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Abstract 

Recent empirical literature shows that key macro variables such as GDP and 
productivity display long memory dynamics. For DSGE models, we show that long memory 
data can substantially bias deep parameter estimates when a standard Kalman Filter-MLE 
procedure is adopted. We propose a ‘Generalized’ Kalman Filter to deal effectively with this 
problem: our method connects to and innovates upon data-filtering techniques already used 
in the DSGE literature. We show that our method produces more plausible estimates of the 
deep parameters as well as more accurate out-of-sample forecasts for macroeconomic data. 
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1 Introduction1

Over the last few years, DSGE models have become the workhorse of modern macro-
economic modeling and both academics and practitioners often use them to produce
macroeconomic forecasts. The reduced form of these models, obtained once they are
solved for expectations, is usually cast into a state space form, which describes the data
as a (dynamic) linear combination of fundamental exogenous shocks and endogenous
states. Under some general conditions this implies a (restricted) finite order VARMA
representation for the data generating process (DGP).2

The appealing feature of DSGE models is that they are deeply grounded on eco-
nomic theory. They link macroeconomic variables to the microeconomic behavior of
agents, imposing meaningful restrictions on the data generating process, so called ‘cross
equation restrictions’. An important drawback of DSGE models is that their reduced
form representation might be too stylized to possibly capture the persistent dynamics
of the data, as highlighted by Cogley and Nason (1992) and, back in the early days, by
Kydland and Prescott (1982). An important consequence is that when these models are
taken to the data, the value of the estimated deep parameters fail to square well with
available evidence either from national accounting (as for labor share, capital deprecia-
tion) or, more generally, from microeconometric evidence. This issue, as highlighted by
Prescott and McGrattan (2007) (appendix), seriously weakens the use of ‘microfounded
models’.

Earlier attempts to reconcile the theoretical framework and the statistical properties
of the data have mostly focused on modifying cross equation restrictions in order to add
persistence to the simulated economy and have a better match with the data. This led
to models which included a large number of ‘frictions’, endogenous state variables and
exogenous state processes. While still at the forefront, Chari, Kehoe, and McGrattan
(2008) criticized this line of research as ‘lacking discipline’, e.g. weak microfoundations
and economic reasoning. A second line of research has focused on finding the “right”
data transformation to resolve the mismatch between the data and the model implied
dynamics. This has been done by either filtering the data before estimation, for example
with either an HP or a Band Pass filter, or by explicitly including one or more unit roots
in the model. The implications of these procedures are not always crystal clear: Chang,
Doh, and Schorfheide (2007) show that we can not statistically discriminate whether the
‘true’ DGP is better approximated by a model that includes unit roots in the exogenous
states or by one that has more ‘frictions’. At the same time, Canova (2009) and Canova
and Ferroni (2009), show that different data filtering can influence the estimation results

1 We thank Luc Bauwens, Michel Juillard and Raf Wouters for discussing with us a preliminary version
of the paper. We are indebted to Stefano Neri, F. Mihoubi, participants at the ‘Third Dynare Conference’
and SNDE annual symposium for helpful comments at various stages of the paper. We are also grateful to
Richard Baillie, Fabio Busetti, Michele Caivano, Sergio Santoro, Enrico Sette and Giordano Zevi for useful
comments. The usual disclaimer applies here.

2The order of the VARMA depends upon the type of model at hand. In particular it is related to the
order of the AR in the exogenous states as well as the number endogenous states which are treated as non
observed variables, see Ravenna (2007) for more details.
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in a non-trivial way.
In this paper we take a different route from most of previous literature. We pro-

pose a method that does not impose any strong assumptions on the statistical nature
of model exogenous dynamics and makes the structure of a DSGE model consistent
with the persistence of the data at hand. This is done by adding a non-parametric step
to the standard Kalman filter to adapt the VAR(MA) order of the DSGE model to the
data persistence without modifying cross equation restrictions. Our procedure relates
to the Kalman filter in a similar way as the Generalized Least Squares refer to OLS, and
therefore we named it ’Generalized’ Kalman Filter (‘GKF’ heretofore). We show that
our technique is equivalent to filtering the data in a way that optimally removes the
persistence which is left unexplained by the model structure.

The theoretical justification for our approach is the following. The order of the
VAR(MA) representation of the data implied by a DSGE model depends crucially on
the autoregressive order of the exogenous state processes. Highly persistent data might
require models with a large number of lags to approximate accurately their dynamics.
However, on the economic side there is an important drawback in using ‘ad hoc’ high
order exogenous processes. In fact, by formulating a specific type of process for ex-
ogenous states, the researcher also casts assumptions on how expectations about future
variables are formed: if a researcher modifies the order of the exogenous state processes
to get a better fit of the data, the economic interpretation associated with the model
might change dramatically every time a new dataset is considered. Probably this is one
of the main reasons why exogenous state processes tend to be cast in a few conventional
ways, such as simple AR(1) or unit root process, with few exceptions in the literature.
Moreover, using using high order AR processes would not be efficient from an econo-
metric point of view, due to the dramatic increase in the number of parameters to be
estimated, as we discuss in section 3.1

For these reasons our approach aims instead to make the structure of DSGE models
consistent with the degree of persistence of the data at hand, allowing us to handle a
very persistent data generating process, such as in the case of long memory process.
As we show below, this implies that we do not violate the cross-equation restrictions,
which are applied to a set of filtered, rather than to the raw data. The method is also
parsimonious since we use a non-parametric approach which enables us to approxi-
mate the dynamics of persistent processes by estimating few parameters. In particular,
our filter spans from the case of strictly stationary to the most extreme case of long
memory processes. Those have the appealing feature of having non-negligible spectral
mass at low frequencies, ‘the typical spectral shape of economic time series’ (Granger
(1966)), but their approximation with short order ARMA processes might be very poor,
in particular when standard statistical lag-selection criteria are employed (Granger and
Joyeux (1980)).

Our results can be summarized as follows. First we show that a strong degree of
persistence in the data can substantially bias the structural parameters estimates of a
DSGE model when exogenous state dynamics is misspecified with respect to the true
one. Following the thread of McGrattan (2006) and Ruge-Murcia (2007) we recur to
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simulated data. We evaluate the ability of the Maximum Likelihood (ML) methods
to estimate the DSGE structural parameters and find a relevant amount of bias in the
estimates: the stronger the persistence of the data the larger the bias. We show in the
simulation that our approach dramatically reduces the bias in estimated parameters,
which turns out to be negligible even when data are highly persistent. Finally, we turn
to real data, and in line with Ireland (2004), we estimate a standard RBC model on
U.S. data using both the Standard Kalman filter and the GKF. We report different and
more plausible parameter estimates with the GKF than with the standard filter. Further
evidence of the ability of the generalized Kalman filter to better capture the dynamics of
the data, comes from more accurate out of sample forecasts compared to the standard
filter. Finally, as a further check, we show that our method outperforms the case where
a unit root is imposed on the technology shock and the model is estimated in levels.

The plan of the work is the following. In section 2 we present references needed
to apply long memory methods to DSGE models, appendix 9 contains further details
on general long memory processes. In 3 we describe the Generalized Kalman filter
and the related estimation technique. Since the method can be applied also outside
the field of DSGE models, we make this section as self-contained as possible, in order
to be used as a cookbook recipe even by non-DSGE researchers. In section 4 we run
some simulation to evaluate the effects of dynamic misspecification of exogenous states
for the estimation of unobserved endogenous states (e.g. the capital stock) and deep
parameter estimates. In this section we explain how the cross equation restrictions of
the DSGE model come into the picture and how in our approach measurements are
filtered in way which is consistent with the model. In section 5 we estimate a RBC
model using real data for the U.S. economy and we undertake a forecasting exercise as
in Ireland (2004) in section 6. In section 7 we discuss how our analysis relates to the
case of pure unit roots in technology shocks. Some conclusions follow.

2 Background and objectives

In this section we provide some background relating long memory processes and DSGE
models, some more details on long memory processes are in appendix (9).

Long memory processes have been extensively studied in time series analysis and
a good review of their properties can be found in Robinson (2003) and Baillie (1996).
Their main characteristic is an autocorrelation function that decays slowly to zero: com-
pared to ARMA processes, it decays hyperbolically rather than exponentially. A well
known class of long memory processes, introduced by Granger (1980), is the Autore-
gressive Fractional Moving Average Process of order d (ARFIMA(p,d,m)), which is de-
fined as

(1− L)d φ (L) yt = B(L)et, (1)

where et is a white noise process with variance σ2, φ (L) is a lag polynomial of finite
order p, B (L) is a lag polynomial of order m and d ∈ [0, 1]. The basic building block of
fractionally integrated processes is called the ‘fractional white noise’: it is a special case,
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defined by setting p,m = 0 in (1). Since d can take any value in the interval 0 and 1,
ARFIMA processes fill the gap between a strictly stationary process (I (0)), when d = 0,
and a unit root process, when d = 1. For 0 < d < 0.5 the process is “stationary”with
hyperbolic rather than exponential decay of the autocorrelation function. When 0.5 <
d < 1 the process is non stationary (the squared sums of its autocorrelations do not
converge), but, differently from unit root processes, it is still mean reverting. When
d < 0 similar properties hold, with the difference that the autocorrelation function
oscillates around zero in a way which shows an ‘overdifferencing’ pattern of the time
series.

Several empirical studies argue that many macroeconomic variables are better de-
scribed by long memory rather than AR(I)MA models: Diebold and Rudebusch (1989)
were the first to report evidence of long memory in many macroeconomic time series;
their results were recently confirmed by Mayoral (2005) with an updated version of the
dataset. Abadir, Caggiano, and Talmain (2006) show that long memory processes fit
better the dynamics of the Nelson and Plosser dataset compared to ARIMA processes.
Gadea and Mayoral (2006) provide robust empirical evidence supporting the hypothe-
sis fractional integration for the inflation rates of the OECD countries while Altissimo,
Mojon, and Zaffaroni (2009) reach the same conclusion for the euro area inflation rates.
Evidence of long memory dynamics for hours worked has been found by Gil-Alana
and Moreno (2006).

The main theoretical reason for long memory behaviour in macroeconomic data
is the aggregation of heterogenous dynamic processes: fractional integrated process
can be generated by linearly aggregating heterogenous ARMA models (Granger (1980)).
More recently, Haubrich and Lo (2001) and Abadir and Talmain (2002) show that long
memory processes can be produced in microfounded macroeconomic models with dif-
ferent sectors. In particular, Abadir and Talmain show that introducing heterogenous
sectors in a monopolistic competition DSGE model leads to a non-linear long memory
process for the aggregate output whose autocorrelation function reproduces the empir-
ical shape found on the US GDP.

2.1 Background: DSGE and long memory

This section discusses our approach to incorporate potentially persistent data into the
state space representation of a DSGE model. Consider a scalar state space model:

θt+1 = Φθt + εt+1 (2)
yt = Hθt, (3)

where θt is an (unobserved) state variable, modeled by an AR(1) process; yt is the mea-
surement variable and the innovation εt is a normal i.i.d. process with standard devia-
tion σε. The dynamic properties of the data yt closely depend on the specification of the
transition equation for θt, in particular to its autoregressive order. For the case at hand,
it is straightforward to show that yt has an autoregressive representation of order one:

yt(1− ΦL) = Hεt.
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The reduced form of DSGE models can be represented in a state space form; for in-
stance, 2 - 3 is consistent with the case of DSGE models having only one unobserved ex-
ogenous state θt and one observable variable where the matrices Φ ≡ Φ(ψ), H ≡ H(ψ)
are derived from the solution of the model as functions of some deep parameters ψ. In
the more standard case (e.g. an RBC model) of one unobserved endogenous state vari-
able (e.g. capital) and one AR(1) exogenous state (e.g. productivity), the measurement
yt (e.g. the GDP) would follow a (restricted) ARMA(2,1) process (see Ravenna (2007)).

A way to account for strong persistence in the yt is by allowing the innovations
εt to be a long memory process. Assume for example the following fractional noise
representation:

(1− L)d εt = et. (4)

with et ∼ IID, then by construction the exogenous variable θt is a fractional autore-
gressive process,

(1− ΦL) (1− L)d θt+1 = et+1, (5)

and the measurements have the following representation:

yt(1− ΦL)(1− L)d = Het, (6)

which is a ARFIMA(1,d,0) process.
As we show in the paper, this way of introducing long memory in a state space

allows us to account for the persistence of the data at hand without any implication
for the structural cross-equation restrictions of the DSGE model. Broadly viewed, our
approach connects to well-established methods in DSGE modelling based on the idea
of data-filtering. In fact, as discussed in details in section 4, the gist of our approach is
to introduce a new variable ỹt defined as

ỹt =
∞∑

j=0

ljyt−j ,

where the weights {lj}∞j=0 are function of the persistence of the original data which is
not captured by the model structure3 and to estimate the model using this new variable:

ỹt(1− ΦL) = Het. (7)

7 embeds the same structure (Φ, H) of the original model but the potential ‘excess’
persistence of the data is removed.4

An alternative and more straightforward strategy would be to directly increase the
order of the exogenous state process and use conventional state space techniques to es-
timate the enlarged set of parameters. However, adding (too many) ad hoc lags would

3The fractional noise representation used in this section is merely for expositional convenience and it
does not play any role in our estimation strategy. Our method, and in particular the estimation of the
weights lj , can be applied in both the case of errors being fractionally integrated or following even more
general types of long memory processes. For the case of fractionally integrated processes, the appendix
(9) shows how the weights lj relate to the parameter d.

4This is implemented with an iterative estimation procedure.
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change the way agents form expectations about future variables, every time a new data
set is considered. This would make the model exposed to some type of Lucas’ critique.
Some further discussion of important technical estimation issues of this alternative ap-
proach are relegated to a later section, (3.1).

3 Generalized Kalman Filter

In this section we introduce a modification of the Kalman Filter that can be used when
the data persistence is unknown and possibly very strong. We start presenting the equa-
tions of the generalized filter and assume that the autocorrelation structure of the data
is known. We remove this assumption in section 3.1 where we describe our estimation
strategy.

Consider the following state-space model:

θt+1 = Φθt + εt+1 (8)
yt = Hθt + vt (9)

E
(
εtε

′
t+k

)
=

{
Q k = 0
0 otherwise

} (10)

E
(
vtv

′
t+k

)
=

{
R k = 0
0 otherwise

} (11)

The n−dimensional state θt in the transition equation is modeled as an autoregressive
process with innovation εt, Φ is its n × n transition matrix and yt a l−dimensional
vector of measurement variables, related to the states via an n×l matrix H. vt is a vector
of measurement errors, also of dimension l. Q is the variance covariance matrix of εt

while R is an l×l diagonal matrix for the variance covariance matrix of the independent
measurement errors.

Although we assume, for expositional simplicity, to have only one state variable in
the θt vector, in the remaining part of this section we explain our methodology by refer-
ring to a generic state space model of type (8-11), our approach can be easily extended
to more general cases. To provide a short reference here, the simple state space (8-11)
refers to a DSGE where θt corresponds to exogenous states (e.g. total factor produc-
tivity), commonly modelled as autoregressive processes of order one. In section 4 we
examine how to apply our method to DGSEs and to extend the state space in order to
encompass the case of one endogenous state variable (e.g. capital).

In (8-11) the state variable θt is assumed to be not observed. When the transition and
measurement equations are linear and the shocks εt and vt are normally distributed, the
Kalman filter provides the best estimate of the state, conditionally on the assumed au-
toregressive process of the transition equation. In the following discussion we assume
that both linearity of the model and normality of the shocks are good approximations
of the data generating process.5

5This is also consistent with what is typically done in the DSGE literature, where models are typically
linearized around their steady state and normal shocks are considered.
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Define:

θt|t−1 = E (θt|=t−1) ,

Pt|t−1 = E
[(

θt − θt|t−1

) (
θt − θt|t−1

)′]
,

respectively the prediction of the state θt based on all information up to t − 1 and its
dispersion matrix, then the Kalman filter equations are given by:

θt|t−1 = Φθt−1|t−1, (12)
Pt|t−1 = ΦPt−1|t−1Φ

′ + Q, (13)
νt ≡ yt −Hθt|t−1, (14)

Ft = E
[(

yt −Hθt|t−1

) (
yt −Hθt|t−1

)′] = HPt|t−1H
′
+ R, (15)

Kt = Pt|t−1H
′
t

(
HPt|t−1H

′
+ R

)−1
, (16)

θt|t = θt|t−1 + Kt

(
yt −Hθt|t−1

)
, (17)

Pt|t = (I −KtH) Pt|t−1, (18)

Equation (12) and (13) are respectively the state prediction and its variance, given
the information set at t−1. Equation (14) defines the one-step-ahead prediction error of
the measurements and (15) its dispersion matrix. This group of equations is called the
projection step, in which states are predicted forward in time, leaving the information
set of the observer constant. The last block of equations gives the so called information
updating step in which the projection of the states is revised due to the arrival of time t
information. The Kalman gain, (16), is a weighting matrix that minimizes the variance
of the state forecast error, given available information:

Kt ≡ arg min
Kt

E
[(

θt − θt|t−1 −Kt

(
yt −Hθt|t−1

)) (
θt − θt|t−1 −Kt

(
yt −Hθt|t−1

))′]

and it is used to extract information from time t prediction errors νt. By construction,
past predictions θt|t−1 and the constructed forecast errors νt are assumed to be orthog-
onal, an assumption which holds true when the transition equation is not misspecified.
Finally, Pt|t in (18) is the variance covariance matrix of the state conditional on informa-
tion at time t.

Equations (12) to (18) represent a system whose parameters can be estimated by
maximum likelihood. In fact, if we assume that the innovations {et} and {vt} are mul-
tivariate Gaussian, then the distribution of the yt conditional on the state θt and the
information set at time t− 1, is given by

fyt|θt,=t−1
(yt|θt,=t− 1) = (2π)−

1
2

∣∣∣HPt|t−1H
′
+ R

∣∣∣
− 1

2

exp
{
−1

2
(
yt −Hθt|t−1

) (
HPt|t−1H

′ + R
)−1 (

yt −Hθt|t−1

)′}

(19)
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which can be maximized with respect to the unknown parameters.
When the dynamics of the state process are misspecified, (e.g. the order of the au-

toregressive process is too short to approximate the DGP), the state space model de-
scribed above can no longer be taken as a good approximation of the data generating
process: the stronger the persistence in the original DGP, the more severe this problem
is likely to be. As a result, both the projection step and the updating step, as designed
in the standard Kalman filter will fail to be optimal and the parameter estimates will be
biased. We cope with this problem by setting up a state space model where we allow εt

to be serially correlated,

θt+1 = Φθt + εt+1 (20)
yt = Hθt + vt (21)

E
(
εtε

′
t+k

)
=

{
σ2ρε(k) ∀k <= m

0 otherwise
(22)

Ωm = σ2




1 ρε (1) · · · ρε (m)
ρε (1) 1 · · · ρε (m− 1)

...
...

. . .
...

ρε (m) ρε (m− 1) · · · 1


 (23)

E
(
vtv

′
t+k

)
=

{
R k = 0
0 otherwise

(24)

where σ2 is the variance of εt and Ωm is the matrix containing the autocorrelation struc-
ture of εt, {ρε (k)}m

k=1 , up to lag m.
This set up can be handled in such a way to reconcile it with the standard approach,

by constructing a ‘bridge variable’ which is an AR(1) with i.i.d. innovations, as follows:

1. Consider the Cholesky decomposition of Ωm, namely

Ωm = σ2ΓΓ′

where Γ is a lower triangular matrix with elements {γi,j}m+1
i,j=1.

2. Invert the matrix Γ and define L ≡ Γ−1. Construct using the original states θt

(all vectors are denoted with bold typeset in the remaining part of this section) a
vector of transformed variables zt defined as

zt =




zt−m
...

zt−1

zt


 =




l0,1 0 · · · 0

l1,1 1 · · · ...
...

...
. . . 0

lm,1 lm,2 · · · 1







θt−m
...

θt−1

θt


 ≡ Lθt (25)

3. By construction, the transformed variable zt ≡ θt+
∑m−1

j=0 lm,m−jθt−j−1 is an AR(1)
process, i.e.

zt+1 = Φzt + et+1, such that holds: E(et | zt, zt−1, . . . , zt−m) = 0, (26)
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this step removes any autocorrelation in the residuals in equation (20), as in a GLS
procedure; we refer to that as the ‘GLS transformation’.

Coefficients of the L matrix, denoted as {lm,m−j}m−1
j=0 , can be thought of as optimal

weights such that E (et |zt ) = 0 is satisfied when regressing zt on its lagged value. This
is the moment condition that we implicitly impose in the next section when estimat-
ing the parameters of the model. It can be immediately seen that if the εt are serially
uncorrelated, then the coefficient {lm,m−j}m−1

j=0 are all equal to zero 6 and θt is equal to
zt which leads us back to the standard case. We are now able to define what we call
henceforth the Generalized State Space model.

Definition 1 Let’s consider the variables defined in the state space model (20-24), where vt

is a (vector) of independent white noise with (diagonal) variance matrix R. The generalized
state-space model is then defined as




zt−m+1
...

zt+1


 =

[
0(m) I(m)

0
′
(m) Φ

]


zt−m
...
zt


 +




0(m)

et+1


 (27)

or

zt+1 = Ψzt + et+1

θt = zt +
m−1∑

j=0

γm,m−jzt−j−1 =
[

0m−1 1
]′

Γzt = D
′
mΓzt (28)

yt = Hθt + vt, (29)

E
(
ete′t

)
=

{
σ2DmD

′
m = Q̃ (30)

E
(
vtv

′
t

)
= {R (31)

where vectors are denoted with a bold and scalars with normal typeset: consistently with previ-
ous notation yt is an 1× l vector, while zt is an m× 1 vector whose last element is zt. 0(m) is
a zero (column) vector of m-elements and γm,m−j corresponds to the m,m − j elements of the
matrix Γ, Dm is a vector selecting the last row in the Γ matrix.

The main difference with the standard state-space models is given by equation (28)
which maps the vector zt ≡ [zt, . . . , zt−m] into the scalar θt.7 This can be considered as
a ’bridge equation’ that embodies all the information on the autocorrelation function of
shocks εt and transforms them into the i.i.d. innovations et. Once again, if the εt are
serially uncorrelated, then the generalized state space model reduces to the standard
state space model.

We are now ready to write the Kalman filter equations for the state-space model
defined in (27-31). Following previous notation and using the generalized state space

6since then ΓΓ′ = I
7The filter by construction requires that we drop the first m observation in order to avoid any effect of

the intimal condition at the beginning of the sample.
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model, in particular equation (28 ), it is easy to construct prediction errors for the state
θt as function of prediction errors of the GLS-transformed variable zt and the weighting
matrix Γ, as follows:

θt − θt|t−1 =
(
zt − zt|t−1

)
+

m−1∑

j=0

γm,m−j

(
zt−j|t−j − zt−j|t−j−1

)
= D

′
mΓ

(
zt − zt|t−1

)
,

(32)
where the vector of filtered states is defined as zt|t−1 ≡ [zt|t−1, . . . zt−m+1|t−m] so that
no smoothing process of the past states is involved. From the state prediction errors all
moments which are relevant for the Kalman filter can easily be derived. For example
the prediction error variance for θ is written as:

P θ
t|t−1 = P z

t|t−1 +
m−1∑

j=0

γ2
m,m−jP

z
t−j−1|t−j−2 = DmΓ

′
P z

t|t−1ΓD′
m, (33)

which depends on matrix Γ and it is generally larger than the matrix Pt|t−1 defined in
the standard Kalman filter (13).

The complete Kalman filtering equations can then be written as follows:

zt|t−1 = Ψzt−1|t−1, (34)

P z
t|t−1 = ΨP z

t−1|t−1Ψ
′
+ Q̃ , (35)

θt|t−1 = D
′
mΓzt|t−1, (36)

P θ
t|t−1 = DmΓ

′
P z

t|t−1ΓD′
m, (37)

Ft = E
[(

yt −Hθt|t−1,
) (

yt −Hθt|t−1

)′] = HP θ
t|t−1H

′
+ R,

= HDmΓ
′
P z

t|t−1ΓD′
mH

′
+ R, (38)

KG
t = P z

t|t−1H
′
tD

′
mΓ

(
HDmΓ

′
P z

t|t−1ΓD′
mH

′
+ R

)−1
, (39)

zt|t = zt|t−1 + Kt

(
yt −HD

′
mΓzt|t−1

)
, (40)

θt|t − θt|t−1 = = D
′
mΓ

(
zt|t − zt|t−1

)
, (41)

P z
t|t = (Im −KtH)P z

t|t−1. (42)

The first two equations (34-35) correspond to the projection step applied to the trans-
formed variable vector z rather than the original θ. The whole vector z is projected for-
ward by using the matrix Ψ. Since the GLS transformation is a linear filter, coefficients
in the Ψ matrix are the same as for the original untransformed state variable θ (e.g.
the Φ), after taking into account lagged states as in our generalized state space model.
The matrix P z

t|t−1 denotes the variance covariance matrix for the whole vector zt|t−1,

while P z
t|t−1 is its submatrix related only to zt|t−1. If the {εt}T

t=1 are uncorrelated then
Γ = Im and θt = zt; we are back to the standard Kalman filter. The remaining main
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difference with the standard filter lies in how the Kalman gain is defined. As equation
(39) displays, our filter solves the following problem:

KG
t ≡ arg min

KG
t

E

[(
zt − zt|t−1 −KG

t

(
yt −HD

′
mΓzt|t−1

))

(
zt − zt|t−1 −KG

t

(
yt −HD

′
mΓzt|t−1

))]
(43)

We use it to update the GLS transformed state, zt|t−1, by using prediction errors
defined on the original data vector y. The Kalman gain KG

t defined in (39) will be
larger than its equivalent in the standard Kalman filter due to the larger P θ

t|t−1. This
is because the generalized filter embodies all the information contained in the auto-
correlation function of the state θt and consequently gives more weight (compared to
the standard filter) to the observed variable when estimating the state variable at time
t given the information at time t − 1. On the other hand, the standard Kalman filter,
by imposing a specified AR formulation to the state dynamics, would discard all the
residual persistence and regard it as a noise component (e.g. measurement error) of the
observed variable, as we discuss in section 4.

A problem of our generalized state space model is that in order to approximate per-
sistent dynamics, a large number of lags m should be introduced in estimating the Ωm

matrix . A one-step estimation of such a parametric model by maximum likelihood
is known to be likely to be troublesome. With this respect, the interested reader may
want to check the summary of the maximum likelihood procedure (Sowell (1992)) given
in Baillie (1996). In the next section we present an approach, borrowed from Abadir
and Talmain (2005), which allows to estimate parsimoniously (e.g. few parameter es-
timates are needed) the autocorrelation structure of the residuals even assuming very
long processes. This allows us to apply the Generalized State Space Model described in
this section.

3.1 Estimation

In general the autocorrelation matrix Ωm is unknown and it can be derived either from
assumptions on the nature of the shock, for example if we assume it is a fractionally
integrated process, we can estimate the parameter d, and infer from that the autocorre-
lation structure, or by approximating the autocorrelation function of the innovations by
using a large number of parameters. The former way is not very convenient in a state
space model,8 while the latter is unfeasible in the case of highly persistent shocks since
we would need a large number of parameters to be estimated by Maximum Likelihood.

Following Abadir and Talmain (2005), we take a different path and estimate ρε (k)

8Furthermore since d is not a structural parameter, its estimation does not add any additional informa-
tion from an economic point of view.
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by fitting a functional form to the ACFs of the residual εt:

ρε (k) ' 1
(1 + a1ka2)a3

(44)

where a1, a2 and a3 are parameters to be estimated. This functional form9 was derived
in Abadir and Talmain (2002) and corresponds to the decay rate of the ACF of a long
memory process which includes the fractional integrated processes as a special case.

Using 44 and assuming that the innovations et+1 and vt are normally distributed,
we can estimate the parameters of the generalized filter by maximizing the following
likelihood function

fyt|θt,=t−1
(yt|θt,=t−1) = (2π)−

1
2

∣∣∣HP θ
t|t−1H

′
+ R

∣∣∣
− 1

2

exp
{
−1

2
(
yt −Hθt|t−1

) (
HP θ

t|t−1H
′
+ R

)−1 (
yt −Hθt|t−1

)′}

= (2π)−
1
2

∣∣∣HDΓP z
t|t−1Γ

′
D′H

′
+ R

∣∣∣
− 1

2

exp
{
−1

2

(
yt −HD

′
Γ
′
zt|t−1

)(
HDΓP z

t|t−1Γ
′
D′H

′
+ R

)−1

(
yt −HD

′
Γ
′
zt|t−1

)′}

(45)

where

ΓΓ′ = σ2Ωm;
Ωm = {ωi,j : ωi,j = ρε (k) , k = |i− j| , i, j = 1, ...,m}

ρε (k) =
1

(1 + a1ka2)a3

with respect to the parameters of the filter matrices and the parameters of the functional
form, implicitly requiring the moment condition E (et |zt ) = 0 to be satisfied.

This approach can be seen as a generalized method of moments estimation with
a “GLS type” correction where Γ′ is an optimal weighting matrix such that et and zt

are uncorrelated. In the next section, we show through simulation the ability of our
approach to estimate the structural parameters of a simple DSGE model under the hy-
pothesis that the DGP of the state is a fractional AR process.

9This functional form has been used in a number of papers. Abadir, Caggiano, and Talmain (2006)
showed that it can capture well (and better than ARMA processes) the dynamic properties of the variables
in the Nelson and Plosser dataset; Abadir and Talmain (2005) used it to construct a GLS approach to
effectively deal with the uncovered interest rate puzzle; Moretti (2007) applied it in an Engle and Granger
framework to test for cointegration between very persistent time series.
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4 The artificial DSGE economy

In this section we evaluate the accuracy of our approach in estimating a DSGE model
in which the Kalman filter reconstructs both the path of an exogenous state (e.g. the
capital stock) and that of an endogenous state (e.g. the capital stock). We show that
when the persistence of the data at hand is unknown and stronger than what assumed
by the researcher, the performance of the standard Kalman filter in reconstructing of
the unobserved endogenous states (e.g. the capital stock) deteriorates and parameter
estimates can be very biased. Conversely, that our generalized filter is able to effectively
cope with the issue at hand.

Our experiment is based on simulated data in line with the recent literature (see for
an example Ruge-Murcia (2007)). The framework is as simple as possible, we choose the
Ramsey model which is the core of many, if not all, DSGE/RBC models. We introduce
the misspecification by simulating a Ramsey model where the technology is an autore-
gressive process of order one with an innovation that follows a fractional noise (the
process is described in the appendix). A fractional noise allows us to easily control the
degree of persistence by changing a single parameter, the order d of fractional integra-
tion; furthermore, it is also a good way to check that our method is able to approximate
processes that, by nature, do not have a finite order state space representation.

A simple Ramsey model is sufficient to highlight one of the main points of the pa-
per: unaccounted persistence in exogenous state processes distorts the path of the un-
observed endogenous state variables and leads to substantial bias in the parameter esti-
mates. The more persistent is the data generating process the larger is the root mean
square error of the estimated capital stock. At the same time, the estimated deep pa-
rameters, which determine the reduced form parameters in the transition equation for
capital accumulation, are more and more biased with respect to the true ones.

For each sample we first estimate the unobserved states and the deep parameters by
the means of the usual Kalman filter, documenting the effects of dynamic misspecifica-
tion. Then we apply our Generalized Kalman Filter to the same set of data and show
that the estimation bias decreases significantly compared to the standard case. A fur-
ther robustness check is conducted in subsection 7.1 where we investigate the extent to
which long memory dynamics can be tackled by introducing a unit root in technology.10

Our set-up features a productivity shock (at) as unobserved exogenous state, capital
(kt) as unobserved endogenous state, consumption (ct), output (yt), the real interest rate
(rt) as measurements.11 We simulate the Ramsey model to generate 1000 artificial data
samples each one of 170 observations for consumption, output and the real interest rate.
We repeat this procedure for each integer degree of fractional order d ranging from 0.1
to 0.9.

10In this case, in order to simulate the data, we use the same model used for real data estimation. We
postpone the discussion accordingly. This also makes the presentation of the unit-root case more self
contained.

11As there is a single structural shock it would also be possible to estimate the model using only one
series, e.g. the GDP. Here we stick to the treatment of Ireland (2004), where one shock, technology, is used
as the source of comovement of variables
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In the following we provide first a short summary of the model we use and we
explain how our method is applied to it. We show that our method is equivalent to
building a filter on the data which removes the ’excess persistence’, which is left unex-
plained by the model. Simulation results are then provided in subsection 4.1.

The model can be summarized as a standard (decentralized) market problem as
follows. Households choose consumption C and investments I such as to maximize
their objective function:

U0 = E0

∞∑

t=0

βt {log (Ct)} , (46)

subject to a budget constraint:

Ct + It ≤ Wt + RtKt−1, (47)

where Wt is the real wage rate and Rt is the real interest rate on previous period capital
stock Kt−1; since household face no leisure choice, we normalized labor to one.

Capital is set by the households with the standard law of motion, involving the
capital depreciation parameter δ:

Kt = (1− δ)Kt−1 + It,

where no growth trend in productivity is assumed. Firms use capital according to the
production function:

Yt = AtK
α
t−1, (48)

where technology evolves as:

log(At) = ρ log(At−1) + εt, (49)

where εt is considered as i.i.d. by the households with a constant variance var(εt) = σ2
ε .

Using equation (47), the absence of profits, capital accumulation can be rewritten
as:

Kt = (1− δ)Kt−1 − Ct + Wt + RtKt−1, (50)

The first order necessary condition associated with the maximization of the objec-
tive (46) subject to (50) is given by the standard Euler equation:

C−1
t = Et

[
β(1 + Rt+1 − δ)C−1

t+1

]
(51)

Firms rent capital Kt by paying a rental price Rt and maximize their profits by
choosing capital such that the real interest rate equals the marginal productivity of cap-
ital minus the depreciation rate δ:

Rt + δ = αAtK
α−1
t−1 (52)

Finally we have the goods market clearing condition

Yt = Ct + It.

18



The competitive equilibrium for the economy is the sequence of prices {Rt, Wt}∞0
and quantities {Yt,Kt, Ct}∞0 such that firms maximize profits, agents maximize utility
and all markets clear. This amounts to estimating the system of equations given by the
log-linear approximation of (48-52). When calibrating the model for the simulations
deep parameters are set in a way which is consistent with the previous literature. The
capital share α is set equal to 0.33; the preference term β is equal to 0.99 which corre-
sponds to a real interest rate of 0.04 on annual basis; the depreciation rate δ is set equal
to 0.025; the autoregressive term is set to 0.9. To gain on clarity σ2

ε is set equal to 1.12

In order to remove any singularity in the system of equations we add two i.i.d. normal
measurement errors with zero mean and standard deviation equal to 0.01 to consump-
tion and the real interest rate. To keep the estimation process as clean as possible we do
not introduce measurement errors as autocorrelated processes in order to ensure tech-
nology shock is the only dynamic factor in the model. The model is then log-linearized
around its steady state 13 and solved under the assumption that innovations εt are i.i.d.

By denoting log-deviations from the steady state with lower case variables, we write
the model solution in the following form:

at+1 = ρat + εt+1, (53)
kt+1 = pkkkt + qkaat, (54)

yt = mykkt + nyaat, (55)

For clarity we separate here exogenous and endogenous state variables, respectively

at ≡ ln(At/A
ss), kt ≡ ln(Kt/Kss),

and the vector yt collects measurements:

yt = [ln(Ct/Css), ln(Yt/Y ss), ln(Rt/Rss)].

The {p, q, m, n}matrices describe the (linear) rational expectation solution of the model,
the so called policy functions of the model. p and q are in this case scalars which denote
how endogenous state variables respond respectively to lagged endogenous states and
to exogenous states. Matrices m, n (3× 1) denote how measurements react to the same
set of variables.

It is straightforward to cast the model in a state space representation: define a vec-
tor of state variables, θt ≡ [at, kt], stack the equations (53-54) to form the transition
equations of the state space. Add a set of measurement errors to (55) to specify the
measurement equation. Finally, we can use the Kalman Filter innovations to estimate
parameters.

When the unobserved innovations εt are serially correlated, equation (53) is not a
good approximation of the exogenous state dynamics. Our Generalized State Space

12We checked that results are unchanged by setting more realistic values.
13The steady state values of the variables are denoted with ss
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framework deals with this problem as follows. Append an equation to the state space
model describing the residuals’ autocorrelation:

at+1 = ρat + εt+1, (56)
kt+1 = pkkkt + qkaat, (57)

yt = mykkt + nyaat, (58)
E[εtεt+k] = ρε(k), k = 1, . . . ,∞ (59)

where the autocorrelations ρε, up to lag m, are estimated using the functional form in
44. Then, as in section 3, invert the cholesky of the variance matrix of εt and get a set of
coefficients {lm,j}m−1

j=1 . Define a new exogenous variable:

ãt = at −
m−1∑

j=1

lm,jat−j , (60)

where ãt corresponds to the ‘bridge variable’ defined in section (3) and {lm,j}m−1
j=1 to the

last row of the matrix L in the generalized state space model (25).14 Once the bridge
variable is described, one can form the generalized state space (27–31), use the formulas
in (34–42) in section 3.1, to respectively build the filter and undertake the estimation.
The economic interpretation of this approach is now given. First, notice that the ‘GLS-
transformed’ variable ãt is now by construction an AR(1) process. Then since the GLS
transformation is a linear filter, it can be thought as applying to all variables through
the exogenous shock ãt resulting in the following model:

ãt+1 = ρãt + ηt+1, (61)
k̃t+1 = pkkk̃t + qkaãt, (62)

ỹt = mkak̃t + nyaãt, (63)

Where ηt ∼ IID and variable x̃ is the GLS-filtered version x. The filtered capital stock
k̃t and measurements ỹt are defined as:15

k̃t = kt −
m−1∑

j=1

lm,jkt−j , (64)

ỹt = yt −
m−1∑

j=1

lm,jyt−j . (65)

Since the GLS-transformation is a linear filter, our approach is equivalent to apply-
ing the cross equation restrictions, defined in the matrices (p, q, m, n), to the set filtered

14Here ãt and at play respectively the role of zt and θt in the equation zt = θt +
Pm−1

j=0 lm,m−jθt−j−1.
15There is a little abuse of notation since yt is a vector; in this case it is sufficient to stack the same filter

in different columns, one for each variable of vector yt.
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variables. In other words, our method can be seen as a way of filtering the data and
applying model restrictions to filtered, rather than to raw, data. In this respect, the filter
endogenously account for the part of the data not explained by the model and corrects
variables consistently to that information.16 The same type of logic, albeit within a dif-
ferent technical framework, is followed by Cogley and Sbordone (2008) where the cross
equation restrictions (e.g. the New Phillips curve in their application) hold for an infla-
tion gap obtained using a time varying trend inflation. Our framework is also related
to the recent work of Canova and Ferroni (2009) where they show that different data
filtering lead to different behaviour of the structural shocks of the model (e.g. in some
cases there will be too much persistence left, in others some signs of overdifferencing).
For these reasons, they propose the “naive” approach to combine in the measurement
equation several filtered versions of the same variable (e.g. Beveridge Nelson filtered,
HP and others) aggregated with estimated weights in order for residuals of the Kalman
filter to be closer to i.i.d. Finally a way of dealing with persistence in DSGE models
which shares some common points with ours can be found in Gorodnichenko and Ng
(2009), who propose to treat the reduced form of the DSGE model with the filter de-
fined by the quasi difference of exogenous states, e.g. 1− ρL, where ρ is the persistence
parameter of AR(1) process of the exogenous state and L is the lag operator.

4.1 Simulation results

We simulate 1000 artificial data for DSGE model described in the previous section. For
each sample, we estimate the parameters and the unobserved state variables first with
standard likelihood methods (see 19) and then with the generalized state space ap-
proach in sections 3-3.1. The functional form (44) is used to recover the autocorrelation
matrix Ωm of the residuals of technology, as explained in 3.1, then its Cholesky factor-
ization to recover the weights {lm,j}m−1

j=1 contained in the matrix L defined above. We
set the number of lags m equal to 30 since it seemed sufficient to successfully approxi-
mate fractional integration behaviour.

Table one reports simulation results for the standard filter. The second column
shows the true model parameters, while in the following ones we report the sample
means of each estimated parameter for different degree of persistence (e.g. an increas-
ing d). The last two rows report our assessment, measured by the Root Mean Square
Error, of how well the two filters are able to reconstruct the true unobserved state vari-
ables (the rows are denoted with at|t and kt|t, the RMSE refers to the error at − at|t and
kt − kt|t).17 states example annual also reliable the Results show that, when the per-
sistence of exogenous states is higher than what was assumed by the researcher, due
to long memory, the reconstruction of the unobserved states will be poor. In the es-
timation process, deep parameters which determine the persistence of the transition

16As our procedure improves the fit of any model, a model evaluation criterion might be to assess how
much of the raw data is explained by the model and how much is left to the filtering device. We leave this
question to further research.

17For each simulation sample we estimate the structural parameters of the model
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equation will tend to be biased in order for the reduced form of the model to try to
match the persistence in the data.18

Fractional Integration Parameter d

True 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

α 0.330 0.3478 0.3556 0.3645 0.3704 0.3702 0.3768 0.4109 0.4605 0.5483
δ 0.025 0.0266 0.0272 0.0279 0.0279 0.028 0.0285 0.0309 0.0343 0.0407
β 0.99 0.9875 0.988 0.9881 0.991 0.9901 0.9903 0.9902 0.9923 0.9954
φ 0.9 0.8903 0.8967 0.9004 0.9066 0.9067 0.9078 0.9126 0.9226 0.9388
σe 1 1.0404 1.0404 1.1358 1.2554 1.4744 1.703 1.8521 1.9403 1.9852
σv1 0.01 0.1122 0.1384 0.0898 0.0698 0.0344 0.0258 0.0211 0.0211 0.0218
σv2 0.01 0.1064 0.1314 0.1228 0.1289 0.1237 0.1359 0.2217 0.3609 0.6956

RMSE
at − at|t 1.0439 1.0967 1.1964 1.3862 1.7154 2.4849 5.6623 11.1167 19.6298
kt − kt|t 0.3827 0.4714 0.5357 0.6491 0.8617 1.5441 5.3139 10.8163 19.0695

Table 1: Results for degree of fractional integration d: Standard Kalman filter

Our experiment delivers the following results. First, the bias in parameter estimates
is relevant and it tends to increase as the persistence in the simulated data becomes
stronger. For d larger than 0.5, the bias becomes quite substantial, especially for the
capital share α, the standard deviation of the shock σe, e.g. the innovation on produc-
tivity, and the standard deviation of measurement errors. In particular, for large values
of d the estimates of the capital share are similar to what found by Ireland (2004) on real
data. The upward bias in the capital share is also related to the distortion in the capital
dynamics; in fact, a value of α above its true value increases the return on capital and
consequently it makes the capital more persistent in the reduced form. In our simu-
lations this effect is partially compensated by an increase in the capital depreciation δ
(which lowers the persistence of capital) but the resulting errors in the reconstruction of
capital dynamics are still considerable. Further experiments showed that the increase
in δ is mostly due to the inclusion of the real interest rate among the measurements; this
variable is difficult to grasp in real data and it is almost never included in the dataset
of a DSGE model.19 Second, we find that the accuracy of the standard filter in recon-
structing both the exogenous at|t and the endogenous state kt|t is poor (RMSE shown in
the last two rows of Table one) and it gets much worse as the parameter d increases. As
both components are typically unobserved, this check is only possible by using simu-

18The actual pattern of deep parameter estimates is hard to tell in advance since it will depend on which
measurements are used. If the researcher uses several measurements which are deeply correlated with the
unobserved state one might expect a better estimate of the deep parameters in spite of the misspecification.
We leave this point, to further research.

19When we estimate a similar model on U.S. data and we do not include a real rate measure among the
observables, the estimate of the depreciation rate is much lower than what one should expect, see section
5.2 for discussion. We leave a more complete assessment of which variables should be selected in the
measurement equation of a DSGE model to future research.
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lated data, but it is important as, in general, the results of many empirical papers may
depend on how unobserved states are reconstructed.

Our third result is that, as far as d increases, the variance of measurement errors also
tends to increase: persistent dynamics is discarded as measurement error. One caveat
holds for this result: a further investigation showed us that the pattern of measurement
errors estimates depends by few very large estimates that bias upwards the mean of the
simulation samples.20 not depend on If we remove those samples, the estimates of all
other parameters are almost unchanged, but we get an almost accurate estimate for σv1

and a clearer pattern for σv2 (e.g. its bias rises progressively as d increases): In Table 3

True σv2 0.01
d = 0.1 0.0101
d = 0.2 0.0128
d = 0.3 0.0199
d = 0.4 0.0213
d = 0.5 0.0254
d = 0.6 0.0311
d = 0.7 0.1129
d = 0.8 0.2637
d = 0.9 0.5756

Table 2: Estimates for σv2 after removing problematic samples

we report the results of the same exercise for the Generalized Filter.21

Fractional Integration Parameter d

True 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

α 0.330 0.3302 0.3301 0.3301 0.3299 0.3299 0.3299 0.3309 0.3342 0.3411
δ 0.025 0.025 0.025 0.025 0.0249 0.025 0.02499 0.0251 0.0253 0.0258
β 0.99 0.99 0.99 0.99 0.99 0.99 0.9900 0.99 0.9901 0.9903
φ 0.9 0.90 0.90 0.90 0.90 0.9 0.899 0.9002 0.9007 0.902
σe 1 0.9964 1.0017 1.0106 1.01 1.0295 1.0437 1.0598 1.0836 1.1301
σv1 0.01 0.0099 0.0099 0.0099 0.01 0.0099 0.0099 0.0099 0.0099 0.0099
σv2 0.01 0.0099 0.0099 0.0099 0.01 0.0099 0.0100 0.0119 0.0249 0.0524

RMSE
at − at|t 1.0154 1.0172 1.0342 1.0654 1.1241 1.2155 1.3512 2.6863 5.3401
kt − kt|t 0.2073 0.2542 0.3135 0.4014 0.5165 0.6899 0.9249 2.5774 5.1981

Table 3: Results for degree of fractional integration d: Generalized Kf

As it can be readily seen, the amount of bias provided by the generalized filter is
almost negligible. This is true for all the degree of fractional integration, even when the

20The estimates were just large, they did not touch any of the boundaries imposed for the parameter
estimation

21We choose a value of m, number of lags in productivity, equal to 30. This seems to be a reasonable
compromise; while implementing a rather effective correction it does not exclude too many observations.
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state variables become non-stationary (d > 0.5). The generalized filter also provides
much more accurate prediction of the endogenous and exogenous state variable com-
pared to the standard filter. In fact, the RMSE errors of the state predictions are up to 4
times smaller than those obtained with the standard filter.

This shows the ability of the modified filter to capture the dynamic properties of the
data. In the last section we show how this accuracy in predicting the data dynamics
also holds when undertaking an out-of-sample forecasting exercise.

5 Real data estimation

5.1 Model

In this section we take our model to the real data and repeat the Maximum Likelihood
estimation for a RBC model as in Ireland (2004); the same type of model is also used by
Ruge-Murcia (2007) in order to compare different estimation techniques for a different
case of model misspecification. Households choose consumption and labor/leisure and
save by investing in stocks of capital. Furthermore, they maximize the following utility
function:

U0 = E0

∞∑

t=0

βt {log(ct) + γ(1− nt)} , (66)

subject to the budget constraint:

ct + it ≤ wtnt + rtkt−1,

there is no population growth and the total amount of labor is normalized to one
and leisure is given by 1− nt. Capital accumulates with the standard law of motion:

ηkt = (1− δ)kt−1 + it, (67)

expressed in efficiency units in order to take into account a log-linear trend in tech-
nology η. This gives rise to the (standard) first order conditions:

c−1
t = Et [β(η + rt+1 − δ)] c−1

t+1, (68)

wt = γct (69)

The production function is given by the Cobb-Douglas:

yt = at(ηtnt)1−αkα
t−1, (70)

where technology evolves as:

log(at) = (1− ρ) log(ass) + ρ log(at−1) + εt. (71)
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In equilibrium the real interest rate equals the marginal productivity of capital mi-
nus the depreciation rate δ:

rt + δ = αatn
1−α
t kα−1

t−1 , (72)

and the real wage rate equals the marginal productivity of labor:

wt = (1− α)atn
α
t kα

t−1. (73)

The model is closed by the market clearing condition:

yt = ct + it. (74)

The competitive equilibrium for the economy is the sequence of prices {rt, wt}∞0 and
quantities {yt, kt, ct, nt, it}∞0 such that firms maximize profits, agents maximize utility
and all markets clear. The model is linearized by using the Taylor expansion of the
system of equations ((67)-(74) around the deterministic steady state of the model. Then
we solve the model following Klein (2000) and rewrite the reduced form solution into
the (generalized) state space representation.

As before, we define with yt the vector of observable variables of the model: we
use output, consumption and hours worked. θt is the vector of unobservable states,
both the capital stock and productivity. Following Ireland (2004), we introduce in the
state space model three mutually independent autocorrelated measurement errors, ηt =[
ηy

t , ηc
t , η

h
t

]′
that are assumed to evolve as AR(1) processes




ηy
t

ηc
t

ηh
t


 =




ρηy 0 0
0 ρηc 0
0 0 ρηh







ηy
t−1

ηc
t−1

ηh
t−1


 +




ζy
t

ζc
t

ζh
t




with

E
[
ζ
′
tζt

]
=




σ2
ζy 0 0
0 σ2

ζc 0
0 0 σ2

ζh


 .

We have then
yt = [yt, ct, ht] ; θt = [kt, at, η

y
t , ηc

t , η
h
t ].

The following state space representation is then used to estimate the model:

θt+1 = Φθt + εt+1

yt = Hθt,
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where

Φ =
[

pkk [qka 0 0 0]
0 [ z ]

]
; z =




ρ 0 0 0
0 ρηy 0 0
0 0 ρηc 0
0 0 0 ρηh




H =




mck nca 1 0 0
myk nya 0 1 0
mrk nra 0 0 1


 ,

where the elements of the matrices Φ and H are obtained from the solution of the model,
for example:

kt = pkkkt−1 + qkaat,

ct = mckkt−1 + ncaat.

where the matrices (p, q, m, n) denote as before elements of the decision rules and in
general xij denotes the effect of changes of variable j into the dynamics of variable i for
x ∈ (p, q, m, n).

As it is clear from the state space model, we focus only on one special treatment
of measurement errors: three autocorrelated but mutually uncorrelated measurement
errors. This is consistent with Ireland (2004) which shows that such specification, com-
pared with one having correlated measurement errors, have the best out-of sample
forecasting properties in spite of less plausible values of the deep parameters. As we
show below, the trade off between forecasting accuracy and realistic parameter estima-
tion vanishes once we allow for persistent dynamics in the data.

The measurements are hours worked, consumption and GDP, taken respectively
from BLS data (Current Employment Statistics) and US NIPA national accounting: data
run from 1948:1 to 2002:2.22 We estimate the following set of structural parameters:
ψ ≡ [α, η, γ, δ, ρ, ρηy , ρηc , ρηh , σε, σζy , σζc , σζh ] plus the level of technology ass

which enters the steady state expressions of the variables. The estimated parameters
are the capital share, the log-linear trend of technology, the parameter which pins down
the amount of hours worked in steady state, the depreciation rate of capital, the per-
sistence parameter of the technology shock and the measurement errors together with
their standard deviations. The discount preference term β is calibrated at the value of
0.99, as standard in the literature. Differently from Ireland, we also estimate the depre-
ciation term δ it has important implication for the dynamics of the endogenous state
kt.

5.2 Parameter estimates

In this section we compare full-sample estimates of the deep parameters obtained with
the Generalized and the Standard Kalman Filter. Table (4) reports the estimation results:

22We use the same dataset as in Ireland (2004) which is based on the 1996 chained data.
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Parameters α δ ρa η γ σε

Gen. Kalman Filter 0.2917 0.0246 0.9686 0.0055 0.0041 0.0048
Kalman Filter 0.5189 0.0031 0.9999 0.0057 0.0036 0.0092
Parameters ρηy

t
ρηc

t
ρηh

t
σζy σζc σζh

Gen. Kalman Filter 0.998 -0.8041 0.9995 0.0039 0.0004 0.0062
Kalman Filter 0.9999 0.9994 0.9990 0.0036 0.0001 0.0060

Table 4: Generalized and standard Kalman filter parameter estimates for the U.S. econ-
omy.

Since the ‘true’ deep parameters are unknown, we can not directly asses the good-
ness of the estimates obtained with the standard and the generalized Kalman Filter.
However, since some parameters have a clear structural interpretation it is possible to
compare them with the evidence coming from either national accounts or previous mi-
croeconometric studies (see discussion in Prescott and McGrattan (2007). We start dis-
cussing the capital share α and the depreciation rate of capital δ: these estimates should
be consistent with figures derived from national accounts data.23 Table (4) shows that
both the capital share and the depreciation rate estimated by the generalized filter are
close to those obtained using national accounts data, while the standard filter falls short
in providing good estimates. This latter finding is consistent with the results in Ireland
(2004) and with the fact that in most of the literature those parameters are calibrated
rather than estimated since it is believed that DSGE models fail in reproducing reason-
able estimates for them. This failure can be attributed to the role of the capital share
and the depreciation rate of capital in determining the persistence of the capital stock
in the transition equation: larger values of the capital share and smaller depreciation
rates imply higher returns on capital and lower depreciation in capital accumulation,
this produces a more persistent capital dynamics. Since the capital persistence is trans-
mitted to output and consumption through the other equations of the RBC model, such
unrealistic parameter estimates might be seen as the consequence of the Kalman Filter
trying to replicate the persistence of the data. As the second row of Table (4) shows,
once we control for persistent data the RBC model is able to convey estimates which
are in line with national accounts data.

With regards to the other parameters, estimation results differ substantially between
the two filters.24 There is a substantial difference in the values of both the persistence
and variance parameters of the technology shock. The productivity trend η is also
slightly larger than in the standard case. The measurement error on consumption is
negatively autocorrelated, a result found also by Ireland (2004) when allowing mea-

23The capital share can be derived from the labor share, computed as the average share of value added
which is paid to labor (around 0.3 for US data), while the depreciation rate should square with the average
ratio between investments and the capital stock (around 0.025 assuming quarterly data)

24 We found similar results when we calibrate δ = 0.025.
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surement errors to be cross-correlated.25 An important remark concerns the high esti-
mated value of the persistence of exogenous states (measurement errors and the tech-
nology shock) delivered by the Generalized Filter which might sound at odds with the
fact that our device controls for persistence. As a robustness check, we re-estimated the
model using i.i.d. measurement errors with both the Standard and the Generalized Fil-
ter: the persistence of the technology shock estimated by the Standard filter is ρ = 0.98
while the Generalized Filter delivers a much lower ρ = 0.85. This suggests that the
high values of persistence shown in table 1 are mostly an artifact of the introduction of
the autocorrelated measurement errors, rather than a problem of our method not being
able to capture persistence. of parameter is filter.

To complete the section, we provide a warning against inferring too quickly (e.g.
without looking carefully also at what innovation residuals have to say) that a unit root
process is the correct description of exogenous states when a Standard Kalman Filter
delivers an high value of persistence for the exogenous states, further discussion of
the unit-root case is in section 7. In particular, consider the estimate delivered by the
Standard Filter (ρ = 0.9999), shown in the second row of table 1, this value makes the
process of technology as follows

at = 0.9999at−1 + εt,

which is undistinguishable from a unit root process, since at − 0.9999at−1 ' ∆at. Now,
if a unit root process describes correctly the dynamics of the technology, then we should
expect the innovations {εT

t=1} to be i.i.d.. However, if we estimate with a Local Whittle
Estimator (Robinson(1995)) the fractional integration order d of the innovations {εT

t=1},
as reconstructed by the Kalman Filter, we get a significant negative value around -0.3,
which hints to series being over-differenced.26

Reconstructed residuals {εT
t=1} Estimated d

Exact LW estimator -0.30

We can get to the same conclusion by looking at the dynamics of the log detrended
GDP. If we assume that in our RBC model the output yt has the same statistical nature
as the technology at (this is consistent with Christiano and Vigfusson (2003)), we can
gauge the order of fractional integration of at directly from that of (log-detrended) GDP.
The Local Whittle Estimator for this series is equal to 0.7:

25Overall, it seems that the generalized filter produces estimates which are in line with estimates pro-
duced by models with less restrictions on the variance-covariance matrices of the exogenous shocks, such
as the one with cross-correlated shocks in Ireland (2004).

26For the innovations from our generalized filter we could not reject the hypothesis that d is equal to
zero.
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Detrended Log-GDP Estimated d

LW estimator 0.69
Exact LW estimator 0.71
Feasible ELW estimator 0.71
Feasible ELW estimator with detrending 0.71
2-step feasible ELW estimator 0.71
Feasible ELW estimator w/o detrending 0.71

Straightforward computations show that if at ∼ I(d = 0.7), meaning that at(1 −
L)0.7 = et, where et i.i.d., it follows that:

at − 0.9999at−1 ' ∆at = (1− L)(1− L)−0.7et,

which, consistently with what already shown, tells us that the first difference of pro-
ductivity is overdifferenced by an order 0.3:

∆at(1− L)−0.3 = et, that is: ∆at ∼ I(d = −0.3).

Following Baillie (1996), long memory processes can be successfully employed to
describe time series which appear as non stationary in their levels but they look over-
differenced when their first difference is considered.

6 Forecasting

In order to assess the ability of our approach to capture the dynamic properties of
the data we compare the out of sample forecast of the Generalized filter with those
of the standard Kalman filter. The rationale behind this exercise follows the results in
Granger and Joyeux (1980) who showed that while a short order AR representation can
adequately fit long memory dynamics in sample, the forecasts produced by such AR
models will not be very accurate.

The exercise is implemented as follows. We estimate the RBC model described in
the previous section with both the standard and our approach for a subsample of data,
precisely from 1948:1 until 1987:4. We generate out-of-sample forecasts one through
four quarters ahead for each variable and compare the root-mean-squared forecast er-
rors from the modified model to those from the standard Kalman filter. We then extend
the subsample by one period and repeat the estimation and forecasting. We continue
this way until all the sample is covered in 2002.

Table 4 reports the RMSE together for the forecasts generated by the standard Kalman
filter (KF) and those generated by the generalized filter (GKF). In order to asses whether
any difference of the two RMSE is significant we also report the statistic proposed by
Diebold and Mariano (1995).27

27The critical values for the Diebold and Mariano test have been obtained using a bootstrap procedure.
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Steps ahead 1 2 3 4
Output
RMSE: GKF 0.6492 1.2294 1.8137 2.3585
RMSE: KF 0.984 1.8935 2.881 3.7871
D-M test -6.8582∗∗∗ -5.9845∗∗∗ -4.8295∗∗∗ -3.7659∗∗∗

Consumption
RMSE: GKF 0.4588 0.7022 1.0155 1.3689
RMSE: KF 0.5443 0.961 1.4172 1.9213
D-M test -3.6916∗∗∗ -3.7701∗∗∗ -3.0075∗∗∗ -2.1948**
Hours
RMSE: GKF 0.6352 1.1373 1.6295 2.0847
RMSE: KF 0.8135 1.4583 2.0558 2.6461
D-M test -4.8812∗∗∗ -3.4673∗∗∗ -2.2781∗∗ -1.8388∗

Table 5: Root mean square error of the forecasts from one to four quarters ahead for
the standard and Generalized Kalman filter. *** is significant at 1%, ** is significant at
5% and * is significant at 10%

The results indicate that forecasts from the modified filter significantly outperform
those from the standard Kalman filter. In particular, for output, the RMSE of the gen-
eralized filter are up to 60% smaller than those of the standard filter. This shows the
better performance of the Generalized Filter with respect to the normal one28. On one
hand, the forecast from the generalized filter are more accurate than those from stan-
dard filter for all the steps ahead; on the other, the forecast accuracy of the modified
filter improves, relatively to the standard filter, as the forecast horizon arises. This re-
sult indicates the presence of very persistent dynamics in the data that can not be fully
captured by the autoregressive structure of the standard filter. On the other hand, it also
shows that by accounting for such persistence it is possible to considerably improve the
dynamic properties of the model.

7 Comparison with unit root case

Part of the literature specifies technology as a stochastic rather than a deterministic
trend process. As a further check, we estimate a model where we assume that the level
of technology follows a unit root process. We show that under this assumption we still
get unrealistic parameter estimates as well as less accurate forecasts compared to those
shown in section 6.

In the case of a unit root in technology and considering log-variables as before, the

28 Similar, albeit less striking, results hold for the case when we calibrate the δ.
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state space model should be written as:

k̂ = kt − at (75)
ŷt = yt − at (76)
ĉt = ct − at (77)
ĥt = ht (78)

∆at+1 = ρ∆at + εt+1, (79)
k̂t+1 = pkkk̂t + qka∆at, (80)

ŷt = mykk̂t + nya∆at, (81)
at = µ + at−1 + εt, (82)

where the vector ŷt is now defined in detrended terms in order ensure stationarity:
ŷt ≡ [ŷt, ĉt, ĥt]. In the unit-root set-up hours worked are a strictly stationary variable
(I(0)), driven by the growth rate of technology; in the trend stationarity approach they
follow the level of technology which is allowed, by our approach (GKF), to be a long
memory process.
The state space model (79-81) has now a non-stationary state variable. As common in
the literature, we cope with this problem by implementing the Exact Kalman Filter as
in Durbin and Koopman (2001).29

The model with three autocorrelated measurement errors does not seem to be the
best specification under the unit root hypothesis as we encountered severe identifica-
tion problems. For this reason, we resorted to the model with i.i.d. measurement errors
whose parameter estimates are shown in Table 30

Parameter estimates, reported below for the full sample, show a reverse pattern in
comparison to what we obtained with the Standard Kalman Filter under the determin-
istic trend assumption. The capital share is too low and the depreciation rate too high
compared to what we would expect from national accounts data. In the same line as
we argued before, these can be interpreted as signs of having introduced ‘too much
persistence’ in the data generating process of the model.

Concerning the out-of-sample forecasts, they seem fairly accurate for the cointe-
grated variables, e.g. consumption and output, even if much worse than in those from
the deterministic trend model (from 2 to 4 percent is the RMSE of output, around 1
per cent for consumption). On the other hand, the root mean square errors for hours
worked are ten times larger compared to the previous case. Consistently with our pa-
rameter estimates hours worked appear to be mainly ‘driven’ by measurement errors.

The inability of tracking hours worked with a unit root technology shock is not a
novelty in the literature. Most studies, as (King, Plosser, Stock, and Watson (1991)),

29In particular we use their ‘univariate version’ where the updating step is repeated for each variable
by adding one measurement at the time and the information set is expanded accordingly. This set-up is
quite convenient in the case when the dataset comprise some variables that are cointegrated (output and
consumption) and others that are not (hours)

30We also performed out-of sample forecasts with the generalized filter for the model with no autocor-
related measurement errors. Conclusions were not overturned.
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Parameters α δ ρa η γ σε

Gen. Kalman Filter 0.2917 0.0246 0.9686 0.0055 0.0041 0.0048
Unit Root Filter 0.1871 0.1073 0.7317 0.0050 0.0047 0.0050
Parameters ρηy

t
ρηc

t
ρηh

t
σζy σζc σζh

Gen. Kalman Filter 0.998 -0.8041 0.9995 0.0039 0.0004 0.0062
Unit Root Filter - - - 0.0197 0.0001 0.0540

Table 6: Full Sample parameter estimates: Generalized Kalman Filter against Unit Root.

Steps ahead 1 2 3 4
Output
RMSE: Unit Root Model 2.4087 3.1181 3.6301 4.0673
Consumption
RMSE: Unit Root Model 1.0172 1.0201 1.0406 1.3298
Hours
RMSE: Unit Root Model 9.6450 10.0057 10.1787 10.2798

Table 7: Root mean square error of the forecasts from one to four quarters ahead for
the unit root model.

based on models that specified technology as a permanent component, found a very
limited explanatory power of the model on variables which are modelled as stationary,
e.g. hours worked. The same result can be found in very recent studies (for exam-
ple the New Area Wide Model) where the permanent component of technology has a
small contribution in explaining non cointegrated variables variations, in particular for
hours worked. This is probably related to the strong restriction that a unit root tech-
nology shock imposes on the data generating process: the level of technology represent
a common trend for the cointegrated variables, while its growth rate movements in
the stationary variables (such as hours worked). When technology is the only shock
present in the model the unit root assumption implies a very tight relation between the
variance of the cycle and that of the trend, which might results as being too restrictive.
A further remark concerns the statistical nature of hours worked. Empirical studies
show that hours worked have non-clear cut order of integration, e.g. they can be in-
tegrated of order one, zero or possibly be a long memory process, see Gil-Alana and
Moreno (2006). The Generalized Kalman Filter procedure accounts for the possibility
of long memory behaviour, since it filters hours in the same way as the other variables,
allowing in this way for a ‘common long range component’ between GDP and hours
worked.

From the results in this section, we can conclude that a long memory specifica-
tion of technology, which lies between a strict stationarity and a pure unit root case,
might be the preferred one. Nevertheless, we are aware that results can also be model-
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dependent; as discussed by Chang, Doh, and Schorfheide (2007), the order of integra-
tion of the shocks of a DSGE strongly depends upon the structure of the model at hand.
Further inquiry on the topic is left to future research.

7.1 Comparison with unit roots: simulated data

In this section we provide a further experiment using simulated data. We simulate
data from the stationary model described by Ireland (2004), the same as in section 5
and we add a long memory component as described in section 4. We then use the
simulated dataset to estimate a model with a unit root in technology such as (75-82).
This complements the analysis of section 4. We do not use the same simple Ramsey
model, as we got serious identification problems with it.31 To run this experiment it is
also crucial that the signal-to-noise ratio (e.g. the standard deviation of the technology
shock relative to those of measurement errors) is set at values which are plausible with
respect to those estimated on real data, when the signal-to-noise ratio is too high the
optimizer simply fails (e.g. lack of identification) to estimate the unit-root model. To
sum-up, the model used to simulate data is the one described by Ireland (2004), adding
three i.i.d. measurement errors and the model used for estimation is its unit root version
described by (75-82). The calibration of parameters to be estimated is as follows:32

α = 0.33, ρe = 0.99, δ = 0.025, σe = 0.002, σi = 0.001,

where α is the capital share in production (1−α is the labor share), δ is the depreciation
rate, ρe, σe denote the persistence and the standard deviation of the growth rate of tech-
nology, while σi, i ∈ {y, c, h} is the standard deviation of the three i.i.d. measurement
errors, on output, consumption and hours worked. Results are means from 200 sam-
ples;33 to save on space we only report the cases d = 0, 0.1, 0.4, 0.6, 0.9. The d = 0 case
is relevant as in this case the estimated model is somehow misspecified with respect to
the true Data Generating Process since we impose a unit root on stationary data.

The first worthy remark is that even when no long memory is introduced in the
DGP, the unit root model produces substantial bias in the estimates.34 This appears
to be rather counterintuitive, as it occurs even if the persistence of the exogenous pa-
rameter is set at a very high value, close to a unit root; dramatic results, not shown
to save space, appear also for a lower ρ = 0.95. After some trials we found that, as
highlighted in the previous section, one serious problem seems to be the presence of a

31Results were cross-checked by using Dynare 4.0.2
32No substantially different results were found when the β was included in the estimated parameters.

Also, in this simple example data are considered in deviation from their steady state, then we do not
estimate a drift η nor the parameter which pins down the steady state level of hours worked γ.

33We eliminate those very few samples in which the optimizer got stuck at some bound; the sampling
distribution looks quite symmetric and no important difference can be found from using median or means

34A potential critique is that the direction of bias shown here is not entirely consistent with what we
have found in the previous section on real data. While this should deserve further enquiry in the future,
we do not claim that a simple stationary RBC with a fractional noise in the innovations is the True Data
Generating Process for US data, so we do not see this potential criticism as really critical
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Parameter d = 0 d =0.1 d=0.4 d=0.6 d=0.9
α 0.4021 0.4012 0.4220 0.4719 0.5941
ρe 0.0425 -0.0198 0.1527 0.5439 0.8444
δ 0.0589 0.0351 0.0359 0.0332 0.0295
σc 0.0002 0.0002 0.0004 0.0012 0.0094
σy 0.0029 0.0027 0.0022 0.0013 0.0011
σh 0.0027 0.0029 0.0060 0.0159 0.0419
σe 0.0016 0.0020 0.0035 0.0053 0.0090

Table 8: Deep parameter estimates : data generating process is stationary (plus long
memory), estimating model embeds a unit root in technology

stationary time series among the measurements, hours worked. The true DGP delivers
a relatively high amount of persistence in hours due to the presence of the level of tech-
nology, at = 0.99at−1 + εt, in their reduced form equation; in the unit root model hours
worked are instead a function of the first difference of technology, whose law of motion
is given by ∆at = ρe∆at−1 + εu

t . Given the true exogenous state process, a correct es-
timate should be ρe = 0.99 − 1 = −0.01 but such a low value would make persistence
in hours worked very low in the unit-root model. When a long memory component is
added to the innovations of the DGP this makes hours even more persistent and, as d
goes high and it tends to exacerbate the problem. It is not surprising then that estimates
of ρe are upward biased and so are those for the other parameters, especially the cap-
ital share, making capital to be more persistent. When removing hours worked from
the set of measurements, estimates improve (not shown) but they still suffer from some
upward bias. A plausible, though non exhaustive, explanation for this pattern is that
the unit root model delivers deviations of cointegrated variables from the technology
level (their trend) which are more limited and short-lived than the DGP. To see that,
using the reduced form of the unit-root model we can write the deviation of the level
of capital from its trend as:

kt − at(1− pu
kkL) = qu

aa∆at,

where pu, qu are the solution of the unit-root model and L is the lag operator. Under
the true DGP ∆at should almost be a white noise, as ρe is very low. Plugging the true
values of the remaining deep parameters, we see that the resulting pu, qu give a more
short lived variation of the term kt − at with respect to the DGP (this is also consistent
with the findings of Rotenberg and Woodford, see below).

Overall, our results from this and the previous section suggest that even when the
data generating process has an exogenous process which is very close a unit root (ρ =
0.99) a model which has unit-root in technology behaves fundamentally in a different
way from a stationary model; furthermore it is impaired in reproducing the behaviour
of the stationary time series. This is consistent with most of the finding in previous
literature, coming from disparate sources: Rotemberg and Woodford (1996) find that
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an RBC with unit roots cannot explain the variability of the predictable component of
the business cycle. Other researchers such as Canova (2009) found that the variance
decomposition of a shocks changes dramatically when either a unit root in technology
is introduced or data are linearly detrended. This is related to our results, in the sense
that when the unit-root is introduced it will be less able to capture cyclical fluctuations
and it will make the other shocks look more important in the variance decomposition.

8 Conclusion

In this paper we have shown a simple method to bring general equilibrium dynamic
models to persistent data. This can be done by allowing one (or more) common factor
to have a long memory behaviour. By doing this one can improve the plausibility of
estimates and the out-of-sample forecast performance with respect to both the pure
stationary and the pure unit root case: we report an average (significant) reduction in
the forecast error of about 30%.

Our method does not alter the cross equations restrictions implied by the DSGE
model, but it rather applies them to observations which have been detrended. Contrary
to other studies, the detrending procedure is not assumed a priori but it is directly
derived from the data in a way which is consistent with the structure of the model, e.g.
by exploiting information which the model have already deemed as not useful and put
into innovation residuals. Our method also differs from other methods proposed for
example by Canova (2009), where an hybrid model (DSGE plus filter) is estimated.

In simulation experiments we have shown that persistent data can have important
effects in the way the Kalman filter reconstructs unobserved endogenous states. We
also provide evidence that the introduction of a stochastic trend as a unit-root imposes
is a constraint the data generating process which can come at some cost and should not
be seen as a general way to cope with persistence. We leave the full development of
this line of research to further work.

Our contribution is not limited to DSGE models but it can be used any time long
memory data and latent component are present; moreover, while here we apply it to
the case of a simple univariate unobserved shock, it can be readily applied to a multi-
variate framework. Simulation results are provided for the case of ARFIMA shocks, the
method is also able to cope with general long memory processes, since it does not cast
any strong assumption concerning the nature of the long memory dynamics, whether
it is a fractionally integrated process or a different long memory process.

As already mentioned in the introduction, there is a widespread evidence about
long memory behaviour of many macroeconomic time series, for example inflation;
this would be a call for monetary and New Keynesian Models. Since these are mostly
estimated by Bayesian methods we leave it to further research to extend our framework
to that case.
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9 Appendix: Long memory processes

Long memory processes have been extensively studied in time series analysis and a
good review of their properties can be found in Robinson (2003) and Baillie (1996).
Long-memory processes are defined by autocorrelations decaying slowly to zero or
spectral density displaying a pole at zero frequency. For instance, compared to ARMA
processes, they are have a autocorrelation function that decays hyperbolically rather
than exponentially. In this respect, long memory processes represent an alternative rep-
resentation to the knife-edge distinction between I(0) and I(1) processes. A well known
class of long memory processes, introduced by Granger (1980), is the Autoregressive
Fractional Moving Average Process of order d (ARFIMA(p,d,m)), which is defined as

(1− L)d φ (L) yt = B(L)εt, (83)

where εt is a white noise process with variance σ2, φ (L) is a lag polynomial of order p,
B (L) is a lag polynomial of order m and d ∈ [0, 1] indicates the fractional differencing
parameter. As the parameter d can take any value in the interval between 0 and 1,
ARFIMA processes fill the gap between a strictly stationary process, when d = 0, and a
unit root process, when d = 1.

A special case of (83), which is the basic building block of fractionally integrated
processes is the so called ‘fractional white noise’, defined by setting p,m = 0 in (83).
For 0 < d < 0.5 the process is “stationary” with hyperbolic rather than exponential
decay of the autocorrelation function (ACF heretofore); when 0.5 < d < 1 the process is
non stationary, i.e. the squared sums of its autocorrelations do not converge. However,
differently from unit root processes, it is still mean reverting. Finally, when d is negative
the ACF presents an oscillatory behaviour around zero, which is the typical pattern we
can observe in ‘overdifferenced’ time series.

Going more into the technical details, the term (1− L)d in 83 is called the fractional
differencing polynomial: the term ‘fractionally integrated processes’ denotes the family

38



of processes generated by the application of a fractional differencing polynomial. For
d < 0.5 the fractional differencing polynomial (1− L)d can be represented as in Granger
(1980):

(1− L)d =
∞∑

j=0

Γ (j − d) (−1)j

Γ (j + 1) Γ (−d)
Lj '

∞∑

j=0

j−(d+1) (−1)j

Γ (−d)
Lj

≡
∞∑

j=0

πjL
j

where Γ (·) is the Gamma function and the approximating term derives from a first or-
der asymptotic expansion. Therefore, any stationary fractional noise yt can be rewritten
in an infinite order autoregressive representation (AR(∞)),

(1− L)d yt = εt (84)
∞∑

j=0

πjL
jyt = εt (85)

yt =
∞∑

j=1

πjyt−j + εt, (86)

As Granger (2001) and Granger and Joyeux (1980) point out, even if it possible by
using standard identification criteria, to fit an ARIMA model on long memory gener-
ated data, this would lead to a poor approximation of the true DGP and inaccurate out-
of-sample forecasts. In particular, Granger and Joyeux (1980) show that short order au-
toregressive processes are not flexible enough to successfully approximate long mem-
ory behaviour and that statistical criteria have a very hard time in selecting processes
with enough lags.
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