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Abstract 

We propose a portfolio selection model based on a class of monotone preferences that 
coincide with mean-variance preferences on their domain of monotonicity, but differ where 
mean-variance preferences fail to be monotone and are therefore not economically 
meaningful. The functional associated with this new class of preferences is the best 
approximation of the mean-variance functional among those which are monotonic. We solve 
the portfolio selection problem and we derive a monotone version of the CAPM, which has 
two main features: (i) it is, unlike the standard CAPM model, arbitrage free, (ii) it has 
empirically testable CAPM-like relations. Therefore, the monotone CAPM has a sounder 
theoretical foundation than the standard CAPM and  comparable empirical tractability.  
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1 Introduction

Since the seminal contributions of Markowitz [Ma] and Tobin [To], mean-
variance preferences have been extensively used to model the behavior of
economic agents choosing among uncertain prospects and have become one
of the workhorses of portfolio selection theory.1 These preferences, denoted
by �mv, assign to an uncertain prospect f the following utility score:

U� (f) = E
P [f ]� �

2
VarP [f ] ;

where P is a given probability measure and � is an index of the agent�s
aversion to variance.
The success of this speci�cation of preferences is due to its analytical

tractability and clear intuitive meaning. Mean-variance preferences have,
however, a major theoretical drawback: they may fail to be monotone. It
may happen that an agent with mean-variance preferences strictly prefers
less to more, thus violating one of the most compelling principles of economic
rationality. This is especially troublesome in Finance because monotonicity
is the crucial assumption on preferences that arbitrage arguments require
(see Dybvig and Ross [DR] and Ross [R]).

The lack of monotonicity of mean-variance preferences is a well known
problem (see, e.g., Dybvig and Ingersoll [DI] and Jarrow and Madan [JM])
and not a minor one, since it can be (partly) bypassed only under very
restrictive assumptions about the statistical distribution of asset returns (see,
e.g., Bigelow [Bi]).
The non-monotonicity of mean-variance preferences can be illustrated

with a simple example. Consider a mean-variance agent with � = 2. Suppose
she has to choose between the two following prospects f and g:

States of Nature s1 s2 s3 s4
Probabilities 0:25 0:25 0:25 0:25
Payo¤ of f 1 2 3 4
Payo¤ of g 1 2 3 5

Prospect g yields a higher payo¤ than f in every state. Any rational agent
should prefer g to f . However, it turns out that our mean-variance agent
strictly prefers f to g. In fact:

U2 (f) = 1:25 > 0:5625 = U2 (g) :

1See, e.g., Bodie, Kane, and Marcus [BKM], Britten-Jones [Br], Gibbons, Ross, and
Shanken [GRS], Kandel and Stambaugh [KS], and MacKinlay and Richardson [MR].
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The reason why monotonicity fails here is fairly intuitive. By choosing g
rather than f , the payo¤ in state s4 increases by one unit. This additional
unit increases the mean payo¤, but it also makes the distribution of payo¤s
more spread out, thus increasing the variance. The increase in the mean is
more than compensated by the increase in the variance, and this makes our
mean-variance agent worse o¤.

In this paper we consider the minimal modi�cation of mean-variance pref-
erences needed to overcome their lack of monotonicity. This amended version,
based on the variational preferences of Maccheroni, Marinacci, and Rustichini
[MMR], is not only sounder from an economic rationality viewpoint, but, be-
ing as close as possible to the original, also maintains the basic intuition and
tractability of mean-variance preferences.
Speci�cally, we consider the variational preference �mmv represented by

the choice functional

V� (f) = min
Q

�
EQ [f ] +

1

2�
C (QjjP )

�
8f 2 L2 (P ) ;

where Q ranges over all probability measures with square-integrable density
with respect to P , and C (QjjP ) is the relative Gini concentration index (or
�2-distance), a concentration index that enjoys properties similar to those of
the relative entropy.
The preferences �mmv have the following key properties:

� They are monotone and they agree with mean-variance preferences
where the latter are monotone, that is, economically meaningful.2

� Their choice functional V� is the minimal, and so the most cautious,
monotone functional that extends the mean-variance functional U� out-
side its domain of monotonicity.

� The functional V� is also the best possible monotone approximation of
U�: that is, if V 0

� is any other monotone extension of U� outside its
domain of monotonicity, then

jV� (f)� U� (f)j � jV 0
� (f)� U� (f)j

for each prospect f .

Moreover:
2This is the set where rU� is positive, called domain of monotonicity of U�.
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� The functional relation between V� and U� can be explicitly formulated.

� The parameter � retains the usual interpretation in terms of uncertainty
aversion.

� The functional V� preserves second order stochastic dominance.

All these features make the preferences �mmv a natural adjusted version of
mean-variance preferences that satis�es monotonicity. For this reason we call
them monotone mean-variance preferences.

In view of all this, it is natural to wonder what happens in a portfolio
problem à la Markowitz when we use monotone mean-variance preferences
in place of standard mean-variance preferences. This is the main subject
matter of this paper. Markowitz�s well-known optimal allocation rule under
mean-variance preferences is:

��mv =
1

�
VarP [X]�1 EP

h
X �~1R

i
;

where ��mv is the optimal portfolio of risky assets, X is the vector of gross
returns on the risky assets, R is the gross return on the risk-free asset, and
~1 is a vector of 1s. We show that with monotone mean-variance preferences
the optimal allocation rule becomes:

��mmv =
1

�P (W � �)
VarP [X jW � � ]�1 EP

h
X �~1R jW � �

i
;

where W is future wealth and � is a constant determined along with ��mmv
by solving a suitable system of equations.
Except for a scaling factor, the di¤erence between Markowitz�s optimal

portfolio ��mv and the above portfolio �
�
mmv is that in the latter conditional

moments of asset returns EP [� jW � � ] and VarP [� jW � � ] are used instead
of unconditional moments, so that the allocation ��mmv ignores the part of
the distribution where wealth is higher than �. As a result, a monotone
mean-variance agent does not take into account those high payo¤ states that
contribute to increase the mean return, but give an even greater contribution
to increase the variance. By doing so, this agent does not incur in violations
of monotonicity caused for mean-variance preferences by an exaggerate pe-
nalization of �positive deviations from the mean.�This is a key feature of
monotone mean-variance preferences. We further illustrate this point in Sec-
tion 6 by showing how this functional avoids some pathological situations in
which the more the payo¤ to an asset is increased in some states, the more a
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mean-variance agent reduces the quantity of it in her portfolio, until in the
limit she ends up holding none.

In the last part of the paper we derive a monotone CAPMmodel based on
the above portfolio analysis with our monotone mean-variance preferences.
We �rst show that in our model optimal portfolios satisfy the classic two
fund separation principle: (i) portfolios of risky assets optimally held by
agents with di¤erent degrees of uncertainty aversion are all proportional to
each other, (ii) at an optimum the only di¤erence between two agents is the
amount of wealth invested in the risk-free asset. This separation has signif-
icant theoretical implications because it allows to identify the equilibrium
market portfolio with the optimal portfolio of risky assets held by any agent
(as in [Sh], [Sh-2] and [To]), and it allows to derive a monotone version of
the classic CAPM.
In Section 5 we show that the monotone CAPM that we derive has the em-

pirical tractability of the standard CAPM. Moreover, thanks to monotonicity
of the preference functional V�, in the monotone CAPM there are no arbitrage
opportunities. This is a key property of the monotone CAPM and is in stark
contrast with what happens with the standard CAPM. In fact, as observed by
Dybvig and Ingersoll [DI], the lack of monotonicity of mean-variance pref-
erences generates arbitrage opportunities in the standard CAPM. In turn,
these arbitrage opportunities make impossible to have CAPM equilibrium
prices of all assets in a complete-markets economy. This is, instead, possible
in our arbitrage free monotone CAPM, which can thus be integrated in the
classic Arrow-Debreu complete-markets framework.

The paper is organized as follows. Section 2 illustrates in detail monotone
mean-variance preferences. Sections 3 and 4 state and solve the portfolio se-
lection problem under the proposed speci�cation of preferences. Section 5
contains the CAPM analysis. Section 6 presents some examples that illus-
trate the di¤erence between the optimal allocation rule proposed here and
Markowitz�s. Section 7 concludes. All proofs are collected in the appendices,
along with some general results on monotone approximations of concave func-
tionals.

2 Monotone Mean-Variance Preferences

We consider a measurable space (S;�) of states of nature. An uncertain
prospect is a �-measurable real valued function f : S ! R, that is, a sto-
chastic monetary payo¤.
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The agent�s preferences are described by a binary relation � on a set of
uncertain prospects. [MMR] provides a set of simple behavioral conditions
that guarantee the existence of an increasing utility function u : R! R and
a convex uncertainty index c : � ! [0;1] on the set � of all probability
measures, such that

f � g , inf
Q2�

�
EQ [u (f)] + c (Q)

	
� inf

Q2�

�
EQ [u (g)] + c (Q)

	
(1)

for all (simple) prospects f; g.
Preferences having such a representation are called variational, and two

important special cases of variational preferences are the multiple priors pref-
erences of Gilboa and Schmeidler [GS], obtained when c only takes on values
0 and 1, and the multiplier preferences of Hansen and Sargent [HS], ob-
tained when c (Q) is proportional to the relative entropy of Q with respect
to a reference probability measure P .3

Variational preferences satisfy the basic tenets of economic rationality. In
particular, they are monotone, that is, given any two prospects f and g, we
have f � g whenever f (s) � g (s) for each s 2 S.4

For concreteness, given a probability measure P on (S;�), we consider
the set L2 (P ) of all square integrable uncertain prospects. A relation �mv

on L2 (P ) is a mean-variance preference if it is represented by the choice
functional

U� (f) = E
P [f ]� �

2
VarP [f ] 8f 2 L2 (P ) ;

for some � > 0.
The subset G� of L2 (P ) where the Gateaux di¤erential of U� is positive

is called domain of monotonicity of U�. The preference �mv is monotone on
the set G�, which has the following properties.

Lemma 1 The set G� is convex, closed, and

G� =
�
f 2 L2 (P ) : f � EP [f ] 6 1

�

�
. (2)

Moreover, for all f =2 G� and every " > 0 there exists g 2 L2 (P ) that is
"-close to f (i.e., jf (s)� g (s)j < " for all s 2 S), and such that g > f and
U� (g) < U� (f).

3The relative entropy of Q given P is EP
h
dQ
dP ln

dQ
dP

i
if Q� P and 1 otherwise.

4In the special case in which u is linear, some recent �nance papers (e.g., Filipovic
and Kupper [FK] and Kupper and Cheridito [KC]) call monetary utility functions the
functionals representing variational preferences.
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The domain of monotonicity has thus nice properties. More importantly,
the last part of the lemma shows why G� is where the mean-variance pref-
erence �mv is economically meaningful. In fact, it says that if we take any
prospect f outside G�, then in every its neighborhood, however small, there
is at least a prospect g that is statewise better than f , but ranked by �mv

below f .
The mean-variance preference �mv thus exhibits irrational non-monotone

behavior in every neighborhood, however small, of prospects f outside G�.
For this reason �mv has no economic meaning outside G�.

It can be shown that the restriction of �mv to G� is a variational prefer-
ence, and

U� (f) = min
Q2�2(P )

�
EQ [f ] +

1

2�
C (QjjP )

�
8f 2 G�,

where �2 (P ) is the set of all probability measures with square-integrable
density with respect to P , and

C (QjjP ) =
(
EP
h�

dQ
dP

�2i� 1 if Q� P

+1 otherwise

is the relative Gini concentration index (or �2-distance).5

This suggests to call monotone mean-variance preference the relation
�mmv on L2 (P ) represented by the choice functional

V� (f) = min
Q2�2(P )

�
EQ [f ] +

1

2�
C (QjjP )

�
8f 2 L2 (P ) : (3)

Our �rst result is the following:6

Theorem 2 The functional V� : L2 (P ) ! R de�ned by (3) is the minimal
monotone functional on L2 (P ) such that V� (g) = U� (g) for all g 2 G�; that
is,

V� (f) = sup fU� (g) : g 2 G� and g 6 fg 8f 2 L2 (P ) : (4)

Moreover, V� (f) � U� (f) for each f 2 L2 (P ).
5Along with the Shannon entropy, the Gini index is the most classic concentration

index. For discrete distributions it is given by
Pn

i=1Q
2
i �1, and C (QjjP ) is its continuous

and relative version. We refer to [LV] for a comprehensive study of concentration indices.
6The proof of this theorem builds on a general result on the minimal monotone func-

tional that dominates a concave functional on an ordered Banach space, which we prove
in Appendix A (Proposition 12).
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The functional V� is concave, continuous, and in view of this theorem it
has the following fundamental properties:

(i) V� coincides with the mean-variance choice functional U� on its domain
of monotonicity G�.

(ii) V� is the minimal monotone extension of U� outside the domain of
monotonicity G�, and so it is the most cautious monotone adjustment
of the mean-variance choice functional.

(iii) V� is the best possible monotone approximation of U�: if V 0
� is any other

monotone extension of U� outside the domain of monotonicity G�, then
V 0
� (f) � V� (f) � U� (f) and so

jV� (f)� U� (f)j � jV 0
� (f)� U� (f)j 8f 2 L2 (P ) :

Next theorem shows explicitly the functional relation between V� and U�.

Theorem 3 Let f 2 L2 (P ). Then:

V� (f) =

�
U� (f) if f 2 G�;
U� (f ^ �f ) else,

where
�f = max ft 2 R : f ^ t 2 G�g : (5)

A monotone mean-variance agent can thus be regarded as still using the
mean-variance functional U� even in evaluating prospects outside the domain
of monotonicity G�. In this case, however, the agent no longer considers the
original prospects, but rather their truncations at �f , the largest constant t
such that f ^ t belongs to G�.
Besides depending on the given prospect f , the constant �f also depends

on the parameter �. Corollary 16 in Appendix B shows that �f decreases as �
increases, and it is the unique solution of the equation EP

�
(f � �)�

�
= 1=�.

Given two preferences over uncertain prospects, we say that �1 is more
uncertainty averse than �2 if and only if

f �1 c =) f �2 c

for all f 2 L2 (P ) and c 2 R. That is, Agent 1 is more uncertainty averse
than Agent 2 if, whenever Agent 1 prefers the uncertain prospect f to a sure
payo¤ c, so does Agent 2.7

7We refer the interested reader to [MMR] for a discussion of this notion, and its inter-
pretation in terms of risk aversion and ambiguity aversion (not mentioned here in order
to keep the paper focused).
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A mean-variance preference ��
mv is more uncertainty averse than another

mean-variance preference�

mv if and only if � > 
. Thus, � can be interpreted

as an uncertainty aversion coe¢ cient.
The next result, a variation of [MMR, Cor. 21], shows that the same is

true for monotone mean-variance preferences.

Proposition 4 The preference ��
mmv is more uncertainty averse than �


mmv

if and only if � > 
.

We conclude this section by observing that, unlike U�, the preference
functional V� preserves second order stochastic dominance (�SSD).8 This is
a further proof of the sounder economic meaning of monotone mean-variance
preferences relative to mean-variance ones.

Theorem 5 Let f; g 2 L2 (P ). If f �SSD g, then V� (f) � V� (g).

Summing up, the monotone choice functional V� provides a natural ad-
justment of the mean-variance choice functional. It also has the remarkable
feature of involving, like multiplier preferences ([HS]), a classic concentration
index. This ensures to V� a good analytical tractability, as the next sections
show.

3 The Portfolio Selection Problem

We consider the one-period allocation problem of an agent who has to decide
how to invest a unit of wealth at time 0, dividing it among n+1 assets. The
�rst n assets are risky, while the (n+ 1)-th is risk-free. The gross return
on the i-th asset after one period is denoted by Xi. The (n � 1) vector of
the returns on the �rst n assets is denoted by X and the (n � 1) vector of
portfolio weights, indicating the fraction of wealth invested in each of the
risky assets, is denoted by �. The return on the (n+ 1)-th asset is risk-free
and equal to a constant R.
The end-of-period wealth W� induced by a choice of � is given by:

W� = R + � �
�
X �~1R

�
:

We assume that there are no frictions of any kind: securities are perfectly
divisible; there are no transaction costs or taxes; agents are price-takers, in

8Recall that f �SSD g i¤ EP
h
(f � t)�

i
� EP

h
(g � t)�

i
for all t 2 R. We refer to

Dana [Da], to which the proof of Theorem 5 is inspired, for references on second order
stochastic dominance.
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that they believe that their choices do not a¤ect the distribution of asset
returns; there are no institutional restrictions, so that agents are allowed to
buy, sell or short sell any desired amount of any security.9 As a result, � can
be chosen in Rn.
We adopt �mmv as a speci�cation of preferences, and so portfolios are

ranked according to the preference functional:

V� (W�) = min
Q2�2(P )

�
EQ [W�] +

1

2�
C (QjjP )

�
;

where P is the reference probability measure. Hence, the portfolio problem
can be written as:

max
�2Rn

min
Q2�2(P )

�
EQ [W�] +

1

2�
C (QjjP )

�
: (6)

Notice that, if the agent�s initial wealth is w > 0, then her end-of-period
wealth is wW�, therefore she solves the problem

max
�2Rn

min
Q2�2(P )

�
EQ [wW�] +

1

2�
C (QjjP )

�
which �dividing the argument by w �reduces to (6) up to replacement of �
with �w.

4 The Optimal Portfolio

In this section we give a solution to the portfolio selection problem outlined
in the previous section. The characterization of the optimal portfolio is given
by the following theorem.10

Theorem 6 The vector �� 2 Rn is a solution of the portfolio selection prob-
lem (6) if and only if there exists �� 2 R such that (��; ��) satis�es the
system of equations:(

�P (W� � �)VarP [X jW� � � ]� = EP
h
X �~1R jW� � �

i
;

EP
�
(W� � �)�

�
= 1=�:

9This assumption can be weakened, by simply requiring that at an optimum institu-
tional restrictions are not binding.
10EP [� jW� � � ] and VarP [� jW� � � ] are the expectation and variance conditional on

the event fW� � �g. Note that VarP [� jW� � � ] is an (n� n) matrix.
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As observed in Section 2, the second displayed equation guarantees that ��

is the largest constant such thatW��^�� belongs to the domain of monotonic-
ity of the mean-variance functional U�. The optimal portfolio �� is thus de-
termined along with the threshold �� by solving a system of n+ 1 equations
in n+ 1 unknowns.
Although it is not generally possible to �nd explicitly a solution of the

above system of equations, numerical calculation with a standard equation
solver is straightforward: given an initial guess (�; �), one is able to cal-
culate the �rst two moments of the conditional distribution of wealth; if
the moments thus calculated, together with the initial guess (�; �), satisfy
the system of equations, then (�; �) = (��; ��) and numerical search stops;
otherwise, the search procedure continues with a new initial guess for the pa-
rameters.11 In the next section we will solve in this way few simple portfolio
problems in order to illustrate some features of the model.

The optimal allocation rule of Theorem 6 is easily compared to the rule
that would obtain in a classic Markowitz�s setting. In the traditional mean-
variance model we would have:

�� =
1

�

�
VarP [X]

��1
EP
h
X �~1R

i
: (7)

The monotone mean-variance model yields:

�� =
1

�P (W�� � ��)
VarP [X jW�� � �� ]�1 EP

h
X �~1R jW�� � ��

i
:

Relative to Markowitz�s optimal allocation (7), here the unconditional mean
and variance of the vector of returns X are replaced by a conditional mean
and a conditional variance, both calculated by conditioning on the event
fW�� � ��g. Furthermore a scaling factor is introduced, which is inversely
proportional to the probability of not exceeding the threshold ��.
Roughly speaking, when computing the optimal portfolio we ignore that

part of the distribution where wealth is higher than ��. To see why it is
optimal to ignore the part of the distribution where one obtains the high-
est returns, recall the example of non-monotonicity of mean-variance illus-
trated in the Introduction. In that example, high payo¤s were increasing
the variance more than the mean, thus leading the mean-variance agent to
irrationally prefer a strictly smaller prospect. With monotone mean-variance
preferences, this kind of behavior is avoided by arti�cially setting the prob-
ability of some high payo¤ states equal to zero. In our portfolio selection
problem we set the probability of the event fW�� > ��g equal to zero.
11A R (S-Plus) routine to calculate the optimal portfolio in an economy with �nitely

many states of nature is available upon request.
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When there is only one risky asset, the optimal quantities ��mmv and �
�
mv

prescribed, respectively, by our model and by the mean-variance model can
be compared by means of the following result.

Proposition 7 Suppose that S is �nite, with P (s) > 0 for all s 2 S, and
that there is only one risky asset. Then, either

��mmv � ��mv � 0

or
��mmv � ��mv � 0:

If, in addition, P
�
W��mmv > ��

�
> 0, then:

��mmv > ��mv if ��mmv > 0;

��mmv < ��mv if ��mmv < 0:

That is, an investor with monotone mean-variance preferences always
holds a portfolio which is more leveraged than the portfolio held by a mean-
variance investor. If she buys a positive quantity of the risky asset, this
is greater than the quantity that would be bought by a mean-variance in-
vestor; on the contrary, if she sells the risky asset short, she sells more than
a mean-variance investor would do. This kind of behavior will be thor-
oughly illustrated by the examples in the next section: the intuition behind
it is that in some cases a favorable investment opportunity is discarded by a
mean-variance investor because of non-monotonicity of her preferences, while
a monotone mean-variance investor exploits the opportunity, thus taking a
more leveraged position.

5 Monotone CAPM

In this section we show how the standard CAPM analysis can be carried out
in the monotone mean-variance setup.
We begin by establishing a two-funds separation result, which shows that

agents�optimal investment choices can be done in two stages: �rst agents
decide the amount of wealth to invest in the risk-free asset; then, they decide
how to allocate the remaining wealth among the risky assets. The outcome
of this second decision is the same for all agents, regardless of their initial
wealth or aversion to uncertainty.

Proposition 8 Let �; 
 > 0. If
�
��; ��

�
solves the portfolio selection problem

(6) for an investor with uncertainty aversion �, then
�
�


��; �



�� +

�
1� �




�
R
�

solves it for an investor with uncertainty aversion 
.
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Given a � > 0 with �� �~1 > 0, de�ne m = ��� �~1. Hence,

�m =
��

�� �~1
and Proposition 8 guarantees that m and �m do not depend on the choice of
�. The equality �m �~1 = 1 implies that �m is the portfolio held by an investor
who does not invest any of her wealth in the risk-free asset. Following the
majority of the literature, we call �m the market portfolio and denote by
Xm = �m �X its payo¤. In particular, W�m = R + �m �

�
X �~1R

�
= Xm.

In an economy consisting of monotone-mean variance agents, all investors
hold a portfolio of risky assets proportional to the market portfolio. Speci�-
cally, an investor with uncertainty aversion � will invest m=� in the market
portfolio and the rest of her wealth in the risk free asset. Like in the standard
mean-variance setting, also here the amount of wealth invested in the market
portfolio only depends on the coe¢ cient � of the agent.

All this has strong empirical implications. From market data �more
precisely, by observing the market values of the assets in the economy �it
is possible to determine the equilibrium composition of the market portfolio
�m. Once we know the equilibrium �m, and so its equilibrium payo¤ Xm,
thanks to the next result we can �nd the values of m and �m by solving a
system of equations with observable coe¢ cients.12

Proposition 9 The pair (x�; y�) � (m;�m) solves the following system of
equations�

P (Xm � y)VarP [Xm jXm � y ]x = EP [Xm �R jXm � y ] ;

EP
�
(Xm � y)�

�
= 1=x:

The knowledge ofm and �m makes it possible to determine the equilibrium
pricing kernel rVm (Xm), which will become very important momentarily
when discussing the monotone CAPM. To see why this is the case, we need
the following lemma, which gives some properties of rVm (Xm).

Lemma 10 The quantity rVm (Xm) has the following properties:

(i) rVm (Xm) = m (Xm � �m)� = rV� (W��) for all � > 0:

12Notice that, like in the standard mean-variance setting, it can also be shown that the
uncertainty aversion coe¢ cient m is a mean of the uncertainty aversion coe¢ cients of the

agents. Speci�cally, m = �
�P

j

�
�j
��1��1

where �j is the uncertainty aversion coe¢ cient

of agent j and � is the market value of all assets.
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(ii) EP [XirVm (Xm)] = R for all i = 1; :::; n.

(iii) EP [rVm (Xm)] = 1.

By property (i) of this lemma, once we know the values of m and �m

we can determine the value of rVm (Xm) via the equation m (Xm � �m)�.
The value of rVm (Xm) can thus be determined from market data. To ease
notation, in what follows we set rV � rVm (Xm).

Lemma 10 also makes it possible to derive our monotone version of the
CAPM. In fact, by Lemma 10.(ii), EP [XmrV ] = �m � EP [XrV ] = R.
Together with Lemma 10.(iii), this implies

CovP [Xi;rV ] = R� EP [Xi] and CovP [Xm;rV ] = R� EP [Xm] ;

which proves the following theorem, the main result of this section.

Theorem 11 (Monotone CAPM) Let Xm be de�ned as above. Then,

EP [Xi]�R = �i
�
EP [Xm]�R

�
; 8i = 1; :::; n; (8)

where

�i =
CovP [Xi;rV ]
CovP [Xm;rV ]

. (9)

Theorem 11 gives our monotone CAPM, with security market line (8),
and shows its key theoretical and empirical features.
On the theoretical side, the pricing rule delivered by our CAPM is arbi-

trage free: there are no portfolios with strictly negative prices and positive
�nal payo¤s. In fact, let Yi the end-of-period payo¤ per share of asset i and
pi its current price. Then, Xi = Yi=pi and (8) becomes

EP [Yi]

pi
�R =

1

pi

CovP [Yi;rV ]
CovP [Xm;rV ]

�
EP [Xm]�R

�
This delivers the pricing rule:

pi =
1

R
EP [YirV ] :

This pricing rule is a positive linear functional. For, the price of a portfolio
consisting of qi shares of asset i is

nX
i=1

qipi =
1

R
EP

" 
nX
i=1

qiYi

!
rV

#
;
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which is positive as long as
nX
i=1

qiYi is positive (rV is positive because Vm is

monotone).
The absence of arbitrage opportunities in our monotone CAPM is a key

theoretical feature of our model. As observed in the Introduction, this is in
stark contrast with their presence in the standard CAPM model, caused by
the lack of monotonicity of mean-variance preferences. This was observed
by Dybvig and Ingersoll [DI], who show that if Xm =2 Gm and the market
is complete, then the pricing rule obtained from standard CAPM is not a
positive linear functional, and it thus allows arbitrages.
Inter alia, this means that, di¤erently from the standard CAPM, our

monotone CAPM pricing rule can be integrated in a standard Arrow-Debreu
complete-markets economy, with all assets in such an economy priced in
equilibrium according to our CAPM.

On the empirical side, our monotone CAPM model can be fully analyzed
from market data. First observe that the values of the betas (9) can be
derived from market data because we just observed that, besides those of Xi,
also the values of Xm and rV can be determined from market data.
Second, Theorem 11 suggests that, by regressing the excess returns to the

single assets on the excess return to the market portfolio, the empirical betas
of the single assets can be estimated by instrumental variables, using rV as
an instrument. In fact, de�ne "i = Xi �R� �i (Xm �R), so that:

Xi = R + �i (Xm �R) + "i.

By Lemma 10.(ii), rV is easily seen to be orthogonal to "i, and so rV can
be used as an instrument.
We cannot use, instead, ordinary least squares because, in general,Xm�R

is not orthogonal to "i. For:

EP ["i (Xm �R)] = EP [(Xi �R) (Xm �R)]� �iE
P
�
(Xm �R)2

�
= EP [(Xi �R) (Xm �R)]� CovP [rV;Xi]

CovP [rV;Xm]
EP
�
(Xm �R)2

�
:

Summing up, the monotone CAPM is arbitrage free and its betas can be
inferred from market data. The monotone CAPM has thus a sounder theo-
retical foundation than the standard CAPM, while retaining its remarkable
empirical tractability.
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6 Some Examples

In this section we present three simple examples to illustrate the optimal
portfolio rule we derived above. In every example there are �ve possible
states of Nature. Each of them obtains with a probability P (si) that remains
�xed throughout the examples. In all examples we also set � = 10.
Example 1 is a case in which our model and the traditional mean-variance

model deliver the same optimal composition of the portfolio. This is not
interesting per se, but it serves as a benchmark and it helps to introduce
Example 2, where the two optimal portfolios di¤er. In Example 1 there is
only one risky asset, whose gross return is denoted by X1 and is reported in
the next table, and a risk-free asset, whose gross return R is equal to 1 across
all states. In this example, the optimal portfolio ��mmv calculated according
to our rule is equal to the mean-variance optimal portfolio ��mv. Wmv and
Wmmv represent the overall return to the two optimal portfolios for each state
of the world. The table also displays the value of the constant �� at which it
is optimal to truncate the distribution of the return to the portfolio of risky
assets.

P (si) P (si jWmmv � �� ) R X1 Wmv Wmmv

s1 0:1 0:1 1 0:97 0:9375 0:9375
s2 0:2 0:2 1 0:99 0:9791 0:9791
s3 0:4 0:4 1 1:01 1:0208 1:0208
s4 0:2 0:2 1 1:03 1:0620 1:0620
s5 0:1 0:1 1 1:05 1:1041 1:1041
��mv = 2:083
��mmv = 2:083 �� = 1:1211

Example 2 is a slight modi�cation of Example 1. We increase the payo¤
to the risky asset in state s5 from 1:05 to 1:10, leaving everything else un-
changed. The e¤ect of this change is an increase in both the mean and the
variance of X1, the payo¤ to the risky asset. The optimal behavior according
to the mean-variance model is to reduce the fraction of wealth invested in the
risky asset from 2:083 to 1:3574. According to our model it is also optimal
to decrease the position in the risky asset, but less, from 2:083 to 1:8382.
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P (si) P (si jWmmv � �� ) R X1 Wmv Wmmv

s1 0:1 0:1111 1 0:97 0:9592 0:9448
s2 0:2 0:2222 1 0:99 0:9864 0:9816
s3 0:4 0:4444 1 1:01 1:0135 1:0183
s4 0:2 0:2222 1 1:03 1:0407 1:0551
s5 0:1 0 1 1:10 1:1357 1:1838
��mv = 1:3574
��mmv = 1:8382 �� = 1:1213

In both cases the optimal behavior might seem puzzling at a �rst sight:
when the payo¤ of an asset increases in one state, it is optimal to hold less of
that asset. This behavior can be understood by looking at the distributions
of the overall return in the two tables. By reducing the fraction of wealth
invested in the risky asset, the overall return increases in the states where
the risky asset pays less than the risk-free asset. On the contrary, the overall
return decreases in the states where the risky asset pays more than the risk-
free asset. In state s5, however, the e¤ect of this decrease is compensated
by the fact that we have raised the payo¤ to the risky asset from 1:05 to
1:10. Hence, by reducing the amount of wealth invested in the risky asset,
the investor gives up some of the extra payo¤ received in state s5 in order
to guarantee himself a higher overall return in the states where the risky
asset has a low payo¤. The problem with this kind of behavior is that it can
become pathological with mean-variance preferences. The next table shows
what happens if we further increase the payo¤ in state s5.

X1 (s5) 1:05 1:10 1:15 1:20 1:50 2 3
��mv 2:0830 1:3574 0:9174 0:6747 0:2465 0:1175 0:0572
��mmv 2:0830 1:8382 1:8382 1:8382 1:8382 1:8382 1:8382

The more we increase the payo¤ in state s5, the more the mean-variance
optimal fraction ��mv of wealth invested in the risky asset decreases, until it
goes to zero when the payo¤ in state s5 becomes very large. In our model this
does not happen. At �rst ��mmv decreases, but it then stops decreasing and
it remains �xed at the same value, though the payo¤ in state s5 is further
increased. The reason why this happens is that, once probabilities have been
optimally reassigned to states and a zero probability has been assigned to
state s5, any further increases of the payo¤ in s5 are disregarded and have
no in�uence on the formation of the optimal portfolio.
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Example 3 is slightly more complicated. Everything is as in Example 2,
but a second risky asset is added. The payo¤ to this new asset, denoted by
X2, is high in the states where X1 is low and low where X1 is high.

P (si) P (si jWmmv � �� ) R X1 X2 Wmv Wmmv

s1 0:1 0:1111 1 0:97 1:05 1:002 1:0231
s2 0:2 0:2222 1 0:99 1:00 0:9833 0:9570
s3 0:4 0:4444 1 1:01 0:99 1:0061 1:0125
s4 0:2 0:2222 1 1:03 0:99 1:0393 1:0985
s5 0:1 0 1 1:10 0:99 1:1556 1:3994
��mv = (1:6613; 1:0495)
��mmv = (4:2989; 3:0423) �� = 1:1316

Also in this case the optimal portfolios suggested by our model and by the
traditional model are di¤erent. To get an intuitive idea of what is happening,
note that, although the market is still arbitrage-free, asset 2 allows to hedge
away almost completely the risks taken by investing in asset 1. Consider for
example a portfolio formed by 0:5 units of asset 1 and 0:5 units of asset 2.
Its payo¤s in the �ve states are collected in the following vector:

(1:01; 0:995; 1; 1:01; 1:045)

A qualitative inspection of this payo¤ vector reveals that in state s2 this
portfolio pays o¤ slightly less than the risk-free asset, while in all other states
it pays o¤ more and in some states considerably more. Roughly speaking, if
it was not for the slightly low payo¤ in state s2, there would be an arbitrage
opportunity because the portfolio would pay o¤more than the risk-free asset
in every state. As a consequence, we would expect an optimal portfolio
rule to exploit this favorable con�guration of payo¤s by prescribing to take
a highly levered position. As reported in the last table, according to our
model it is optimal to take a highly levered position in the risky assets in
order to exploit this opportunity, at the cost of facing a low payo¤ in state
s2. In contrast, with the mean-variance model the optimal portfolio is much
less aggressive, and the investor is overly concerned with the unique state in
which the payo¤ is lower than the payo¤ to the risk-free asset.

7 Conclusions

We have derived a portfolio allocation rule using a corrected version of the
mean-variance principle, which avoids the problem of non-monotonicity. In
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the cases where mean-variance preferences are well-behaved (i.e., monotone)
the optimal portfolios suggested by our rule do not di¤er from standard
mean-variance e¢ cient portfolios.
The important property of separability in two funds still holds in our set-

ting, and this allows to derive a monotone CAPM that retains the empirical
tractability of the standard CAPM, but, unlike the latter, is arbitrage free.
We close by observing that Maccheroni, Marinacci, and Rustichini [MMR-2]

recently extended [MMR] to a dynamic setting, and for this reason we expect
that also our analysis can be extended to an intertemporal framework. This
will be the subject of future research, along with an empirical analysis of the
monotone CAPM.
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A Monotone Fenchel Duality

In this section we recall some important de�nitions of Convex Analysis, and
we prove some properties of monotone extensions of concave functionals that
pave the way for the proof of Theorem 2.
Let (E; k�k ;>) be an ordered Banach space, i.e., an ordered vector space

endowed with a Banach norm such that the positive cone E+ is closed and
generates E. Denote by E 0 the norm dual of E, and by E 0+ the cone of all
positive, linear, and continuous functionals on E. (See [Ch].)
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Let  : E ! R be a concave and continuous functional. The directional
derivative of  at x is

d+ (x) (v) = lim
t!0+

 (x+ tv)�  (x)

t
8v 2 E:

If the above limit exists for t! 0 and all v 2 E,  is Gateaux di¤erentiable at
x, and the functional r (x) : v 7! d+ (x) (v) is called Gateaux di¤erential.
(See [Ph]). The superdi¤erential of  at x is the subset of E 0 de�ned by

@ (x) = fx0 2 E 0 :  (y)�  (x) � hy � x; x0i 8y 2 Eg ;

while its Fenchel conjugate  � : E 0 ! [�1;1) is given by

 � (x0) = inf
x2E

fhx; x0i �  (x)g 8x0 2 E 0:

Finally, the domain of monotonicity of  is the set G � E given by

G =
�
x 2 E : @ (x) \ E 0+ 6= ?

	
:

Next proposition con�rms the intuition that the set G is where the func-
tional  is monotone.

Proposition 12 Let E be an ordered Banach space and  : E ! R be a
concave and continuous functional with G 6= ?.

(i) The functional ~ : E ! R, given by

~ (x) = min
x02E0+

fhx; x0i �  � (x0)g 8x 2 E; (10)

is the minimal monotone functional that dominates  ; that is,

~ (x) = sup f (y) : y 2 E and y 6 xg 8x 2 E: (11)

(ii) Let x 2 E, x 2 G , d+ (x) (v) � 0 8v 6 0, ~ (x) =  (x) :

(iii) Let x0 2 E 0, �
~ 
��
(x0) =

�
 � (x0) if x0 2 E 0+,
�1 otherwise.

(12)

(iv) If  � is strictly concave on the intersection of its domain with E 0+, then
~ is Gateaux di¤erentiable andr ~ (x) = argminx02E0+ fhx; x

0i �  � (x0)g
for all x 2 E.
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Moreover, if G is convex, for all x 2 E there exists y 2 G such that
y 6 x, and there exists a linear subspace F � G such that  jF is linear and
 � (x0) is attained for all x0 2 E 0+ with x

0
jF =  jF ; then, ~ is the minimal

monotone functional that extends  jG from G to E. In this case,

~ (x) = sup f (y) : y 2 G and y 6 xg = min
x02E0+:x0jF= jF

fhx; x0i �  � (x0)g

(13)
for all x 2 E.

By (i) and (ii), ~ is the minimal monotone extension of  jG from G 

to E that dominates  on E; in particular, ~ (x) �  (x) for each x 2 E
and ~ (x) =  (x) for all x 2 G . Moreover, (iii) shows that the Fenchel
conjugates of ~ and  coincide on the coneE 0+. (iv) is a useful di¤erentiability
property. The �nal part, shows that, under additional assumptions (satis�ed,
e.g., by the mean-variance functional), the extension ~ has even stronger
minimality properties.13

Proof. By the Fenchel-Moreau Theorem,  (x) = infx02E0 fhx; x0i �  � (x0)g
for all x 2 E. Set

~ (x) = inf
x02E0+

fhx; x0i �  � (x0)g 8x 2 E: (14)

Let x0 2 G (6= ?) and x00 2 @ (x0) \ E 0+ (6= ?), then

 (x) �  (x0) + hx; x00i � hx0; x00i 8x 2 E:

Therefore, the functional x00 + ( (x0)� hx0; x00i) is a¢ ne, monotone, and it
dominates  . Notice that

hx0; x00i �  (x0) � hx; x00i �  (x) 8x 2 E and  � (x00) = hx0; x00i �  (x0) :
(15)

In particular, x00 2 E 0+ and  � (x00) 2 R, hence, for all x 2 E,

�1 <  (x) � inf
x02E0+

fhx; x0i �  � (x0)g <1:

Then ~ dominates  and it takes �nite values (i.e. it is a functional). Obvi-
ously, ~ is concave and monotone.

13Similar results can be obtained in greater generality, e.g., in the case of a proper
concave, and upper semicontinuous function  : E ! [�1;1) on a ordered locally
convex space. Details are available upon request.
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(i) Let ' : E ! R be a concave and monotone functional such that
' �  . Then ' is continuous,14 and ' (x) = infx02E0+ fhx; x

0i � '� (x0)g for
all x 2 E.15 In addition, since ' �  , then '� �  � and

' (x) = inf
x02E0+

fhx; x0i � '� (x0)g � inf
x02E0+

fhx; x0i �  � (x0)g = ~ (x) 8x 2 E:

This shows that ~ is the minimal concave and monotone functional that
dominates  . It is easy to check that the function de�ned by Eq. (11) is the
minimal monotone functional that dominates  , and it is concave, hence it
coincides with ~ .
(iii) Follows from the de�nition of ~ (Eq. 14) and the observation that

the function de�ned by Eq. (12) is proper, concave, and weak* upper semi-
continuous.
Since ~ is concave and continuous, for all x0 2 E,16 (iii) delivers

x00 2 @ ~ (x0) , x00 2 arg min
x02E0

n
hx0; x0i � ~ � (x0)

o
, x00 2 arg min

x02E0+
fhx0; x0i �  � (x0)g :

This shows that the in�mum in Eq. (14) is attained, and that (iv) holds.
(ii) If x 2 G , then there is x00 2 @ (x) \ E 0+, and for all v 6 0

d+ (x) (v) = min
x02@ (x)

hv; x0i �
D
v; x

0

0

E
� 0:

Conversely, assume that d+ (x) (v) � 0 for all v 6 0 and, by contradiction,
that x =2 G , that is @ (x)\E 0+ = ?. Since E 0+ is a weak* closed and convex
cone and @ (x) is weak* compact, convex, and nonempty, there exists v 2 E
such that

hv; y0i � 0 < hv; x0i 8y0 2 E 0+; x0 2 @ (x) : (16)

Since E+ is closed, then E+ =
�
x 2 E : hx; y0i � 0 8y0 2 E 0+

	
. The left

hand side of Eq. (16) amounts to say that v 6 0, the right hand side that
minx02@ (x) hv; x0i > 0, which is absurd.
14If ' : 
 ! R is concave and monotone on an open subset 
 of an ordered Banach

space, then it is continuous:
15If ' : E ! [�1;1] is monotone and not identically �1, then '� (x0) = �1 for all

x0 =2 E0+:
16If ' : E ! R is concave and continuous, then, for all x0 2 E;

@' (x0) = arg min
x02E0

fhx0; x0i � '� (x0)g 6= ?:
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If x 2 G , then there is x00 2 @ (x) \ E 0+ that is

x00 2 arg min
x02E0

fhx; x0i �  � (x0)g and x00 2 E 0+, then

x00 2 arg min
x02E0+

fhx; x0i �  � (x0)g :

The �rst line implies  (x) = hx; x00i �  � (x00), the second that ~ (x) =
hx; x00i �  � (x00). Conversely, if  (x) = minx02E0+ fhx; x

0i �  � (x0)g, then
there exists x00 2 E 0+ such that

hx; x00i �  � (x00) =  (x) = min
x02E0

fhx; x0i �  � (x0)g , then

x00 2 arg min
x02E0

fhx; x0i �  � (x0)g and x00 2 E 0+,

therefore, x00 2 @ (x) \ E 0+ and x 2 G .
Finally, assume G is convex, for all x 2 E there exists y 2 G such that

y 6 x, and there exists a linear subspace F � G such that  jF is linear and
 � (x0) is attained for all x0 2 E 0+ with x0jF =  jF . Set

 ̂ (x) = sup f (y) : y 2 G and y 6 xg 8x 2 E:

It is easy to check that  ̂ : E ! R is the minimal monotone functional
that extends  jG from G to E, and that convexity of G implies that it
is concave. Therefore,  ̂ � ~ ,  ̂ (x) =  (x) for all x 2 G ,  ̂ is concave,
monotone, and linear on F (where it coincides with  ). Hence, for all x 2
E,17

 ̂ (x) = inf
x02E0

n
hx; x0i �  ̂� (x0)

o
= inf

x02E0+:x0jF= ̂jF

n
hx; x0i �  ̂� (x0)

o
= inf

x02E0+:x0jF= jF

n
hx; x0i �  ̂� (x0)

o
:

For all x0 2 E 0+ such that x0jF =  jF ,

 ̂� (x0) = inf
x2E

n
hx; x0i �  ̂ (x)

o
� inf

x2G 

n
hx; x0i �  ̂ (x)

o
= inf

x2G 
fhx; x0i �  (x)g :

(17)
Analogously, since  is linear on F then, for all x 2 E,

~ (x) = min
x02E0+:x0jF= jF

fhx; x0i �  � (x0)g . (18)

17If ' : E ! [�1;1] is linear on a subspace F , then '� (x0) = �1 if x0jF 6= 'jF :
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Since  � (x0) is attained for all x0 2 E 0+ such that x0jF =  jF , for every x0 with
these properties there exists x0 2 E such that

hx0; x0i �  (x0) � hx; x0i �  (x) 8x 2 E:

Then x0 2 @ (x0)\E 0+ and x0 2 G , in particular,  � (x0) is attained in G .
That is, for x0 2 E 0+ such that x0jF =  jF ,

 � (x0) = inf
x2G 

fhx; x0i �  (x)g �  ̂� (x0)

where the last inequality descends from Eq. (17). We conclude that

 ̂ (x) = inf
x02E0+:x0jF= jF

n
hx; x0i �  ̂� (x0)

o
� inf

x02E0+:x0jF= jF
fhx; x0i �  � (x0)g = ~ (x)

for all x 2 E, as wanted. �

These results have been recently extended in Filipovic and Kupper [FK-2].

B Proofs

Let f 2 L (P ), we denote by Ff (t) = P (f � t) its cumulative distribution
function and by gf (t) =

R t
�1 Ff (z) dz its integral distribution function.

Next two lemmas regroup some useful properties of integrated distribution
functions. We report the proofs for the sake of completeness.

Lemma 13 For all z 2 R,

gf (z) =

Z
(f � z)� dP

= zP (f � z)�
Z
f1ff�zgdP

= zP (f < z)�
Z
f1ff<zgdP

=

Z
z � (f ^ z) dP

=

Z z

�1
P (f < t) dt:

Proof. Let z 2 R. (f � z)� = (z � f) 1ff�zg, henceZ
(f � z)� dP = zP (f � z)�

Z
f1ff�zgdP:
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Moreover,

zP (f � z)�
Z
f1ff�zgdP = zP (f < z) + zP (f = z)�

Z
ff<zg

fdP �
Z
ff=zg

fdP

= zP (f < z) + zP (f = z)�
Z
ff<zg

fdP � zP (f = z)

= zP (f < z)�
Z
f1ff<zgdP:

Since f1ff�zg = (f ^ z)� z1ff>zg, then

zP (f � z)�
Z
f1ff�zgdP = zP (f � z)�

Z �
f ^ z � z1ff>zg

�
dP

= zP (f � z)�
Z
(f ^ z) dP + z

Z
1ff>zgdP

= zP (f � z) + zP (f > z)�
Z
(f ^ z) dP

=

Z
z � (f ^ z) dP:

Observe that z � (f ^ z) � 0, and soZ
z � (f ^ z) dP =

Z 1

0

P (z � (f ^ z) � u) du:

On the other hand, fz � (f ^ z) � ug = ff � z � ug for all u > 0. In fact,

z � (f ^ z) � u) (f ^ z) � z � u < z ) (f ^ z) = f ) f � z � u

and

f � z � u) f ^ z � (z � u) ^ z ) f ^ z � z � u) z � (f ^ z) � u:

Hence,Z
z � (f ^ z) dP =

Z 1

0

P (z � (f ^ z) � u) du

=

Z 1

0

P (f � z � u) du =

Z z

�1
P (f � t) dt = gf (z) ;

thus the �rst four equalities hold.
Finally, notice that P (f < t) = limu!t� P (f � u) 6= P (f � t) for at

most a countably many ts. �
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Lemma 14 The function gf : R! [0;1) is continuous and

Ff (z) = lim
"!0+

�
gf (z + ")� gf (z)

"

�
8z 2 R:

That is, Ff is the right derivative of gf , and Ff (z) is the derivative of gf at
every point z at which Ff is continuous. Moreover, setting � = essinf (f), gf
is strictly increasing on (�;1), gf � 0 on (�1; �],18 limz!�+ gf (z) = 0+,
and limz!1 gf (z) =1.

Proof. The Fundamental Theorem of Calculus guarantees the continuity
and derivability properties of gf . Recall that

essinf (f) = sup f� 2 R : P (f < �) = 0g :

If z 2 R and z � essinf (f), for all t < z there exists � > t such that
P (f < �) = 0. Then,

0 � P (f < t) � P (f < �) = 0:

This implies gf (z) = 0 for all z 2 (�1; �].
On the other hand, if � < z < z0, then

gf (z
0)� gf (z) =

Z z0

z

P (f < t) dt � P (f < z) (z0 � z) :

But P (f < z) = 0 would imply z � �, a contradiction. Therefore, gf (z0) �
gf (z) > 0. That is, gf is strictly increasing on (�;1).
Notice that limt!1 Ff (t) = 1. Then, for all n > 1 there exists k � 1

(n; k 2 N) such that Ff (t) > 1� 1
n
for all t � k. Therefore,

gf (k + n) =

Z k+n

�1
Ff (t) dt �

Z k+n

k

Ff (t) dt

� n

�
1� 1

n

�
= n� 1:

Since gf is increasing on R, then limz!1 gf (z) =1.
If � > �1, gf (�) = 0, continuity and nonnegativity imply limz!�+ gf (z) =

0+. Let � = �1, for all n > 1,

gf (�n) =
Z
(�n� (f ^ (�n))) dP =

Z
(((�f) _ n)� n) dP

=

Z
((�f)� ((�f) ^ n)) dP:

18With the convention (�1;�1] = ?.
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The Monotone Convergence Theorem guarantees that limn!1 gf (�n) = 0:
Monotonicity and nonnegativity imply limz!�+ gf (z) = 0

+. �

For the rest of the Appendix we indi¤erently write EP or just E. Denoting
by > the relation � P -a.s., (L2 (P ) ; k�k2 ;>) is an ordered Banach space,
and its norm dual can be identi�ed with L2 (P ), with the duality relation
hf; Y i = E [fY ]. Simple computation shows that, for all � > 0,

�
f 2 L2 (P ) : rU� (f) > 0

	
=

�
f 2 L2 (P ) : f � EP [f ] 6 1

�

�
(19)

this set is denoted by G�.

Lemma 15 Let f 2 L2 (P )� G� and t 2 R. Then

f ^ t 2 G� , gf (t) �
1

�
: (20)

Proof. Notice that

f ^ t� E [f ^ t] = f1ff�tg + t1ff>tg � tP (f > t)� E
�
f1ff�tg

�
= f1ff�tg + t1ff>tg � t+ tP (f � t)� E

�
f1ff�tg

�
= (f � t) 1ff�tg + gf (t) :

Since (f � t) 1ff�tg 6 0,

gf (t) �
1

�
) f ^ t� E [f ^ t] 6 1

�
;

i.e., gf (t) � 1
�
) f ^ t 2 G�.

For the converse implication, notice that we are assuming f =2 G�. Then,
being f ^ t 2 G�, it cannot be f ^ t = f P -a.s.. Hence, essup (f ^ t) = t. It
follows that:

f ^ t� E [f ^ t] 6 1

�
) essup (f ^ t)� tP (f > t)� E

�
f1ff�tg

�
� 1

�

) t� tP (f > t)� E
�
f1ff�tg

�
� 1

�

) tP (f � t)� E
�
f1ff�tg

�
� 1

�

) gf (t) �
1

�
;

i.e., f ^ t 2 G� ) gf (t) � 1
�
. �

Lemmas 14 and 15 immediately yield the following:
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Corollary 16 Let f 2 L2 (P )�G�, then g�1f
�
1
�

�
= max ft 2 R : f ^ t 2 G�g :

Lemma 17 For all � > 0;

(i) G� is convex, closed, and for all f 2 L2 (P )�G� and every " > 0 there
exists g 2 L2 (P ) such that jf (s)� g (s)j < " for all s 2 S, g > f , and
U� (g) < U� (f).

(ii) U� is linear on the subspace T � G� of all P -a.s. constant functions.

(iii) For all Y 2 L2 (P ),

U�� (Y ) =

�
� 1
2�
(E [Y 2]� 1) if E [Y ] = 1;

�1 otherwise.
(21)

(iv) fY 2 L2 (P ) : E [Y ] = 1g =
n
Y 2 L2 (P ) : h�; Y ijT = U�jT

o
and U�� is

attained and strictly concave on this set.

Proof. (i) Convexity of G� is trivial. Next we show closure. If fn 2 G�
and fn ! f in L2 (P ), then there exists a subsequence gn of fn such that
gn (s)! f (s) for P -almost all s in S. Let A0 = fs 2 S : gn (s)! f (s)g, and
for all n � 1, An = fs 2 S : gn (s)� E [gn] � 1=�g, then P

�T
n�0An

�
= 1

and for all s 2
T
n�0An,

f (s)� E [f ] = lim
n!1

(gn (s)� E [gn]) �
1

�

that is f � E [f ] 6 1=�.
Moreover, if f =2 G�, then rU� (f) is not positive and there exists A with

P (A) > 0 such that
R
1ArU� (f) dP < 0, then

lim
t!0

U� (f + t1A)� U� (f)

t
=

Z
1ArU� (f) dP < 0

that is, there exists " > 0 such that

U� (f + t1A)� U� (f)

t
< 0

for all t 2 (0; "). As a consequence for all such ts, f+t1A > f , U� (f + t1A) <
U� (f) (set g = f + ("=2) 1A).
(ii) is trivial.
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For convenience, (iii) and (iv) are proved together. For all t 2 R, U� (t1S) =
t, then for all Y 2 L2 (P )n

Y 2 L2 (P ) : h�; Y ijT = U�jT

o
=
�
Y 2 L2 (P ) : E [Y ] = 1

	
;

and U�� (Y ) = �1 for all Y that does not belong to this set.
If E [Y ] = 1, the functional W� : L2 (P )! R given, for all f 2 L2 (P ), by

W� (f) = hf; Y i � U� (f) = hf; Y i � hf; 1i+
�

2
hf � E [f ] ; f � E [f ]i

is well de�ned, convex, and Gateaux di¤erentiable. Its Gateaux di¤erential
is

rW� (f) = Y � 1 + � (f � E [f ]) : (22)

Notice that f̂ = ���1Y solves rW�

�
f̂
�
= 0 (since E [Y ] = 1), and W� at-

tains its minimum onL2 (P ) at f̂ . This implies that U�� (Y ) = inff2L2(P )W� (f)
is attained, and

U�� (Y ) = min
f2L2(P )

W� (f) =W�

�
f̂
�
=

�
�1
�
Y; Y

�
�
�
�1
�
Y; 1

�
+
�

2
Var

�
�1
�
Y

�
= �1

�
E
�
Y 2
�
+
1

�
E [Y ] +

�

2

1

�2
Var [Y ] = � 1

2�

�
E
�
Y 2
�
� 1
�
:

This concludes the proof of Eq. (21). Strict concavity of U�� in its domain is
a straightforward application of the the Cauchy-Schwartz inequality. �

Proof of Lemma 1. It is an immediate consequence of Eq. (19) and part
(i) of the above Lemma 17. �

Proof of Theorem 2. As observed, U� : L2 (P ) ! R is a concave and
continuous functional on an ordered Banach space, G� = GU� , Lemma 17
and Corollary 16, guarantee that all the hypotheses of Proposition 12 are
satis�ed. For all f 2 L2 (P ),

~U� (f) = min
Y 2L2+(P ):E[Y ]=1

�
E [fY ] +

1

2�

�
E
�
Y 2
�
� 1
��

= min
Q2�2(P )

�
EQ [f ] +

1

2�
C (QjjP )

�
= V� (f) ;

and V� has all the desired properties. �
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Remark 18 Proposition 12.(iv) and Lemma 17.(iv) guarantee that V� is
Gateaux di¤erentiable, and

rV� (f) = arg min
Y 2L2+(P ):E[Y ]=1

�
E [fY ] +

1

2�

�
E
�
Y 2
�
� 1
��

8f 2 L2 (P ) :

(23)

Theorem 19 Let f 2 L2 (P ). Then

V� (f) =

�
E [f ]� �

2
Var [f ] if f 2 G�;

E [f ^ �]� �
2
Var [f ^ �] else,

where � = g�1f
�
1
�

�
: Moreover, the Gateaux di¤erential of V� at f is

rV� (f) = � (�� f) 1ff��g:

Proof. For all f 2 L2 (P ), V� (f) = minQ2�2(P )
�
EQ (f) + 1

2�
C (QjjP )

	
.

That is, V� (f) is the value of the problem:8<: min
�
E [fY ] + 1

2�
E [Y 2]� 1

2�

	
Y > 0
E [Y ] = 1

: (24)

Remark 18 guarantees that the solution of such problem exists, is unique,
and it coincides with the Gateaux derivative of V� at f . Notice that Y is
a solution of problem (24) if and only if it is a solution of the constrained
optimization problem: 8<: min

�
E [fY ] + 1

2�
E [Y 2]

	
Y > 0
E [Y ] = 1

: (25)

The Lagrangian is

L (Y; �; �) = E (fY ) +
1

2�
E
�
Y 2
�
� E (�Y )� � (E (Y )� 1) ;

with � 2 L2+ (P ), � 2 R. The Kuhn-Tucker optimality conditions are:

f +
1

�
Y � �� � = 0 (P -a.s.)

E (�Y ) = 0

Y > 0; � > 0
E (Y ) = 1
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Since �; Y > 0, they are equivalent to:

f +
1

�
Y � �� � = 0 (P -a.s.)

�Y = 0 (P -a.s.)

Y > 0; � > 0
E (Y ) = 1

that is,

f +
1

�
Y � � � 0 P -a.s. (26)�

f +
1

�
Y � �

�
Y = 0 P -a.s. (27)

Y � 0 P -a.s. (28)

E [Y ] = 1 (29)

It is su¢ cient to �nd (Y �; ��) that satisfy (26) - (29) everywhere (not
only P -a.s.).
If s 2 fY � > 0g, then by (27) f (s) + 1

�
Y � (s)� �� = 0 and

Y � (s) = � (�� � f (s)) : (30)

In particular, �� � f (s) > 0, and s 2 ff < ��g. Conversely, if s 2 ff < ��g,
then by (26) Y � (s) � � (�� � f (s)) > 0 and s 2 fY � > 0g. In sum,

fY � > 0g = ff < ��g and
Y � = � (�� � f) 1ff<��g .

By (29),

1 = E [Y �] = E
�
� (�� � f) 1ff<��g

�
= �

�
��P (f < ��)� E

�
f1ff<��g

��
;

that is,

gf (�
�) = ��P (f < ��)� E

�
f1ff<��g

�
=
1

�
:

In other words,

�� = g�1f

�
1

�

�
� �; (31)

and �� is unique. A fortiori, Y � is unique and

Y � = � (�� f) 1ff<�g: (32)
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By construction, the pair (Y �; ��) de�ned by (31) and (32) is a solution of
(26) - (29). Since the solution of (24) exists and it is unique, we conclude
that Y � de�ned as in Eq. (32) is the unique solution of (24).
Notice that Y � = � (�� f) 1ff<�g + � (�� f) 1ff=�g = � (�� f) 1ff��g,

(Y �)2 = �2
�
f 21ff��g + �21ff��g � 2�f1ff��g

�
and

E
�
(Y �)2

�
= �2

�Z
f 21ff��gdP + �2P (f � �)� 2�

Z
f1ff��gdP

�
:

Moreover,

E [fY �] = E
�
f� (�� f) 1ff��g

�
= E

�
��f1ff��g � �f21ff��g

�
= ��

Z
f1ff��gdP � �

Z
f 21ff��gdP:

Therefore,

V� (f) = E [fY
�] +

1

2�
E
�
(Y �)2

�
� 1

2�

= ��

Z
f1ff��gdP � �

Z
f 21ff��gdP+

+
�

2

�Z
f 21ff��gdP + �2P (f � k)� 2�

Z
f1ff��gdP

�
� 1

2�

= ��
2

Z
f 21ff��gdP +

�

2
�2P (f � k)� 1

2�

Also observe that f1ff��g + �1ff>�g = f ^ �, whence

E [f ^ �] = E
�
f1ff��g

�
+ �P (f > �) = E

�
f1ff��g

�
� �P (f � �) + �

= �gf (�) + � = �� 1
�
;

and

Var [f ^ �] = E
h�
f1ff��g + �1ff>�g

�2i� ��� 1
�

�2
=

Z
f 21ff��gdP + �2P (f > k)� �2 � 1

�2
+ 2

�

�

=

Z
f 21ff��gdP � �2P (f � k)� 1

�2
+ 2

�

�
:
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Finally,

E [f ^ �]� �

2
Var [f ^ �] = �� 1

�
� �

2

�Z
f21ff��gdP � �2P (f � k)� 1

�2
+ 2

�

�

�
= �� 1

�
�
�
�

2

Z
f21ff��gdP �

�

2
�2P (f � k)� 1

2�
+ �

�
= ��

2

Z
f21ff��gdP +

�

2
�2P (f � k)� 1

2�

= V� (f) :

�

Proof of Theorem 3. It is now enough to combine Corollary 16 and
Theorem 19. �

Remark 20 Inspection of the proof of Theorem 19 shows that:

� For all f 2 L2 (P ) (not only for f 2 L2 (P )�G�), setting � = g�1f
�
1
�

�
we

have

V� (f) = E [f ^ �]�
�

2
Var [f ^ �] ;

rV� (f) = � (�� f) 1ff��g = � (f � �)� ;

rV� (f) = argminQ2�2(P )

�
EQ (f) +

1

2�
C (QjjP )

�
:

� The properties of gf guarantee that � exists, it is unique, and 1
�
=

�P (f � �)�
R
f1ff��gdP ; therefore, P (f � �) > 0.

� Moreover, 1
�
= �P (f � �)�

R
f1ff��gdP implies 1

�P (f��)+
R
fdPff��g =

�, and so

rV� (f) = � (�� f) 1ff��g =

�
1

P (f � �)
+ �

Z
fdPff��g � �f

�
1ff��g

=

�
1

P (f � �)
� � (f � E [f jf � �])

�
1ff��g:

N

Proof of Theorem 5. By Theorem 13.8 of Chong and Rice [CR], for all
f; Y 2 L2 (P ), the set

�R
fY 0dP : Y 0 2 L2 (P ) and Y 0 �c Y

	
coincides with

the interval �Z 1

0

F�1f (1� u)F�1Y (u) du;

Z 1

0

F�1f (u)F�1Y (u) du

�
;
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where �c is the concave order and F�1f is the quantile function of f .19 Con-
sider the function � : L2 (P )! [0;1] de�ned by

� (Y ) =

�
1
2�
(E [Y 2]� 1) if Y > 0 and E [Y ] = 1;

1 otherwise.

It is easy to check that Y 0 �c Y implies � (Y 0) � � (Y ).20 Let f 2 L2 (P ),

V� (f) = min
Y 2L2(P )

fE [fY ] + � (Y )g � inf
Y 2L2(P )

�Z 1

0

F�1f (1� u)F�1Y (u) du+ � (Y )

�
:

Moreover, for all Y 2 L2 (P ) there exists Y 0 2 L2 (P ) with Y 0 �c Y such
that

R 1
0
F�1f (1� u)F�1Y (u) du =

R
fY 0dP . Since � (Y 0) � � (Y ), thenZ 1

0

F�1f (1� u)F�1Y (u) du+� (Y ) =

Z
fY 0dP +� (Y ) �

Z
fY 0dP +� (Y 0) ;

hence

V� (f) = inf
Y 2L2(P )

�Z 1

0

F�1f (1� u)F�1Y (u) du+ � (Y )

�
:

If f �c g, an inequality of Hardy (see, e.g., [CR, p. 57-58]) deliversZ 1

0

F�1f (1� u)F�1Y (u) du �
Z 1

0

F�1g (1� u)F�1Y (u) du 8Y 2 L2 (P ) ;

and V� (f) � V� (g). Let f �SSD g , Theorem 1.1 of [Cn] guarantees that
f � h �c g for some h 2 L2+ (P ). Since V� is monotone, then V� (f) �
V� (f � h) � V� (g). �

Proof of Theorem 6. The maximization problem is

sup
�2R

V� (W�)

whereW� = R+��
�
X �~1R

�
(remember that � 2 Rn, X 2 L2 (P )n, and ~1 is

a vector of 1s). From Theorem 19 we know that V� is Gateaux di¤erentiable
and

rV� (W�) =

�
1

P (W� � ��)
� � (W� � E [W�jW� � ��])

�
1fW����g;

19I.e. Y 0 �c Y i¤
R
� (Y 0) dP �

R
� (Y ) dP for all concave � : R! R ([CR]

and [Cn] denote this relation by Y 0 � Y and call it majorization), and F�1f (t) =
inf fz 2 R : Ff (z) � tg for all t 2 [0; 1] :
20Let Y 0 �c Y . If � (Y ) =1, then � (Y 0) � � (Y ). Else Y > 0 and E [Y ] = 1, then also

Y 0 > 0 and E [Y 0] = 1 (see [CR, p. 62]). The function � (t) = � 1
2�

�
t2 � 1

�
is concave,

whence E [� (Y 0)] � E [� (Y )], and � (Y ) = �E [� (Y )] � �E [� (Y 0)] = � (Y 0).
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where �� solves:

P (W� � ��)
�
�� � EP [W� jW� � �� ]

�
=
1

�
: (33)

Since for all i = 1; : : : ; n

@V� (W�)

@�i
= E [rV� (W�) (Xi �R)] ;

the �rst order conditions for an optimum are:

E [XrV� (W�)] = ~1R: (34)

Substituting rV� (W�):

E

�
1fW����g

P (W� � ��)
X � �

�
(� �X) 1fW����gX � E [� �X jW� � �� ] 1fW����gX

��
= ~1R

set A = fW� � ��g to obtain

E [X jA ]� �P (A) (E [(� �X)X jA ]� E [X jA ] E [� �X jA ]) = ~1R

the observation that E [(� �X)X jA ] � E [X jA ] E [� �X jA ] = Var [X jA ]�
yields:

E
h
X �~1R jW� � ��

i
= �P (W� � ��)Var [X jW� � �� ]�:

These are the �rst n equations. The (n+ 1)-th is the equation which deter-
mines ��, that is (33) or (see Lemma 13)

E
�
(W� � ��)

�� = 1

�
:

Concavity of V� guarantees the su¢ ciency of �rst order conditions. �

Proof of Proposition 7. Set �� = ��mmv. The maximization problem it
solves is

max
�2R

min
Y 2Y

�
E [(R + � (X �R))Y ] +

1

2�
E
�
Y 2
�
� 1

2�

�
(35)

where Y =
�
Y 2 RS+ : E [Y ] = 1

	
. Clearly, Y is convex and compact, and

(��; Y �) is a solution of (35) if and only if it is a solution of

max
�2R

min
Y 2Y

G (�; Y )

36



where G (�; Y ) = E [(R + � (X �R))Y ] + 1
2�
E [Y 2]. Moreover, notice that

G : R�Y! R is continuous, it is a¢ ne in � (for each �xed Y ) and strictly
convex in Y (for each �xed �). Set v = max�2RminY 2YG (�; Y ), by (a
version of) the Min-Max Theorem (e.g. [?, p. 134]) there exists �Y 2 Y such
that

v = sup
�2R

G
�
�; �Y

�
:

Moreover,

G
�
��; �Y

�
� min

Y 2Y
G (��; Y ) = G (��; Y �) = v = sup

�2R
G
�
�; �Y

�
� G

�
��; �Y

�
;

therefore, G
�
��; �Y

�
= minY 2YG (�

�; Y ), strict convexity implies �Y = Y �.
In turn, this yields sup�2RG (�; Y

�) = v 6=1 and it cannot be

sup
�2R

�
R + �E [(X �R)Y �] +

1

2�
E
�
(Y �)2

��
=1;

therefore
E [Y � (X �R)] = 0: (36)

Y � is the solution of problem (25) in the proof of Theorem 19 with f =
R + �� (X �R) = W��. Therefore, there exist �� 2 R and � 2 L2 (P )
(= RS) such that Y � satis�es the following conditions:

R + �� (X �R) +
1

�
Y � � �� �� = 0; (37)

E [Y �] = 1; (38)

Y � > 0; � > 0; �Y � = 0: (39)

Taking the expectation of both sides of (37) we obtain:

(1� ��)R + ��E [X] +
1

�
E [Y �]� E [�]� �� = 0 (40)

and, subtracting (40) from (37):

�� (X � E [X]) + 1
�
(Y � � E [Y �])� (�� E [�]) = 0:

Rearranging and using (38):

Y � = 1� ��� (X � E [X]) + � (�� E [�]) : (41)

Multiply both sides by �, take expectations and use (39) to get:

E [�]� ���Cov [�;X] + �Var [�] = 0
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and, rearranging terms:

���Cov [�;X] = E [�] + �Var [�] : (42)

Since � > 0, then E [�] � 0 thus:

�� = 0) � = 0) Cov [�;X] = 0; (43)

�� > 0) Cov [�;X] � 0; (44)

�� < 0) Cov [�;X] � 0: (45)

Now, plugging (41) into (36) we obtain:

E [(1� ��� (X � E [X]) + � (�� E [�]))X] = R

or:
E [X]� ���Var [X] + �Cov [�;X] = R

which becomes:

�� =
1

�

E [X �R]

Var [X]
+
Cov [�;X]

Var [X]

Recalling that:

��mv =
1

�

E [X �R]

Var [X]

we obtain:

�� = ��mv +
Cov [�;X]

Var [X]
(46)

Using (43) - (45), it is now obvious that:

�� = 0) �� = ��mv = 0; (47)

�� > 0) �� � ��mv; (48)

�� < 0) �� � ��mv: (49)

From the proof of Theorem 19 �Eq. (31) �we know that �� = g�1W��

�
1
�

�
= ��.

Furthermore, if P (W�� > ��) > 0, since S is �nite, there exists s such that

R + �� (X (s)�R) =W�� (s) > �� = ��;

that is R + �� (X (s)�R)� �� > 0. Since Y � (s) � 0, by (37), we have

� (s) = R + �� (X (s)�R)� �� +
1

�
Y � > 0;

and E [�] > 0. Thus, in this case (42) implies ��Cov [�;X] > 0 and the
inequalities in (48) and (49) become strict.
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Finally, we want to show that ����mv � 0. By contradiction, suppose
����mv < 0. Then, either �� > 0 and ��mv < 0 or �� < 0 and ��mv > 0.
Suppose �� > 0 and ��mv < 0, since

��mv =
1

�

E [X �R]

Var [X]
;

it must be E [X �R] < 0 and

��E [X �R] < 0: (50)

Clearly, if �� < 0 and ��mv > 0, (50) still holds. Remember that (�
�; Y �) is

a saddle point for

G (�; Y ) = E [(R + � (X �R))Y ] +
1

2�
E
�
Y 2
�

and so:
G (��; Y �) � G (��; 1S) = R + ��E [X �R] < R

where the last inequality follows from (50). But,

min
Y 2Y

G (0; Y ) = R +min
Y 2Y

1

2�
E
�
Y 2
�
� R

> G (��; Y �) = max
�2R

min
Y 2Y

G (�; Y ) � min
Y 2Y

G (0; Y ) ;

which is impossible. �

Proof of Proposition 8. Assume8<: �P
�
W�� � ��

�
Var

�
X
��W�� � ��

�
�� = E

h
X �~1R

��W�� � ��
i
;

E
h�
W�� � ��

��i
= 1

�
:

(51)

Set

�
 =
�



�� and �
 =

�




�
�� �R

�
+R:

Then,

W�� = R + �� �
�
X �~1R

�
= R +




�
�
 �X � 


�
�
 �~1R

= R� 


�
R +




�
R +




�
�
 �X � 


�
�
 �~1R

=



�
W�
 +R

�
1� 


�

�
;
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and so

W�� =



�
W�
 +R

�
1� 


�

�
and �� =




�
�
 +R

�
1� 


�

�
: (52)

Equation (51) becomes8<: �P (W�
 � �
)Var [X jW�
 � �
 ] 

�
�
 = E

h
X �~1R jW�
 � �


i
;

EP
h�



�
(W�
 � �
)

��i
= 1

�
:

that is(

P (W�
 � �
)Var [X jW�
 � �
 ]�
 = E

h
X �~1R jW�
 � �


i
;

E
�
(W�
 � �
)�

�
= 1



:

so that (�
; �
) solves the portfolio selection problem for an investor with
uncertainty aversion 
. �

Proof of Lemma 9. Consider the portfolio selection problem (6) with
� = 1. Next we show that

max
�2Rn

V1 (W�) = max
�2R

V1 (�Xm + (1� �)R)

and m 2 argmax�2R V1 (�Xm + (1� �)R).
First observe that, for all � 2 R,

�Xm + (1� �)R = � (�m �X) +
�
1� ��m �~1

�
R = W��m

hence max�2R V1 (�Xm + (1� �)R) � max�2Rn V1 (W�). Conversely, if �1 2
argmax�2Rn V1 (W�), then m = �1 � ~1 and �m = �1=

�
�1 �~1

�
or �1 = m�m.

Hence

max
�2Rn

V1 (W�) = V1 (W�1) = V1 (Wm�m) = V1

�
m�m �X +

�
1�m�m �~1

�
R
�

= V1 (mXm + (1�m)R) � max
�2R

V1 (�Xm + (1� �)R)

� max
�2Rn

V1 (W�)

as wanted. Now, applying Theorem 6 with Xm instead of X, m must satisfy
the following conditions:(

P (mXm + (1�m)R � �)Var [Xm jmXm + (1�m)R � � ]m = E [Xm �R jmXm + (1�m)R � � ] ;

E
h
(mXm + (1�m)R� �)�

i
= 1:

(53)
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Moreover, since Xm is the (optimal) �nal wealth of an agent with initial
wealth 1 and uncertainty aversion coe¢ cient m, again by Theorem 6 applied
to such an agent it must be the case that

E
�
(Xm � �m)�

�
= 1=m: (54)

But the second equation of previous system is equivalent to

E

"�
Xm �

�
�

m
� (1�m)

m
R

���#
=
1

m
(55)

and since gXm is strictly increasing (see Lemma 14), then

�

m
� (1�m)

m
R = �m: (56)

By (56), fmXm + (1�m)R � �g =
n
Xm � �

m
� (1�m)

m
R
o
= fXm � �mg

and (55) is equivalent to (54), thus (53) amounts to�
P (Xm � �m)Var [Xm jXm � �m ]m = E [Xm �R jXm � �m ] ;

E
�
(Xm � �m)�

�
= 1=m;

as wanted. �

Proof of Lemma 10. (i) First observe that by Remark 20 and Eq. (52) in
the proof of Proposition 8, for all � > 0

rV� (W��) = �
�
�� �W��

�
1fW��

���g = �
�m
�
�m � m

�
W�m

�
1fW�m��mg

= m (�m �Xm) 1fXm��mg = m (Xm � �m)� = rVm (Xm) :

(ii) The �rst order conditions for an optimum are E [XrVm (W�m)] = ~1R
(see Eq. 34).
(iii) Descends from Remark 18. �
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