BANCA D'ITALIA

Temi di discussione

del Servizio Studi

The role of risk aversion in predicting individual behavior

by Luigi Guiso and Monica Paiella

Number 546 - February 2005

The purpose of the Temi di discussione series is to promote the circulation of working papers prepared within the Bank of Italy or presented in Bank seminars by outside economists with the aim of stimulating comments and suggestions.

The views expressed in the articles are those of the authors and do not involve the responsibility of the Bank.

Editorial Board:

Giorgio Gobbi, Marcello Bofondi, Michele Caivano, Andrea Lamorgese, Francesco Paternò, Marcello Pericoli, Alessandro Secchi, Fabrizio Venditti, Stefania Zotteri, Raffaela Bisceglia (*Editorial Assistant*).

THE ROLE OF RISK AVERSION IN PREDICTING INDIVIDUAL BEHAVIOR

by Luigi Guiso* and Monica Paiella**

Abstract

We use household survey data to construct a direct measure of absolute risk aversion based on the maximum price a consumer is willing to pay to buy a risky asset. We relate this measure to a set of consumers' decisions that in theory should vary with attitude towards risk. We find that elicited risk aversion has considerable predictive power for a number of key household decisions such as choice of occupation, portfolio selection, moving decisions and exposure to chronic diseases in ways consistent with theory. We also use this indicator to address the importance of self-selection when relating indicators of risk to individual saving decisions.

JEL classification: D1, D8.

Keywords: risk aversion, heterogeneous preferences, choice under risk, entrepreneurship, self selection.

Contents

1. Introduction	
2. Measuring risk aversion	
3. Descriptive evidence	
4. Predicting behavior with risk aversion	
4.1 Occupational choice and entrepreneurship	
4.2 Portfolio choice	
4.3 Insurance demand	
4.4 Investment in education	
4.5 Migration, job change and health	
5. Results	
5.1 Occupational choice	
5.2 Asset allocation	
5.3 Insurance demand	
5.4 Investment in education	
5.5 Moving, job changes and health status	
6. Risk, return and risk aversion	
7. Preferences about risk: the consequences of self-selection	ion
8. Conclusions	
Tables and figures	
Appendix	
References	

^{*} Università degli studi di Sassari and Ente Einaudi.

^{**} Bank of Italy, Economic Research Department.

1. Introduction¹

The theory of choice under uncertainty implies that the attitude an individual has towards risk is decisive in a variety of contexts that are critical for understanding individual behavior. According to theory, differences in risk aversion among individuals should show up sharply in their occupational choices, their decisions on how to allocate accumulated assets, how much insurance to buy in the market and how much to self-insure. In some cases - as in simple portfolio theory (Samuelson, 1969, Merton, 1969, and Gollier, 2001a) - theory goes so far as to imply that all the differences across individuals in observed portfolio composition should reflect differences in risk preferences. Thus, the well-documented massive heterogeneity in portfolio shares across households² could all be traced back to such differences. More generally, differences in risk aversion should affect individuals' investment choices with the more risk-averse being ready to forego relatively higher expected returns for returns with lower variability. The immediate implication is that more risk-averse individuals should have less variable earnings but end up, on average, poorer. One key question then is how much of the inequality in income and wealth distribution can be due to differences across individuals in their risk preferences. The answer clearly depends on how much the attitudes towards risk differ across consumers and how important risk aversion is in explaining behavior vis-à-vis other income determinants that may themselves differ significantly across individuals. In order to be able to provide evidence on these issues one needs to be able to measure risk aversion at the individual level. However, individual willingness to bear risk is not normally observable; this is one reason why researchers have typically assumed that individuals have identical risk preferences and so explained the observed differences in behavior and wealth by assuming some form of market friction or imperfection that affects individuals differentially.³

¹ Luigi Guiso acknowledges financial support from MURST, and the EEC for the TMR research project "Specialisation versus diversification: the Microeconomics of Regional Development and the Spatial Propagation of Shocks in Europe". Cristiana Rampazzi provided excellent research assistantship. Only the authors are responsible for the contents of this paper which does not reflect the Community's opinion, nor the Bank of Italy's.

² Se Guiso, Haliassos and Jappelli (2000).

³ For instance, inequalities in income and wealth have been related to limited access to financial markets either because of fixed costs of investing in assets with high expected yield (Guvenen, 2002) or because of rationing in credit markets arising from information and commitment problems (Cagetti and De Nardi, 2002).

This paper makes two contributions to help sort out the role of differences in risk preferences. First, we employ information on households' willingness to pay for a hypothetical risky security contained in the 1995 Bank of Italy Survey of Household Income and Wealth (SHIW), to recover a measure of the Arrow-Pratt index of absolute risk aversion of the consumer's lifetime utility function and check how much measured risk aversion differs across individuals. Second, we relate this measure to various behaviors that according to theory should be greatly affected by risk preferences. In particular, we focus on individuals' occupational and portfolio choices, their demand for insurance, their investment in education, the propensity to move or change jobs and their exposure to chronic diseases. We find unequivocal evidence that risk preferences differ considerably across individuals and that these differences have substantial explanatory power as regards individual decisions.

Although the vast majority of the survey participants are risk-averse according to our measure, a small proportion (4 percent) are either risk-neutral or risk-loving (we will call this group "risk-prone"); in addition, even among the risk-averse there is a lot of heterogeneity in the degree of risk aversion, which shows that preferences for risk do differ significantly across individuals. Furthermore, these differences are systematically related to individual choices that involve risk. Differences in risk preferences are important for understanding differences in behavior across individuals. For instance, compared to the risk-prone, the risk-averse are 6 percentage points less likely to be self-employed (corresponding to 36 percent of the sample share of the self-employed), have a 6-point lower chance of holding risky securities (corresponding to 42 percent of the sample mean), and have, on average, 110,000 euros less in total net worth, 75 percent of the sample mean. Correspondingly, individuals with a low degree of risk aversion (at the 10th percentile of the cross-sectional distribution) face earnings that are 60 percent more variable than those of highly risk-averse individuals (90th percentile).

Our findings imply that individuals sort themselves out in such a way that the highly riskaverse face less risky prospects. This self-selection makes it problematic to assess the effect of risk on choice, an issue that arises, for instance, in evaluating the effect of income uncertainty on investment in risky assets or testing for precautionary savings. The problem here is that the risk that agents face is correlated with preferences for risk that are unobservable. This unobserved preference heterogeneity biases - normally towards zero - the measured effect of risk. Since we observe risk preferences directly, we can assess the importance of self-selection for estimates of the effect of risk on behavior, and we do this with reference to precautionary saving.

The rest of the paper is organized as follows. Section 2 describes our measure of risk aversion. Section 3 presents descriptive evidence on risk aversion and individuals' choices in our cross-section of households. In Section 4 we summarize what theory says about the effect of risk aversion on a number of household decisions: occupational choice, portfolio allocation, insurance demand, investment in education, moving and job change. Section 5 presents the results of the estimates. In Section 6 we look more closely at the link between attitudes towards risk and the mean and variance of individual income. Section 7 discusses self-selection induced by risk attitudes and illustrates its relevance for precautionary savings estimates. Section 8 concludes.

2. Measuring risk aversion

To measure risk aversion we exploit the 1995 wave of the Survey of Household Income and Wealth (SHIW), which is run every two years by the Bank of Italy. The 1995 SHIW collects data on income, consumption, real and financial wealth and its composition, insurance demand, type of occupation, educational attainment, geographic and occupational mobility, and several demographic variables for a representative sample of 8,135 Italian households. Balance-sheet items are end-of-period values. Income and flow variables refer to 1995.⁴

The 1995 survey had a section designed to elicit attitudes towards risk. Each participant was offered a hypothetical negotiable asset and was asked to report the maximum price that he would be willing to pay for it. Specifically:

"We would like to ask you a hypothetical question that you should answer as if the situation were a real one. You are offered the opportunity of acquiring an asset permitting you, with the same probability, either to gain 10 million lire or to lose all the capital invested. What is the most that you would be prepared to pay for this asset?"

Ten million lire is roughly equal to 5,000 euros. The expected gain from the investment is equal to 16 percent of average household's annual consumption. Thus, the investment

⁴ The appendix describes the survey contents, sample design, interviewing procedure and response rates in more detail.

represents a relatively large risk. Putting consumers face-to-face with a relatively large investment is a better strategy to elicit risk attitudes when one relies, as we do, on expected utility maximization to characterize risk aversion (see Rabin, 2000). In fact, expected utility maximizers behave risk-neutrally with respect to small risks even if they are averse to larger risks (Arrow, 1970).⁵ The interviews are conducted personally at the consumer's home by professional interviewers. To help the respondent understand the question, the interviewers showed an illustrative card and were ready to provide explanations. The respondent could respond in one of three ways: a) declare the maximum amount he was willing to pay for the asset, which we denote Z_i ; b) answer "don't know"; c) not answer.

Notice that the way the hypothetical asset is designed implies that with probability 1/2 the respondent gets 10 million lire and with probability 1/2 he loses Z_i . So the expected value of the lottery is $1/2(10 - Z_i)$. Clearly, $Z_i < 10$ million lire, $Z_i = 10$, and $Z_i > 10$ million lire imply risk aversion, risk neutrality and risk loving, respectively. This characterizes attitudes towards risk qualitatively. Within the expected utility framework a measure of the Arrow-Pratt index of absolute risk aversion can also be obtained for each consumer. Let w_i denote household *i*'s endowment. Let $u_i(\cdot)$ be its (lifetime) utility function and \tilde{P}_i be the random return on the security for individual *i*, taking values 10 million and $-Z_i$ with equal probability. The maximum purchase price is thus given by:

(1)
$$u_i(w_i) = \frac{1}{2}u_i(w_i + 10) + \frac{1}{2}u_i(w_i - Z_i) = Eu_i(w_i + \widetilde{P}_i),$$

where E is the expectations operator. Taking a second-order Taylor expansion of the righthand side of (1) around w_i gives:

(2)
$$Eu_i(w_i + \widetilde{P}_i) = u_i(w_i) + u'_i(w_i)E(\widetilde{P}_i) + 0.5u''_i(w_i)E(\widetilde{P}_i)^2.$$

Substituting (2) into (1) and simplifying we obtain:

(3)
$$R_i(w_i) \equiv -u_i''(w_i)/u_i'(w_i) \approx 4(5 - Z_i/2)/\left[10^2 + Z_i^2\right].$$

 $^{^{5}}$ Although we assume individuals are expected utility maximizers, it is fair to say that there is no common experimental evidence that shows that individuals behave as predicted by the expected utility model. See Camerer (1995).

Equation (3) uniquely defines the Arrow-Pratt measure of absolute risk aversion in terms of the parameters of the hypothetical asset of the survey. ⁶ Obviously, for risk-neutral individuals (i.e. those reporting $Z_i = 10$), $R_i(w_i) = 0$ and for the risk-prone (those with $Z_i > 10$), $R_i(w_i) < 0$. Notice that since the loss Z_i or the gain from the investment need not be fully borne by or benefit current consumption but may be spread over lifetime consumption, our measure of risk aversion is better interpreted as the risk aversion of the consumer's lifetime utility.⁷ As such, it reflects not only the preference parameters that affect the curvature of the period utility, but also aspects of the constraint set, such as any liquidity constraints or background risk an individual faces, that affect an individual willingness to bear risk. To take this into account, in our empirical estimates we will control for liquidity constraints and background risk.

A few comments on this measure and on how it compares with those used in other studies are in order. First, our measure requires no assumption on the form of the individual utility function, which is left unspecified. Second, it is not restricted to risk-averse individuals but extends to the risk-neutral and the risk lovers. Third, our definition provides a point estimate, rather than a range, of the degree of risk aversion for each individual in the sample. These features distinguish our study from that of Barsky, Juster, Kimball and Shapiro (1997) who only obtain a range measure of (relative) risk aversion and a point estimate under the assumption that preferences are strictly risk-averse and utility is of the CRRA type. However, their elicitation strategy allows them to recover a measure of the risk aversion of period utility instead of lifetime utility as we do. In this regard, our and their study should be viewed as complementary.⁸

⁶ Needless to say the approximation for R_i is good only if the risk is relatively "small" compared to wealth. Thus, the approximation is likely to be less satisfactory for relatively poor households. We have checked our results excluding households in the first decile of the wealth distribution and found no significant departures.

 $^{^{7}}$ In a related paper (see Guiso and Paiella, 2001) we study the determinants of risk aversion and find that, once we control for the agent's endowment, individual characteristics, such as age, gender, education and place of birth, have limited explanatory explanatory power and attitudes toward risk are characterized by massive unexplained heterogeneity.

⁸ Tiseno (2002) shows that knowledge of the maximum subjective price function for a risk is sufficient to identify the risk aversion of a consumer lifetime utility. He also shows that under certain conditions the risk aversion of lifetime utility and that of period utility are proportional.

3. Descriptive evidence

The question on the risky asset was submitted to the whole sample of 8,135 heads of household, but only 3,458 answered and were willing to purchase the asset. Of the 4,677 who did not, 1,586 answered "do not know" and 3,091 refused to answer or to pay a positive price (25 offered more than 20 million). This is likely to be due to the complexity of the question, which might have led some participants to skip it altogether because of the relatively long time required to understand its meaning and provide an answer. No-responses also reflect the fact that the question was asked abruptly by the interviewers, not prepared for by "warm up" questions. However, this strategy has its advantages: first, the framing and timing of the introductory questions could affect the response to the main question, thus distorting the measure of the true preference parameter. Second, the abrupt approach avoids noise respondents (i.e. those with a poor understanding of the question), as would probably happen with "warm up" questions. Thus, while the high non-response rate signals that the question is complex and there may be cognitive problems, it does not mean that those who chose to respond gave erroneous answers. This is not to say that our gauge of risk aversion is free of measurement error. However, if this is of the classical type, it will bias our results towards finding small effects of risk aversion on behavior. Thus, our estimates should be regarded as lower bounds of the true effects of risk preferences on consumer decisions.⁹

Table I reports descriptive statistics for the sample of 3,458 respondents to the risky-asset question and for the sub-samples of risk-averse individuals and of the risk-prone.¹⁰ The risk-averse make up the great majority of respondents: 96 percent, in fact, set a maximum price lower than the potential gain. The risk-prone consists of 144 individuals, of whom 125 are risk-neutral and 19 are risk-loving. The mean reported price is 2.2 million lire (1.8 million for

⁹ The reported prices are likely to be affected by a well-known problem in experimental economics: individuals asked to price hypothetical lotteries (or risky assets) tend to report lower buying than selling prices (see Kagel and Roth, 1995, pp. 68-86). If the "true" willingness to pay/accept for a lottery is in between the reported bid and ask prices, the reported willingness to pay (sell) will lead to upward (downward) biased estimates of individual risk aversion. Since our survey elicits the willingness to pay it is likely that our individual risk aversion measures are biased upward. But experiments are silent on whether the extent of the bias (or the difference between bid and ask prices) is correlated with some observable individual characteristics. If the bias is proportional to the reported price and constant across individuals, our results will be unaffected.

¹⁰ Those who answered have somewhat different characteristics than non-respondents. They are on average 6 years younger than the total sample, slightly better educated (1.3 more years of schooling) and have higher shares of male-headed households (79.8 compared to 74.4 percent), of married people (78.9 and 72.5 percent) and are significantly more likely to have children (41.9 and 31.6 percent, respectively).

the risk averse and 11.2 million for the risk prone, Panel A), about 36 percent of the expected gain from the lottery. There is, however, considerable heterogeneity. The value of the standard deviation is 2.7 million, larger than the average reported price, while the 90^{th} percentile is 5 million lire, 100 times larger than the 10^{th} percentile. This difference in willingness to pay translates into large differences in risk aversion: the 90^{th} percentile of the cross-sectional distribution of the degree of absolute risk aversion is 2.5 times as great as the 10^{th} percentile. We also report a measure of the degree of relative risk aversion obtained multiplying absolute risk averse) and ranges between 1.9 (10^{th} percentile) and 13.3 (90^{th} percentile), showing that there is considerable diversity in aversion to proportional risks too.¹¹

Panel B reports summary statistics of the characteristics of the respondents. The two sub-samples of risk-prone and of risk-averse consumers exhibit several interesting differences. The risk-averse are younger, they are less likely to be male, to be married, to be borne in the North of Italy and more likely to have children.

Panel C shows summary statistics for the variables that in principle should be affected by individual preferences for risk. Strong differences emerge in the type of occupation: among the risk-averse the share of self-employed is 17.4 percent; among the risk-prone it is much higher at 29.2 percent. This ordering is reversed for public sector employees. The risk-prone are public employees in 27 percent of cases, the risk-averse in 28 percent. As we argue, these differences are likely to reflect self-selection, with more risk-averse individuals choosing safer jobs. Further, the risk averse are less likely to have changed jobs more than twice and to be chronically ill and they tend to invest less in education. On average, the risk-averse are significantly less wealthy than the risk-prone (275 million lire - 142,000 euros - of mean net worth compared with 330 million - 277,000 euros) and expect to earn lower but less variable

¹¹ Since our risk aversion measure is the risk aversion of the utility function strictly speaking the measure of relative risk aversion we report is correct if consumers have one year horizon. If consumers have a lifetime horizon than the proper scale variable should be lifetime wealth. We also compute a measure of RRA that relies on a measure of lifetime wealth. Obviously, estimating lifetime wealth is fraught with problems. To construct one we take current consumption, assume individuals have a flat consumption profile over the life cycle, assume maximum life span is 80 years (about life expectancy at birth), and assume all die without wealth. For each individual in our sample we compute the present value of consumption from current age to age 80 assuming a discount rate of 10% which incorporates both the rate on borrowing and the probability of dying before age 80, and use this to compute relative risk aversion. The median relative risk aversion of the value function estimated this way is 16.

salaries. Finally, they have a lower share of risky asset holders (13.5 percent compared to 36.1) but also of households holding life, health or theft insurance.

4. Predicting behavior with risk aversion

Attitudes towards risk should affect consumers' willingness to take risk in a variety of situations. In this section we review theoretical arguments for the effects of risk preferences on individuals' behavior and then test whether our measure of risk preferences has predictive power with respect to consumer choices in ways consistent with theory.

4.1 Occupational choice and entrepreneurship

If different jobs differ not only in expected return but also in the riskiness of those returns, individuals should sort themselves into occupations on the basis of their risk aversion. One of the few theories of entrepreneurship, put forward by Kihlstrom and Laffont (1979), is indeed based on heterogeneity in risk aversion among individuals. Since running a business is equivalent to the choice of a risky prospect, the less risk-averse will become entrepreneurs while the relatively risk-averse will prefer to be employees and work for a fixed wage. Thus, heterogeneity in risk aversion may explain who becomes an entrepreneur in a society. Understanding the role of preferences in the decision to set up a firm vis-à-vis other possible explanations (e.g. ability to combine factors of production as in Lucas (1978) or access to the loan market as in Evans and Jovanovic (1989)) is of critical relevance for policy since if tastes for risk are innate and cannot be acquired they can potentially be a formidable obstacle to the growth of business.

4.2 Portfolio choice

Standard portfolio theory predicts that the amount of wealth an individual is willing to invest in risky assets depends on his degree of risk aversion. Given the return and riskiness of the risky assets, the more risk-averse should hold safer portfolios. Furthermore, under the conditions for the validity of the two-fund separation theorem, since all investors face the same distribution of asset returns, differences in portfolio composition across individuals should only reflect differences in their degree of risk aversion. Although the conditions for the two-fund separation theorem are rather severe (see Gollier, 2001a) we expect differences

in risk aversion across individuals to help predict differences in portfolio holdings. Besides helping understand why risky asset holders differ in the share of wealth invested in risky assets, differences in risk aversion may also help explain why some do not invest at all in risky assets (e.g. stocks). If there are fixed costs of acquiring risky assets, those who in the absence of these costs would optimally invest little in the risky assets - because they are strongly risk-averse - will find it unprofitable to incur the fixed cost and enjoy the excess return. Thus, differences in risk aversion should also help predict who will become a stockholder and who will not.

4.3 *Insurance demand*

The classical model of the demand for casualty insurance elaborated by Mossin (1968) implies that risk-averse individuals should fully insure if insurance is offered at fair terms. If insurance is unfair, the amount purchased will depend on one's degree of risk aversion: the more risk-averse will demand more insurance coverage. Nevertheless, even some risk averse may choose not to insure if departure from fairness is significant. Thus, differences in risk aversion should predict not only the amount of insurance demand among insurance holders but also the decision to buy an insurance policy among risk-averse consumers.

4.4 Investment in education

Like all forms of investment, that in education entails risk: in fact, compared to accepting a current job offer at a known wage, the decision to obtain more education exposes the investor to a risk of failure - because the program may turn out more difficult than anticipated or because the individual later discovers he lacks the necessary ability. He may thus lose the sum invested (including the direct fees, the living costs and the forgone salary in the alternative job). In addition, since the investment in education only bears fruit after a relatively long time span, the investor also bears the uncertainty over the market value of the degree at time of completion. Thus, the less risk-averse individuals should be more likely to obtain higher education. Brunello (2002) shows formally that the number of years of education a person optimally chooses depends negatively on absolute risk aversion.¹²

¹² Compensation for risk may thus be an additional reason why education carries a higher return (Hartog and Vijverberg, 2001).

4.5 Migration, job change and health

The decision to migrate or to change jobs and the consumer's health status (in-so-far as it depends on how cautious a consumer is), all depend on one's attitude towards risk. Compared with staying in the area of birth, migrating to another area or country entails undertaking a risky prospect as it implies leaving a sure and known prospect for an unknown, though typically more promising future. Similarly, leaving a known job and taking a new one may imply incurring new risks. Thus, one expects more risk-averse individuals to be less likely to move and to change jobs than the risk-prone. Also, since risk-averse consumers should behave more prudently, they should have better health status; consistent with this intuition Eeckhoudt and Hammit (2002) show that individuals that are more averse to financial risk have a higher willingness to pay to reduce health risk.¹³

5. Results

5.1 Occupational choice

Table II reports the results of estimating probit regressions for occupational choice. We focus on the household head's decision to be self-employed (first two columns), to be a bona fide entrepreneur (third and fourth columns) and to be a public sector employee (last two columns). All regressions include as controls a second-order polynomial in the age of the household head, dummies for gender, education, region of birth and a full set of region of residence dummies to account for local factors that may affect job choice, such as differences in the degree of development of local financial markets (Guiso, Sapienza and Zingales, 2004). In addition we include dummies for the occupation of the household head's father to capture any intergenerational links in occupational choice. For the analysis we use a measure of absolute risk aversion, which may vary with household resources. Hence, in order to avoid that the risk aversion index captures any correlation between the left-hand-side choice variable and an individual's wealth or income, in this and in all regressions that follow we control

¹³ In the discussion in the text we have ignored that risky decisions may interact, in the sense that, for instance how much insurance one is willing to buy may depend on how much portfolio risk one is exposed to, so that endogenous exposure may act as a form of background risk. This possibility, noticed by Eeckhoudt and Gollier (1999) and Gollier (2001b), is not directly addressed by our estimates. However, in so far as these interactions exist, they should be reflected in our measure of risk aversion, in the sense that individuals who are already more exposed to endogenous risks will be less willing to pay for the hypothetical security and thus turn out to be more risk averse. We have also run regressions inserting as explanatory variables some of the risk choices that we attempt to explain. For example, using occupational dummies in the portfolio regressions and vice versa. These regressions, not reported but available on request, leave our results unaffected.

for the level of income and wealth of the household. In the case of occupational choice, for example, if wealth is not controlled for, absolute risk aversion may have a negative effect on the decision to become a self-employed simply because it declines with wealth and poor individuals lack the financial muscles to set up a business in the presence of imperfect capital markets. Finally, to account for the fact that the risk aversion measure reflects also aspects of the set of constraints that affect an individual willingness to take up risks, we insert a measure of the liquidity constraints an individual may be exposed to and a measure of the background risk he faces. As to the first, we pool together several years of the SHIW and compute the fraction of individuals in each province that applied for a loan and were turned down or were discouraged from borrowing (did not apply in the expectation that would have been turned down). Provinces with a high share of liquidity constrained individuals are areas where raising funds is more difficult, which limits the opportunities to time-diversify any risk currently taken and can be expected to make individuals more reluctant to undertake actions involving extra risks. To measure background risk, we rely per-capita GDP growth at the provincial level for the period 1952-1992, which we employ compute a measure of the variability of GDP growth in the province of residence. For each province we regress (log) GDP on a time trend and compute the residuals. We then calculate the variance of the residuals and attach this estimate to all households living in the same province. The variance of GDP growth in the province is an estimate of aggregate risk and should be largely exogenous to the individual risk attitude unless risk-averse consumers move to provinces with low variance GDP.

The first column of Table II reports the regression results based on for the whole sample. The attitude towards risk is measured using a dummy for risk-averse consumers. The benchmark is the group of risk-prone. The left-hand-side variable is set equal to one if the household head is a bona fide entrepreneur, both in manufacturing and retailing, or a professional (a doctor, a lawyer, etc.). Risk-averse consumers are less likely than the risk-prone to be self-employed, and the coefficient is statistically significant at less than the 5 percent confidence level. The differences are economically substantial: being risk-averse rather than risk-prone lowers the probability of being self-employed by 6 percentage points, or 36 percent of the sample share of self-employed. This evidence suggests that self-selection into occupations triggered by differences in individuals' preferences is indeed an important feature of reality, an issue to which we return in Section 5 when we examine the correlation between the degree of absolute risk aversion and a subjective measure of the variance of earnings. The

second column restricts the sample to risk-averse households and uses as explanatory variable our measure of absolute risk aversion. Since the risk-prone group includes relatively few observations we feel more confident exploiting the variability in the degree of risk aversion rather then differences in the regime of attitudes towards risk. Obviously, within the class of risk-averse individuals those who are more strongly risk-averse should be less likely to choose risky jobs. This is confirmed by the estimates, which imply a negative coefficient for the degree of risk aversion: increasing absolute risk aversion by one standard deviation lowers the probability of being self-employed by 1.2 percentage points (7 percent of the unconditional probability).

In the third and fourth column we focus on pure business entrepreneurs, where the amount of risk-taking is probably greater than for other categories of self-employed. Results are qualitatively similar to those reported in the first two columns for the self-employed: being risk-averse as compared to being risk-prone makes it less likely to be an entrepreneur and among the risk-averse, those who are more risk-averse are less likely to be entrepreneurs. The inclusion of the self-employed in the control group, together with employees, may explain why we lose precision in the estimation of the coefficients.

The fifth and sixth columns look at the probability of being a public sector employee for the whole sample and for the sample of risk-averse individuals. Consistent with the general perception that public jobs are more secure,¹⁴ our estimates show that risk-averse individuals are more likely than the risk-prone to work in the public sector, though the coefficient is significant only at the 34 percent level. Among the risk-averse, the probability of choosing the safer occupation is an increasing and statistically significant function of the degree of risk aversion: increasing the latter by one standard deviation raises the probability of being a public sector employee by little less than 2 percentage points (about 7 percent of the sample mean), suggesting again that risk preferences have a strong impact on job choice.

It is worth noticing that in all regressions the occupation of the father of the household head is highly significant statistically and shows a strong positive correlation with the son current occupation. Sons of entrepreneurs or the self-employed are more likely to become themselves entrepreneurs or self-employed and less likely to be public employees, and

¹⁴ In Italy for instance, public sector employees cannot be laid off except in a few extreme circumstances of misconduct. In addition, public sector jobs provide less variable on-the-job wages (see Guiso, Jappelli and Pistaferri, 2002).

similarly for the sons of public employees. The effects are also very important economically: having a self-employed father raises the chances of the son being self-employed by 9 percentage points, 50 percent of the unconditional mean; if he is a bona fide entrepreneur, the chances that the son also becomes an entrepreneur are higher by 7 percentage points and those of becoming a public employee, if the father is one, rise by 11 points. These remarkable effects are obtained after we control for individual preferences towards risk; thus, they do not reflect intergenerational correlation in individuals willingness to deal with risk but other factors that affect occupation choice, such as access to information, or the inheritance of one's father's business or professional practice, thus shedding light on the debate started by Galton (1869) on the correlation in fortunes across generations.¹⁵ Finally, it is interesting to notice that our measure of background risk has a negative effect on the probability of choosing to be an entrepreneur or self-employed and a positive effect on that of being a public sector employee, consistent with the idea that background risk discourages independent risk taking. On the other hand, the proxy for liquidity constraints has the "wrong" sign (positive for the self-employed and negative for the public employees). This might reflect the fact that, when deciding whether to extend credit to a household, intermediaries condition on an applicant's occupation as a proxy for income stability and a self-employed has a more variable income than a public sector employee. However, for both variables the estimated coefficients are poorly estimated.

5.2 Asset allocation

Table III shows the effect of the risk attitude indicators and of the degree of risk aversion on the ownership and portfolio share of risky financial assets, i.e. private bonds, stocks and mutual funds. The right-hand-side variable set includes total net worth, non-asset income (both measured in hundred million lira) and liquidity constraint and background risk indicators, in addition to a second-order polynomial in age, dummies for gender, education, for the region of birth and for that of residence. The risk-averse indicator has a negative effect on the risky asset ownership decision, and its coefficient is highly significant. When estimated on the whole sample of households, the probability of holding risky financial assets (first column) is almost half as great among risk-averse consumers as among the risk-prone. Compared

¹⁵ It can be shown that this result is unaffected by our measure of risk aversion being measured with error provided the parents occupational choice is uncorrelated with the measurement error in the risk aversion of the individual, a very reasonable assumption.

to the latter, risk-averse investors have a 6-point lower chance of holding risky securities, corresponding to 42 percent of the sample mean (equal to 14.4 percent).¹⁶ Among risk-averse consumers (second column), the probability of holding risky assets is a decreasing function of our measure of absolute risk aversion, and the coefficient is precisely estimated. A one-standard-deviation increase in absolute risk aversion lowers the probability of holding risky assets by 1.1 percentage points (7.8 percent of the unconditional probability). The third and fourth columns report Tobit estimates of the portfolio share of risky assets (ratio of risky to total financial assets). This set of results confirms the probit estimates: the share invested in risky assets declines as the degree of risk aversion increases and is lower among the risk-averse than among the risk-prone. Consistent with the predictions of the classical theory of portfolio choice, differences in risk attitudes prove to be powerful determinants of portfolio composition.

5.3 Insurance demand

We report the estimates of the effect of risk attitudes on the demand for insurance in Table IV, distinguishing among life, health and casualty insurance. Standard insurance theory predicts that, provided that insurance premiums depart from fair pricing, differences in risk aversion should predict both the decision to buy insurance and the amounts bought, with more risk-averse individuals being more likely to take out insurance and to hold more of it when they do. We test these predictions by focusing on the sub-sample of risk-averse individuals and estimate a probit model for whether the household has insurance and a Tobit model for the amount of insurance purchased (i.e. the value of insurance premiums) scaled with consumption. To account for differences in household endowments and in human capital, wealth and income are included among the right-hand-side variables. In all cases we find that more risk-averse consumers are less likely to hold insurance and that they buy less of it, and the effect is in most cases statistically significant. This puzzling finding contradicts the predictions of the simple models of insurance demand.¹⁷ Interestingly, the proxy for background risk

 $^{^{16}}$ Thus, differences in risk aversion can help understand the "stockholding puzzle", i.e. the well-documented feature of households portfolios that only a fraction of the households invests in stocks.

¹⁷ The implication that more risk averse individuals should buy more insurance has a very strong intuitive appeal and not finding it in the data is somewhat disappointing. At the moment we have no convincing explanation for the finding. Two admittedly unsatisfactory possibilities are the following. One is that insurance companies are able to price-discriminate on the basis of customers' risk aversion. This would lead to higher premiums for

has a positive effect of the decision to have insurance and on the amount to buy, consistent with theoretical predictions though the high standard errors of the coefficient do not allow reliable inference. As for liquidity constraints, their effect is in principle ambiguous: they make individuals more risk averse and thus more prone to insure, but at the same time, when the household faces a high shadow interest rate, paying premiums now for possible insurance benefits later could be a bad deal. The estimates seem to suggest that the first effect dominates, but the coefficients are never statistically significant.

5.4 *Investment in education*

We report the effects of risk attitudes on the investment in education in Table V. Our left-hand-side variable is the number of years of education an individual has obtained. The set of controls includes individual income and wealth, a second-order polynomial in age (or year of birth) to account for differences in the return to schooling across different cohorts, a dummy for gender and a full set of regional dummies to proxy for differences across areas in the return to education. In addition, we insert four dummies for the educational attainment of the father of the household head to account for intergenerational persistence in education, finding strong supportive evidence. As shown in the first column, compared to the risk-prone, risk-averse individuals invest less in education and the effect is statistically significant: being risk-averse lowers education by over one year, on average. Among the risk-averse those who are more averse invest less in education and again the effect is strongly significant (second column).

more risk-averse consumers, who would then reduce insurance demand. This explanation - which we consider unlikely - relies on the assumption that personal risk aversion is observable. Another tentative explanation is that individuals can act to self-insure against the consequences of adverse events. This leads them to replace market insurance with self-insurance. If market insurance is sold at highly unfair prices, while self-insurance is relatively efficient - in the sense that one extra euro of current spending results in a large reduction in the loss - an increase in risk aversion can reduce market insurance and increase self-insurance. If this explanation were true, self-insurance which is not observed in our data and cannot be controlled for, would be picked up by our measure of risk aversion which reflects substitutability between self-insurance and market insurance, giving rise to a negative correlation between risk aversion and market insurance demand. A third, perhaps more appealing explanation for the negative coefficient is reverse causality. If lack of insurance is due to highly unfair pricing that is originated by unobserved and uncontrolled local insurance market characteristics, then individuals in these locations will face a greater background risk which makes them less willing to take on the risks proffered by the question, resulting in a higher measured risk aversion.

5.5 Moving, job changes and health status

Table VI shows the results for the decisions to migrate and change jobs and for health status. The first two columns estimate a model for the probability that an individual has moved from his region of birth to another region. In the sample, 18.5 percent of household heads were born in a region different from the one where they currently live. Since the regressions include a full set of dummies for region of birth, local factors affecting the decision to move, such as labor market conditions, wage prospects in the area, etc., are accounted for. We also control for age, gender and education. Compared to the risk-prone, the risk-averse are less likely to have moved, but the effect is not statistically significant (first column). The second column reports the estimates for the restricted group of risk-averse individuals. The degree of risk aversion has a negative and significant effect on the probability of having moved; increasing the degree of risk aversion by one standard deviation lowers the probability by 1 percentage points, or 5.5 percent of the sample mean.¹⁸

The third and fourth columns show the results for the propensity to change jobs. The left-hand-side variable is a dummy equal to 1 if the household head has changed jobs at least twice, and zero otherwise. About 33 percent of the consumers in our sample have changed jobs more than twice. Being risk-averse compared to being risk-prone lowers the probability of being a job changer, but the coefficient is not precisely estimated. Within the group of risk-averse individuals, however, a higher degree of risk aversion has a negative and statistically significant effect on the probability of changing jobs; a one-standard deviation increase in risk aversion lowers the probability of taking the risks connected to changing job by 1.2 percentage points. The last two columns report probit regressions for the probability of being affected by a chronic disease. When the total sample is used the estimates indicate that the risk-averse are significantly less likely than the risk-prone to incur a chronic disease, with an effect equal to 19 percentage points, about 91 percent of the sample share of households with a chronic disease. When the sample is restricted to the risk-averse, the degree of risk aversion has the wrong sign.

¹⁸ As pointed out by Daveri and Faini (1999), migration may be triggered by households' need to diversify their sources of income, spreading income earners geographically. The implication is that members of households (heads) that are more risk-averse will tend to work in different geographical locations rather than bunch in the same place. We cannot test this prediction since in our data a household groups only the individulas who live in the same house.

Overall, the evidence in Tables III to VII implies that attitudes towards risk have considerable explanatory power for several important consumer decisions. In some cases, namely for occupational and portfolio choice, our evidence strongly suggests that leaving out measures of risk aversion in emIn a world of incomplete markets the attitude towards risk, measured by the willingness to accept a fair lottery, may vary between consumers not only because of differences in taste parameters but also because they face different environments. In Section 2 we discuss how risk aversion can be affected by background risk. In this Section we test whether the attitudes towards risk are affected by the presence of uninsurable, independent risks and by the possibility of being liquidity-constrained in the future. To measure background risk we rely on per-capita GDP growth at the provincial level for the period 1952-1992, which we use to compute a measure of the variability of GDP growth in the province of residence. For each province we regress (log) GDP on a time trend and compute the residuals. We then calculate the variance of the residuals and attach this estimate to all households living in the same province. The main advantage of this variable compared with subjective measures of future income uncertainty, such as those analyzed by Guiso, Jappelli and Pistaferri (2002), is that it is likely to be truly exogenous and so, unlike the subjective measures pirical analysis of household behavior is likely to be a substantial problem.

6. Risk, return and risk aversion

The results in the previous section show that risk-averse individuals tend to undertake safer actions when they choose their occupation, invest in education and allocate their savings, decide to move or change jobs. Choosing safer actions means, in equilibrium, choosing prospects with a lower but more predictable payoff. As a consequence, the more risk-averse the individual, the lower, but the less variable his income, on average. To check these implications we focus on the sample of risk averse consumers and exploit information available in the 1995 SHIW on the subjective probability distribution of future earnings¹⁹ to construct a measure of expected earnings and their variance and correlate it with consumers' risk aversion. Since

¹⁹ Four questions on income expectations were put to half of the overall sample after excluding the retired and people not in the labor force (a total of 4,799 individuals). The employed, the unemployed and the job seekers are asked to state, on a scale from 0 to 100, their chances of having a job in the 12 months following the interview. Each individual assigning a positive probability to being employed is then asked to report the minimum and the maximum he or she expects to earn if employed, and the probability of earning less than the midpoint of the support of the distribution. The exact wording of these questions is reported in the appendix. The answers are then used to compute expected earnings and their variance (see Guiso *et al.*, 2002, for details on the computation).

the subjective probability questions were put to only half of the sample, these regressions are based on a much smaller sample.

Table VII, in the first column, reports the results of the estimates where expected earnings is the left-hand-side variable. We control for age to account for experience and its productivity effects on wages, for gender and family size, as well as for differences in economic development (and thus wage levels) across areas by inserting a full set of regional dummies; we also control for education to account for differences in returns arising from differences in human capital. Finding a negative correlation between expected future earnings and absolute risk aversion may reflect decreasing absolute risk aversion rather than choice of low-income-safer jobs by the more risk averse. To partially address this reverse causality issue we insert in the regression the level of individual wealth. Being more risk-averse translates into lower expected labor income, and the effect is statistically significant and economically important: having a risk aversion coefficient equal to the 90th percentile implies a level of mean expected earnings). These results are consistent with the idea that the more risk-averse will, on average, end up poorer.

The second column shows the regression for the standard deviation of expected earnings. After controlling for age, gender, education, region of residence and accumulated wealth, more risk-averse consumers face lower earnings variance, and the effect is highly significant. Economically, those with a degree of risk aversion in the 90th percentile of the cross-sectional distribution face an income risk, as measured by the standard deviation of expected earnings, that is 70 percent lower than that of those at the 10th percentile. The last column further refines these results by adding to the regression the expected value of future income and considering the risk/return options faced by individuals. Since expected income represents the premium the market offers for bearing more risk, once one controls for expected earnings, risk aversion should no longer affect the variance of earnings. And this is indeed the case. Once expected earnings is added to the regression, the coefficient of the degree of risk aversion becomes six times smaller and is no longer statistically significant. While these results are consistent with more risk-averse individuals earning less because they choose safer jobs, the possibility of being driven by reverse causality cannot be ruled out by these estimates, even if we control

for the level of individual accumulated assets. For this, more research is needed that brings exogenous variation in risk aversion.

7. Preferences about risk: the consequences of self-selection

The evidence presented in the previous sections shows that risk attitudes have important effects on observable behavior and that risk-averse individuals sort themselves into activities that entail lower exposure to risk. This self-selection is relevant in many situations where one is interested in studying the effect of risk on choice. For instance, hours worked will in general depend on wage riskiness (see Block and Heineke (1973) and Killingsworth (1983)) and higher wage variability may reduce leisure. Similarly, precautionary savings decisions will be affected by the income risk faced by prudent consumers (Leland (1982), Drezè and Modigliani (1972)); labor income risk may also affect portfolio choice and insurance demand, inducing investors to pick up safer portfolios or demand more insurance in order to reduce overall exposure to risk (Kimball (1993)). In order to assess the relevance of risk for consumers' decisions one needs variation in risk. This is often unobserved and has thus been proxied with observable variables. Typically, since Friedman (1957)'s study of the consumption function, labor income risk has been measured with occupational dummies (e.g. Skinner 1988). More recently, starting with the work of Guiso, Jappelli and Terlizzese (1992), survey measures of the subjective probability distribution of future income have been used to obtain indicators of the expected value and riskiness of an individual's labor income. These measures have then been used to test for precautionary savings and for the effects of background risk on insurance demand and portfolio choice. The problem with these studies is self-selection: labor income risk is endogenous, because more risk-averse individuals sort themselves into safer occupations. If risk aversion is unobservable, estimates of the effect of labor income risk on choice will be inconsistent because the measure of risk is correlated with the error term which contains the (unobserved) preference parameter.

In this section we offer evidence on the importance of self-selection in estimating precautionary savings by proxying risk with a dummy for self-employment.²⁰ We estimate

²⁰ Fuchs and Schündeln (2003) address the relevance of self-selection for estimates of precautionary saving by comparing the saving behaviour of East and West German households after unification. They argue that under Communisms, allocation to jobs in East Germany was essentially exogenous and not driven by individual preferences, contrary to West Germany. They compare the effect of being self-employed (their proxy for earnings risk) on the propensity to save in the two countries after unification and argue that the stronger effect found for

a saving function based on a life-cycle model extended to allow for precautionary savings due to earnings uncertainty. Under a set of somewhat restrictive assumptions, the model has a closed form solution for the saving rate where the precautionary motive is additive with respect to life-cycle savings (Caballero, 1991), which we approximate as follows:

(4)
$$s_i = a_0 w_i + a_1 y_i + a_2 z_i + a_{3i} \sigma_i + u_i$$

where s_i is household *i* savings, y_i its labor income, w_i is the household's net-worth and z_i is a vector of demographic variables. The precautionary saving component is captured by the fourth term on the right-hand-side where household labor income risk, σ_i , is proxied by a dummy variable for self-employment. The coefficient a_{3i} reflects the strength of the precautionary motive, as measured by the degree of absolute prudence, which if preferences are of the CARA variety is equal to the degree of absolute risk aversion; this is why a_{3i} is household-specific. Self-selection emerges because strongly risk-averse individuals choose safer jobs and will be less exposed to income risk. If risk aversion is unobservable it will show up in the residual and will bias the precautionary motive estimate downwards. Since we observe individuals' risk aversion we can assess the importance of the self-selection bias in estimates of precautionary savings.

To illustrate, Table VIII shows the results of the estimates where variables are scaled by household earnings. The first column reports the estimates when the self-selection problem is ignored. The self-employment dummy - our proxy for labor income risk - is statistically significant but carries a negative coefficient. This is contrary to the precautionary savings hypothesis but is consistent with a strong self-selection bias if risk aversion has a strong effect on individual occupational choice, as shown in Section 5. To check whether the result is indeed driven by self-selection we interact our measure of risk aversion (scaled by labor income) with the self-employment dummy and use this variable as a measure of risk in the regression. The results, shown in the second column of Table VIII, reveal a positive and statistically significant effect of this risk-aversion-weighted measure of risk consistent with the predictions of precautionary savings models. Computed at the sample mean of risk aversion, being self-employed raises the saving rate by 5.2 percentage points, or about 28 percent of the

East Germany households is an estimate of the effect of self-selection.

median saving rate in the sample, suggesting that precautionary saving exists and is relevant, once self-selection is properly addressed.

8. Conclusions

Theory of choice under uncertainty implies that preferences for risk should strongly affect individuals' choices in a variety of contexts. Thus, differences in risk attitudes across individuals should be very important in explaining observed differences in behavior. In some instances, theory suggests that differences in attitudes towards risk could be the only factor affecting differences in behavior. We have used a survey-based measure of individuals' willingness to pay for a hypothetical risky asset to construct a measure of the Arrow-Pratt index of absolute risk aversion at the individual level. We have then related this measure to a number of choices under uncertainty. Our results show that this measure has strong predictive power on some key consumer decisions including occupational choice, portfolio allocation, investment in education, job change and moving decisions, in ways that are consistent with what theory predicts. In some cases the effects are extremely substantial. For instance, being risk-averse as opposed to being risk-neutral or risk-loving, raises the probability of being self-employed by as much as 36 percent of the sample mean and the chances of holding risky assets by 42 percent of the sample mean. Our evidence shows strongly that individuals differ markedly in their attitudes towards risk and that these differences lead them to sort themselves out in such a way that the more risk-averse choose lower returns in exchange for lower risk exposure when they invest their assets, choose their occupation, decide to invest in education, migrate or change jobs or to take precautions against illness. How important, then, are differences in risk aversion in explaining income inequality? One way to answer is to look at how much of the variability in expected earnings is explained by differences in risk aversion compared to other factors. A regression of expected earnings on a second-order polynomial in age, a set of dummies for place of birth and a dummy for gender explains 6.4 percent of the sample variability in expected earnings. Adding risk aversion explains an additional 2.2 percent of the sample variability, about a third of what is explained by age, gender and area of birth! Furthermore, if dummies for father's occupation are included - as proxies for intergenerational transmission of inequality - they can explain an additional 1.2 percent of the variability. Thus, differences in attitudes on risk are at least as important in explaining differences in average

income across individuals as are such variables as age, gender, place of birth and family of origin, which are deemed to have a substantial explanatory power on income levels.

Overall, these results suggest that it pays to devote resources to collect data on individual preferences towards risk. However, in future research it will be important to jointly elicit information on the absolute risk aversion of the value function - as done in the SHIW - and the relative risk aversion of the underlying felicity function, as pursued in the Health and Retirement Survey. This would allow to clarify many issues including the possibility of telling apart the effect on choice of deep preference for risk from that of aspects of the environment that impact on individuals willingness to bear risk such as those arising from imperfections in credit markets and unisurability of labor income risk.

Table I: Descriptive statistics

All the variables refer to the household head, unless stated otherwise. Z denotes the amount households are willing to invest in the risky asset and is in million lira. 'Children' denotes the share of household with components aged less than 18. The variables under the heading 'father' denote the share of households whose head has a father with 5 years of schooling or less, who is/was self-employed or a public employee. 'Self-employed' includes the entrepreneurs. 'Mover' denotes the share of households whose head has moved from his/her region of birth. 'Job changer' denotes the share of households whose head has changed jobs more than twice. 'Chronic disease' refers to the share of households whose head is chronically ill. Net worth and income are in million lira. The mean of the 'saving rate' is computed excluding the top and bottom one percent of its distribution. 'Risky assets' include private bonds, stocks and mutual funds. 'Other insurance' includes casualty and theft insurance. The mean and standard deviation of expected earnings refer to the subjective distribution of the household head (see Guiso *et al.,* 2002, for details).

Variable	Risk averse	Risk lovers and neutral	Total sample of respondents		s	
			Mean	SD	10^{th}	90 th
					pct.	pct
A. Risk aversion						
Value of Z	1.82	11.19	2.21	2.71	0.05	5.0
Absolute risk aversion	0.158	-0.005	0.1507	0.05	0.08	0.20
Relative risk aversion (median)	6.03	-0.40	5.83	5.83	1.92	13.25
B. Characteristics						
Age	48.50	49.34	48.54	13.61	31	68
Male (%)	79.24	93.75	79.84	40	0	1
Married (%)	78.58	87.50	78.95	41	0	1
No. of components	3.20	3.00	3.19	1.31	1	5
Children (%)	42.12	36.11	41.87	49	0	1
Area of birth (%): North	37.69	52.78	38.32	49	0	1
Center	21.61	19.44	21.52	41	0	1
South	39.20	25.69	38.64	49	0	1
Father (%): with 5^{th} grade	76.67	66.67	76.26	42.56	0	1
self-employed	31.20	32.64	31.26	46.36	0	1
public employee	14.73	16.67	14.81	35.52	0	1
C. Choices						
Self-employed (%)	17.38	29.17	17.87	38.32	0	1
Entrepreneur (%)	14.70	19.44	14.89	35.61	0	1
Public employee (%)	27.55	27.08	27.53	44.67	0	1
Mover (%)	18.5	18.8	18.5	39	0	1
Job changer (%)	32.38	38.89	32.65	46.90	0	1
Years of education	9.25	10.81	9.31	4.28	5	16
Chronic disease (%)	19.76	36.11	20.45	40	0	1
Household net worth	275.22	537.28	286.13	431.65	3.91	641.01
Household income	47.45	72.02	48.48	36.23	17.49	84.60
Mean saving rate (%)	13.52	19.77	13.77	33.39	-23.20	48.52
Holders of (%): risky assets	13.46	36.11	14.40	35.12	0	1
life insurance	21.97	37.50	22.61	41.84	0	1
health insurance	8.96	13.19	9.14	28.82	0	0
other insurance	31.11	45.83	31.72	46.55	0	1
Expected earnings: mean	25.38	31.41	25.59	18.88	8.82	42.50
standard deviation	1.02	1.39	1.03	2.51	0	2.04
No. of observations	3,314	144	3,458	3,458	3,458	3,458

Table II: Risk Aversion and Occupation Choice

The left-hand-side variable is a dummy equal to 1 if the household head is a self-employed (first two columns), an entrepreneur (third and fourth column) or a public employee (last two columns). 'Risk averse' is a dummy for whether the individual is risk averse. 'Absolute risk aversion' is the measure of absolute risk averse' discussed in the text and is defined only for the risk averse. Income and wealth are in hundred million lira. The occupation dummies under the heading 'father' refer to the occupation of the father of the household head. Dummies of the region of birth and for that of residence are also included. Standard errors in parentheses. * significant at 10%; ** significant at 5%; *** significant at 1%.

	Self-en	ployment	Entre	preneur	Public sec	tor employee
	(probit r	egressions)	(probit r	(probit regressions)		egressions)
Variable	(1)	(2)	(3)	(4)	(5)	(6)
	Whole	The risk	Whole	The risk	Whole	The risk
	sample	averse	sample	averse	sample	averse
	1		1		1	
Risk averse	-0.256**		-0.121		0.122	
	(0.130)		(0.145)		(0.127)	
Abs. risk aversion	× /	-1.268**	× ,	-0.838	× /	1.298**
		(0.644)		(0.692)		(0.590)
Income	-0.114	-0.196*	-0.328***	-0.433***	0.153*	0.260***
	(0.098)	(0.110)	(0.101)	(0.124)	(0.088)	(0.098)
Wealth	0.080***	0.093***	0.092***	0.109***	-0.028***	-0.033***
	(0.008)	(0.009)	(0.008)	(0.010)	(0.008)	(0.008)
Liq. constraints	1.924	2.407	5.070**	5.925**	-1.360	-2.426
1	(2.358)	(2.436)	(2.515)	(2.598)	(2.078)	(2.131)
Background risk	-6.821	-5.710	-5.546	-5.374	0.936	0.732
•	(5.104)	(5.287)	(5.540)	(5.738)	(4.280)	(4.478)
Age	0.068***	0.067***	0.099***	0.092***	0.059***	0.061***
C	(0.018)	(0.018)	(0.020)	(0.020)	(0.013)	(0.013)
Age squared	-0.097***	-0.096***	-0.129***	-0.122***	-0.051***	-0.054***
•	(0.018)	(0.019)	(0.021)	(0.021)	(0.012)	(0.012)
Gender	-0.529***	-0.534***	-0.475***	-0.493***	-0.057	-0.053
	(0.083)	(0.085)	(0.089)	(0.091)	(0.064)	(0.065)
High sch. diploma	-0.219***	-0.222***	-0.417***	-0.401***	0.610***	0.637***
•	(0.068)	(0.070)	(0.072)	(0.075)	(0.059)	(0.060)
Univ. degree	-0.247**	-0.300***	-1.343***	-1.651***	1.258***	1.232***
	(0.104)	(0.111)	(0.171)	(0.215)	(0.089)	(0.093)
Chronic	-0.165**	-0.178**	-0.134	-0.131	0.043	0.028
	(0.080)	(0.084)	(0.085)	(0.089)	(0.065)	(0.067)
Father: Self-empl.	0.393***	0.406***			-0.031	-0.031
	(0.061)	(0.062)			(0.056)	(0.058)
Publ-empl.	-0.126	-0.131	-0.185*	-0.154	0.320***	0.315***
	(0.089)	(0.092)	(0.101)	(0.105)	(0.070)	(0.071)
Entrepr.			0.367***	0.391***		
			(0.065)	(0.067)		
Constant	-1.840***	-1.951***	-2.578***	-2.481***	-2.937***	-3.060***
	(0.433)	(0.438)	(0.480)	(0.481)	(0.353)	(0.351)
Observations	3 371	3 73/	3 371	3 731	3 371	3 731
Coscivations	5,574	5,254	5,574	J,2J+	5,574	5,254

Table III: Risk Aversion and Portfolio Choice

See note to Table II. 'Risky assets' include stocks, private bonds and mutual funds. The left-handside variable for the regressions in the first two columns is a dummy equal to 1 if the household head owns risky assets. 'Risk averse' is a dummy for whether the individual is risk averse. 'Absolute risk aversion' is the measure of absolute risk aversion discussed in the text and is defined only for the risk averse. Income and wealth are in hundred million lira. The left-hand-side variable for the regressions in the tobit (last two columns) is the share of financial assets held in risky assets. Standard errors in parentheses. * significant at 10%; ** significant at 5%; ***

Ownership of risky assets		Portfolio share of risky assets		
(probit regressions)		(probit regressions		
(1)	(3)	(5)	(7)	
Whole sample	The risk	Whole sample	The risk	
	averse		averse	
-0.319**		-0.165**		
(0.130)		(0.074)		
	-1.731**		-1.306***	
	(0.699)		(0.424)	
0.897***	0.899***	0.335***	0.409***	
(0.107)	(0.115)	(0.051)	(0.061)	
0.021***	0.019**	0.011***	0.010**	
(0.007)	(0.008)	(0.004)	(0.004)	
-0.305	0.374	0.289	0.779	
(2.843)	(2.995)	(1.713)	(1.848)	
-1.420	-0.374	-0.407	-1.689	
(6.284)	(6.870)	(3.775)	(4.245)	
0.023	0.027	0.014	0.016	
(0.016)	(0.017)	(0.009)	(0.010)	
-0.021	-0.024	-0.013	-0.014	
(0.015)	(0.016)	(0.009)	(0.010)	
-0.127	-0.133	-0.100**	-0.099*	
(0.081)	(0.082)	(0.049)	(0.051)	
0.416***	0.425***	0.252***	0.256***	
(0.071)	(0.074)	(0.043)	(0.046)	
0.498***	0.510***	0.326***	0.307***	
(0.102)	(0.106)	(0.059)	(0.064)	
-0.024	-0.034	-0.006	-0.017	
(0.082)	(0.087)	(0.049)	(0.052)	
-1.939***	-2.127***	-1.090***	-1.171***	
(0.421)	(0.433)	(0.255)	(0.268)	
3,374	3,234	3,009	2,877	
	Ownership o (probit reg (1) Whole sample -0.319** (0.130) 0.897*** (0.107) 0.021*** (0.007) -0.305 (2.843) -1.420 (6.284) 0.023 (0.016) -0.021 (0.015) -0.127 (0.081) 0.416*** (0.071) 0.498*** (0.102) -0.024 (0.082) -1.939*** (0.421) 3,374	Ownership of risky assets (probit regressions)(1)(3)Whole sampleThe risk averse -0.319^{**} (0.130) -1.731^{**} (0.699)(0.699) 0.897^{***} 0.899^{***} (0.107)(0.115) 0.021^{***} 0.019^{**} (0.007)(0.008) -0.305 0.374 (2.843)(2.995) -1.420 -0.374 (6.284)(6.870) 0.023 0.027 (0.016)(0.017) -0.021 -0.024 (0.015)(0.016) -0.127 -0.133 (0.081)(0.082) 0.416^{***} 0.425^{***} (0.071)(0.074) 0.498^{***} 0.510^{***} (0.102)(0.106) -0.024 -0.034 (0.082)(0.087) -1.939^{***} -2.127^{***} (0.421)(0.433) $3,374$ $3,234$	Ownership of risky assets (probit regressions)Portfolio share (probit reg(1)(3)(5)Whole sampleThe risk averse $-0.165**$ (0.130) $-1.731**$ (0.699) (0.074) $-1.731**$ (0.107) (0.115) (0.051) $0.021***$ $0.019**$ $0.335***$ (0.007) (0.008) (0.004) -0.305 0.374 0.289 (2.843) (2.995) (1.713) -1.420 -0.374 -0.407 (6.284) (6.870) (3.775) 0.023 0.027 0.014 (0.016) (0.017) (0.009) -0.021 -0.024 -0.013 (0.015) (0.016) (0.009) -0.127 -0.133 $-0.100**$ (0.081) (0.082) (0.049) $0.416***$ $0.510***$ $0.326***$ (0.102) (0.106) (0.059) -0.024 -0.034 -0.006 (0.082) (0.087) (0.049) $-1.939***$ $-2.127***$ $-1.090***$ (0.421) (0.433) (0.255)	

Table IV: Risk Aversion and Demand for Insurance

See note to Table II. The left-hand-side variable is a dummy equal to 1 if the household head owns a life insurance (first column), a health insurance (second column) or a theft or casualty insurance (third column). 'Absolute risk aversion' is the measure of absolute risk aversion discussed in the text and is defined only for the risk averse. Income and wealth are in hundred million lira. The left-hand-side variable for the tobit regressions are the ratios of the insurance premiums to household consumption. Standard errors in parentheses. * significant at 10%; ** significant at 5%; *** significant at 1%.

Variable	In	Insurance ownership Insurance premiums as a share of			a share of	
	(probit regressio	ons)	consumption		
				(tobit regressions)		
	(1)	(2)	(3)	(4)	(5)	(6)
	Life	Health	Other	Life	Health	Other
	insurance	insurance	insurance	insurance	insurance	insurance
Abs. risk aversion	-0.617	-2.090***	-1.900***	-0.052	-0.073***	-0.055***
	(0.608)	(0.761)	(0.576)	(0.039)	(0.026)	(0.016)
Income	0.496***	-0.016	0.426***	0.023***	-0.000	0.002
	(0.103)	(0.123)	(0.102)	(0.006)	(0.004)	(0.002)
Wealth	0.031***	0.016*	0.052***	0.001***	0.000	0.001***
	(0.008)	(0.008)	(0.008)	(0.000)	(0.000)	(0.000)
Liq. constraints	0.340	1.244	3.326	0.081	-0.017	0.053
•	(2.277)	(3.065)	(2.268)	(0.145)	(0.103)	(0.063)
Background risk	2.953	5.155	0.297	0.210	0.214	-0.171
•	(4.652)	(6.825)	(4.907)	(0.294)	(0.234)	(0.140)
Age	0.120***	0.058***	0.025*	0.007***	0.002***	0.001
•	(0.018)	(0.021)	(0.013)	(0.001)	(0.001)	(0.000)
Age squared	-0.145***	-0.070***	-0.030**	-0.009***	-0.002***	-0.001*
	(0.019)	(0.022)	(0.013)	(0.001)	(0.001)	(0.000)
Gender	-0.145**	-0.166*	-0.153**	-0.005	-0.003	-0.003*
	(0.073)	(0.096)	(0.065)	(0.005)	(0.003)	(0.002)
High sch. diploma	0.167***	0.329***	0.124**	0.011***	0.009***	0.004**
	(0.064)	(0.081)	(0.062)	(0.004)	(0.003)	(0.002)
Univ. degree	0.052	0.255**	0.100	0.006	0.009**	0.004
	(0.097)	(0.126)	(0.096)	(0.006)	(0.004)	(0.003)
Self-employed	0.395***	0.682***	0.100	0.030***	0.026***	0.008***
	(0.066)	(0.080)	(0.070)	(0.004)	(0.003)	(0.002)
Chronic	-0.179**	0.055	0.099	-0.013**	0.002	0.001
	(0.078)	(0.097)	(0.070)	(0.005)	(0.003)	(0.002)
Siblings	-0.026*	0.020	-0.016	-0.002**	0.001	-0.000
-	(0.014)	(0.019)	(0.014)	(0.001)	(0.001)	(0.000)
Constant	-3.284***	-2.286***	-0.630*	-0.205***	-0.078***	-0.015
	(0.423)	(0.518)	(0.332)	(0.028)	(0.018)	(0.009)
Observations	3,234	3,234	3,238	3,238	3,238	3,223

Table V. MSK Weision and the investment in Education
See note to Table II. The left-hand-side variable is the number of year of schooling
reported by the household head. 'Risk averse' is a dummy for whether the
individual is risk averse. 'Absolute risk aversion' is the measure of absolute risk
aversion discussed in the text and is defined only for the risk averse. Income and
wealth are in hundred million lira. The education dummies under the heading
'father' refer to the education attainment of the father of the household head.
Standard errors in parentheses. * significant at 10%; ** significant at 5%; ***
significant at 1%.

Variable	Years of schooling		
	(1)	(2)	
	Whole sample	The risk averse	
Risk averse	-0.321**	-	
	(0.165)		
Abs. risk aversion	-	-4.667***	
		(1.346)	
Income	2.960***	3.355***	
	(0.198)	(0.220)	
Wealth	0.032**	0.024	
	(0.016)	(0.017)	
Liquidity constraints	-1.304	-1.180	
	(4.906)	(4.977)	
Background risk	3.162	5.810	
	(10.365)	(10.691)	
Age	-0.050*	-0.064**	
-	(0.028)	(0.029)	
Age squared	-0.019	-0.006	
	(0.027)	(0.028)	
Gender	-0.279*	-0.209	
	(0.146)	(0.147)	
Chronic	-0.409***	-0.463***	
	(0.151)	(0.155)	
Father: Elem. school	2.415***	2.322***	
	(0.142)	(0.143)	
Jr. high school	4.267***	4.203***	
	(0.207)	(0.212)	
High sch. diploma	5.751***	5.652***	
	(0.249)	(0.253)	
Univ. degree	7.163***	6.952***	
	(0.372)	(0.387)	
Constant	8.781***	9.252***	
	(0.792)	(0.776)	
Observations	3,312	3,177	
R-squared	0.428	0.436	

Table V: Risk Aversion and the Investment in Education

Table VI: Risk Aversion, Moving, Changing Jobs and one's Health

See note to Table II. The left-hand-side variable is a dummy equal to 1 if the household head lives in a region different from the one where he/she was born (first two columns), if he/she has changed job at least twice over his/her working life (third and fourth column) or if he/she is affected by a chronic disease (last two columns). 'Risk averse' is a dummy for whether the individual is risk averse. 'Absolute risk aversion' is the measure of absolute risk aversion discussed in the text and is defined only for the risk averse. Income and wealth are in hundred million lira. The regressions in the first two columns include the dummies for the region of birth, but not for the region of current residence. Standard errors in parentheses. * significant at 10%; ** significant at 5%; ***

Variable	Moving to an (probit re	nother region gressions)	ion Propensity to change job) (probit regressions)		Health (probit regressions)	
	(1)	(2)	(3)	(4)	(5)	(6)
	Whole	The risk	Whole	The risk	Whole	The risk
	sample	averse	sample	averse	sample	averse
Risk averse	-0.105		-0.074		-0.591***	
	(0.145)		(0.116)		(0.122)	
Abs. Risk aversion		-0.996**		-0.764**		0.582
		(0.430)		(0.310)		(0.641)
Income	0.001	0.001	-0.023	-0.072	0.018	0.111
	(0.099)	(0.111)	(0.088)	(0.098)	(0.093)	(0.108)
Wealth	0.014*	0.016**	-0.011	-0.007	0.000	-0.002
	(0.007)	(0.007)	(0.007)	(0.007)	(0.007)	(0.008)
Liquidity constraints	-19.833***	-21.573***	8.092***	8.962***	4.330*	4.551*
	(2.112)	(2.187)	(2.025)	(2.084)	(2.260)	(2.322)
Background risk	-50.948***	-48.865***	4.343	2.391	6.434	6.676
	(3.775)	(3.871)	(4.210)	(4.397)	(4.667)	(4.869)
Age	0.023	0.019	0.031**	0.032**	0.039***	0.042***
	(0.014)	(0.014)	(0.012)	(0.013)	(0.014)	(0.015)
Age squared	-0.021	-0.017	-0.043***	-0.044***	-0.004	-0.007
	(0.014)	(0.014)	(0.012)	(0.012)	(0.013)	(0.013)
Gender	0.115	0.102	-0.460***	-0.454***	0.158**	0.171**
	(0.070)	(0.071)	(0.064)	(0.064)	(0.066)	(0.067)
High sch. Diploma	-0.050	-0.049	-0.233***	-0.245***	-0.101	-0.111
	(0.068)	(0.070)	(0.057)	(0.059)	(0.067)	(0.070)
Univ. degree	0.165*	0.130	-0.414***	-0.433***	-0.013	-0.039
	(0.099)	(0.103)	(0.092)	(0.096)	(0.100)	(0.105)
Chronic	0.083	0.087	0.215***	0.208***		
	(0.072)	(0.074)	(0.062)	(0.064)		
Constant	-1.125***	-0.988***	-0.786**	-0.759**	-2.643***	-3.500***
	(0.384)	(0.373)	(0.322)	(0.322)	(0.396)	(0.408)
Observations	3,374	3,234	3,378	3,238	3,374	3,234

Table VII: Return, risk and risk aversion

The left-hand-side variable is household expected earnings in the first column and earnings uncertainty in the second and third columns; earnings uncertainty is the standard deviation of the subjective distribution of the household head expected earnings, as from Guiso *et al.* (2002). 'Absolute risk aversion' is the measure of absolute risk aversion discussed in the text and is defined only for the risk averse. Dummies for the region of residence are also included. Standard errors are reported in parentheses. * significant at 10%; ** significant at 5%; *** significant at 1%.

1/0.			
Variable	(1)	(2)	(3)
	Expected earnings	Earnings	Earnings
		uncertainty	uncertainty
Absolute risk aversion	-49.838***	-6.665***	-1.370
	(11.880)	(1.769)	(1.250)
Family wealth	0.014***	0.002***	0.001***
	(0.001)	(0.000)	(0.000)
Expected earnings			0.106***
			(0.003)
Age	1.232***	-0.024	-0.154***
0	(0.463)	(0.069)	(0.048)
Age squared	-1.372**	0.008	0.154***
	(0.540)	(0.080)	(0.056)
Gender dummy	6.967***	0.433**	-0.307**
-	(1.448)	(0.216)	(0.153)
High school diploma	6.164***	0.120	-0.535***
0	(1.146)	(0.171)	(0.121)
University degree	17.056***	0.499**	-1.314***
	(1.625)	(0.242)	(0.179)
Constant	-7.457	1.626	2.418**
	(9.912)	(1.476)	(1.035)
Observations	1,027	1,027	1,027
R-squared	0.298	0.132	0.574

Table VIII: Risk aversion, precautionary savings and self-selection The left-hand-side variable is household saving rate. We exclude the top and bottom one percent of the distribution. Dummies for the region of birth and for the region of residence are also included. The sample is restricted to the risk averse. Standard errors are reported in brackets. Standard errors in parentheses. * significant at 10%; ** significant at 5%; *** significant at 1%.

Variable	(1)	(2)
Wealth	-0.0117***	-0.0130***
	(0.0009)	(0.0009)
Self-employed head	-0.0399**	-
	(0.0159)	
Self-employed * absolute risk aversion	-	0.0090***
		(0.0015)
Age	0.0095***	0.0092***
C C C C C C C C C C C C C C C C C C C	(0.0029)	(0.0029)
Age squared	-0.0051*	-0.0044
	(0.0028)	(0.0028)
Gender dummy	0.0445***	0.0355**
·	(0.0147)	(0.0146)
High school diploma	0.1186***	0.1204***
	(0.0136)	(0.0135)
University degree	0.2001***	0.1933***
	(0.0197)	(0.0199)
Household size	0.0223***	0.0195***
	(0.0056)	(0.0056)
Dummy for children	-0.0622***	-0.0575***
-	(0.0152)	(0.0152)
No. of observations	3,197	3,197

Appendix

The SHIW

The Bank of Italy Survey of Household Income and Wealth (SHIW) collects detailed data on demographics, households' consumption, income and balance sheet items. The survey was first run in the mid-60s but has been available on tape only since 1984. Over time, it has gone through a number of changes in sample size and design, sampling methodology and questionnaire. However, sampling methodology, sample size and the broad contents of the information collected have been unchanged since 1989. Each wave surveys a representative sample of the Italian resident population and covers about 8,000 households, - although at times specific parts of the questionnaire are asked to only a random sub-sample. Sampling occurs in two stages, first at municipality level and then at household level. Municipalities are divided into 51 strata defined by 17 regions and 3 classes of population size (more than 40,000, 20,000 to 40,000, less than 20,000). Households are randomly selected from registry office records. They are defined as groups of individuals related by blood, marriage or adoption and sharing the same dwelling. The head of the household is conventionally identified with the husband, if present. If instead the person who would usually be considered the head of the household works abroad or was absent at the time of the interview, the head of the household is taken to be the person responsible for managing the household's resources. The net response rate (ratio of responses to households contacted net of ineligible units) was 57 percent in the 1995 wave. Brandolini and Cannari (1994) present a detailed discussion of sample design, attrition, and other measurement issues and compare the SHIW variables with the corresponding aggregate quantities.

Expected earnings and their variance

The variance and the expected value of individual earnings are computed as in Guiso *et al.* (2002) and are based on the following questions that were asked in the SHIW.

(i) "Do you expect to voluntarily retire or stop working in the next 12 months?"

If the answer is "Yes" the interviewer goes on to the next survey section. If the answer is "No" each respondent is asked questions (ii) through (v) below:

(ii) "What are the chances that in the next 12 months you will keep your job or find one (or start a new activity)? In other words, if you were to assign a score between 0 and 100 to the chance of keeping your job or of finding one (or of starting a new activity), what score would you assign? ("0" if you are certain not to work, "100" if you are certain to work).

(iii) Suppose you will keep your job or that in the next 12 months you will find one. What is the minimum annual income, net of taxes and contributions, that you expect to earn from this job?

(iv) Again suppose you will keep your job or that in the next 12 months you will find one. What is the maximum annual income, net of taxes and contributions, that you expect to earn from this job?

(v) What are the chances that you will earn less than X (where X is computed by the interviewer as [(iii)+(iv)]/2)? In other words, if you were to assign a score between 0 and 100 to the chance of earning less than X, what score would you assign? ("0" if you are certain to earn more than X, "100" if you are certain to earn less than X).

References

Arrow, Kenneth J. (1970), Essays in the Theory of Risk Bearing, Amsterdam: North Holland.

- Barsky, Robert B., Thomas F. Juster, Miles S. Kimball and Matthew D. Shapiro (1997), "Preference Parameters and Behavioral Heterogeneity: an Experimental Approach in the health and Retirement Study", Quarterly Journal of Economics, CXII, 537-580.
- Breeden, Douglas T. (1979), "An Intertemporal Asset Pricing Model with Stochastic Consumption and Investment Opportunities", Journal of Financial Economics, 7, 265-296.
- Brandolini, Andrea and Luigi Cannari (1994), "Methodological Appendix", in: Albert Ando, Luigi Guiso and Ignazio Visco (eds.) "Saving and the Accumulation of Wealth", Cambridge: Cambridge University Press.
- Brunello, Giorgio (2002), "Absolute Risk Aversion and the Returns to Education", Economics of Education Review, 21, 635-640.
- Caballero, Ricardo (1991), "Earnings uncertainty and aggregate wealth accumulation", American Economic Review, 81, 859-871.
- Cagetti, Marco and Cristina De Nardi (2002), "Entrepreneurship, Frictions and Wealth", Federal Reserve Bank of Minneapolis Working Paper no. 620.
- Camerer, Colin (1995), "Individual Decision Making", in: John H. Kagel and Alvin E. Roth (eds.) "The Handbook of Experimental Economics", Princeton University Press, Princenton NJ.
- Daveri, Francesco and Riccardo Faini (1999), "Where Do Migrants Go?", Oxford Economic Papers, 51, 595-622.
- Dreze, Jean and Franco Modigliani (1972), "Consumption decisions under uncertainty", Journal of Economic Theory, 5, 308-835.
- Eeckhoudt, Louis and Christian Gollier (1999), "Are Independent Risks Substitutes?", mimeo University of Toulouse.
- Eeckhoudt, Louis and James K. Hammitt (2002), "Risk Aversion and Mortality Risks", Journal of Environmental Economics and Management, forthcoming.
- Evans, David S. and Boyan Jovanovic (1989), "An Estimated Model of Entrepreneurial Choice under Liquidity Constraints", Journal of Political Economy, 97, 808-827.
- Fuchs, Nicole and Matthias Schündeln (2003), "Precautionary Savings and Self-Selection. Evidence from the German Reunification 'Experiment", Yale University, mimeo.
- Galton, Francis (1869), "Hereditary Genius: An Inquiry into its Laws and Consequences", London: MacMillan.

- Generale, Andrea and Giorgio Gobbi (1996), "Il recupero dei crediti: costi, tempi e comportamenti delle banche", Banca d'Italia, Temi di Discussione, 265. Rome.
- Gollier, Christian (2001a), "What Does the Classical Theory Have to Say about Portfolio Choice?", in Luigi Guiso, Michael Haliassos and Tullio Jappelli (eds.) "Household Portfolios", Boston: MIT Press.
- Gollier, Christian (2001b), "The Economics of Risk and Time", Boston: MIT Press.
- Guiso, Luigi, Michael Haliassos and Tullio Jappelli (eds.), (2000), "Household Portfolios", Boston: MIT Press.
- Guiso, Luigi and Tullio Jappelli (2000), "Household Portfolios in Italy", in Luigi Guiso, Michael Haliassos and Tullio Jappelli (eds.) "Household Portfolios", Boston: MIT Press.
- Guiso, Luigi, Tullio Jappelli and Luigi Pistaferri (2002), "An Empirical Analysis of Earnings and Employment Risk", Journal of Business and Economic Statistics, 20, 1-13.
- Guiso, Luigi, Tullio Jappelli and Daniele Terlizzese (1992), ""Earnings Uncertainty and Precautionary Saving", Journal of Monetary Economics, 30.
- Guiso, Luigi, Paola Sapienza and Luigi Zingales (2004), "The Role of Social Capital in Financial Development", American Economic Review, forthcoming.
- Guiso, Luigi, Paola Sapienza and Luigi Zingales (2004), "Does Local Financial Development Matter?", Quarterly Journal of Economics, forthcoming.
- Guiso, Luigi and Monica Paiella (2001), "Risk Aversion, Wealth and Background Risk", CEPR DP No. 2728.
- Guvenen, Fatih (2002), "Reconciling Conflicting Evidence on the Elasticity of Intertemporal Substitution: a Macroeconomic Perspective", Rochester University, mimeo.
- Hartog, Joop and Wim Vijverberg (2001), "Do Wages Really Compensate for Risk Aversion and Skewness Affection?", University of Texas, mimeo.
- Kagel, John H. and Alvin E. Roth (eds.), (1995), "The Handbook of Experimental Economics", Princenton University Press, Princeton.
- Kihlstrom, Richard E., Jean Jaques Laffont (1979), "A General Equilibrium Theory of Firm Formations Based on Risk Aversion", Journal of Political Economy, 87, 719-748.
- Killingsworth, Mark R. (1983), "Labor supply", Cambridge: Cambridge University Press.
- Kimball, Miles S. (1993), "Standard Risk Aversion", Econometrica, 3, 589-611.
- Leland, Hayne, E. (1982), "Savings and Uncertainty: The Precautionary Demand for Saving", Quarterly Journal of Economics, 82, 465-473.

- Lucas, Jr. Robert E. (1978), "On the Size Distribution of Business Firms", Bell Journal of Economics, 2, 508-523.
- Merton, Robert C. (1969), "Lifetime Portfolio Selection under Uncertainty. The Continuous-Time Case", Review of Economics and Statistics, 3, 247-257.
- Mossin, Jan (1968), "Aspects of Rational Insurance Purchases", Journal of Political Economy, 91, 304-311.
- Pratt, John W. and Richard Zeckhauser (1987), "Proper Risk Aversion", Econometrica, 55, 143-154.
- Samuelson, Paul A. (1969), "Lifetime Portfolio Selection by Dynamic Stochastic Programming", Review of Economics and Statistics, 3, 239-246.
- Rabin, Matthew (2000), "Risk Aversion and Expected-Utility Theory: A Calibration Theorem", Econometrica, 68, 1281-1292.
- Skinner, Jonathan (1988), "Risky Income, Life Cycle Consumption and Precautionary Savings", Journal of Monetary Economics, 22, 237-255.
- Tiseno, Andrea (2002), "Using Wealth, Consumption and Shadow Prices to Identify Intertemporal Preferences", University of Chicago, Department of Economics, mimeo.

RECENTLY PUBLISHED "TEMI" (*).

- N. 521 *Do mergers improve information? Evidence from the loan market*, by F. PANETTA, F. SCHIVARDI and M. SHUM (September 2004).
- N. 522 Tecnologia e dinamica dei vantaggi comparati: un confronto fra quattro regioni italiane, by C. BENTIVOGLI and F. QUINTILIANI (September 2004).
- N. 523 The short-term impact of government budgets on prices: evidence from macroeconometric models, by J. HENRY, P. HERNÀNDEZ DE Cos and S. MOMIGLIANO, (October 2004).
- N. 524 Pricing behavior and the comovement of productivity and labor: evidence from *firm-level data*, by D.J. MARCHETTI and F. NUCCI (December 2004).
- N. 525 Is there a cost channel of monetary policy transmission? An investigation into the pricing behaviour of 2,000 firms, by E. GAIOTTI and A. SECCHI (December 2004).
- N. 526 Foreign direct investment and agglomeration: Evidence from Italy, by R. BRONZINI (December 2004).
- N. 527 Endogenous growth in open economies: A survey, by A. F. Pozzolo (December 2004).
- N. 528 The role of guarantees in bank lending, by A. F. Pozzolo (December 2004).
- N. 529 *Does the ILO definition capture all unemployment*, by A. BRANDOLINI, P. CIPOLLONE and E. VIVIANO (December 2004).
- N. 530 Household wealth distribution in Italy in the 1990s, by A. BRANDOLINI, L. CANNARI, G. D'ALESSIO and I. FAIELLA (December 2004).
- N. 531 Cyclical asymmetry in fiscal policy, debt accumulation and the Treaty of Maastricht, by F. BALASSONE and M. FRANCESE (December 2004).
- N. 532 L'introduzione dell'euro e la divergenza tra inflazione rilevata e percepita, by P. DEL GIOVANE and R. SABBATINI (December 2004).
- N. 533 A micro simulation model of demographic development and households' economic behavior in Italy, by A. ANDO and S. NICOLETTI ALTIMARI (December 2004).
- N. 534 Aggregation bias in macro models: does it matter for the euro area?, by L. MONTEFORTE (December 2004).
- N. 535 Entry decisions and adverse selection: an empirical analysis of local credit markets, by G. GOBBI and F. LOTTI (December 2004).
- N. 536 An empirical investigation of the relationship between inequality and growth, by P. PAGANO (December 2004).
- N. 537 Monetary policy impulses, local output and the transmission mechanism, by M. CARUSO (December 2004).
- N. 538 An empirical micro matching model with an application to Italy and Spain, by F. PERACCHI and E.VIVIANO (December 2004).
- N. 539 La crescita dell'economia italiana negli anni novanta tra ritardo tecnologico e rallentamento della produttività, by A. BASSANETTI, M. IOMMI, C. JONA-LASINIO and F. ZOLLINO (December 2004).
- N. 540 Cyclical sensitivity of fiscal policies based on real-time data, by L. FORNI and S. MOMIGLIANO (December 2004).
- N. 541 L'introduzione dell'euro e le politiche di prezzo: analisi di un campione di dati individuali, by E. GAIOTTI and F. LIPPI (February 2005).
- N. 542 How do banks set interest rates?, by L. GAMBACORTA (February 2005).
- N. 543 Maxmin portfolio choice, by M. TABOGA (February 2005).
- N. 544 Forecasting output growth and inflation in the euro area: are financial spreads useful?, by A. NOBILI (February 2005).
- N. 545 Can option smiles forecast changes in interest rates? An application to the US, the UK and the Euro Area, by M. PERICOLI (February 2005).

^(*) Requests for copies should be sent to:

Banca d'Italia – Servizio Studi – Divisione Biblioteca e pubblicazioni – Via Nazionale, 91 – 00184 Rome (fax 0039 06 47922059). They are available on the Internet www.bancaditalia.it.

- L. GUISO and G. PARIGI, *Investment and demand uncertainty*, Quarterly Journal of Economics, Vol. 114 (1), pp. 185-228, **TD No. 289** (November 1996).
- A. F. POZZOLO, *Gli effetti della liberalizzazione valutaria sulle transazioni finanziarie dell'Italia con l'estero*, Rivista di Politica Economica, Vol. 89 (3), pp. 45-76, **TD No. 296 (February 1997)**.
- A. CUKIERMAN and F. LIPPI, Central bank independence, centralization of wage bargaining, inflation and unemployment: theory and evidence, European Economic Review, Vol. 43 (7), pp. 1395-1434, TD No. 332 (April 1998).
- P. CASELLI and R. RINALDI, La politica fiscale nei paesi dell'Unione europea negli anni novanta, Studi e note di economia, (1), pp. 71-109, TD No. 334 (July 1998).
- A. BRANDOLINI, The distribution of personal income in post-war Italy: Source description, data quality, and the time pattern of income inequality, Giornale degli economisti e Annali di economia, Vol. 58 (2), pp. 183-239, TD No. 350 (April 1999).
- L. GUISO, A. K. KASHYAP, F. PANETTA and D. TERLIZZESE, Will a common European monetary policy have asymmetric effects?, Economic Perspectives, Federal Reserve Bank of Chicago, Vol. 23 (4), pp. 56-75, TD No. 384 (October 2000).

- P. ANGELINI, Are banks risk-averse? Timing of the operations in the interbank market, Journal of Money, Credit and Banking, Vol. 32 (1), pp. 54-73, **TD No. 266 (April 1996).**
- F. DRUDI and R: GIORDANO, *Default Risk and optimal debt management*, Journal of Banking and Finance, Vol. 24 (6), pp. 861-892, **TD No. 278 (September 1996)**.
- F. DRUDI and R. GIORDANO, *Wage indexation, employment and inflation,* Scandinavian Journal of Economics, Vol. 102 (4), pp. 645-668, **TD No. 292 (December 1996)**.
- F. DRUDI and A. PRATI, *Signaling fiscal regime sustainability*, European Economic Review, Vol. 44 (10), pp. 1897-1930, **TD No. 335 (September 1998)**.
- F. FORNARI and R. VIOLI, The probability density function of interest rates implied in the price of options, in: R. Violi, (ed.), Mercati dei derivati, controllo monetario e stabilità finanziaria, Il Mulino, Bologna, TD No. 339 (October 1998).
- D. J. MARCHETTI and G. PARIGI, Energy consumption, survey data and the prediction of industrial production in Italy, Journal of Forecasting, Vol. 19 (5), pp. 419-440, TD No. 342 (December 1998).
- A. BAFFIGI, M. PAGNINI and F. QUINTILIANI, Localismo bancario e distretti industriali: assetto dei mercati del credito e finanziamento degli investimenti, in: L.F. Signorini (ed.), Lo sviluppo locale: un'indagine della Banca d'Italia sui distretti industriali, Donzelli, TD No. 347 (March 1999).
- A. SCALIA and V. VACCA, Does market transparency matter? A case study, in: Market Liquidity: Research Findings and Selected Policy Implications, Basel, Bank for International Settlements, TD No. 359 (October 1999).
- F. SCHIVARDI, *Rigidità nel mercato del lavoro, disoccupazione e crescita*, Giornale degli economisti e Annali di economia, Vol. 59 (1), pp. 117-143, **TD No. 364 (December 1999)**.
- G. BODO, R. GOLINELLI and G. PARIGI, *Forecasting industrial production in the euro area*, Empirical Economics, Vol. 25 (4), pp. 541-561, **TD No. 370 (March 2000)**.
- F. ALTISSIMO, D. J. MARCHETTI and G. P. ONETO, *The Italian business cycle: Coincident and leading indicators and some stylized facts*, Giornale degli economisti e Annali di economia, Vol. 60 (2), pp. 147-220, **TD No. 377 (October 2000)**.

- C. MICHELACCI and P. ZAFFARONI, (*Fractional*) *Beta convergence*, Journal of Monetary Economics, Vol. 45, pp. 129-153, **TD No. 383 (October 2000)**.
- R. DE BONIS and A. FERRANDO, The Italian banking structure in the nineties: testing the multimarket contact hypothesis, Economic Notes, Vol. 29 (2), pp. 215-241, TD No. 387 (October 2000).

- M. CARUSO, Stock prices and money velocity: A multi-country analysis, Empirical Economics, Vol. 26 (4), pp. 651-72, TD No. 264 (February 1996).
- P. CIPOLLONE and D. J. MARCHETTI, *Bottlenecks and limits to growth: A multisectoral analysis of Italian industry*, Journal of Policy Modeling, Vol. 23 (6), pp. 601-620, **TD No. 314 (August 1997)**.
- P. CASELLI, Fiscal consolidations under fixed exchange rates, European Economic Review, Vol. 45 (3), pp. 425-450, TD No. 336 (October 1998).
- F. ALTISSIMO and G. L. VIOLANTE, Nonlinear VAR: Some theory and an application to US GNP and unemployment, Journal of Applied Econometrics, Vol. 16 (4), pp. 461-486, TD No. 338 (October 1998).
- F. NUCCI and A. F. POZZOLO, *Investment and the exchange rate*, European Economic Review, Vol. 45 (2), pp. 259-283, **TD No. 344 (December 1998)**.
- L. GAMBACORTA, On the institutional design of the European monetary union: Conservatism, stability pact and economic shocks, Economic Notes, Vol. 30 (1), pp. 109-143, **TD No. 356 (June 1999)**.
- P. FINALDI RUSSO and P. ROSSI, Credit costraints in italian industrial districts, Applied Economics, Vol. 33 (11), pp. 1469-1477, TD No. 360 (December 1999).
- A. CUKIERMAN and F. LIPPI, *Labor markets and monetary union: A strategic analysis*, Economic Journal, Vol. 111 (473), pp. 541-565, **TD No. 365 (February 2000)**.
- G. PARIGI and S. SIVIERO, An investment-function-based measure of capacity utilisation, potential output and utilised capacity in the Bank of Italy's quarterly model, Economic Modelling, Vol. 18 (4), pp. 525-550, TD No. 367 (February 2000).
- F. BALASSONE and D. MONACELLI, *Emu fiscal rules: Is there a gap?*, in: M. Bordignon and D. Da Empoli (eds.), Politica fiscale, flessibilità dei mercati e crescita, Milano, Franco Angeli, **TD No.** 375 (July 2000).
- A. B. ATKINSON and A. BRANDOLINI, Promise and pitfalls in the use of "secondary" data-sets: Income inequality in OECD countries, Journal of Economic Literature, Vol. 39 (3), pp. 771-799, TD No. 379 (October 2000).
- D. FOCARELLI and A. F. POZZOLO, The determinants of cross-border bank shareholdings: An analysis with bank-level data from OECD countries, Journal of Banking and Finance, Vol. 25 (12), pp. 2305-2337, TD No. 381 (October 2000).
- M. SBRACIA and A. ZAGHINI, *Expectations and information in second generation currency crises models*, Economic Modelling, Vol. 18 (2), pp. 203-222, **TD No. 391 (December 2000)**.
- F. FORNARI and A. MELE, Recovering the probability density function of asset prices using GARCH as diffusion approximations, Journal of Empirical Finance, Vol. 8 (1), pp. 83-110, TD No. 396 (February 2001).
- P. CIPOLLONE, La convergenza dei salari manifatturieri in Europa, Politica economica, Vol. 17 (1), pp. 97-125, **TD No. 398 (February 2001)**.
- E. BONACCORSI DI PATTI and G. GOBBI, The changing structure of local credit markets: Are small businesses special?, Journal of Banking and Finance, Vol. 25 (12), pp. 2209-2237, TD No. 404 (June 2001).
- G. MESSINA, Decentramento fiscale e perequazione regionale. Efficienza e redistribuzione nel nuovo sistema di finanziamento delle regioni a statuto ordinario, Studi economici, Vol. 56 (73), pp. 131-148, TD No. 416 (August 2001).

- R. CESARI and F. PANETTA, Style, fees and performance of Italian equity funds, Journal of Banking and Finance, Vol. 26 (1), TD No. 325 (January 1998).
- L. GAMBACORTA, Asymmetric bank lending channels and ECB monetary policy, Economic Modelling, Vol. 20 (1), pp. 25-46, **TD No. 340 (October 1998)**.
- C. GIANNINI, "Enemy of none but a common friend of all"? An international perspective on the lenderof-last-resort function, Essay in International Finance, Vol. 214, Princeton, N. J., Princeton University Press, TD No. 341 (December 1998).
- A. ZAGHINI, Fiscal adjustments and economic performing: A comparative study, Applied Economics, Vol. 33 (5), pp. 613-624, TD No. 355 (June 1999).
- F. ALTISSIMO, S. SIVIERO and D. TERLIZZESE, *How deep are the deep parameters?*, Annales d'Economie et de Statistique,.(67/68), pp. 207-226, **TD No. 354 (June 1999)**.
- F. FORNARI, C. MONTICELLI, M. PERICOLI and M. TIVEGNA, *The impact of news on the exchange rate of the lira and long-term interest rates*, Economic Modelling, Vol. 19 (4), pp. 611-639, **TD No. 358** (October 1999).
- D. FOCARELLI, F. PANETTA and C. SALLEO, *Why do banks merge?*, Journal of Money, Credit and Banking, Vol. 34 (4), pp. 1047-1066, **TD No. 361 (December 1999)**.
- D. J. MARCHETTI, Markup and the business cycle: Evidence from Italian manufacturing branches, Open Economies Review, Vol. 13 (1), pp. 87-103, **TD No. 362 (December 1999)**.
- F. BUSETTI, *Testing for stochastic trends in series with structural breaks*, Journal of Forecasting, Vol. 21 (2), pp. 81-105, TD No. 385 (October 2000).
- F. LIPPI, *Revisiting the Case for a Populist Central Banker*, European Economic Review, Vol. 46 (3), pp. 601-612, **TD No. 386 (October 2000)**.
- F. PANETTA, The stability of the relation between the stock market and macroeconomic forces, Economic Notes, Vol. 31 (3), TD No. 393 (February 2001).
- G. GRANDE and L. VENTURA, Labor income and risky assets under market incompleteness: Evidence from Italian data, Journal of Banking and Finance, Vol. 26 (2-3), pp. 597-620, TD No. 399 (March 2001).
- A. BRANDOLINI, P. CIPOLLONE and P. SESTITO, *Earnings dispersion, low pay and household poverty in Italy, 1977-1998*, in D. Cohen, T. Piketty and G. Saint-Paul (eds.), The Economics of Rising Inequalities, pp. 225-264, Oxford, Oxford University Press, **TD No. 427** (November 2001).
- L. CANNARI and G. D'ALESSIO, La distribuzione del reddito e della ricchezza nelle regioni italiane, Rivista Economica del Mezzogiorno (Trimestrale della SVIMEZ), Vol. XVI (4), pp. 809-847, Il Mulino, TD No. 482 (June 2003).

- F. SCHIVARDI, *Reallocation and learning over the business cycle*, European Economic Review, , Vol. 47 (1), pp. 95-111, **TD No. 345 (December 1998)**.
- P. CASELLI, P. PAGANO and F. SCHIVARDI, Uncertainty and slowdown of capital accumulation in Europe, Applied Economics, Vol. 35 (1), pp. 79-89, **TD No. 372 (March 2000).**
- P. ANGELINI and N. CETORELLI, *The effect of regulatory reform on competition in the banking industry*, Federal Reserve Bank of Chicago, Journal of Money, Credit and Banking, Vol. 35, pp. 663-684, **TD No. 380 (October 2000)**.

- P. PAGANO and G. FERRAGUTO, Endogenous growth with intertemporally dependent preferences, Contribution to Macroeconomics, Vol. 3 (1), pp. 1-38, **TD No. 382 (October 2000).**
- P. PAGANO and F. SCHIVARDI, *Firm size distribution and growth*, Scandinavian Journal of Economics, Vol. 105 (2), pp. 255-274, **TD No. 394 (February 2001)**.
- M. PERICOLI and M. SBRACIA, A Primer on Financial Contagion, Journal of Economic Surveys, Vol. 17 (4), pp. 571-608, TD No. 407 (June 2001).
- M. SBRACIA and A. ZAGHINI, *The role of the banking system in the international transmission of shocks*, World Economy, Vol. 26 (5), pp. 727-754, **TD No. 409 (June 2001)**.
- E. GAIOTTI and A. GENERALE, Does monetary policy have asymmetric effects? A look at the investment decisions of Italian firms, Giornale degli Economisti e Annali di Economia, Vol. 61 (1), pp. 29-59, TD No. 429 (December 2001).
- L. GAMBACORTA, The Italian banking system and monetary policy transmission: evidence from bank level data, in: I. Angeloni, A. Kashyap and B. Mojon (eds.), Monetary Policy Transmission in the Euro Area, Cambridge, Cambridge University Press, TD No. 430 (December 2001).
- M. EHRMANN, L. GAMBACORTA, J. MARTÍNEZ PAGÉS, P. SEVESTRE and A. WORMS, *Financial systems and the role of banks in monetary policy transmission in the euro area*, in: I. Angeloni, A. Kashyap and B. Mojon (eds.), Monetary Policy Transmission in the Euro Area, Cambridge, Cambridge University Press, **TD No. 432 (December 2001)**.
- F. SPADAFORA, Financial crises, moral hazard and the speciality of the international market: further evidence from the pricing of syndicated bank loans to emerging markets, Emerging Markets Review, Vol. 4 (2), pp. 167-198, TD No. 438 (March 2002).
- D. FOCARELLI and F. PANETTA, Are mergers beneficial to consumers? Evidence from the market for bank deposits, American Economic Review, Vol. 93 (4), pp. 1152-1172, **TD No. 448 (July 2002)**.
- E.VIVIANO, Un'analisi critica delle definizioni di disoccupazione e partecipazione in Italia, Politica Economica, Vol. 19 (1), pp. 161-190, **TD No. 450** (July 2002).
- M. PAGNINI, Misura e Determinanti dell'Agglomerazione Spaziale nei Comparti Industriali in Italia, Rivista di Politica Economica, Vol. 3 (4), pp. 149-196, **TD No. 452 (October 2002)**.
- F. BUSETTI and A. M. ROBERT TAYLOR, Testing against stochastic trend and seasonality in the presence of unattended breaks and unit roots, Journal of Econometrics, Vol. 117 (1), pp. 21-53, TD No. 470 (February 2003).

- F. LIPPI, Strategic monetary policy with non-atomistic wage-setters, Review of Economic Studies, Vol. 70 (4), pp. 909-919, TD No. 374 (June 2000).
- P. CHIADES and L. GAMBACORTA, *The Bernanke and Blinder model in an open economy: The Italian case*, German Economic Review, Vol. 5 (1), pp. 1-34, **TD No. 388 (December 2000)**.
- M. BUGAMELLI and P. PAGANO, *Barriers to Investment in ICT*, Applied Economics, Vol. 36 (20), pp. 2275-2286, **TD No. 420 (October 2001)**.
- A. BAFFIGI, R. GOLINELLI and G. PARIGI, *Bridge models to forecast the euro area GDP*, International Journal of Forecasting, Vol. 20 (3), pp. 447-460, **TD No. 456 (December 2002)**.
- D. AMEL, C. BARNES, F. PANETTA and C. SALLEO, Consolidation and Efficiency in the Financial Sector: A Review of the International Evidence, Journal of Banking and Finance, Vol. 28 (10), pp. 2493-2519, TD No. 464 (December 2002).
- M. PAIELLA, *Heterogeneity in financial market participation: appraising its implications for the C-CAPM*, Review of Finance, Vol. 8, pp. 1-36, **TD No. 473 (June 2003)**.
- E. BARUCCI, C. IMPENNA and R. RENÒ, *Monetary integration, markets and regulation*, Research in Banking and Finance, (4), pp. 319-360, **TD No. 475** (June 2003).

- E. BONACCORSI DI PATTI and G. DELL'ARICCIA, *Bank competition and firm creation*, Journal of Money Credit and Banking, Vol. 36 (2), pp. 225-251, **TD No. 481 (June 2003)**.
- R. GOLINELLI and G. PARIGI, Consumer sentiment and economic activity: a cross country comparison, Journal of Business Cycle Measurement and Analysis, Vol. 1 (2), pp. 147-172, TD No. 484 (September 2003).
- L. GAMBACORTA and P. E. MISTRULLI, *Does bank capital affect lending behavior?*, Journal of Financial Intermediation, Vol. 13 (4), pp. 436-457, **TD No. 486 (September 2003)**.
- F. SPADAFORA, Il pilastro privato del sistema previdenziale: il caso del Regno Unito, Rivista Economia Pubblica, (5), pp. 75-114, TD No. 503 (June 2004).
- G. GOBBI e F. LOTTI, Entry decisions and adverse selection: an empirical analysis of local credit markets, Journal of Financial services Research, Vol. 26 (3), pp. 225-244, TD No. 535 (December 2004).
- F. CINGANO e F. SCHIVARDI, *Identifying the sources of local productivity growth*, Journal of the European Economic Association, Vol. 2 (4), pp. 720-742, **TD No. 474 (June 2003)**.
- C. BENTIVOGLI e F. QUINTILIANI, Tecnologia e dinamica dei vantaggi comparati: un confronto fra quattro regioni italiane, in C. Conigliani (a cura di), Tra sviluppo e stagnazione: l'economia dell'Emilia-Romagna, Bologna, Il Mulino, **TD No. 522** (October 2004).

- A. DI CESARE, Estimating Expectations of Shocks Using Option Prices, The ICFAI Journal of Derivatives Markets, Vol. II (1), pp. 42-53, TD No. 506 (July 2004).
- M. OMICCIOLI, Il credito commerciale: problemi e teorie, in L. Cannari, S. Chiri e M. Omiccioli (a cura di), Imprese o intermediari? Aspetti finanziari e commerciali del credito tra imprese in Italia, Bologna, Il Mulino, TD No. 494 (June 2004).
- L. CANNARI, S. CHIRI e M. OMICCIOLI, Condizioni del credito commerciale e differenzizione della clientela, in L. Cannari, S. Chiri e M. Omiccioli (a cura di), Imprese o intermediari? Aspetti finanziari e commerciali del credito tra imprese in Italia, Bologna, Il Mulino, TD No. 495 (June 2004).
- P. FINALDI RUSSO e L. LEVA, Il debito commerciale in Italia: quanto contano le motivazioni finanziarie?, in L. Cannari, S. Chiri e M. Omiccioli (a cura di), Imprese o intermediari? Aspetti finanziari e commerciali del credito tra imprese in Italia, Bologna, Il Mulino, TD No. 496 (June 2004).
- A. CARMIGNANI, Funzionamento della giustizia civile e struttura finanziaria delle imprese: il ruolo del credito commerciale, in L. Cannari, S. Chiri e M. Omiccioli (a cura di), Imprese o intermediari? Aspetti finanziari e commerciali del credito tra imprese in Italia, Bologna, Il Mulino, TD No. 497 (June 2004).
- G. DE BLASIO, Does trade credit substitute for bank credit?, in L. Cannari, S. Chiri e M. Omiccioli (a cura di), Imprese o intermediari? Aspetti finanziari e commerciali del credito tra imprese in Italia, Bologna, Il Mulino, TD No. 498 (June 2004).
- M. BENVENUTI e M. GALLO, Perché le imprese ricorrono al factoring? Il caso dell'Italia, in L. Cannari, S. Chiri e M. Omiccioli (a cura di), Imprese o intermediari? Aspetti finanziari e commerciali del credito tra imprese in Italia, Bologna, Il Mulino, TD No. 518 (October 2004).