily spreads observed in the market and check both
the model capabilities and the parameter stability; or (2) one can extract the
unobservable default intensity process (or processes) by using a filter22 as described
by Lando (2004) and empirically tested by Jarrow et al. (2009). The first approach
can be viewed as a short-term or static estimation for the purpose of pricing and
hedging on a daily basis, and for this reason we name it the market maker approach.
Under this perspective, at each given point in time the model prices have to be as
close as possible to the prices traded in the market and even if the market is quoting
unreasonable prices the market makers have to find the parameters that replicate
those prices.23 The market maker needs to achieve static consistency in order to
provide at each given point in time two-sided quotes. The second approach is a
long-term or dynamic estimation where the default intensity process is estimated
by filtering the new information, for the purpose of assessing the long-term default
probability of the reference entity. Estimated model parameters can be used to

20 The difference between the 3-month Euro interbank offered rate (EURIBOR) and the
overnight indexed swap (OIS) is a measure of both credit and liquidity risk.

21 For a discussion on the choice of the risk-free rate see Hull et al. (2004).
22 The Kalman filter and its extensions can be taken into consideration when the intensity

model is Gaussian, otherwise a particle filter framework has to be applied (see van der Merwe
et al. (2001)).

23 The goal is usually achieved by considering models with a large number of parameters.
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make projections on price movements and trade the difference between the model
prediction and the market quotes. These investment strategies (known as statistical
arbitrage strategies) are commonly used by hedge funds and banks’ proprietary
trading desks and, for this reason, we name this second estimation methodology
the long-term convergence trader approach. Under this second perspective, one
assumes that the model can beat the market or, more clearly, one trusts the model
prices and tries to find possible arbitrage opportunities by looking at the differences
between model and market prices. Dynamic consistency is important for long-term
convergence trading, and pricing errors represent trading opportunities.

In this Section we investigate both approaches. In Section 6.1 we analyse one-
factor models based on different distributional assumptions, namely CIR, Gamma-
OU, IG-OU, Sato-Gamma and VG-OU based model. Then, in Section 6.2 we
cast the model into a state-space framework and calibrate with filtering methods
one-factor models based on the CIR and VG-OU processes.

6.1 A static perspective: the market maker approach

First, we consider in the empirical study the market maker approach in order to
study the pricing performance on a daily basis and the parameter stability during a
market downturn. From a practical perspective, on each trading day we minimize
the root mean square error (RMSE) given by

RMSE(Θ) =

√√√√∑
Ti

(cCDS marketTi
− cCDS modelTi

(Θ))2

number of observations
(15)

where Ti are the different maturities and Θ is the parameter vector according
to a given model. Since the minimization of equation (15) with respect to the
parameter vector Θ has neither a closed-form solution nor a global minimum, a
numerical optimization routine is needed to find a relative minimum.24 As already
observed by Fang et al. (2010), the minimization of equation (15) is a well-known
ill-posed problem, mainly because the solution in not necessarily unique and there
is no guarantee that a solution exists. For this reason we consider a regularization
term of the form

f(Θ) = ρ‖ω · (Θ−Θ0)‖2 (16)

where ρ is a given constant parameter, Θ0 is a given set of model parameters, ω
is a vector selected to give the same weight to each parameter (see Section A.3 in
the Appendix), and “·” denotes the inner product of vectors. The optimization
problem becomes

Θ̂ = min
Θ

(
RMSE(Θ)2 + ρ‖ω · (Θ−Θ0)‖2

)
. (17)

Furthermore, this approach leads to more parameter stability over time. The choice
of the parameter ρ influences the model calibration; however, ρ cannot be fixed
in advance but depends on the data at hand and the level of error present in it

24 We use the Matlab r2008b function fmincon. The procedure run on a Pentium D 3.00GHz
with 2GB of Ram.
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(see Cont and Tankov (2004) and Fang et al. (2010)). In the calibration exercise,
we consider two different values for ρ: (1) first, we solve the optimization problem
(17) without regularization techniques, that is ρ = 0, and then (2) we solve it with
ρ = 100. This last value for ρ shows a good balance between pricing performance
and parameter stability (see Section A.3 in the Appendix).

Then, we add some constraints to the problem in order to obtain more stable
parameters over time and avoid the CIR and the VG-OU process hitting the zero
bound. In the CIR case we force the parameters (κ, η, ϑ, λ0) in the region between
(0.1, 0.005, 0.05, 1e-5) and (0.8, 0.05, 0.25, 2.5). In the one-sided jumps OU cases
we choose the following constraints for (θ, a, b, λ0): for the Gamma-OU model
(0.1, 0.1, 10, 1e-5) are the lower bounds and (4, 150, 40000, 2.5) the upper ones,
for the IG-OU model (0.25, 0.2, 10, 1e-5) are the lower bounds and (3, 2, 100,
2.5) the upper ones. In the Sato case we fix a = 0.5 and (γ, b) can vary between
(0.5, 5) and (5, 1500). Finally, in the VG-OU case (0.1, 0.1, 10, 10, 1e-5) are the
lower bounds and (4, 150, 10000, 10000, 2.5) the upper ones of the parameters (θ,
C, λ+, λ−, λ0) and we add the inequality constraint λ+ < λ−, which in practice
means that the positive tail is “fatter” than the negative one. Furthermore, in
the non-regularized problem, the starting point of the optimization procedure is
kept fixed and in the regularized problem the starting point of a given day is the
optimal solution computed for the previous day.

We observe that in the one-sided jumps OU models, the calibration can be
problematic as spread values are mainly governed by the ratio a/b, but the param-
eters a and b are difficult to calibrate separately. By fixing as starting point a large
value for a (for example, a = 100) one obtains in the calibration procedure a large
value for b as well (b >> a), therefore the variance of the intensity OU process
becomes very small (in this case, the ratio a/b = k). By fixing as starting point a
smaller value for a′ (for example, a′ = 2) one obtains in the calibration procedure a
smaller value for b′ (b′ < b). At the same time the ratio a′/b′ = a/b = k, the pricing
error is quite close to the previous and the estimated variance is greater. In order
to obtain a greater variance for the calibrated OU processes comparable with that
of the CIR based model, we select as starting points in the Gamma-OU and in
the IG-OU cases a = 2 and a = 0.5, respectively (see also Figure 11 in Appendix
A.2). Under this assumption we obtain much smaller estimated parameters than
in Cariboni and Schoutens (2009). A careful selection of the initial parameters is
needed in the VG-OU case as well.

After some preliminary attempts, as starting point in the optimization proce-
dure we consider (0.3, 0.025, 0.065 0.005) for the CIR model, (0.75, 2, 100, 0.005)
and (0.5, 0.5, 25, 0.005) for the Gamma-OU and the IG-OU model, (1, 0.5, 100)
for the Sato-Gamma model, and (0.75, 20, 250, 400, 0.005) in the VG-OU model.

Figure 2 shows the behaviour of the RMSE of the calibrated one-factor models
across companies (median, 95th and 15th percentile are reported) with and without
regularization. The pricing error is high between the end of 2008 and the first
half of 2009. At first sight, it might seem that the two optimization approaches
provide similar pricing errors and for this reason we report only the results of
the regularized problem. In the following we show only median, mean, 90th and
10th percentile values and we do not report minimum and maximum values of the
variables of interest. We do this to exclude possible outliers that may affect the
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explanatory power of the results shown in Figure 2. These outliers are principally
due to companies with the highest spreads.

Furthermore, we define a market distress measure25 (MDM) given by the dis-
tance between bid and ask spreads, that is

MDM =

√√√√∑
Ti

(cCDS bidTi
− cCDS askTi

)2

4 · number of observations
. (18)

For each given model and for each company we count the number of days in which
the RMSE is greater than the measure MDM, that is

Exceedances =

∑
t I{RMSEt>MDMt}

numbers of days

where t indicates the time component. The number 4 in the denominator of equa-
tion (18) implies that we have a satisfactory pricing performance if the difference
between the market price and the model price is not greater than an half of the
bid-ask spread, or equivalently, the model price is larger than the ask and smaller
than the bid price. This is a possible way to include a market distress component
into the pricing exercise. The true price lies somewhere between the bid and ask
price, therefore we have a bad calibration when the model price is not, in mean,
between these prices. In practice, when the RMSE exceeds the MDM, we have a
bad calibration if not we have a good performance of the model. As the market
becomes less stable, the measure MDM starts to increase, therefore a larger pricing
error is allowed. Figure 3 reports the behaviour of this measure, where median,
mean and percentiles are computed across all 117 companies. Furthermore, by
considering all the companies analysed, Figure 4 shows for all calibrated models
the boxplot on the number of days on which an exceedance occurs. First, the fig-
ure shows that the regularization enhances the calibration exercise in the IG-OU
and the VG-OU case. Under the IG distributional assumption the choice of the
starting point and the regularization play a major role. Then, in the regularized
optimization approach on average the VG-OU model is the best performing and
the Sato-Gamma is the worst. In the CIR and in the Gamma-OU case, the pricing
error of the model with ρ = 100 is slightly greater than the model with ρ = 0.
Under the Sato assumption the regularization does not affect the finding of the
optimal parameters. In both non-regularized and regularized approaches, the VG-
OU model produces slightly smaller errors, at least for the data considered in this
study. This is not surprising since the VG-OU model has the largest number of
parameters.

Regarding parameter stability, as outlined by Kokholm and Nicolato (2010),
the Sato process, even if with only 2 degrees of freedom, demonstrates more stable
parameters as shown in Figures 5 and 6. As outlined in similar empirical studies,
we estimate the autocorrelation of the parameters, in order to assess parameter
stability over time. Figure 7 shows the average autocorrelation for each model

25 The number 4 (=22) in the denominator comes from the fact that we are considering the
semi-difference between bid and ask spreads.
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parameter across companies.26 As expected, the regularized optimization technique
improves parameter stability over time in all the cases considered (see also Section
A.3 in the Appendix). As far as parameter stability is concerned, the Sato-Gamma
model outperforms the four competitor models. Furthermore, the Sato based model
does not show big differences between the regularized and the non-regularized
optimization approaches.

6.2 A dynamic perspective: the long-term convergence
trader approach

In the market maker case the model parameters are calibrated on CDS spreads at
each given point in time and these parameters can vary over time. In the long-term
convergence trader case the dynamics of CDS spreads are explained by a unique
set of parameters kept fixed over time. For each given company, under the static
approach we perform a point-in-time estimation and under the dynamic approach
we extract both the unobservable intensity process and the related parameters
by the whole term structure of CDS spreads (the so-called state and parameter
estimation). It is clear that a dynamic consistency is more difficult to achieve than
a static consistency, and a more sophisticated calibration method is needed.

Filtering methods are standard tools to explore the behaviour of the interest
rate term structure (see, for example, the works of Brigo and Hanzon (1998) and
Duan and Simonato (1999)) and they have been successfully applied in a state-
space framework to extract the unobservable factors from observed rates. However,
there are only few research papers that cast the default term structure into a state-
space form and calibrate it with a filter (see Chen et al. (2008), Jarrow et al. (2009),
Carr and Wu (2010), and Chen et al. (forthcoming)).27

In all the cases we are interested in, the model can be written in the following
form

λt = f(λt−1,Θ, vt−1)

zt = h(λt,Θ, εt)
(19)

where t is the day counter, λt is the state variable (also referred to as the latent
or unobservable factor) and it can be also a multidimensional variable, vt−1 is
the randomness from the state variable. The state variable follows the dynamics
described by f . The variable zt represents the set of observations, in our case
the CDS spreads observed in the market. Then, the function h is the so-called
measurement function, which in our case is given by the CDS pricing formula, and
it depends on the state variable, model parameters and measurement noise εt. A
standard hypothesis assumes that this measurement noise is normally distributed:
since we consider five CDS spread observations each day, we have a five dimensional
normally distributed error. Even though the measurement error covariance matrix
R can be set as a non-diagonal matrix, it is chosen to be diagonal in this study and
therefore the covariance structure of default intensity is represented only by the

26 A value around 0 indicates a very low stability; a value around 1 indicates high stability.
27 Recently, Li (2011) analysed and explained the use of filtering methods and applied them

to option pricing models.
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model itself and not by the measurement error covariance matrix. Furthermore,
in order to provide a better estimation error, the measurement error covariance is
adjusted for the daily observed bid-ask spreads, that is, the diagonal covariance
matrix is multiplied by a diagonal matrix with diagonal entries equal to observed
bid-ask spreads.

The state variable in equation (19) can be filtered in order to obtain a likelihood
function for the error.28 As described in Chen et al. (forthcoming), given the
definition of the state-propagation equation and measurement equations, at each
time step t, we filter out the mean and covariance matrix of the state variables
conditional on the observed series and construct the predictive mean (zmodelt ) and
covariance matrix (Pt) of the observed series based on the filtered state variables.
Then, model parameters are estimated by maximizing the sum of the likelihood
functions. Under the assumption of normally distributed errors,29 it is possible to
obtain the following quasi-maximum likelihood estimates, that is, one can compute
(up to a constant term) the log-likelihood function at time t

LLt = −1

2
log(det(Pt))−

1

2

(
(zmodelt − zmarkett )′P−1

t (zmodelt − zmarkett )
)

(20)

and the joint log-likelihood for the entire observed sample is

LL(Θ) =
T∑
t=1

LLt. (21)

Then, the maximum likelihood estimator (MLE) can be computed by solving the
following optimization problem

Θ̂ = max
Θ

LL(Θ). (22)

As discussed above, the algorithm provides the simultaneous state and parameter
estimation. To resume, the estimation algorithm can be implemented as follows.

Algorithm

1. at time 0, take an initial guess for the set of parameters Θ0, the state variable
λ0 and for the diagonal matrix R;

2. estimate the state variable with a filtering method and generate model prices;

3. compare the model prices with the market ones and evaluate the log-likelihood
function in equation (21);

4. insert the log-likelihood evaluation procedure (steps 1 to 3) into an optimiza-
tion procedure in order to find the solution of the problem (22).

28 A more detailed description of the algorithm can be found in the Appendix A.4.
29 We are assuming that the error component is normal, but the state variable can be any

Markov process. For each step, we assume that the measurement errors on each series are
independent and identically distributed.
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Since the model proposed in equation (19) is non-Gaussian with respect to
the state variable and not linear with respect to the measurement function, the
classical Kalman filter cannot be used. The filtering methods considered here
are based on the extensions of the Kalman filter, that is the unscented Kalman
filter (UKF) and the particle filter (PF), as described by van der Merwe et al.
(2001). Inference with filtering methods has been widely studied, see for example
the works of Lopes and Tsay (2010), and applied in engineering and finance. Ad-
hoc statistical Maltab libraries are available on the web.30 In this paper we do
not go into detailed explanations of computational issues related to this field: they
have little to do with financial modelling and more to do with statistical and
programming problems.

In the rest of this section we analyse under a filtering perspective the same
one-factor models already studied in Section 6.1. However, we focus only on the
CIR and the VG-OU model. By considering that the VG distribution in the case
in which λ+ < λ− is asymmetric, the proposed VG-OU process presents positive
and negative jumps of different sizes, and at least in theory, it allows a more
flexible calibration. However, this greater flexibility comes at the expense of the
positivity of simulated trajectories. In order to overcome this theoretical drawback,
we use a practical trick (see O’Sullivan (2008)). Indeed, in both the CIR and the
VG-OU case, to ensure the factor does not become negative we replace possible
negative values of the factor with 10−5 (though this occurs rarely). In this part of
the paper we do not deal with Sato based models. By construction, Sato based
models do not present a stochastic default intensity (as stated in equation (13) the
intensity is deterministic), as they are defined by directly modelling the process At
in equation (1). Then, we exclude also the Gamma and IG based models because,
under a dynamic perspective, they do not seem to provide an acceptable level of
calibration error in the fitting of observed CDS spreads. The main drawback is the
lack of negative jumps in the trajectory that makes slow return to stability levels
after large positive jumps.31

6.2.1 Assessing the filters’ capabilities: a simulation study

In this section we propose a simulation study of two different filtering methods,
that is the UKF and the PF, in order to assess the estimation methodology. First,
intensity processes are simulated and then CDS prices are computed with a certain
normal measurement random noise with given covariance matrix σεI, where σε is
a constant and I is the unit matrix.

The simulation study is performed by assuming two different dynamics for the
mean-reverting process driving the default intensity (CIR and VG-OU). As already
discussed in Section 6.2, the Gamma-OU and the IG-OU are not considered since
they show a poor performance, mostly due to the fact that they allow only for
positive jumps. We extract the risk-free rate from the LIBOR swap rate for short-
term maturities up to 9 months and the EU swap curve for maturities from 1 year

30 A slight modification of the code proposed in http://www.cs.ubc.ca/~nando/ has been
used in the empirical study, in both the UKF and the PF case.

31 Multi-factor OU models have been already applied to finance to explain the behaviour of
electricity spot prices (see Benth et al. (2007)).
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to 30 years from 30 June 2008 to 31 December 2010, for a total of 655 observation
days, as described in Section 5. We simulate 655 CDS spreads for each model and
for each maturity (1, 3, 5, 7, and 10 years). More precisely, we use the following
procedure:

1. by considering a one-factor model, we simulate an intensity process with a
given parameters set Θ0;

2. given the intensity process (the state variable), we compute the corresponding
CDS spreads;

3. we simulate the normal measurement noise with zero mean and covariance
matrix σεI (σε = 10) and then add the noise to the CDS spreads;

4. for each day, we calibrate the one-factor model by following the method
proposed in Section 6.1 (for a total of 655 sets of parameters);

5. we compute the median values Θmedian of the parameters computed in Step
4 (across all 655 sets of parameters) and only λ0 is set to be equal to the
parameter estimated for the first observation day;

6. by taking as starting point Θmedian, we estimate the default intensity process
and the parameters with a filtering method;

7. finally, we compare the estimated intensity process with the simulated one.

In the CIR case we consider the set of parameters (κ, η, ϑ, λ0, σε) equal to (0.35,
0.02, 0.1, 0.0025, 10). Figure 8 shows simulated CDS spread data, the simulated
CIR process, the estimated unobservable CIR process extracted through the un-
scented Kalman filter from the simulated CDS spread data, and the pricing errors
across different maturities. As shown in Figure 8, the estimated (and unobserv-
able) default intensity process is close to the simulated one, showing a suitable
performance of the estimation methodology.

The CIR model does not allow for jumps in the default intensity, and this
implies that it may be not able to capture sharp movements in the market. Con-
versely, the VG-OU model allows for jumps in the default intensity and, at least
in theory, can capture sharp movements in the market and for this reason we also
study it. In the VG-OU case we consider the set of parameters (θ, C, λ+, λ−,
λ0, σε) equal to (0.75, 20, 500, 1000, 0.0025, 10). Figure 9 shows simulated CDS
spread data, the simulated VG-OU process, the estimated unobservable VG-OU
process extracted through the UKF and the PF from the simulated CDS spread
data, and the pricing error across different maturities for both filtering methods.
As shown in Figure 9, the unobservable default intensity process estimated with
the PF method has a smaller pricing error, showing a suitable performance of the
estimation methodology. The intensity process estimated with the UKF method
presents a worse performance than the process estimated with the PF method, as
it is not able to capture large jumps.

However, as expected, in the UKF case, the optimization procedure converges
faster towards a local minimum. As observed by Kantas et al. (2009), in the PF case
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the maximum likelihood parameter estimation method is more challenging, because
one has to deal with a likelihood function estimate that is not continuous with
respect to Θ and, consequently, the optimization routine shows poor convergence
properties. Furthermore, to avoid the degeneration of the particle weights, which
leads to a few particles containing most of the probability mass, and to make the
sequential simulation-based techniques viable (see Chapter 7 in Candy (2009)), we
consider a stratified resampling scheme (see Douc and Cappé (2005), and references
therein).

We point out that under the VG-OU assumption the likelihood evaluation pro-
cedure in the unscented Kalman filter case is more than 50 times faster than in a
particle filter case with 1,500 particle simulations. The computing time increases
if one considers more particles or a more complex Lévy based model. The com-
putational cost of the resampling step is of minor concern with respect to the
computational cost of the simulation step and of the evaluation of the measure-
ment function h. The evaluation of the measurement function h accounts for more
than 70 per cent of the computational time and the simulation step for 25 per cent.
We stress that we face the same problem under the CIR assumption and have a
similar computational cost.32 In the particle filter case we simulate 1,500 particles
at each time step. Furthermore, in order to reduce the variance and to improve
the stability of the algorithm, random variates are kept fixed into the optimization
routine. In Lévy based models, one may have to deal also with memory allocation
problems as the number of particle increases. This is of minor concern if one can
use the 64-bit version of Matlab on a 64-bit operating system or if the random
numbers generator algorithm allows the seed to be set. We run the particle filter
estimate on an Opteron platform with Matlab R2011a and, in order to reduce
the algorithm variance, we fix six matrices of uniform variates of which the four
largest have the dimension 1500 × 100 × 655 or, alternatively, we set the seed of
the generator .

6.2.2 Estimation on market data

In this section we investigate the filtering based estimation on real CDS spread data
described in Section 5. In Figure 10 we report the results of the maximum likelihood
estimates based on the UKF and the PF method. First, we consider the UKF
approach. Under this approach both the RMSE and average relative percentage
error (ARPE)33 are smaller in the VG model. The median ARPE is 10.02 per cent
in the CIR case and 9.39 in the VG case (in mean, it is 10.13 and 9.82 respectively).
The computational time, evaluated as the number of function evaluations into the
optimization procedure, is larger in the VG case in comparison with the CIR case
(in median, more than 950 against around 500 function evaluations). As already

32 If one considers an unscented particle filter algorithm (see van der Merwe et al. (2001)),
even with a small number of random variates (200 particles), the computational time increases,
because most of the time is spent in the computation of the proposal distribution (UKF step).

33 The ARPE is defined as

ARPE =
1

number of observations

∑
observations

|cCDS market − cCDS model|
cCDS market

.
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observed in Section 6.2, for each single company the dynamics of CDS spreads over
time is explained by a unique set of parameters. Therefore, the boxplots in Figure
10 show the variations of these parameters across all 117 companies analysed. By
taking into consideration the results in Section 6.1, in the optimization procedure
the parameters (κ, η, ϑ, λ0) move in the region between (0.1, 0.005, 0.05, 1e-5)
and (0.8, 0.05, 0.25, 2.5) in the CIR based model and (θ, C, λ+, λ−) move in the
region between (0.1, 1, 50, 50) and (4, 100, 750, 1000) in the VG-OU based model.
In both cases the diagonal elements of the diagonal matrix R range between 1
and 100. We underline that the parameter C hits the boundary in most cases
and the median value is 100 (the mean value, 65.40). By construction, positive
jumps are always greater than negative ones, as the marginal distribution VG is
assumed to be asymmetric with λ+ < λ−. The median difference between λ− and
λ+ is slightly more than 40 (the mean difference is slightly more than 120). This
difference between the positive and the negative tail in the VG based model seems
to be the factor that decreases the calibration error with respect to the normal-
based model. However, as already proved in Section 6.2.1, the UKF approach is
not able properly to assess the benefits arising from the presence of jumps in the
dynamics of the default intensity and for this reason we calibrate the model by
applying a particle filter approach.

As already observed, in Figure 10 we also report the results of the maximum
likelihood estimates based on the PF method. As staring point of the optimization
problem we consider the UKF estimates. In the PF case too, the estimates do not
show remarkable differences. The computational time of the two models, evaluated
as the number of function evaluations into the optimization procedure, is similar.
The median ARPE is 9.19 per cent in the CIR case and 8.92 in the VG case (in
mean, it is 9.67 and 9.30 respectively). We underline that the parameter C hits the
boundary in most cases, and the median value across all 117 companies analysed
is 99.98 (in mean, 79.39). The median difference between λ− and λ+ is nearly 43
(the mean difference is nearly 120).

The estimates related to the matrix R show that the calibration error depends
on the maturity. In particular, Figures 10 shows large values for the elements
r11 and r55 of the diagonal matrix R, which correspond to the 1-year and 10-year
maturity, respectively. Conversely the element r22 corresponding to the 3-year
maturity is the smallest in the CIR case (r33 in the VG-OU case, respectively). This
means that the calibration error is large for the shortest and the longest maturity
and, conversely it is small for the 3-year maturity (5-year, respectively). The use
of a one-factor model allows us to calibrate only partially the inverted spreads
observed during the recent market downturns. The calibration error is large in
mean (nearly 10 per cent). The preliminary principal component analysis described
in Section 5 and the present calibration exercise confirm that the proposed one-
factor models are not able exactly to calibrate the dynamics of CDS spreads over
time. Even if the VG-OU model outperfoms the CIR model under the static setting,
it does not show remarkable differences with respect to the Gaussian competitor
in the dynamic setting analysed.

Besides estimating the parameters in both models, we apply the Akaike in-
formation criterion (AIC) to identify the superior model. The AIC is evaluated
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as
AIC = 2np− 2LL

where np is the number of parameters and LL is the model’s log-likelihood. Ac-
cording to the Akaike information criterion, the VG-OU model (PF estimate) is
better because in 110 cases out of 117 its AIC value is smaller than the AIC value
of the CIR model (UKF estimate).34 The Akaike information criterion shows that
the proposed VG-OU model can be useful in explaining sharp movements in the
CDS market.

7 Conclusions

In this paper we present an empirical study of CDS no-arbitrage pricing models by
following two different estimation methods: (1) we study the models’ performance
under a static perspective and (2) we analyse the dynamics of the default process
over time by considering filtering methods.

In the first empirical analysis, pricing performance, parameter stability and
model performance adjusted for general market behaviour are measured across
different models and across a wide range of companies. It is shown that, although
all selected models have a large pricing error during the period of market distress,
the RMSE relative to CIR and OU processes is small, with median values across
all companies less than 4bp over the entire time window. The Sato assumption
does not allow for an effective calibration of observed spreads, even if parameters
are quite stable over time. As far as parameter stability is concerned, the CIR
parameters have autocorrelations similar to the OU model parameters, and the
Sato-Gamma parameters are more stable over time. The parameter stability can be
improved by considering regularization techniques into the optimization procedure.
Furthermore, we note that in some cases the CIR parameters hit the boundary
included in the optimization procedure to avoid the intensity process reaching
zero. Regarding the models’ performance adjusted for general market behaviour,
and measured as the number of times the model price is between bid and ask
prices, both CIR and OU processes show a satisfactory performance for at least
50 per cent of the companies included in the sample, with less than 15 per cent
exceedances (10 per cent in the VG-OU case). For the Sato process the number of
exceedances is greater.

The dynamic analysis shows that only the CIR and the VG-OU models can
effectively be used to calibrate market CDS spreads under a state-space approach.
The use of Lévy based OU processes that allow only for positive jumps (i.e.
Gamma-OU and IG-OU) is obstructed by the path properties of these processes,
which do not seem suitable to replicate the behaviour of observed CDS spreads
quoted in the market. The VG-OU process allows for two-sided jumps and it
may be used in practical applications. However, this process is driven by a non-
Gaussian random variable and therefore the use of more complex filtering method
is needed to obtain reliable estimates and to assess the benefits arising from the

34 In 89 cases out of 117 the AIC of the VG-OU model (PF estimate) is smaller than the AIC
value of the CIR model (PF estimate).
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presence of jumps in the dynamics of the default intensity. Finally, because the
calibration error is in mean nearly 10 per cent, we can conclude that the proposed
one-factor models are not always able exactly to calibrate the dynamics of CDS
spreads over time. The VG-OU model does not show remarkable differences in
term of calibration error with respect to the Gaussian competitor under the dy-
namic setting analysed. However, it can be useful to calibrate more volatile CDS
spreads to explain sharp variations in CDS spreads. This is confirmed by the fact
that, applying the Akaike information criterion, we find empirical evidence that
the VG-OU model outperforms the common CIR model.
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A Appendix

A.1 Ornstein-Uhlenbeck processes

Consider the stochastic process λt defined as

dλt = −θλtdt+ dZθt, (A.1)

where θ > 0 and Zt is a background driving Lévy process (BDLP), or equivalently

λt = exp(−θt)λ0 + exp(−θt)
∫ t

0

exp(θs)dZθs. (A.2)

We refer to processes of this family as Ornstein-Uhlenbeck processes. This family
of stochastic processes has been widely investigated in the literature (see Barndorff-
Nielsen and Shephard (2001)). In financial applications we are interested in the
integrated process At defined as

At =

∫ t

0

λsds, (A.3)

that can be rewritten as

At = θ−1(1− exp(−θt))λ0 + θ−1

∫ t

0

(1− exp(−θ(t− s)))dZθs,

and in defining λt such that the characteristic function of At

φAt(u) = E[exp(iuAt)] (A.4)

has a closed-form solution. Stochastic volatility models to price stock options
and intensity-based models to price credit default swaps have been studied in the
related literature as described by Nicolato and Venardos (2003) and Cariboni and
Schoutens (2009).

Given a one-dimensional distribution D (not necessarily restricted to the posi-
tive half-line), there exists a (stationary) OU process whose marginal law is D (i.e.
a D-OU process) if and only if D is self-decomposable (Schoutens (2003)). The
cumulant function of Z1, that is

kZ(u) = logE[exp(−uZ1)] (A.5)

can be derived by the cumulant function of the law D, indeed

kZ(u) = uk′D(u). (A.6)

Given the log of the moment generating function of a random variable L1

ϑ(u) = logE[exp(uL1)],

and considering the Lemma proven in Eberlein and Raible (1999) and Nicolato
and Venardos (2003), the following equality holds

E

[
exp

(∫ t

0

f(s)dLs

)]
= exp

(∫ t

0

ϑ(f(s))ds

)
, (A.7)
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where L is a Lévy process with some finite exponential moments and f is a bounded
function R→ C, that is |<(f)| < M . It follows that

E[exp(iuAt)] = exp

(
iuλ0θ

−1(1− exp(−θt))

+

∫ t

0

θϑZ(iuθ−1(1− exp(−θ(t− s))))ds
)
.

(A.8)

Closed-form solutions for equation (A.8) are known in the Gamma-OU and the
IG-OU case. The integral (A.8) can be explicitly computed also in the variance-
gamma case (VG-OU), as proved in the following.

A law X is said to have a variance-gamma (VG) distribution with mean m35 if
the characteristic function of X is given by

φX(u) = E[exp(iuX)] = exp(iu(m− C(λ− − λ+)λ−1
+ λ−1

− )

− C log(λ+λ− + (λ+ − λ−)iu+ u2) + C log(λ+λ−)).

Then, we can define a Lévy process Xt and refer to it as a VG process. By simple
calculations, we can write the cumulant function of Z1, that is given by

kZV G(u) = uk′V G(u) = −u(m− C(λ− − λ+)λ−1
+ λ−1

− )

+
Cu

λ− − u
− Cu

λ+ + u

(A.9)

then,

ϑZV G(u) = u(m− C(λ− − λ+)λ−1
+ λ−1

− )

+
Cu

λ+ − u
− Cu

λ− + u

(A.10)

Thus, in order to evaluate equation (A.8) we compute the integral∫ t

0

θϑZV G(iuθ−1(1− exp(−θ(t− s))))ds (A.11)

and by changing variable x = 1− exp(−θ(t− s)) in the integral above, we write∫ 1−exp(−θt)

0

ϑZV G(iuθ−1x)

(1− x)
dx

Therefore, we have the integral∫ 1−exp(−θt)

0

(iuθ−1x(m− C(λ− − λ+)λ−1
+ λ−1

− )

(1− x)

+
Ciuθ−1x

(λ+ − iuθ−1x)(1− x)
− Ciuθ−1x

(λ− + iuθ−1x)(1− x)
−
)
dx.

(A.12)

35 We add a shift with respect to equation (9) in order to obtain a zero mean random variable
when m = 0.
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The first part of the integral (A.12) can easily be evaluated∫ 1−exp(−θt)

0

iuθ−1x(m− C(λ− − λ+)λ−1
+ λ−1

− )

(1− x)
dx

= − iuθ−1(m− C(λ− − λ+)λ−1
+ λ−1

− )(1− exp(−θt)− θt).
(A.13)

By setting k = iuθ−1, the second part of the integral (A.12) can be rewritten as∫ 1−exp(−θt)

0

( Ckx

(λ+ − kx)(1− x)
− Ckx

(λ− + kx)(1− x)

)
dx

= Ck

∫ 1−e−θt

0

(
− λ+

(λ+ − k)(λ+ − kx)
+

1

(λ+ − k)(1− x)

+
λ−

(λ− + k)(λ− + kx)
− 1

(λ− + k)(1− x)

)
dx

= Ck
[ λ+

k(λ+ − k)
log(|λ+ − kx|) +

λ−
k(λ− + k)

log(|λ− + kx|)

−
( 1

λ+ − k
− 1

λ− + k

)
log(|1− x|)

]1−exp(−θt)

0

= C
[ λ+

λ+ − k
log(|λ+ − k(1− exp(−θt))|) +

λ−
λ− + k

log(|λ− + k(1− exp(−θt))|)

+
( 1

λ+ − k
− 1

λ− + k

)
kθt− λ+ log λ+

λ+ − k
− λ− log λ−

λ− + k

]
(A.14)

Thus, the integral has the following solution∫ 1−exp(−θt)

0

( Ckx

(λ+ − kx)(1− x)
− Ckx

(λ− + kx)(1− x)

)
dx

=
C

λ+ − iuθ−1

(
λ+ log

( |λ+ − iuθ−1(1− exp(−θt))|
λ+

)
+ iut

)
+

C

λ− + iuθ−1

(
λ− log

( |λ− + iuθ−1(1− exp(−θt))|
λ−

)
− iut

)
=

θC

iu− θλ+

(
λ+ log

( λ+

|λ+ − iuθ−1(1− exp(−θt))|

)
− iut

)
− θC

iu+ θλ−

(
λ− log

( λ−
|λ− + iuθ−1(1− exp(−θt))|

)
+ iut

)
and in the case

m =
C

λ+

− C

λ−
,

equation (10) follows.

A.2 Conditional moments and simulation algorithms

In the following we briefly recall some results on CIR and OU processes in order to
compute conditional moments (mean and variance) and simulate random variates.
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Conditional mean and variance are needed to use the unscented Kalman filter,
simulation algorithms are necessary to apply the particle filter.

In the CIR case
dλt = κ(η − λt)dt+ ϑ

√
λtdWt, (A.15)

we can compute the corresponding conditional mean and conditional variance, that
is, given λt we have

E[λt+∆t|λt] = λte
−κ∆t + η(1− e−κ∆t),

V ar[λt+∆t|λt] = λt
ϑ2

κ
(e−κ∆t − e−2κ∆t) +

ηϑ2

2κ
(1− e−κ∆t)2.

(A.16)

Then, random variates can be drawn by considering a discretization scheme of the
form

λt+∆t = λt + κ(η − λt)∆t+ ϑ
√
λt
√

∆tN, (A.17)

where ∆t = 1/250 and N is a normal random number with zero mean and unit
variance.

In the OU case
dλt = −θλtdt+ dzθt. (A.18)

we can write

λt = exp(−θt)λ0 + exp(−θt)
∫ θt

0

esdzs.

If mean and variance of the BDLP zt are known, we can compute the conditional
mean and variance of the process λt, as proved in Theorem 2.1 in Norberg (2004).
In particular, in the Gamma-OU case we have

E[λt+∆t|λt] = λte
−θ∆t +

a

b
(1− e−θ∆t),

V ar[λt+∆t|λt] =
a

b2
(1− e−2θ∆t),

(A.19)

similarly, in the IG-OU case

E[λt+∆t|λt] = λte
−θ∆t +

a

b
(1− e−θ∆t),

V ar[λt+∆t|λt] =
a

b3
(1− e−2θ∆t),

(A.20)

and in the VG-OU case

E[λt+∆t|λt] = λte
−θ∆t + C

( 1

λ+

− 1

λ−

)
(1− e−θ∆t),

V ar[λt+∆t|λt] = C
( 1

λ2
+

+
1

λ2
−

)
(1− e−2θ∆t).

(A.21)

Methods to draw random numbers from Gamma-OU and IG-OU processes are
proposed by Barndorff-Nielsen and Shephard (2001) and by Zhang and Zhang
(2008). Their algorithms can easily be implemented and are fast enough to be
used in a particle filter estimation method. The Gamma-OU simulation algorithm
can easily be extended to simulate VG-OU random variates.
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In Figure 11 we show for each distributional assumption the simulated paths
of three different intensity processes with initial value equal to 0.005. In order to
visually assess the difference between different processes we consider in all cases a
mean-reverting level equal to 0.02; consequently, in the one-sided OU cases the ratio
a/b is constant and equal to 0.02, and in the two-sided OU case C(1/λ+ − 1/λ−)
is constant and equal to 0.02.

A.3 Stability analysis of the regularized optimization prob-
lem

The non-linear least square optimization problem defined in equation (17), that is

Θ̂ = min
Θ

(
RMSE(Θ)

)2
(A.22)

has neither a closed-form solution nor a global minimum. A numerical optimization
routine is needed to find a relative minimum also because the gradient vector and
the Hessian matrix related to the problem are difficult to express in closed-form:
even if they can be computed, they have a messy expression. In this paper we
follow the practical approach described in Fang et al. (2010); indeed we define the
regularized problem

Θ̂ = min
Θ

(
RMSE(Θ)2 + ρ‖ω · (Θ−Θ0)‖2

)
. (A.23)

where ρ is a constant term and ω is a vector defined to provide a comparable
parameter sensitivity as the parameters may differ significantly in magnitude. The
vector ω is given by (1/Θ1

0, . . . , 1/Θ
N
0 ), where N is the length of Θ and with “·”

we indicate the inner products of vectors. The choice is aimed at achieving a
satisfactory calibration error and parameter stability over time.

In this section we study how, by increasing the value of the parameter ρ, the
parameters, calibration errors and computational time vary. The selection of a
proper ρ is itself an optimization problem which has to be solved to find a solu-
tion to the original least squares problem. As already observed in Section 6.1, ρ
depends on the data at hand and on the level of error present in it. In Table 2 we
report the results of the empirical study conducted over time and across all the 117
companies analysed. More precisely, we show the lag-5 autocorrelation computed
by considering the parameter time series of each company. Then we compute me-
dian and mean values across all companies. As expected, the parameter stability
increases by increasing ρ, even if some parameters are more volatile than others.
Additionally, we report median and mean values of the RMSE, of the average rel-
ative percentage error (ARPE) and of the number of function evaluations into the
optimization routine. The number of function evaluation is a proxy for the com-
putational time. These values are computed both over time and across all the 117
companies analysed. By increasing the value of ρ, we obtain that the calibration
error increases in the CIR and in the Gamma-OU case, it remains quite stable
in the Sato Gamma case, and in the IG-OU and in the VG-OU cases it reaches
the minimum value when ρ = 10. The computational time decreases in the CIR
case and, conversely, increases in the Sato-Gamma case. The value ρ = 100 shows
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a good balance between the calibration error and the parameter stability and for
this reason we selected this value in the main text of the paper. In the empirical
study we solve a large number of problems of the form (A.23): for each model and
across the 117 companies we consider 655 daily observations for a total of more
than 380,000 daily calibration exercises. For this reason, even if the selected value
of ρ may be not the optimal value, it is sufficient for our purposes as it provides us
with an acceptable calibration error and parameter stability. As shown in Table 2,
when ρ is equal to 100, the median values for the ARPE are just over 2 per cent
(less than 1.5 per cent if we do not consider the Sato based model) and the median
lag-5 autocorrelations are all above 0.9. Finally, we note that Table 2 confirms that
the VG-OU model outperforms its competitor models while having a comparable
degree of parameter stability over time and of computational complexity, not only
when ρ is equal to 100, but also for all other selected values of ρ.

A.4 The filtering algorithms

We model the CDS time series zt using a state-space framework with the state
λt assumed to be markovian.36 This means that the CDS pricing model can be
written in the following form

λt = f(λt−1,Θ, vt−1)

zt = h(λt,Θ, εt)
(A.24)

where t is the day counter, λt is the state variable modelled as a Markov process
with initial distribution p(λ0) and transition law p(λt|λt−1). The state variable
follows the dynamics described by the transition function f . The variable zt rep-
resents the set of given observations (in our case the CDS spreads observed in the
market). It is assumed to be conditionally independent given the state λt and with
distribution p(zt|λt). Then, vt−1 and εt are independent state noise and observation
noise with mean 0 and variance matrix Qt−1 and Rt, respectively (these matrices
may be time dependent). The noise εt is assumed to be normal with diagonal
covariance matrix Rt. Furthermore, the measurement error covariance is adjusted
for the daily observed bid-ask spreads, that is, we define a matrix Rt given by the
product between a diagonal covariance matrix and a diagonal matrix with diago-
nal entries equal to the observed bid-ask spreads. The function h is the so-called
measurement function, which in our case is given by the CDS pricing formula, and
Θ is a set of static parameters.

The filtering problem deals with the estimation of the unobserved stochastic
process λt based on the past and current measurement of a related process zt, that
is finding the posterior distribution p(λt|z1:t). The basic idea is to define the prob-
ability density function corresponding to the state λt given all the measurements
made up to the time t.

As already observed in Section 6.2, if the measurement function h is linear
and the state is Gaussian, the Kalman filter can be used for state and parameter

36 This section is drawn by considering the works of van der Merwe et al. (2001), Bhar (2010)
and Malik and Pitt (2011).
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estimation. In all the cases we are interested in, we have a non-linear measure-
ment function or a non-Gaussian state and for this reason we apply the unscented
Kalman filter in the CIR case and the particle filter in the VG-OU case. These
algorithms are briefly described in the following Sections A.4.1 and A.4.2.

A.4.1 Unscented Kalman filter

The algorithm here described is drawn by van der Merwe et al. (2001). Under this
approach the state is propagated through a set of deterministic points with given
weights generated by the so-called unscented trasformation. The posterior density
p(λt|z1:t) is approximated by assuming a known measurement density h(zt|λt) and
the ability to compute the conditional mean and covariance of the Markov state
λt. As pointed out by Christoffersen et al. (2009), when the state vector is not
Gaussian, an approximate transition equation can be obtained by exploiting the
existence of the two first conditional moments in closed-form and replacing the
original state vector with a new Gaussian state vector with identical two first
conditional moments (see also Duan and Simonato (1999)). The state-space model
can be written as

λt = a+ bλt−1 + vt−1

zt = h(λt,Θ) + εt

where vt−1 and εt are independent normal noises with mean 0 and variance matrix
Qt−1 and Rt, respectively.37 We indicate with λ̂t and Pλt the mean and covariance
of λt. The basic idea behind the scaled unscented transformation is to generate a
set of points with the first two sample moments equal to λ̂t and Pλt . We assume
that λ̂0 and Pλ0 are given and define the augmented state

λat−1 = [λ′t−1, v
′
t−1, ε

′
t]
′

with mean λ̂at−1 = E[λat−1] and covariance

P a
t−1 =

Pλt−1 0 0
0 Qt−1 0
0 0 Rt

 .
The unscented transformation provides a set of 2na sigma points, where na =
nλ +nv +nε, with nλ, nv, nε being dimensions of the state, the state noise and the
observation noise, respectively. Chosen the parameters k ≥ 0, 0 ≤ α ≤ 1, β ≥ 0,
and set l = α2(na + k) − na, we define the sigma points Λa

t−1 and their related

37 The parameters a, b and Qt depend on the model parameter set Θ.
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weights Wm and W c as follows(
Λa
t−1)0 = λ̂at−1(

Λa
t−1)i = λ̂at−1 +

(√
(na + l)P a

t−1

)
i

for i = 1, . . . , na(
Λa
t−1)i = λ̂at−1 −

(√
(na + l)P a

t−1

)
i

for i = na + 1, . . . , 2na

Λa
t−1 =

[(
Λλ
t−1

)′
,
(
Λv
t−1

)′
,
(
Λε
t−1

)′]′
Wm

0 =
l

na + l

W c
0 =

l

na + l
+ (1− α2 + β)

Wm
i = W c

i =
1

2(na + l)
for i = 1, . . . , 2na

where
(√

(nx + l)P a
t−1

)
i

is the i-th row of the matrix square root of (nx + l)P a
t−1.

After computing the sigma points we proceed as follows:

1. we perform the prediction

Λλ
t|t−1 = a+ bΛλ

t−1 + Λv
t−1

λ̂t|t−1 =
2na∑
i=0

Wm
i

(
Λλ
t|t−1)i

Pt|t−1 =
2na∑
i=0

W c
i

[(
Λλ
t|t−1)i − λ̂t|t−1

][(
Λλ
t|t−1)i − λ̂t|t−1

]′
Zλt|t−1 = h(Λλ

t−1,Θ) + Λε
t−1

ẑt|t−1 =
2na∑
i=0

Wm
i

(
Zλt|t−1

)
i

2. we perform the measurement update

P zz
t|t−1 =

2na∑
i=0

W c
i

[(
Zλt|t−1)i − ẑt|t−1

][(
Zλt|t−1)i − ẑt|t−1

]′
P λz
t|t−1 =

2na∑
i=0

W c
i

[(
Λλ
t|t−1)i − λ̂t|t−1

][(
Zλt|t−1)i − ẑt|t−1

]′
Kt = P λz

t|t−1

(
P zz
t|t−1

)−1

λ̂t = λ̂t|t−1 +Kt(zt − ẑt|t−1)

Pλt = Pλt−1 −KtP
zz
t|t−1K

′
t

3. we compute (up to a constant term) the log-likelihood Lt = log p(zt|λt),
indeed

Lt = − log |P zz
t|t−1| − (zt − ẑt|t−1)′

(
P zz
t|t−1

)−1
(zt − ẑt|t−1),

where | · | indicates the determinant of a matrix.
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Then, to estimate the parameters Θ, we build the joint log-likelihood over the
entire observation period, indeed

L(Θ, z1:T ) =
T∑
t=1

Lt,

and, finally, we insert this function into an optimization procedure. By consid-
ering Section A.2 and O’Sullivan (2008), we consider the following input for the
algorithm. In the CIR case we have

λ̂0 = η Pλ0 = η
ϑ2

2κ
a = η(1− e−κδt) b = e−κδt

Qt = λ̂t
ϑ2

κ
(e−κ∆t − e−2κ∆t) +

ηϑ2

2κ
(1− e−κ∆t)2

and similarly in the VG-OU case we have

λ̂0 = C
( 1

λ+

− 1

λ−

)
Pλ0 = C

( 1

λ2
+

+
1

λ2
−

)
a = C

( 1

λ+

− 1

λ−

)
(1− e−θδt) b = e−θδt

Qt = C
( 1

λ2
+

+
1

λ2
−

)
(1− e−2θδt).

A.4.2 Particle filter

Particle filter is a sequential Monte Carlo method for recursively approximating
the posterior density p(λt|z1:t) by assuming a known measurement density h(zt|λt)
and the ability to simulate from the Markov transition density f(λt+1|λt). The
algorithm estimates the posterior density by considering a set of random samples
with associated weights {λit, wit}Ni=1 where N is the number of samples at each given
point in time t. The algorithm includes three main steps: (a) sampling, (b) weights
computation, and (c) resampling. In our empirical test we proceed as follows:

1. we sample λit from the distribution p(λt|λt−1);

2. we compute zit through the measurement function h;

3. by considering the normal assumption of the measurement error, we evaluate
the likelihood p(zt|λit) and recursively compute the weights

wit = wit−1p(zt|λit);

4. the current state can be estimated by λ̂t = 1
N

∑N
i=1w

i
tλ
i
t;

5. by considering the weights wit we compute (up to a constant term) the log-
likelihood Lit = log p(zt|λ̃it), indeed

Lit = −1

2
log |R| − 1

2
(zmarkett − zit)′R−1(zmarkett − zit),
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where |·| indicates the determinant of a matrix, and we evaluate the likelihood

estimate L̂t = 1
N

∑N
i=1w

i
tL

i
t and ẑt = 1

N

∑N
i=1w

i
tz
i
t;

6. we resample by taking into consideration the stratified resampling algorithm
(see by Douc and Cappé (2005)) and we obtain a new set of samples λ̃it
approximately distributed according to p(λt|z1:t).

To estimate the parameters Θ, we build the joint log-likelihood over the entire
observation period, indeed

L(Θ, z1:T ) =
T∑
t=1

L̂t,

and, finally, we insert this function into an optimization procedure.
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Figure 1: Mean and median CDS and bid-ask spreads for the 117 companies considered in the
empirical study.
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Figure 2: Median, mean, 95th and 5th percentile of the RMSE for the 117 companies considered
in the analysis. We report the pricing error obtained with ρ = 100.
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Figure 3: Behavior of the median, mean, 90th and 10th percentile over 117 companies included
in the iTraxx Index of the market distress measure (in bp) from 30 June 2008 to 31 December
2010.
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Figure 4: Percentage of exceedances (across companies) for the CIR, the Gamma-OU, the IG-
OU, the Sato-Gamma, and the VG-OU models with regularization term ρ = 0 (left side) and
with regularization term ρ = 100 (right side). On each box, the central mark is the median, the
edges of the box are the 25th and 75th percentiles, the whiskers extend to the most extreme data
points not considered outliers, and outliers are plotted individually.
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Figure 5: Parameters median, 90th and 10th percentile for 117 companies included in the iTraxx
Index estimated by considering the CIR, the Gamma-OU, the IG-OU, the Sato Gamma, and the
VG-OU model from 30 June 2008 to 31 December 2010 without regularization, that is ρ = 0.
The parameter λ− of the VG-OU model is not reported.
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Figure 6: Parameters median, 90th and 10th percentile for 117 companies included in the
iTraxx Index estimated by considering the CIR, the Gamma-OU, the IG-OU, the Sato Gamma,
and the VG-OU model from 30 June 2008 to 31 December 2010 with regularization term, that
is ρ = 100. The parameter λ− of the VG-OU model is not reported.
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Figure 7: Autocorrelation as a function of the lag for the CIR, the Gamma-OU, the IG-OU, the
Sato-Gamma, and the VG-OU estimated parameters. Average values across companies. On the
left, we report the autocorrelations without regularization term into the optimization problem,
that is ρ = 0, on the right, we report the autocorrelations with regularization term ρ = 100 into
the optimization problem.
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Figure 8: CIR model: (1) Simulated CDS spreads with normal noise, (2) CIR default intensity
process and UKF estimate, (3) UKF calibration error. Risk-free rates are extracted from market
data between 30 June 2008 to 31 December 2010. The unscented Kalman filter is considered to
extract the unobservable default intensity process.
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Figure 9: VG-OU model: (1) Simulated CDS spreads with normal noise, (2) VG-OU default
intensity process and UKF estimate, (3) UKF calibration error, (4) VG-OU default intensity
process and PF estimate, (5) PF calibration error. Risk-free rates are extracted from market
data between 30 June 2008 to 31 December 2010. The unscented Kalman filter and the particle
filter are considered to extract the unobservable default intensity process.
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Figure 10: Maximum likelihood estimates based on the UKF and the PF: RMSE, ARPE and
parameters boxplot across all 117 companies analysed are reported. The estimates of the CIR
and the VG-OU are compared by considering both the UKF and the PF approach. On each
box, the central mark is the median, the edges of the box are the 25th and 75th percentiles, the
whiskers extend to the most extreme data points not considered outliers, and outliers are plotted
individually.
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Figure 11: Simulated CIR, Gamma-OU and IG-OU processes with initial value λ0 equal to
0.005. For the CIR process the parameters (κ, η, ϑ) are (a) (0.8, 0.02, 0.1), (b) (0.4, 0.02, 0.05),
(c) (0.2, 0.02, 0.05). For both the one sided OU processes we set the parameter θ = 0.75, then
for the Gamma-OU (a,b) are (a) (1, 50), (b) (10, 500), (c) (100, 5000) and for the IG-OU (a,b)
are (a) (0.1, 5), (b) (1, 50), (c) (10, 500). In the VG-OU case we set the parameter θ = 0.75 and
(C, λ+, λ−) (a) (4, 100, 200), (b) (16, 400, 800), (c) (32, 800, 1600).
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1Y 3Y 5Y 7Y 10Y

minimum 5.49 14.57 22.43 25.54 29.15
5th percentile 20.75 35.14 45.93 50.22 53.55
mean 93.41 110.36 120.69 122.28 124.70
median 56.44 78.89 92.93 96.05 100.13
95th percentile 283.51 290.06 283.40 274.41 267.78
maximum 3257.54 3261.32 3127.44 2912.14 2800.06
standard deviation 132.94 121.92 112.30 105.44 100.70
mean absolute deviation 67.34 63.67 59.74 56.76 54.88
median absolute deviation 27.48 30.47 31.46 30.49 30.26
lag-5 autocorrelation 0.96 0.95 0.93 0.92 0.91

Table 1: Summary statistics of the CDS spreads between 30 June 2008 and 31 December 2010
for the 117 companies considered in the empirical study.

50



ρ

0 10 50 100 200 500 1000

CIR

κ
0.7535 0.8427 0.9063 0.9286 0.9471 0.9701 0.9755
0.7354 0.8333 0.8973 0.9217 0.9408 0.9587 0.9676

η
0.8969 0.9049 0.9112 0.9141 0.9164 0.9183 0.9187
0.8789 0.8902 0.8995 0.9039 0.9068 0.9079 0.9076

ϑ
0.6897 0.9219 0.9491 0.9618 0.9728 0.9789 0.9809
0.6806 0.9150 0.9392 0.9548 0.9642 0.9690 0.9689

λ0
0.9707 0.9712 0.9717 0.9718 0.9720 0.9725 0.9721
0.9631 0.9636 0.9642 0.9646 0.9649 0.9652 0.9653

RMSE
1.4025 1.4067 1.4379 1.4985 1.5211 1.5966 1.7498
2.6759 2.6950 2.7290 2.7544 2.7902 2.8672 2.9609

ARPE
0.0148 0.0149 0.0150 0.0153 0.0154 0.0161 0.0173
0.0189 0.0190 0.0194 0.0197 0.0200 0.0209 0.0220

function evaluation
173 111 100 99 99 99 100

179.3526 127.2661 110.7324 106.5334 103.9400 101.7892 101.1559

Gamma-OU

θ
0.6252 0.8018 0.8866 0.9257 0.9516 0.9679 0.9724
0.5969 0.7771 0.8683 0.8999 0.9340 0.9607 0.9696

a
0.5094 0.9549 0.9678 0.9684 0.9667 0.9631 0.9563
0.5034 0.9470 0.9526 0.9526 0.9530 0.9500 0.9441

b
0.5470 0.9561 0.9659 0.9686 0.9664 0.9661 0.9635
0.5089 0.9354 0.9543 0.9591 0.9594 0.9615 0.9592

λ0
0.9560 0.9671 0.9702 0.9708 0.9711 0.9718 0.9719
0.9488 0.9581 0.9610 0.9623 0.9635 0.9646 0.9651

RMSE
1.2899 1.3287 1.3857 1.4165 1.4797 1.6557 1.7717
2.1841 2.2086 2.2782 2.3190 2.3748 2.4779 2.5811

ARPE
0.0141 0.0143 0.0147 0.0151 0.0157 0.0164 0.0175
0.0171 0.0175 0.0182 0.0185 0.0191 0.0202 0.0212

function evaluation
161 97 93 90 88 84 83

183.0975 100.7687 94.8180 92.1618 89.7360 86.7029 84.8406

IG-OU

θ
0.4160 0.8759 0.8887 0.9105 0.9302 0.9586 0.9720
0.4038 0.8645 0.8848 0.9037 0.9246 0.9494 0.9647

a
0.2672 0.9185 0.9145 0.9150 0.9276 0.9389 0.9401
0.2796 0.9027 0.8979 0.9035 0.9142 0.9193 0.9288

b
0.3409 0.9267 0.9335 0.9338 0.9351 0.9433 0.9480
0.3494 0.9054 0.9143 0.9191 0.9264 0.9300 0.9429

λ0
0.9164 0.9655 0.9682 0.9692 0.9704 0.9715 0.9726
0.8924 0.9572 0.9602 0.9616 0.9621 0.9642 0.9653

RMSE
1.9670 1.4611 1.4880 1.4787 1.5127 1.5534 1.6158
5.8222 2.8714 2.6187 2.8030 2.6454 2.6749 2.7028

ARPE
0.0196 0.0156 0.0154 0.0157 0.0158 0.0163 0.0172
0.0391 0.0199 0.0196 0.0197 0.0200 0.0205 0.0210

function evaluation
137 96 87 87 87 87 88

159.1480 109.2036 103.1158 101.0573 100.2680 99.2605 97.1306

Sato-Gamma

γ
0.9712 0.9712 0.9713 0.9718 0.9719 0.9725 0.9728
0.9667 0.9668 0.9670 0.9672 0.9674 0.9679 0.9682

b
0.9572 0.9573 0.9574 0.9575 0.9586 0.9608 0.9631
0.9520 0.9522 0.9526 0.9531 0.9538 0.9556 0.9579

RMSE
2.1090 2.1090 2.1091 2.1091 2.1091 2.1126 2.1352
5.0287 5.0287 5.0291 5.0299 5.0323 5.0423 5.0634

ARPE
0.0219 0.0219 0.0220 0.0219 0.0220 0.0222 0.0226
0.0270 0.0271 0.0271 0.0271 0.0272 0.0274 0.0278

function evaluation
56 36 36 36 36 36 36

55.4030 37.0428 37.0146 36.9764 36.8857 36.6916 36.4880

VG-OU

θ
0.5920 0.8311 0.8862 0.9264 0.9423 0.9595 0.9646
0.5780 0.8032 0.8744 0.9033 0.9273 0.9517 0.9645

C
0.1724 0.9465 0.9676 0.9674 0.9721 0.9735 0.9778
0.2059 0.9330 0.9562 0.9550 0.9645 0.9604 0.9600

λ−
0.2801 0.9607 0.9669 0.9692 0.9734 0.9757 0.9783
0.2950 0.9580 0.9544 0.9510 0.9526 0.9538 0.9582

λ+
0.2308 0.9556 0.9658 0.9710 0.9753 0.9799 0.9822
0.2581 0.9501 0.9573 0.9628 0.9698 0.9731 0.9727

λ0
0.9468 0.9389 0.9544 0.9609 0.9664 0.9698 0.9707
0.9399 0.9188 0.9397 0.9484 0.9547 0.9616 0.9633

RMSE
1.2255 1.0152 1.0656 1.1284 1.1969 1.3060 1.4217
2.0193 1.5918 1.7065 1.7950 1.8805 2.0379 2.1731

ARPE
0.0134 0.0103 0.0114 0.0120 0.0126 0.0141 0.0149
0.0163 0.0140 0.0150 0.0157 0.0163 0.0176 0.0187

function evaluation
188 145 129 127 123 116 112

258.2815 162.6107 140.6695 133.6337 127.1655 118.6974 113.1985

Table 2: Lag-5 autocorrelation of the parameters, calibration error and computing time. For
each model and for each parameter median and mean values (in italics) of the lag-5 autocorrelation
are computed over the 117 companies analysed. Then, median and mean (in italics) values of
the root mean square error (RMSE), of the the average relative percentage error (ARPE) and of
the number of function evaluations into the optimization routine are computed both over time
and over the 117 companies analyzed.
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