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Abstract 

In this paper a dynamic factor model with mixed frequency is proposed (FaMIDAS), 
where the past observations of high frequency indicators are used following the MIDAS 
approach. This structure is able to represent with richer dynamics the information content of 
the economic indicators and produces smoothed factors and forecasts. 
In addition, the Kalman filter is applied, which is particularly suited for dealing with 
unbalanced data set and revisions in the preliminary data. In the empirical application for the 
Italian quarterly GDP the short-term forecasting performance is evaluated against other 
mixed frequency models in a pseudo-real time experiment, also allowing for pooled forecast 
from factor models. 
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1 Introduction*

The impact of the recent financial crisis on the real economy was underestimated by a num-

ber of forecasters. Both academia and policymakers are now thinking about the ability of

macroeconometric models to make predictions about the economy and identify early signals

of turning points. In practice, short-term forecasting mainly relies on two sets of instruments:

bridge models and factor models. Bridge models link timely indicators with low frequency

target variables, whereas factor models extract a common component from a set (usually

large) of series1. In their standard formulation, bridge and factor models have shown some

limitations with respect to two major topics: the time aggregation bias and the ragged-edge

data problem, which is a relevant issue for real time forecasts.2

Recently, there has been an increase in research papers on these two approaches with ex-

tensions in different directions, including mixed frequency models which represent a promis-

ing field of research. Mixed frequency models are particularly useful for extracting the in-

formation content from high frequency indicators that are used as proxies for target variables

observed at lower frequency and with a time lag. Given that this is what economic forecast-

ers do in their day to day work, these models are of particularinterest to them. Moreover,

these models provide a tool for time series disaggregation,given that the target variable is

estimated at a higher frequency.

The mixed frequency literature was initially developed using state space factor models,

estimated via the Kalman filter. Most of the applications exploit monthly series, such as

industrial production or confidence surveys, to predict quarterly GDP. This approach was

used by Mariano and Murasawa (2003), Mittnik and Zadrozny (2004), Proietti and Moauro

(2006), Aruoba et al. (2009), Camacho and Perez Quiros (2009) and Frale et al. (2010a).

These models can also be used as a multivariate tool for time series disaggregation, as done

in Frale et al. (2010b), Harvey and Chung (2000), Moauro and Savio (2005).

*This paper represents the authors personal opinions and does not reflect the view of the Bank of Italy and

the Italian Department of Treasury. We are grateful to participants in the 3rd CFE-Cyprus 2009, especially to

Ana Galvão and Gianluca Moretti for helpful comments and conversations. We benefit from the discussion

during the MIDAS Workshop, Frankfurt 2010, and in particular we would like to thank Eric Ghysels, Massi-

miliano Marcellino and Rossen Valkanov for useful advices.We received additional advices during the 30th

CIRET Conference in New York and from Jules Leichter. Routines are coded in Ox 3.3 by Doornik (2001) and

are based on the programs realized by Tommaso Proietti for the Eurostat project on EuroMIND: the Monthly

Indicator of Economic Activity in the Euro Area.
1On the comparison of the different models for short term predictions see Barhoumi, Benk, Cristadoro,

Reijer, Jakaitiene, Jelonek, Rua, Rünstler, Ruth and Nieuwenhuyze (2009).
2The problem of the unbalanced data set in large scale factor models has been tackled with different so-

lutions in Altissimo et al. (2007) and Marcellino and Schumacher (2010). On time aggregation bias see

Marcellino (1999).
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A different approach relates to the recent literature on Mixed Data Sampling Regression

Models (MIDAS) proposed by Ghysels, Santa-Clara and Valkanov (2002, 2006). MIDAS

mainly differ from mixed frequency factor models as they areunivariate, with lag polynomi-

als being used to combine high frequency indicators with thelow frequency target variable.

There is a small, but fast growing, literature on MIDAS models. Most of the early appli-

cations refer to financial econometrics, but there have recently been a number of papers on

GDP and inflation. Clements and Galvão (2010) and Andreu et al. (2008) suggest a MI-

DAS to forecast US macro variables on a monthly and daily basis. Monteforte and Moretti

(2010) propose a MIDAS to predict monthly inflation on a dailybasis in real time. Mar-

cellino and Schumacher (2010) use a MIDAS to deal with an unbalanced large data-set and

for predicting the GDP by means of monthly factors.

In this paper we combine the two approaches and we propose a state space factor model

with mixed frequency, where the past observations of high frequency indicators follow a

MIDAS structure. This feature is new in the literature and enables the exploitation, in a

parsimonious way, of a larger number of lags of the high frequency indicators. This is par-

ticularly useful in forecasting as it explicitly takes intoaccount the cross correlation between

indicators and the target variable. Moreover, the MIDAS polynomial produces smooth fac-

tors, which is a desirable property as it implies less volatile forecasts. This is a relevant issue

especially for policy analysis and turns out to be quite important in periods of high variabil-

ity of macroeconomic data, such as during economic crises. Our approach of combining

factor models and MIDAS regression complements the one of Marcellino and Schumacher

(2010). They propose a large scale mixed frequency factor model where monthly factors are

aggregated to quarterly by using a MIDAS structure, while weproposes a small scale model

where the mixed frequency is in the state space and the MIDAS component is only used to

consider more lags of the indicators.

The combination of mixed frequency and MIDAS structure allow matching two different

and relevant issues: having a monthly index for business cycle analysis, like for dating the

cycle and mitigate the noise effect of preliminary data in real time applications. In the empir-

ical application with Italian data, the predictive performance of the Mixed Frequency Factor

MIDAS (FaMIDAS in the following) is compared with a multivariate (VAR) model, a mixed

frequency univariate model (ADL) and with two mixed-frequency factor models (with single

and multiple factors). The results seem to suggest that the FaMIDAS prevails at larger hori-

zons in real time forecasting. This is not surprising, as thefactor produced by FaMIDAS is

smooth and thus less affected by the short-run variability of the data. The next Section gives

an overview of the model, while Section 3 deals with estimation and data issues. Section 4

reports the results of the forecasting exercise and Section5 draws conclusions.
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2 The Model

This section presents the main model of the paper. The aim of this new approach is to

increase the flexibility of factor models and thus to improvetheir ability to reproduce the

underlying structural model of economic agents in a framework that is essentially a reduced

form. As a matter of fact factor models are pure statistical models, with lack of economic

interpretation. Therefore, including a richer dynamics aswe do by using a MIDAS structure

may be also seen as an indirect way to capture the behavior of economic agents. An example

of this would be the expectation formation process, which might induce changes over time

in the correlation among time series.

A complementary approach has been followed by Marcellino and Schumacher (2010),

where they combine factors and MIDAS in a different structure. In particular we extract

a monthly factor using MIDAS polynomial on each indicator, while they adopt a MIDAS

structure to project monthly factors for quarterly forecasts. In the following the two main

ingredients of the model, and the way in which they are integrated, are presented.

2.1 The factor model with mixed frequency

There are many possible ways of linking a set of indicators available at high frequency to the

target variable observed at shorter time intervals.

In particular, we start from a dynamic factor model that decomposes a vector of N time se-

ries,yt, with different frequencies (e.g. monthly and quarterly),into one (or more) common

nonstationary components,ft, and some idiosyncratics,t, specific to each series. Both the

common factor and the idiosyncratic components follow autoregressive standard processes

as shown by the following representation:

yt = #0ft + #1ft−1 + t + St�, t = 1, ..., n,

�(L)Δft = �t, �t ∼ NID(0, �2
�),

D(L)Δt = � + �∗
t , �∗

t ∼ NID(0,Σ�∗),

(1)

where�(L) is an autoregressive polynomial of orderp with stationary roots andD(L) is a

diagonal matrix containing autoregressive polynomials oforderpi (i=1 to N) . The vector

� contains the drifts of the idyosincratic components. The regression matrixSt contains

the values of exogenous variables that are used to incorporate calendar effects (trading day

regressors, Easter, length of the month, etc.) and intervention variables (level shifts, additive

outliers, etc.), and the elements of� that are used for initialisation and other fixed effects.

The disturbances�t and�∗
t are mutually uncorrelated at all leads and lags.

The model states that each series in differences,Δ yit, is obtained as the sum of a common
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autoregressive process of order p,�(L)−1�it an individualAR(pi) process,di(L)−1�∗it and a

mean term�i, The error terms,�it and�∗it are difference stationary and independent.

Variables are considered in level as common in the unobservable components approach

and the cointegration is rouled out on purpose as extensively argumented in Frale et Alt.

(2010b). The model is cast in a linear State Space Form (SSF) and, assuming that the dis-

turbances have a Gaussian distribution, the unknown parameters are estimated by maximum

likelihood, using the prediction error decomposition, performed by the Kalman filter.

The SSF is suitably modified to take into account the mixed frequency nature of the series.

Following Harvey (1989), the state vector is augmented by anad hoc cumulator function

which translates the problem of aggregation in time into a problem of missing values. The

cumulator is defined as the observed aggregated series at theend of the season (e.g. last

month of quarter), otherwise it contains the partial cumulative sum of the disaggregated

values ( e.g. months) making up the aggregation interval (e.g. quarters) up to and including

the current one. The model might include a procedure for expressing volumes in chain link

prices and therefore allows matching the monthly estimateswith national account identities

published by national statistical offices.

Given the multivariate nature of the model and the mixed frequency constraint, the maxi-

mum likelihood estimation can be numerically complex. Therefore, the univariate filter and

smoother for multivariate models proposed by Koopman and Durbin (2000) is used as it pro-

vides a very flexible and convenient device for handling highdimension data sets and missing

values. The main idea is that columns in the matrixyt, t = 1, . . . , n are stacked on top of

one another to yield a univariate time series whose elementsare processed sequentially.

2.2 The MIDAS for the lags combination

As is well known in the literature of leading indicators, theanticipating power of an eco-

nomic series for any target variable is purely an empirical concept. Even more cumbersome

is the case of mixed frequency data, where the indicators areavailable at higher frequency

with respect to the target, so that not even autocorrelationanalysis is helpful. Consider, for

example, that we want to use a well-know leading indicator such as the Business Climate or

Purchase Manager Index (PMI) to have a preliminary assessment of the state of the econ-

omy before the release of GDP, which is observed on average two month after the end of

a quarter. Although it is well know that such indicators havea leading power, we do not

know exactly the leading power (in terms of quarters) of the monthly PMI. Even more, we

might prefer a more flexible model, so that the leading order can change over time. In our

view, a more efficient and suitable solution to this issue is the application of MIxed DAta

Sampling models (MIDAS) which summarize and combine the information content of the
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indicators and their lags with weights jointly estimated. Usually the treatment of mixed data

sample is solved by first aggregating the highest frequency in order to reduce all data to the

same frequency and then, in a second step, estimating a regression. This implies imposing

some restrictions on the parameters of the aggregating polynomial and does not exploit all

the information available. The MIDAS models overcome this problem as they exploit full

information without imposing any restrictions on the parameters that are estimated jointly.

Some restrictions could be introduced to reduce the parameter space and avoid the cost of

parameter proliferation.

MIDAS models have recently encountered considerable success due to their simplicity

and good performance in empirical applications. To introduce them, as in the seminal paper

by Ghysels et al. (2002, 2006), supposeYt is a time series variable observed at a certain fixed

frequency and letXm be an indicator variable sampled m times faster. A MIDAS regression

takes the form:

Yt = �0 +B(�, L1/m)Xm
t + �t

whereB(�, L1/m) =
∑K

k=0 b(�, k)L
k/m is a polynomial of length K andL1/m is an operator

such thatLk/mXm
t = Xm

t−k/m. In other words the regression equation is a projection ofYt

into a higher frequency seriesXm
t up to k lags back.

The MIDAS structure mainly involves two elements: the reconciliation of different fre-

quency and the use of lagged values of the indicators.

In our application, the MIDAS component is only used in orderto include in a parsi-

monious structure past values of indicators, whereas the time aggregation problem is solved

inside the factor model as shown in Section 2.1. This allows better interpretation of the cycli-

cal pattern of the economic indicators and comparability with benchmark dynamic models.

Regarding the weight structure, two main possibilities have been proposed in the litera-

ture. First, a parametrization that refers to Almon lags:

b(k; �) =
exp(�1k + ...�qk

q)
∑k

j=1 exp(�1k + ...�qkq)
.

Second, weights drawn by a Beta distribution, such as:

b(k; �1, �2) =
f(k; �1, �2)

∑k
j=1 f(k; �1, �2)

wheref(x, a, b) = xa−1(1−x)b−1

B(a,b)
, B(a, b) = Γ(a)Γ(b)

Γ(a+b)
andΓ(a) =

∫∞

0
e( − x)xa−1dx.

There is no clear a priori reason for preferring one parametrization over another, and the

choice should clearly depend on the research problem under analysis. It should be noted
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that, as a rule of thumb, the Beta function, given its flexibility, seems more suitable when the

number of lags considered is large, whereas the simplicity of the Almon weights might be

preferable in the case of a small number of time lags.

Looking at the recent literature, Marcellino and Schumacher (2010) used the Almon

weights for the estimation of GDP in real time, whereas Monteforte and Moretti (2010) found

the Beta transformation more appropriate for the estimation of inflation which involves daily

data and more than 20 lags.

2.3 The FaMIDAS

This section presents how to combine the dynamic factor model with mixed frequency and

the MIDAS structure of lags described in the previous section.

Starting from the model in equation (1) let us partitioning the set of time series,yt, into

two groups,yt = [y′
1,t,y

′
2,t]

′, where the second block represents the target variable available

at lower frequency and the first part is a MIDAS structure based on high frequency indicators

xt so thaty′
1,t = [b(Lk, �)xt]

′.

The FaMIDAS follows from the following equations:

[

b(Lk, �)xt

y2,t

]

= #0ft + t + St�, t = 1, ..., n,

�(L)Δft = �t, �t ∼ NID(0, �2
�),

D(L)Δt = � + �∗
t , �∗

t ∼ NID(0,Σ�∗),

(2)

Model 2 collapse to model 1 if K=0 and#=0. In our applicationb(Lk, �) is the exponential

Almon lag polynomial:
∑K

k=0w(k, �)L
k with

w(k, �) =
exp(�1k + �2k

2)
∑K

k=0 exp(�1k + �2k2)
.

Actually this formalization represents a parsimonious wayof including in the model

lagged values for the common factor.

The dynamic factor model is estimated by specifying an AR(2)process for the common

component and the idiosyncratic components of the monthly indicators in difference. For

GDP, the idiosyncratic component is formulated as a random walk with drift. This restricted

specification is motivated by the fact that there are identification problems of the kind that

have been discussed by Proietti (2006) with reference to theLitterman model, which affect

the estimation of autoregressive effects.

For the MIDAS polynomial the weights sum up to 1 so that their size is fully comparable.

As far as the maximum lag length is concerned, the target horizon of forecasting and the
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economic meaning of the series could suggest the appropriate number. One can consider

alternatively to include the lagged values of indicators inthe matrixyt without the MIDAS

restriction. This approach, not only has a cost in terms of degree of freedom, as the number

of parameters to be estimated would increase considerably,but it fails to consider the time

series dimension of lagged values. In fact, without the MIDAS restriction lagged values of

the indicators would be included in the model as part of different series.

The model is cast in State Space Form and the Maximum Likelihood estimates are ob-

tained through suitable filtering procedures based on the Kalman filter prediction error de-

composition. Starting from a trial for all parameters, including those in the MIDAS structure,

the procedure is run iteratively so that the weights in the MIDAS maximize the Likelihood

function associated with the factor model. The standard procedure documented in Frale et

al. (2010b) is therefore modified adding the restrictions which link the hyperparameter�1,2
to the parametersw(k, �).

In the empirical application we investigate the content of nowcasting and forecasting GDP

each month in real time, exploiting the information coming from timely indicators of eco-

nomic activity. We also discuss the performance of the FaMIDAS model compared to other

mixed frequency model and to more standard formalizations.We show that the integrated

approach used in our framework provides flexibility in working with data expressed at dif-

ferent frequency, released with different delay and revised every time a new observation is

published. Furthermore we stress how our model efficiently deals with dynamic cross corre-

lation among indicators available at different frequencies.

3 The Empirical Application

The aim of the empirical application is to exploit the information of the most relevant

monthly economic indicators, available earlier than the official statistics, to disaggregate,

nowcast and forecast quarterly GDP. This is used to estimatethe unobserved monthly GDP,

both for the past (a monthly indicator of the known quarterlyGDP) and for the future. It

is worth noting that in this model the monthly indicator is fully consistent with the quar-

terly data in terms of time aggregation. Thus we obtain an indicator that can be used both

in sample as a monthly measure of GDP to date the cycle and out of sample as a leading

indicator.

The GDP is estimated directly, leaving the bottom-up approach (estimation by aggrega-

tion of sectoral value added or components of demand) for future research. Although the

model is specified in levels in order to easily deal with the time constraint, the results and

the forecasting experiment are presented in growth rates, which is the reference measure for

11



both policy makers and academics.

As for the variable selection, a wide set of indicators is considered, with series referring to

different aspects of the economy. These are mainly nationalstatistics data, such as industrial

production; survey data, such as climate, expectations andPMI (Purchasing Manager Index);

financial data, such as spreads and money (M2); and other datasuch as the CPB index of

world trade, production of paper, electricity consumptionand traffic flows of heavy goods

vehicles. Although the information set has a small scale, the models incorporate a variety

of properly chosen indicators referring to the real economyas well as finance, national and

international, in the service and manufacturing sectors. Variables are taken directly from the

source in seasonally adjusted values, except for electricity consumption and traffic of trucks

which have been seasonally adjusted using the Tramo-Seats routine and smoothed when

needed3. For the model selection process we follow the standard approach in the literature,

based, for example, on statistical significance of the indicators and BIC or Akaike criteria

for the lag length selection.

After some empirical robustness checks, the sample rangingfrom January 1990 up to

the most recent observations at the time of writing (April 2009) was found to have the best

trade-off among representativeness of the sample size, availability of long time series and

data quality. Some benchmark models have been estimated.

The central model is our factor model with MIDAS structure (FaMIDAS), based on an

information set with 4 indicators and combinations of up to 4lags: Industrial production,

German PMI, Business climate, Electricity consumption. Alternative lag lengths have been

evaluated accordingly to a reasonable forecast horizon (maximum 6 months ahead) and the

economic meaning of the indicators. We compare the empirical performance of our FaMI-

DAS with two multivariate models.

Then we consider a baseline model (MIXFAC) specified as in equation (1) and based on

the same information set than the FaMIDAS, but without MIDAScomponent and one lag of

the first two series.

Finally we also estimate a factor model with 2 factors (MIX2FAC), as discussed in Frale

et al. (2010a), which includes additional indicators: Industrial production of paper, world

trade, Treasury Italian yields (10Y), Money supply, trafficflows of heavy goods vehicles.

The baseline MIXFAC model involves both survey and nationalaccount data. The MIX2FAC

model includes more soft indicators and the second factor captures also financial swings, as

they comes up ex-post. Finally, using FaMIDAS, it is possible to consider up to four lags of

each economic indicator of MIXFAC.

The estimated maximum likelihood parameters are listed in Table 1, whereas the monthly

3No calendar effect neither intervention variables are included in the matrixSt
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indicators are shown in Figure 1. In addition, Figure 2 showsthe estimated GDP in monthly

growth rates and the common factors for the three models. Thegraph clearly shows that the

FaMIDAS produces a smoother factor which is a desirable property, likely a product of the

fact that the MIDAS structure sums over time lags. Similarly, the disaggregated monthly

GDP from the FaMIDAS is more stable than the same obtained by the other two mixed

frequency models (MIXFAC and MIX2FAC). Moreover, the confidence bands of the predic-

tions, shown as fan charts in Figure 3, reveal smaller incertitude in the FaMIDAS model than

in the other mix-frequency formulations.

The inspection of the spectral density of the estimated monthly GDP for the MIDAS and

MIXFAC, shown in Figure 4, suggests that the FaMIDAS structure is able to capture standard

business cycle frequencies and, therefore, might perform better in short-term forecasting

than in nowcasting. Analyzing the minor volatility in termsof spectrum of frequencies, it

turn out that the FaMIDAS picks up the less volatile components of the spectrum and thus

the estimates are less affected by the noise of data revisions that occur in real time analysis.

Indeed the fact that previsions from the FaMIDAS are less volatile makes them particularly

useful for dealing with real time data which are subject to revision and, therefore, suffer for

high degree of uncertainty.

The forecasting performance analysis of the three models requires an empirical applica-

tion, which is presented in the next section. On the contrary, the production of a monthly

measure of GDP which is a derivative of this framework is not the focus of this paper.

4 Forecasting evaluation

In this section the three models under analysis are comparedwith respect to their forecast-

ing ability for the Italian GDP by using a rolling experimentin a window of the latest 5,4

years up to the end of 20074. The rolling exercise is made in pseudo-real time, so as to

mimic the delay of different indicators, which has been proved to be relevant for correctly

assessing which model performs best. Therefore the forecasting evaluation is made with

specification of the month of the prediction inside the quarter (e.g. first month, second or

third), which corresponds to a different information set. It is worth stressing that the Kalman

filter is particularly suitable for this issue given that it solves endogenously the problem of

the unbalanced sample produced by the difference in timing of publication of the monthly

indicators. Consider the example of making a forecast for GDP in the 1st of January 2011.

4We prefer to exclude the biennium 2008-2009 from the sample to avoid that the exceptional conditions of

the economic crisis affect the results. In addition, at the time of writing, data from 2008 upwards were still

preliminary and subject to revision.
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The last release of GDP refers to the third quarter of 2010 andthus before making forecast

for one or two parters ahead, it is required to estimate the last quarter of GDP for 2010

which is still unknown. Analogously, monthly indicators are published with a certain delay.

In January, for example, we would have soft indicators, suchas PMI or Business climate, for

December 2010, while Industrial production for November 2010 would be release around

the 15 of January 2011. Therefore indicators need to be forecasted for closing the quarter

that should be predicted so as to balance the sample.

The Kalman filter allows doing this step endogenously as it solves directly the ragged-

edge data issue by using the prediction routine. Moreover, every time a new observation for

an indicator is released, all the series are generally revised for prior years and the MIDAS

component helps reducing the statistical noise of the revisions in real time.

In Table 2 we show RMSE of the three mixed frequency factor models and of two addi-

tional benchmark models. To disentangle the contribution of the mixed frequency structure,

we also consider a quarterly VAR (estimated with order 2 on the bases of the AIC criteria)

that includes the same information set as the MIXFAC. Moreover, to assess the gain of the

multivariate structure we consider a univariate ADL modified as in Proietti (2006) to repli-

cate a mixed frequency structure. We also considered as benchmark a model similar to the

Factor-MIDAS of Marcellino and Schumacher (2010), where the MIDAS structure is ap-

plied to the common factors. Although the two authors use a large dataset of indicators, we

constrained the information set to be coherent with the other models for sake of comparison.

We see that all factor models easily outperform the other twobenchmark models. Consider-

ing, in particular, the three mixed frequency models, we seethat the differences in predictive

ability are small and the ranking changes with the sample, the forecasting horizon and the

monthly information. The ranking is also subject to the lossfunction as it is slightly differ-

ent in the RMSFE and MAPE. For the case of a linear specification we see (Table 3) that the

absolute value of the forecast errors are almost always smaller for the FaMIDAS inQt+1 and

Qt+2. Looking jointly at RMSE and MAPE, it seems that the MIX2FAC is more suited for

nowcasting, FaMIDAS makes the lowest RMSE for one quarter-ahead and Factor-MIDAS

tends to prevail for two quarters ahead.

More generally, given the apparent absence of clear dominance of one model, we per-

formed the DMW tests (Diebold and Mariano(1995) and West (1996)) of equal forecast

ability to check if the ranking showed by RMSE is statistically significant. In particular, we

tested the hypothesis that FaMIDAS has the same predictive information as the other two

models. The results, in Table 4, are coherent we the evidenceshown in the previous table:

MIX2FAC dominates for 1-step ahead predictions, whereas FaMIDAS tends to make the

smallest error for 2-step ahead forecasts, respect to all models including the Factor-MIDAS.
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Since the seminal paper by Bates and Granger (1969), it is well know that combining

different models results in a smaller forecast error than selecting a single specification. The

general idea is that the combination of different specifications, by averaging, mitigate the

model misspecification, instability and estimation error of each specific model (Timmermann

2006). Therefore, the pooling forecast is particularly suitable when the combined models

show significant heterogeneity.

The application presented above matches this requirement,given that the models differ in

terms of components (number of factors and lags), as well as for the best forecast horizon. In

the bottom panel of Table 2 and Table 3 we report the real time errors for the pooled model

with equal weights5. The combination of the three models, the MIXFAC, MIX2FAC and

FaMIDAS appears useful in real time, as the error size is always close to those of the best

model.

In fact, the forecasts produced by the pooling of different models dominates the single

models more often for the RMSE than for the MAPE. A more propercombination would

require a dedicated analysis that we leave for future research.

To summarize, we find that the mixed frequency factor models outperform standard VAR

and univariate mixed frequency ADL. The differences in the forecasting ability of the three

factor models are small, time dependent and not always statistically significant. In general, it

emerges that MIXFAC and MIX2FAC appear more suited for nowcasting, while FaMIDAS

and Factor-MIDAS seem better for forecasting. Northwitstanding the small differences in

RMSE a forecast combination of the three factor models reduces further the error, likely

thanks to the heterogeneity in the structure of the three models.

5 Conclusions

The short-term forecasting literature has shown an increasing interest in mixed frequency

models. These models are particularly useful in real time forecasting as they deal with the

unbalanced data set problem and they reduce the temporal aggregation bias created by the

different frequencies of the observable indicators. In this paper we combine two approaches:

dynamic mixed frequency factor models and MIDAS. Our model,that we call FaMIDAS, is

designed for applications in real time as it reduces the problem of the unbalanced data set and

it is less affected by revisions of preliminary data. Moreover it can take into account changes

over time of the leading power of timely high frequency indicators used for forecasting.

As by product we obtain a monthly index of GDP which is per-se relevant for business

5Although the simple average of forecast is not optimal, under general circumstances and symmetric loss

functions it can generate a smaller loss (see Elliott and Timmermann (2004))
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cycle analysis, as for example for defining a chronology of the cycle, application that we left

for future research.

In the empirical application we estimate the FaMIDAS against benchmark models and

mixed frequency factor models with different structures. Overall the FaMIDAS produces

smoother estimates for the disaggregate target variable and better forecasts for one quarter

ahead. In order to reduce further the prediction error a simple pooling forecasts is proposed.
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Appendix: The State space representation and temporal ag-

gregation

Consider the factor model proposed in section 2.3:

yt =

[

b(Lk, �)xt

y2,t

]

= #0ft + t + St�, t = 1, ..., n,

�(L)Δft = �t, �t ∼ NID(0, �2
�),

D(L)Δt = � + �∗
t , �∗

t ∼ NID(0,Σ�∗).

(3)

whereb(Lk, �)xt is the MIDAS polynomial for the combination of lags of the monthly eco-

nomic indicators andy2,t is the aggregated variable that gathers the flow subject to temporal

aggregation ( e.g. the quarterly GDP). D(L) is a matrix containing autoregressive loading of

the idyosincratics components. The common factor and the idiosyncratic components fol-

low standard autoregressive processes and thus the model can be easily casted in State Space

Form (SSF).

Consider the standard way to recast in SSF a general AR(p) process�(L)Δft = �t with

�(L) = (1− �1L− �2L
2 − ...− �pL

p):

ft = e′1,p+1�t, �t = Tf�t−1 +H�t,

where

�t =

[

ft

f∗t

]

, Tf =

[

1 e′1pT�

0 T�

]

,T� =

⎡

⎢

⎢

⎢

⎢

⎣

�1

...

�p−1

Ip−1

�p 0′

⎤

⎥

⎥

⎥

⎥

⎦

.

andf∗t = T�f
∗
t−1 + e1p�t, H = [1, e′1,p]

′,e1p = [1, 0, . . . , 0]′ .

And then apply the previous representation to the common factor and each idiosyncratic.

The SSF of the complete model results:

yt =

[

b(Lk, �)xt

y2,t

]

= Z�t + St�, �t = T�t−1 +Wb+H�t, (4)

where the state vector and the vector of errors are obtained stacking the single SSF represen-

tation of the autoregressive processes, namely:[�t = �′
f,t, �

′
1,t
, . . . , �′

N ,t]
′, for the state and

�t = [�t, �
∗
1,t, . . . , �

∗
N,t]

′ for the vector of errors.

The system matrices of the measurement equation become:

Z =

[

�0,
... �1

... 0
... diag(e′p1, . . . , e

′
pN
)

]

, T = diag(Tf ,T1, . . . ,TN ),

H = diag(Hf ,H1, . . . ,HN ).
(5)
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The matrixW is time invariant and selects the drift�i for the appropriate state element of

the idiosyncratic component.

The temporal aggregation problem is solved following the strategy proposed by Harvey

(1989). The block of variables subject to temporal aggregation,y2, are replaced by anad hoc

cumulator variable,yc
2,t, defined so that it coincides with the (observed) aggregatedseries at

the end of the larger interval (e.g. quarter), otherwise it contains the partial cumulative value

of the aggregate in the seasons (e.g. months), as follow:

yc
2,t =  ty

c
2,t−1 + y2,t,  t =

{

0 t = �(� − 1) + 1, � = 1, . . . , [n/�]

1 otherwise,

The cumulator is used to replace the second block of the measurement equation and to

augment the state equation as follow:

�∗
t =

[

�t

yc
2,t

]

, y
†
t =

[

b(Lk, �)xt

yc
2,t

]

The final measurement and transition equation are therefore:

y
†
t = Z∗�∗

t + St�, �∗
t = T∗�∗

t−1 +W∗� +H∗�t, (6)

with system matrices:

Z∗ =

[

Z1 0

0 IN2

]

, T∗ =

[

T 0

Z2T  tI

]

, W∗ =

[

W

Z2W + S2

]

, H∗ =

[

I

Z2

]

H.

(7)
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Table 1: Estimated factor loadings
MIXFAC MIX2FAC FaMIDAS

Factor 1 Factor 2

Business Climate 0.44 ** -0.61 ** -0.02 0.09 **

Electricity 0.01 -0.03 ** 0.01 0.05 **

PMI Germany 0.35 * -0.46* -0.12 0.06 **

IP 0.44 ** -0.53 ** 0.10 0.06 **

GDP 0.16 ** -0.17 ** 0.01 0.02 **

PMI(-1) -0.22

IP(-1) 0.67 **

IP paper -0.14 ** 0.03

World trade (CPB) -0.74 ** 0.17

Italian BTP 10y -0.03 -0.37**

M2 0.24 ** -0.02

Traffic of trucks -0.17 * 0.01

** Means significant at 5%, * at 10%.

The sample period ranges from 1990M1 to 2009M4. Business Climate is provided by

ISAE; Electricity is the monthly consumption of electricity provided by TERNA; PMI

Germany is the Purchase Manager Index for Germany in manufacturing and services;

IP paper is the Industrial production of paper and cardboard; World trade is the indica-

tor of trade produced by the CPB- Netherlands Bureau for Economic Policy Analysis;

Money supply includes currency and deposits; Motorway flow refers to trucks and it

is provided by Autostrade
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Table 2: Rolling forecasting experiment: RMSE.
5 years (2003-2007) 4 years (2004-2007)

VAR Qt−1 Qt Qt+1 Qt+2 Qt−1 Qt Qt+1 Qt+2

Month 3 0.44 0.44 0.37 0.40 0.44 0.39

ADL Qt−1 Qt Qt+1 Qt+2 Qt−1 Qt Qt+1 Qt+2

Month 1 0.30 0.37 0.43 0.30 0.38 0.43

Month 2 0.38 0.44 0.47 0.39 0.44 0.48

Month 3 0.32 0.45 0.47 0.32 0.45 0.48

MIXFAC Qt−1 Qt Qt+1 Qt+2 Qt−1 Qt Qt+1 Qt+2

Month 1 0.26 0.37 0.35 0.24 0.36 0.35

Month 2 0.33 0.37 0.36 0.32 0.36 0.40

Month 3 0.32 0.35 0.35 0.31 0.34 0.39

MIX2FAC Qt−1 Qt Qt+1 Qt+2 Qt−1 Qt Qt+1 Qt+2

Month 1 0.23 0.33 0.36 0.22 0.31 0.33

Month 2 0.30 0.37 0.38 0.30 0.35 0.42

Month 3 0.32 0.36 0.36 0.26 0.35 0.40

FaMIDAS Qt−1 Qt Qt+1 Qt+2 Qt−1 Qt Qt+1 Qt+2

Month 1 0.28 0.36 0.32 0.26 0.34 0.33

Month 2 0.34 0.31 0.37 0.34 0.33 0.39

Month 3 0.34 0.34 0.37 0.33 0.35 0.40

FactorMIDAS Qt−1 Qt Qt+1 Qt+2 Qt−1 Qt Qt+1 Qt+2

Month 1 0.26 0.36 0.34 0.24 0.35 0.34

Month 2 0.33 0.38 0.36 0.32 0.35 0.40

Month 3 0.32 0.36 0.34 0.31 0.35 0.38

Pooling equal weights Qt−1 Qt Qt+1 Qt+2 Qt−1 Qt Qt+1 Qt+2

Month 1 0.24 0.34 0.33 0.22 0.32 0.32

Month 2 0.31 0.34 0.36 0.31 0.33 0.40

Month 3 0.30 0.34 0.35 0.29 0.34 0.38

Note: Each entry represents the RMSE of the rolling forecastof GDP growth rates,

aggregated to the quarterly frequency, by month of the quarter in which the prevision

is made, horizon of prevision and window length. The best values among the models

(except for the pooling) are underlined. The VAR is estimated on a balanced quarterly

sample. The ADL is estimated as documented by Proietti (2006) by using the routines

provided by the author.
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Table 3: Rolling forecasting experiment: MAPE.
5 years (2003-2007) 4 years (2004-2007)

VAR Qt−1 Qt Qt+1 Qt+2 Qt−1 Qt Qt+1 Qt+2

Month 3 0.38 0.34 0.29 0.35 0.33 0.30

ADL Qt−1 Qt Qt+1 Qt+2 Qt−1 Qt Qt+1 Qt+2

Month 1 0.26 0.33 0.38 0.25 0.33 0.37

Month 2 0.33 0.39 0.41 0.33 0.38 0.41

Month 3 0.25 0.40 0.41 0.25 0.39 0.41

MIXFAC Qt−1 Qt Qt+1 Qt+2 Qt−1 Qt Qt+1 Qt+2

Month 1 0.21 0.29 0.27 0.20 0.28 0.26

Month 2 0.26 0.27 0.27 0.25 0.27 0.32

Month 3 0.24 0.27 0.26 0.24 0.26 0.29

MIX2FAC Qt−1 Qt Qt+1 Qt+2 Qt−1 Qt Qt+1 Qt+2

Month 1 0.19 0.25 0.28 0.18 0.23 0.27

Month 2 0.22 0.27 0.29 0.22 0.26 0.33

Month 3 0.25 0.27 0.26 0.21 0.27 0.30

FaMIDAS Qt−1 Qt Qt+1 Qt+2 Qt−1 Qt Qt+1 Qt+2

Month 1 0.20 0.26 0.24 0.18 0.24 0.26

Month 2 0.25 0.23 0.27 0.24 0.24 0.29

Month 3 0.25 0.24 0.27 0.23 0.26 0.30

FactorMIDAS Qt−1 Qt Qt+1 Qt+2 Qt−1 Qt Qt+1 Qt+2

Month 1 0.21 0.28 0.25 0.17 0.24 0.25

Month 2 0.26 0.28 0.28 0.21 0.24 0.30

Month 3 0.25 0.27 0.24 0.21 0.25 0.29

Pooling equal weights Qt−1 Qt Qt+1 Qt+2 Qt−1 Qt Qt+1 Qt+2

Month 1 0.18 0.26 0.24 0.19 0.27 0.25

Month 2 0.22 0.24 0.27 0.25 0.26 0.32

Month 3 0.22 0.24 0.25 0.23 0.26 0.28

Note: Each entry represents the MAE of the rolling forecast of GDP growth rates,

aggregated to the quarterly frequency, by month of the quarter in which the prevision

is made, horizon of prevision and window length. The best values among the models

(except for the pooling) are underlined. The VAR is estimated on a balanced quarterly

sample. The ADL is estimated as documented by Proietti (2006) by using the routines

provided by the author.
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Table 4: Diebold-Mariano test by horizon of previsions and month in the quarter (Student-T).
QUADRATIC VALUES

FaMIDAS versus Mixfac

1step 2step 3step

Month 1 2.6 -0.8 -2.5

Month 2 0.7 -2.7 0.3

Month 3 1.7 -1.5 2.4

Overall 1.4 -1.6 -0.5

FaMIDAS versus Mix2fac

1step 2step 3step

Month 1 3.6 3.4 -1.6

Month 2 4.6 -2.8 -1.6

Month 3 0.8 -1.8 0.8

Overall 2.0 -1.0 -0.8

FaMIDAS versus FactorMIDAS

1step 2step 3step

Month 1 2.8 0.1 -1.7

Month 2 0.8 -2.3 0.4

Month 3 1.4 -1.9 3.8

Overall 1.4 -1.5 0.2

ABSOLUTE VALUES

FaMIDAS versus Mixfac

1step 2step 3step

Month 1 -1.8 -1.9 -2.7

Month 2 -0.3 -2.6 0.0

Month 3 0.4 -2.1 1.2

Overall -0.4 -2.1 -0.4

FaMIDAS versus Mix2fac

1step 2step 3step

Month 1 3.6 3.4 -1.6

Month 2 4.6 -2.8 -1.6

Month 3 0.8 -1.8 0.8

Overall 2.0 -1.0 -0.8

FaMIDAS versus FactorMIDAS

1step 2step 3step

Month 1 -2.2 -1.3 -1.4

Month 2 -0.4 -2.5 -0.2

Month 3 0.0 -2.5 2.2

Overall -0.7 -2.0 0.3

Note: Rolling forecast window: 2003-

2007; Values adjusted by the Newey-West

correction.
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Figure 1: Monthly Indicators and Quarterly GDP- Italy
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Figure 2: Estimated Monthly GDP and common factors .
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Figure 3: Forecasts and fan charts
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Figure 4: Spectral Density of the Monthly GDP.
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