
Questioni di Economia e Finanza
(Occasional Papers)

Quantum computing:
a bubble ready to burst or a looming breakthrough?

by Giuseppe Bruno

N
um

be
r 716O

ct
o

b
er

 2
02

2

Questioni di Economia e Finanza
(Occasional Papers)

Number 716 – October 2022

Quantum computing:
a bubble ready to burst or a looming breakthrough?

by Giuseppe Bruno

The series Occasional Papers presents studies and documents on issues pertaining to

the institutional tasks of the Bank of Italy and the Eurosystem. The Occasional Papers appear

alongside the Working Papers series which are specifically aimed at providing original contributions

to economic research.

The Occasional Papers include studies conducted within the Bank of Italy, sometimes

in cooperation with the Eurosystem or other institutions. The views expressed in the studies are those of

the authors and do not involve the responsibility of the institutions to which they belong.

The series is available online at www.bancaditalia.it .

ISSN 1972-6627 (print)
ISSN 1972-6643 (online)

Printed by the Printing and Publishing Division of the Bank of Italy

QUANTUM COMPUTING:
A BUBBLE READY TO BURST OR A LOOMING BREAKTHROUGH?

by Giuseppe Bruno *

Abstract

The advent of quantum computation and quantum information theory and the ever

increasing empirical possibilities of translating these theories into real physical systems has
raised expectations in the private and public sectors. Quantum computers process information
using the laws of quantum mechanics. By exploiting superposition (an object can be in
different states at the same time) and entanglement (different objects can be deeply connected
without any direct physical interaction) quantum computers are heralded as the next
technological breakthrough. Compared to traditional digital computing, quantum computing
offers the potential to dramatically reduce both execution time and energy consumption.
However, quantum algorithms cannot be fully realized on an actual scale of less than 1,000
qubits. The greatest hurdle in harnessing quantum computing is the instability of their
quantum mechanical features. Meanwhile, research has shifted towards making “noisy”
quantum computers useful. In this work we show three noteworthy applications for central
banking banking activities such as gauging financial risk, credit scoring and transaction
settlement. These are still proof-of-concepts applications but demonstrate the new software
paradigms along with looming potential breakthroughs. We provide a few hints in the trade-
off between deploying the innovative technology before it is mainstream and the risk of
holding off on adopting it and being surpassed by nimbler competition.

JEL Classification: C65, C87.
Keywords: quantum computing, quantum information, superposition, entanglement.
DOI: 10.32057/0.QEF.2022.0716

Contents

1. Introduction ... 5
2. The commercially available hardware solutions .. 6
3. Quantum Algorithms and the developed software solutions ... 9
4. Financial Risk Evaluation .. 11
5. Credit Scoring with Variational Quantum circuits .. 13

5.1 The Variational Quantum approach ... 14
6. Transaction Settlement Optimization .. 15

6.1 The integer programming problem ... 16
7. Concluding remarks ... 19
Appendix A: Notation .. 19
Appendix B: Financial Risk Evaluation ... 20
Appendix C: Credit Scoring ... 22
Appendix D: Transaction Settlement ... 23
References .. 24

* Bank of Italy, Directorate General Economics, Statistics and Research.

1 Introduction

Nature isn’t classical dammit, and if you want to make a simulation of Nature you better make it
quantum mechanical, and by golly it’s a wonderful problem because it doesnt look so easy.

– Richard Phillip Feyman, 1981

In May 1981, in a conference on the topic Simulating physics with computers, Feyn-
man, 1965 Nobel laureate in physics, explained and envisaged that digital computers
would be unsuitable for simulating the behavior of quantum system, for example see
Preskill 2021 [26].

In these four decades computing resources have kept growing in power following
what is called the Moore’s law [23], which states that the computer power doubles
for constant cost roughly every two years. While hardware designers grapple with
the demise of Moore’s law, prototypes of a completely new type of machine - the
quantum computer - have been introduced. These devices exploit the properties of
quantum mechanics in particular, phenomena known as superposition and entan-
glement to speed up certain classes of calculations.

Even though the scale of actual quantum computers is relatively limited, we can
now witness a new generation of quantum algorithms which only require very lim-
ited resources and robustness against errors. This gives rise to the so-called Noisy In-
termediate Scale Quantum computers (NISQ) era. A promising group of algorithms
and methods that overcome at least some limitations in the NISQ-era are the so-
called hybrid quantum-classical algorithms, or variational quantum algorithms. In
general, these quantum algorithms have free parameters and other tunable parts that
run on quantum hardware, but they are (partially) controlled using classical com-
putation, thus the term hybrid is used. Comparable to other specialized hardware
such as Graphical Processing Units (GPU), in this setting, a Quantum Processing
Unit (QPU) is considered as a computational resource which can be leveraged for
certain parts of an algorithm that benefit from the potential speedup or resource effi-
ciency. Here we take into account three of the most relevant applications for Central
Banking activities and the banking industry as a whole:

1. Financial risk evaluation such as Value at Risk and Conditional Value at Risk;
2. credit scoring through Variational Quantum circuits;
3. transaction settlement problem for securities settlement in capital markets.

In the empirical sections we explore quantum algorithms designed to solve these
kind of problems. Quantum computers promise to provide a quadratic speed-up over
classical Monte-Carlo simulations which may be used to evaluate risk, see Woerner
et al. 2019 [34] and Egger et al. [10] and price financial derivatives (for example
see Rebentrost 2018 [27]). The banking industry has already begun its analysis of
quantum platforms, see for example Egger et al. 2020 [11]. Although we are in an
infancy stage, it is of paramount importance to closely follow the coming steps in
the quantum technology evolution.

5

The rest of the paper is organized in the following way. After this introduction,
section 2 surveys the most relevant hardware solutions available on the market. Sec-
tion 3 sketches the main open source solutions for running quantum algorithms.
The following three sections describe the chosen examples: section 4 presents an
example of the evaluation of the credit risk for a portfolio of loans, section 5 shows
a quantum machine learning application for gauging credit scoring on a publicly
available dataset and section 6 provides an example of a combinatorial optimization
applied to a capital market infrastructure. Finally section 7 provides some conclud-
ing remarks and suggests future avenues of further research.

2 The commercially available hardware solutions

In the last fifteen years many steps forward have been made in the development of
quantum computing hardware based on different physical systems. Swift progress
has been fuelled by the assumption that sufficiently powerful quantum machines will
yield huge computational advantages in many fields such as new drugs discovery,
machine learning, chemistry, combinatorial optimization, risk analysis and quantum
security. The most relevant physical and logical element of a quantum computer is
the qubit 1. As quantum devices, qubits show the following features:

1. superposition, which allows a single qubit to be in different states at the same
time;

2. entanglement, which consists in the possibility to prepare two or more qubits in
a strictly correlated fashion where modification of the status of one qubit instan-
taneously causes the modification of the status of another qubit;

3. decoherence over time, i.e. the disappearance of the superposition of quantum
states 2.

The general requirements for qubit design have been well summarized in Di Vin-
cenzo (2000) [9] by the following 5 items:

1. a scalable system with well-characterized qubits;
2. ability to initialize each qubit (for computation);
3. stability of qubits (i.e., long decoherence times)
4. support for universal instruction set for arbitrary computation
5. ability to measure qubits (i.e., readout in computational basis)

These 5 requisites are unfortunately in conflict with one another. Specifically, ini-
tializing and performing computations on a qubit require interactions on the system,
which will inherently break the required conditions for the realization of a stable
qubit. This is one of the reasons why it is fundamentally difficult to build a quantum
computer.

1 This represents simultaneously a quantum system with two orthogonal states and the unit of
information in quantum computing.
2 Nowadays decoherence times are within the range 10−9÷10−3 seconds.

6

Notwithstanding the growing interest in quantum computing, there have yet to
be any fundamentally new results due to quantum computing 3. Most of the new
technologies follow the so called hype cycle pattern, see Gartner (2020) [14]. In
the following picture we show the Gartner’s 2021 hype cycle for the more relevant
emerging technologies.

Here, the Quantum machine learning applications appear to be at the very begin-
ning of the quickly growing innovation trigger phase and they are marked as those
requiring more than 10 years before extensive adoption.

The most relevant hurdles that currently stifle the development of quantum com-
puters are limits to the number of computational units and computational errors.

In order to take full advantage of quantum computing in a meaningful way, a
technological leap is needed to reach at least hundreds of thousands of physical
qubits. This is required if one needs, for example, to optimize large portfolios or
to accurately estimates the Value at risk for a multi-loan package 4 . In stark con-
trast with this requirement, today’s quantum computers rely on a small number of
noisy qubits (order of 102) because the qubits manufacturing technology is not yet
sufficiently developed for larger scales (see for example Wang 2021 [33]). For this
reason, present quantum processors are dubbed NISQ (Noisy Intermediate-Scale
Quantum) (see Preskill (2018) [25]). The necessity to define a noisy processor stems
from the intrinsically analog nature of a qubit. This is at complete variance with
digital computers which employs two well separated level of a physical variable

3 In October 2019 Google announced quantum supremacy in an Nature article [2]
4 Check for example Ray LaPierre 2021 [22] Introduction to Quantum Computing

7

to represent one of two binary values 5. At least in the present decade, quantum
computers are likely to remain specialized devices, which will be accessed via the
cloud. Nonetheless, quantum technology might be preferred even if classical su-
percomputers ran faster, if, for example, the quantum hardware had lower cost and
power consumption. In any case, we should take into account that the power of clas-
sical computers keep increasing. In 2021, Fugaku, the fastest computing platform
has achieved around 0.5 ·1018 FLOPS for linear algebra tasks6. Quantum computers
fight to catch up with a moving target. Classical hardware and algorithms keep im-
proving steadily. A quite popular figure of merit for NISQ systems is called quantum
volume (QV). It summarizes in one single metric the number of available qubits,
their fidelity 7 and how extensively they are interconnected [6].

The following table 1 shows a summary of the main quantum computers available
on the market at the end of 2021.

Table 1 Quantum Computing Hardware already available.

Manufacturer Technology Max # Qubits Gate Fidelity Quantum Volume Cloud Access
AQT Trapped Ions 20 (Eagle) 99.9 N.A. yes

Coldquanta Cold Atom 100 (Hilbert) 99.1 and 95.0 N.A. no
Google Superconducting 53 99.3 N.A. yes

IBM Superconducting 127 (Eagle) 99.1 64 yes
Rigetti Superconducting 40 (Aspen 11) 99.6 and 90 N.A. yes

Honeywell Trapped Ions 10 (H1) 99.9 and 99.1 1024 N.A.
IonQ Trapped Ions 11 99.9 4 ·106 yes

QuTech Silicon 2 Spin2 QPU 99.5 N.A. yes
Xanadu Photonic 24 N.A. N.A. yes

The high number of players and differences in qubit implementation are a witness
of a market that has yet to identify the best technological solution.

While classical computers are invariably made with silicon/germanium semicon-
ductor technology, Quantum Processing Units (QPU) can also be realised with su-
perconductor chips, ions or neutral atoms trapped in a vacuum, on-chip photonic
waveguides and other solid state devices. These solutions provide different trade-
offs in terms of number and fidelity of qubits, phase coherence time, connectivity
etc. This landscape is not new for the relationship between technology and market
structure. As it was clearly expressed in Varian (2001) [31], highly innovative in-
dustries are subject to the same market forces as every other industry. This means
that once the quantum technology will reach maturity the cheapest or best fit will
survive leaving only few technological solutions which will be adopted in the con-
sumer market. A different situation is emerging in the available software solutions
for programming quantum computers. This is described in the following section.

5 For example the current or the voltage in selected points of the circuit
6 Floating Points Operations per second
7 Qubit fidelity is the degree of confidence in the results of a quantum computation

8

3 Quantum Algorithms and the developed software solutions

With the rise of the first quantum computers, suitable programming languages and
quantum algorithms came up with promising results.

Quantum algorithms started to come out in 1994 with the work of Shor [29]
and [30] who proposed a much more efficient integer factorization based on the
period finding algorithm. In 1996 Grover [16] introduced a quantum algorithm to
speed up the unstructured search problem quadratically by employing the quantum
amplitude estimation, Harrow et al. 2009 [18] put forward a method for solving
system of linear equations characterised by an Hermitian matrix 8. Nevertheless,
quantum software has not begun to be produced in a large-scale, industrial way yet.
The initial Quantum software development kits started to come out from in 2017
and the following years. Later we have seen other software frameworks such as
Pennylane and Ocean.

These software packages and others have been instrumental for testing other
noteworthy algorithms such as VQE (Variational Quantum EigenSolvers) and QAOA
(Quantum Approximate Optimization Algorithms). These algorithms are heuristics
designed for near-term, noisy quantum computers without performance guarantees
(see Fahri 2014) [12].

All the empirical applications suitable of benefitting from quantum computing
cannot be accomplished uniquely with quantum computing hardware. They need
quantum software and suitable algorithms which are able to take advantage of the
laws of quantum mechanichs. One of the main takeaway of this work is that every-
one involved in the software development business will have to take into account
new software development life cycles. Quantum algorithms are usually described in
a high-level language (e.g. Python or C++). They are then translated into a quan-
tum circuit consisting of a series of quantum gates applied in a sequential manner
9. These circuits get translated into Quantum Assembly (QASM) 10 and executed
in real devices or simulators. The final step is given by a measurement which col-
lapses the quantum state into a classical one from which the result of the algorithm
is being inferred via classical post-processing techniques. At the present time, the
area of quantum software development is relatively new and less established than
that of quantum hardware. Starting from 2017, quantum software tools are being
developed at a rapid pace with many packages now available from different plat-
forms such as D-Wave, Google, IBM, Microsoft and Xanadu. These software tools
are able to operate at relatively low level such as at the assembly language. They all
realize a three phase design flow which maps a high-level program representation

8 A matrix X is defined hermitian when it is equal to its conjugate transpose X t∗ = X
9 The quantum gate model is just one of the computing model. There are others, such as
Measurement-Based Quantum Computing and Adiabatic Quantum Computing (D-Wave). How-
ever, currently the gate model seems to be that one more likely to be employed in full-scale fault-
tolerant quantum computation
10 Quantum Assembly Language (QASM) is an extension of a RISC assembly language with the
classical RISC instruction set integrated by a set of platform dependent quantum instructions.

9

of a quantum algorithm into a hardware bound realization or a software classical
simulation (see figure 1).

Quantum Algorithm Quantum Circuit Machine Instructions

HW QPU

SW Backend

Fig. 1 Conceptual Quantum software design flow.

See Chong et al. (2017) [5] for a deeper analysis. Today different quantum com-
puting models are available. Among them we mention the most relevant ones:

• gate-based (cfr. Kwon (2021) [21]);
• measurement-based (see Jozsa (2005) [20]);
• and adiabatic quantum computing (see Aharonov at al. (2008) [1]).

In this work we have written and tested code running the Qiskit and Pennylane
quantum software development kits 11.

Qiskit is an open-source compilation framework targeting various types of hard-
ware and a high-performance quantum computer simulator with emulation capa-
bilities. It was designed by IBM Research to allow software development for their
cloud quantum computing service.

Pennylane is a cross-platform Python library for quantum machine learning, au-
tomatic differentiation, and optimization of hybrid quantum-classical computations.
The software development of quantum algorithms follows the scheme shown in the
picture 2:

State prepa-
ration |Ψ〉

Quantum Cir-
cuit Processing

Measurement
of final state

Classical post-
processing

Fig. 2 Quantum software development cycle.

The following sections describe the three considered empirical applications, while
the different coding examples are left in the appendix.

11 The examples have been run on the different Quantum machines kindly provided by the IBM
Canada.

10

4 Financial Risk Evaluation

Risk capital models are crucial tools for the financial sector. Among them we men-
tion capital allocation, performance evaluation, risk pricing, risk identification and
monitoring, and capital adequacy assessment. Under the Basel II Accord, Financial
Intermediaries (FI) are required to assess capital adequacy for credit, market and
operational risks. FIs determine regulatory capital for credit risk usually using inter-
nal rating based (IRB) approach. See [24] for reference. In this section, we restrict
our analysis to the basic Gaussian Conditional Independence Model proposed by
Vasicek in [32] which transforms unconditional Probability of Default (PD)s into
PDs conditional on a single systematic risk factor. In particular assuming a portfo-
lio of K assets sharing a common expiration time T , denoting by λi the loss given
default on the ith loan and by Xi(Z) a binomially distributed variable depending on
the common random variable Z, we have

L =
K

∑
i=1

λi ·Xi(Z) (1)

for the portfolio loss. Assuming independence among the loan defaults, by the cen-
tral limit theorem the portfolio would asymptotically converge to a normal distribu-
tion. The lack of independence prevents the unconditional normal distribution but
adopting the Vasicek assumption, conditionally on the common factor (Z), the de-
fault event are independent and equally distributed. By the law of large numbers, in
this circumstance, the portfolio loss converges to its expectations and it is possible
to derive the following closed form solution for the cumulative distribution function
of loan losses on asymptotically large portfolios

P[L < x] = Φ

(
Φ−1(x)−√ρΦ−1(α)√

1−ρ

)
(2)

where Φ represents the Gaussian standard cumulative distribution function, α

is a confidence level and ρ ∈ [0,1) is the assumed constant pair-wise correlation
among the assets. For Risk management purposes we are interested in evaluating the
Value at Risk VaR and Conditional Value at Risk CVaR. These two figures are are
quantiles of the loss distribution which have an utmost influence on the computation
of regulatory and economic capital for assessing market risk.

Their definitions are reported in the following:

VaRα(L) = inf{x ∈ R : P[L≤ x]≥ 1−α} (3)
CVaRα(L) = E[L : L≥ VaRα(L)] (4)

Monte Carlo simulation is the classical method employed to determine VaR and
CVaR, see for example Jorion (2001) [19]. Monte Carlo is based on the compu-
tation of the time evolution of the portfolio assets for N different realizations and
computing its aggregated value. Following this avenue VaR calculations features

11

confidence interval which scales as O(N−1/2). By harnessing the principle of quan-
tum superposition it is possible to estimate the VaR or CVaR of the given portfolio
with a theoretical quantum improvement which scales as O(N−1) which represents
a quadratic speed up over the Monte Carlo procedure which goes as O(N−1/2) . An
open source toy example has been taken from the Qiskit repository and a simple
benchmark has been realized. The key element in the VaR and CVaR estimation
is the employment of the algorithm dubbed Quantum Amplitude Estimation (QAE)
which is a generalization of the widely known Grover’s searching algorithm (see
for example see Grover 1996 [16] and 1997 [17]). Here, by suitably superposing
all the states where we have a default we are able to compute the quantiles of the
loss distribution with a quadratic performance improvement over the Monte Carlo
procedure. Assuming we have a portfolio of n = log2(N) assets we could prepare
our initial quantum state:

|Ψ〉n =
N−1

∑
i=0

√
pi · |i〉n (5)

where: pi is the probability of measuring state |i〉n 12 which is the binary encoding
of the defaulted and non defaulted assets in our portfolio 13. We then introduce the
function φ : {0, . . . ,N−1}→ [0,1] and the quantum operator

F : |i〉n |0〉 → |i〉n (
√

1−φ(i) |0〉+
√

φ(i) |1〉) (6)

At this point we apply this operator to the quantum state in equation 5 to go to
state:

N−1

∑
i=0

√
1−φ(i)

√
pi |i〉n |0〉+

N−1

∑
i=0

√
φ(i)
√

pi |i〉n |1〉 (7)

By choosing φ(i) = X
N allows us to estimate the expectation of our unknown

distribution by evaluating the probability of measuring a |1〉 in the last qubit. To find
the VaRα(X) we employ the function

fk(i) =
{

1 if i < k
0 if i≥ k (8)

Applying the quantum operator 6 to the quantum state in equation 5 to get:

N−1

∑
i=k+1

√
1−φ(i)

√
pi |i〉n |0〉+

k

∑
i=0

√
φ(i)
√

pi |i〉n |1〉 (9)

The probability of measuring |1〉 in the last qubit is ∑
k
i=0 pi = P[X ≤ k]. By

running a search over k we find the Varα(X) as the smallest value kα for which
(P)[X ≤ kα]≥ 1−α . In a similar way, by picking a suitable function f (i) we com-

12 for an explanation of the Dirac |·〉 notation see the Appendix A
13 With N = 4 we have |0〉2 = |0,0〉2 which represents non defaults, while |2〉2 = |1,0〉2 represents
a defaults in the second asset.

12

pute also the CVarα . In Appendix B we provide some code snippets and present
some results.

5 Credit Scoring with Variational Quantum circuits.

Despite the recent explosion in the availability of a wide array of banking services,
lending still constitutes a significant source of income for commercial banks. The
lending process is, in general, a relatively straightforward series of steps involving
the borrower and the lender. These activities range from the initial loan application
to the successful or unsuccessful repayment of the loan. Although retail lending be-
longs among the most profitable investments in lenders’ asset portfolios, increases in
the number and amounts of loans bring increases in the number of defaulted loans.
Thus, the primary problem of any lender is to accurately distinguish between good
vs bad borrowers prior to granting credit. Therefore credit scoring is commonly rec-
ognized to help in boosting a country economic growth. Moreover it is a valuable
tool for improving financial inclusion, individual credit access and efficiency. The
wide adoption of innovative methods for credit scoring raises concerns about data
privacy, fairness and explainability of the models. Though these concerns should not
stifle innovation, especially if it hinders improvements in financial inclusion and risk
assessments. In this section, we show how we can combine a classical and quantum
computing platform to speed up the process of credit scoring. In the previous sec-
tions we have seen how quantum computing can substantially speed-up particular
tasks. Search in an unstructured database runs quadratically faster than the classical
limit. Quantum prime factorization could be performed much more efficiently, en-
abling to break the current public cryptography securing our e-commerce/banking
activities 14. In this section we consider whether and how quantum computing can
improve or accelerate machine learning tasks. In the affirmative case, what kinds of
speed-ups can we expect over the best classical algorithms? Could it also lead to
a better generalization/learning performance? For answering to these questions we
have analysed the credit scoring problem with the German credit dataset 15.

A quite interesting group of quantum algorithms and methods which are able
to cope with at least some limitations in our the NISQ-era are the so-called hy-
brid quantum-classical algorithms. In general, these quantum algorithms have free
parameters which are optimized on quantum hardware, but they are in part con-
trolled using classical computation, thus the term hybrid is used. This variational
algorithms can be schematically described by the following picture: For classify-
ing the borrowers we are confronted with a standard supervised machine learning
problem. We have an array of D feature data xi ∈ RD with i = 1, . . . ,N and the corre-

14 The present record, published in 2018 [7], is the composite number 4,088,459 which has 7
digits but the quantum algorithm doesn’t generalize to all the 7 digits numbers. Current RSA key
are composite number of 617 decimal digits.
15 The data set consists of loan applications from 1,000 individuals and is described at
https://www.kaggle.com/datasets/uciml/german-credit

13

sponding true labels yi ∈ {0,1}. The algorithm will estimate a classification function
ŷi = f (xi,θ) by choosing the best vector parameter θ̂ which minimise the total error
∑

N
i=1(yi− ŷi)

2.

The classification function is estimated by a quantum kernel which is just an
extension of the classical kernel method. Quite often feature data cannot be easily
separated by a hyperplane in its original space. A commonly used technique consists
in looking for such a hyperplane in a higher dimensional feature space by applying
a non-linear transformation function to the data.

Classifying our observations in this new feature space is nothing more than eval-
uating how close data points are to each other. This is carried out by computing
the inner product for each pair of data points. So we do not need to compute the
non-linear feature map for each datum, but only the inner product of each pair of
data points in the new feature space (see for example Shoelkopf (1998) [3]). There-
fore instead of computing the actual feature maps we can simply compute a kernel
function derived from the inner product:

K(x,x′) = | 〈Φ(x),Φ(x′)〉 | (10)

where x,x′ ∈RD are two different features vectors whereas Φ(·) is the corresponding
feature map. It is frequent the case where feature maps are hard to compute while
their kernels, which, in our case, means their inner product, are straightforward. The
feature map Φ(·) maps the original measurable properties of the phenomenon under
study into a new space which will enable an easier classification.

Here we will address this Machine Learning problem by means of a quantum lin-
ear model instead of the classic SVM (Support Vector Machines), logistic regression
or even a gradient boosting algorithm. In our quantum example, the kernel method
refers to the encoding strategy of the original data into a state superposition. For
every original data point xi ∈ RD we will have the following encoding:

|ψx〉=
D

∑
n=1
|i〉 (11)

This solution is quite convenient because, in the quantum framework, a size D vector
requires just log2(D) qubits. The state vector |ψx〉 presents a superposition of all the
possible features. This explains why we can achieve an exponential speed up respect
to the problem size when we prepare the state into this superposition.

5.1 The Variational Quantum approach

Variational quantum circuits are a family of hybrid quantum-classical algorithms
that iteratively carry out operations on a quantum platform and successively on a
classical one. The quantum gates in these circuits behave like successive processing

14

layers. The key feature of these schemes is that all quantum operations are linear
and unitary transforms. The sole non-linearity operation is the final measurement
which has the effect of collapsing any quantum state into a classical value. The vari-
ational quantum architecture for our NISQ computation is based on a short-depth
circuit where each feature is suitably encoded into a quantum register. The output of
the variational circuit consists in some expectation values over multiple qubit mea-
surements of the resulting quantum state |ψ ′x〉. This output is fed into the objective
function which is usually the sum of the squared errors computed in the training
sample. This objective function is optimized on a classical computer with respect
to the set of parameters θ which completely defines the behaviour of the quantum
variational circuit. Therefore, in this algorithm we iterate between the quantum and
the classical computation until we reach convergence between the classification er-
ror and the parameter vector θ of the quantum variational circuit. The empirical
results show that the quantum machine learning algorithm provides a classification
function which achieve 87 % of accuracy by employing the quantum feature maps
available in the software framework. All the numerical outcomes are available in
Appendix C.

6 Transaction Settlement Optimization

Securities settlement is one of the most relevant functions in a centralized capi-
tal market infrastructure. A securities settlement system (SSS) executes settlement
orders based on incoming settlement instructions (SI), arising from the trading ac-
tivity. A SI usually includes two corresponding transfers: securities and cash for the
delivery and payment of securities respectively. Delivery must occur if and only if
payment occurs. This entails that the SSS must either settle both transfers in the
instruction or none of them. This corresponds to the principle of delivery versus
payment (DVP) and the relative SI are defined as the DVP instruction.

The settlement is finalized only when the involved parties own the assets that
they have agreed to exchange. The problem is that the settlement of a securities
transaction does not happen concurrently with the trading activity. Thus, even if the
parties have the assets at trading time, they may not at the time of settlement.

During the development of the trading activity, the SSS might end up in a grid-
lock, where a group of settlement instructions can settle only if netted (that is tan-
tamount to aggregate those obligations), whereas no single instruction in the group
can settle on its own (see Figure 3 for an example).

With the aim of avoiding such situations, SSSs have to solve the task of max-
imizing number or total value of settlement instructions without overdrawing any
participant account.

15

ABC : 0
Cash 52 $

A1

ABC : 0
Cash 0 $

A2

ABC : 20
Cash 0$

A3

52 $

20 ABC

50 $

20 ABC

Fig. 3 A settlement gridlock. The circles show the cash and security balances of each party. The
arrows indicate the stock ABC transfers of the two settlement instructions. With the initial balances
neither of the settlement instructions can be settled, but they can be settled through netting.

6.1 The integer programming problem

Here we present the optimization problem faced by a clearing house receiving con-
tinuously trade orders. For any settlement interval the clearing house has all of the
received DVP transactions plus all the remaining unsettled transactions remaining
from the previous batch. Let n be the total number of transactions in the present
batch, the binary variable x j for j ∈ [1,n] indicates whether or not the transaction
j is settled and w j represents the weight of settling it. In this case our optimization
problem can be set as:

max
n

∑
j=1

w j · x j

s.t.
n

∑
j=1

vi j ≤ bi for i ∈ [1,m]

x j ∈ {0,1} for j ∈ [1,n]

(12)

where bi, for each i ∈ [1,m], is a non-negative integer indicating the size of
balance i, vi, j represents the obligation that transaction j puts on the balance
i. The weight w j might be the total monetary value of transaction j, or w j =
1 ∀ i if we seek to maximize the whole number of settled transactions. As it is
shown, for example, in Shafransky and Doudkin (2006) [28] this problem belong
to those whose complexity is NP-hard. This categorization is an asymptotic con-
cept which means that an algorithm for solving this problem in polynomial time
is not known (see Goldreich (2010) [15] for reference). This circumstance opens

16

the road for the search of more effective quantum algorithms. Some of these, such
as the VQE and QAOA have been proposed to solve these problems on a quan-
tum computer. Though, so far only toy examples can actually be solved on the
presently noisy available platforms. Qiskit example codes are available on github
(https://github.com/GiuseppeBruno1959). As empirical example, we have consid-
ered the third example presented in Braine et al. (2019) [4].

17

In this case we consider the following set of 7 transactions among six parties.

5C

P1

2C

P3

3C

P4

1C

P2

2C

P5

1C

P6

3C
T2

2C
T3

T1 4C

T4
3C 3C

T5

T6

6C

T7

4C

Fig. 4 Transaction scheme showing a batch of seven payments T1; . . . ;T7 between six parties
P1; . . . ;P6. Each party owns a currency account C, whose balance is shown in the interior circles.

For the instance shown in fig. 4, we coded a sequence of classical and quan-
tum simulation 16 We have tried the ADMM 17 (see for example Gambella 2021
[13]) and the QAOA quantum optimization algorithms 18. We have reached a global
optimal solution settling payments T2;T3;T6;T7 only with the QAOA algoritm 19.

This is simply a toy example which could be compared with around 500 settle-
ment per minute on T2S 20. The existence of such algorithms, even in their infancy
stage, do open new optimization scenarios in the Transaction Settlement problem for
delivery versus-payment securities transactions. This is an important optimization
challenge in capital markets. In perspective, quantum algorithms could increase set-
tlement efficiency (in terms of the number of transactions settled for a given period),
thereby minimizing the time intervals between trade and settlement. In Appendix D
we provide some details, code snippets and the computed results for the problem
considered.

16 The formal description of the optimization problem is shown in Appendix D.
17 The Alternate Direction Method of Multipliers is an augmented Lagrangian method suitable for
integer variable optimizations
18 The two algorithms are available in the IBM Qiskit library.
19 this corresponds to the bitstring 0110011.
20 Target 2 Security is the European platform for securities settlements

18

7 Concluding remarks

In this paper we have presented the current status of Quantum Computing technolo-
gies and some of their present practical applications. Expectations are sky-high, but
in practice quantum computers are apparently still one decade away from becoming
widely available technologies that can deliver significant advantages in the business
world. The hardware is trying to catch up with the actual users’ needs, and it will
take some major breakthroughs for quantum computers to be converted into com-
mercial products that we could use to consistently solve critical, everyday business
problems. However this scenario should be seen as an incentive to pursue sound
empirical research in this field at least following in the steps of other big financial
institutions such as Goldman Sachs (Inside Quantum Technology news April, 30
2021), Bank of Canada (Inside HPC April 14, 2022) and BBVA (research paper
with Zapata Computing May 25 2021).

In this work we have shown the application of Quantum algorithms to the fol-
lowing banking problems:

1. Value at Risk and Conditional Value at Risk through quantum amplitude estima-
tion;

2. Quantum machine learning classification for credit scoring;
3. Optimization for the transaction settlement problem in the capital markets frame-

work.

We have seen how these standard problems can be translated in such a way which
becomes suitable for quantum platforms to solve them. Although the development
of these Quantum Computing platforms is at the beginning of their path needed in
order to become fully fledged industrial production products, it has been shown that
a good push to their development will come from the realization of Quantum algo-
rithms and software development tools helping researchers in harnessing the new
technologies without the burden of understanding the physical laws and processes
behind a quantum hardware device.

1 Appendix A: Notation

In the paper we follow the so called Dirac notation for the linear algebra involved
in quantum mechanics 21. This is a formal language aimed at answering the needs
of expressing states in quantum mechanics. The first notion is the ket |·〉 which is a
vector with components in C. If we have N basis vectors |i〉 , i = 1,2, . . . ,N then
any ket |v〉 can be written as

|v〉=
N

∑
i=1

vi |i〉

21 see Dirac (1939) [8]

19

The adjoint of a ket is called a bra 〈v|= |v〉†. The dagger † is the usual notation for
the complex conjugate of the transpose. The inner product between a bra and a ket
is written as 〈·| |·〉 and it represents the probability amplitude of a given quantum
state.

2 Appendix B: Financial Risk Evaluation

For this example we have considered a portfolio composed of three assets with the
following parameters:
set problem parameters
n_z = 2
z_max = 2
z_values = np.linspace(-z_max, z_max, 2 ** n_z)
p_zeros = [0.15, 0.25, 0.2]
rhos = [0.1, 0.05, 0.15]
lgd = [1, 2, 2]
K = len(p_zeros)
alpha = 0.05

With these parameters we can build the quantum state for the common Gaussian
random

|Ψ〉=
2nz−1

∑
i=0

√
pi

z |zi〉
K⊗

k=1

(√
1− pk(zi) |0〉+

√
pk(zi) |1〉

)
(13)

At this point, we can define our Gaussian conditional independent model from a
Qiskit library and compute the corresponding values for:

• expected Loss E[L];
• pdf and cdf of L;
• value at Risk VaR(L) and its corresponding probabilities;
• Conditional value at Risk CVaR(L) ;

These items are computed with the following code:
from qiskit_finance.circuit.library import GaussianConditionalIndependenceModel as GCI
u = GCI(n_z, z_max, p_zeros, rhos)
run the circuit and analyze the results
job = execute(u, backend=Aer.get_backend("statevector_simulator"))
analyze uncertainty circuit and determine exact solutions
p_z = np.zeros(2 ** n_z)
p_default = np.zeros(K)

*** snippet **
state = job.result().get_statevector()
if not isinstance(state, np.ndarray):

state = state.data
for i, a in enumerate(state):

get binary representation
b = ("{0:0%sb}" % num_qubits).format(i)
prob = np.abs(a) ** 2
extract value of Z and corresponding probability
i_normal = int(b[-n_z:], 2)
p_z[i_normal] += prob
determine overall default probability for k
loss = 0

20

for k in range(K):
if b[K - k - 1] == "1":

p_default[k] += prob
loss += lgd[k]

values += [loss]
probabilities += [prob]

values = np.array(values)
probabilities = np.array(probabilities)
expected_loss = np.dot(values, probabilities)
losses = np.sort(np.unique(values))
pdf = np.zeros(len(losses))
for i, v in enumerate(losses):

pdf[i] += sum(probabilities[values == v])
cdf = np.cumsum(pdf)
i_var = np.argmax(cdf >= 1 - alpha)
exact_var = losses[i_var]
exact_cvar = np.dot(pdf[(i_var + 1) :], losses[(i_var + 1) :]) / sum(pdf[(i_var + 1) :])

The results of our example are shown in table 2 :

Expected Loss E[L]: 0.6381
Value at Risk VaR[L]: 2.0000
P[L <= VaR[L]]: 0.9605
Conditional Value at Risk CVaR[L]: 3.0000

Table 2 Numerical results achieved with the quantum computer

21

3 Appendix C: Credit Scoring

In this empirical application we have explored the different results achieved by vary-
ing the number of input variables by Principal Component Analysis (PCA). This
technique comes from linear algebra. Here it is used as a data preparation technique
to projection the original dataset into a smaller dimensionality space prior to fitting
a model. In the following code snippet we show the main computing loop for run-
ning the Quantum support vector machine with a different dimension for the PCA
reduction.
for i in pca:

lista_tmp=[]
for c in list_cost:

lista_cv=[]
for y in [2,3]:

lista_cv.append(get_acc(i,1,c,classic=False,verbose=True,
simulator=’qasm_simulator’,maps=’Z’,
random_state=y)[0])

lista_tmp.append(np.mean(lista_cv))
cost_value=list_cost[np.argmax(lista_tmp)]
acc_quant_z_1_qasm.append(get_acc(i,1,cost_value,classic=False,
verbose=True,simulator=’qasm_simulator’,maps=’Z’,
random_state=y,is_final=True)[0])

In the figure 3 we show the classification accuracy achieved with the Quantum
SVM ran on quantum processor.

2 4 6 8 10 12 14 16
0.5

0.6

0.7

0.8

0.9

Number of Principal Components

Te
st

ac
cu

ra
cy

As it is shown in the picture the classification accuracy with the quantum support
vector machine and the given feature map keeps increasing reaching a maximum of
0.87 with 12 principal components.

22

4 Appendix D: Transaction Settlement

In this example we have optimized the number of transactions to be settled in a
given settlement interval. The integer programming problem taken from [4] is the
following:

max(x1 + x2 + x3 + x4 + x5 + x6 + x7)

s.t.

C1 : 5−4x1−3x2−2x3 ≥ 0
C2 : 1−4x1−3x4−3x5 ≥ 0
C3 : 2+3x2 ≥ 0
C4 : 3+2x3 ≥ 0
C5 : 2+3x4−6x6 +4x7 ≥ 0
C6 : 1+3x5 +6x6−4x7 ≥ 0

All the xi variables are binary: when xi = 0 the corresponding transaction is un-
settled and dragged along to the following settlement period, when xi = 1 the corre-
sponding transaction is settled. The model 4 is built with the following code snippet:
def create_problem(mu: np.array, sigma: np.array, total: int = 3) -> QuadraticProgram:

"""Solve the quadratic program using docplex."""
mdl = Model()
x = [mdl.binary_var("x%s" % i) for i in range(len(sigma))]
objective = mdl.sum([mu[i] * x[i] for i in range(len(mu))])
objective -= 2 * mdl.sum(

[sigma[i, j] * x[i] * x[j] for i in range(len(mu)) for j in range(len(mu))]
)
mdl.maximize(objective)
mdl.add_constraint(5 - 4*x[0] - 3*x[1] - 2*x[2] >= 0, "cons1")
mdl.add_constraint(1 + 4*x[0] -3*x[3] -3*x[4] >= 0, "cons2")
mdl.add_constraint(2 + 3*x[1] >= 0, "cons3")
mdl.add_constraint(3 + 2*x[2] >= 0, "cons4")
mdl.add_constraint(2 + 3*x[3] - 6*x[5] + 4*x[6] >= 0, "cons5")
mdl.add_constraint(1 + 3*x[4] + 6*x[5] - 4*x[6] >= 0, "cons6")
qp = from_docplex_mp(mdl)
return qp

The optimization is carried out with the following code:
algorithm_globals.random_seed = 12345
algorithm_globals.massive = True

quantum_instance = QuantumInstance(QasmSimulator(method=’matrix_product_state’),
shots=1)

qaoa_mes = QAOA(quantum_instance=quantum_instance, initial_point=[0.0, 1.0])
exact_mes = NumPyMinimumEigensolver()

Tin3 = time.time()
qaoa = MinimumEigenOptimizer(qaoa_mes)
qaoa_result = qaoa.solve(qubo)
print(qaoa_result)
Tfin3 = time.time() - Tin3
print(f"Total time is :{Tfin3}!")

There exist different optimal solutions, for example we found that which en-
visages the settlement of payments T 2; T 3; T 6; T 7. This result has been

23

achieved on This result has been achieved by leveraging the QAOA algorithm avail-
able in the Qiskit library. In our example we have employed the all the default argu-
ment list for the optimization command. In particular, the integer parameter defining
the depth of the ansatz has been set to p= 1. We have used only the cost Hamiltonian
whereas for the mixer Hamiltonian we have chosen the identity matrix.

References

1. Dorit Aharonov, Wim van Dam, Julia Kempe, Zeph Landau, Seth Lloyd, and Oded Regev.
An Introduction to Measurement Based Quantum computation. SIAM Review, 50:755–787, 4
2008.

2. Frank et al. Arute. Quantum supremacy using a programmable superconducting processor.
Nature, pages 1–42, October 2019.

3. Shoelkopf B. and A Smola. Learning with Kernels,. MIT press, pages 118–120, 1998.
4. Lee Braine, Daniel J. Egger, Glick Jennifer, and Woerner Stefan. Quantum Algorithms for

Mixed Binary Optimization applied to Transaction Settlement. ArXiv:1910.05788v1-Quantum
Physics, pages 1–8, 10 2019.

5. Frederic T. Chong, Diana Franklin, and Margaret Rose Martonosi. Programming Languages
and Compiler design for Realistic Quantum Hhardware. Nature, pages 180–187, 9 2017.

6. W. Coss, Andrew, S. Bishop, Lev, Paul Sheldon Sarah, Nation, and Gambetta Jay. Validating
quantum computers using randomized model circuits. Physical Review, 1, 2019.

7. Avinash Dash, D. Sarmah, B. K. Behera, and P. K. Panigrahi. Exact Search Algorithm to
factorize large biprimes and a triprime on ibm quantum computer. ArXiv:1805.10478v2, pages
1–13, 2018.

8. Paul Adrien Maurice Dirac. A new Notation for Quantum Mechanics. Mathematical Pro-
ceedings of the Cambridge Philosophical Society, 35:416–418, 1939.

9. David P. DiVincenzo. The Physical Implementation of Quantum Computation. Fortschritte
der Physik, 48:771–783, 2000.

10. Daniel Egger, R. Gutierrez, J. C. Mestre, and S. Woerner. Credit Risk Analysis using Quantum
computers. arXiv:1907.03044, pages 1–8, 2019.

11. Daniel Egger, R. Gutierrez, J. C. Mestre, and S. Woerner. Quantum Computing for Finance:
State-of-the-Art and future prospects. IEEE Transactions on Quantum Engineering, 1:1–8,
2020.

12. Edward Fahri, Jeffrey Goldstone, and Gutmann Sam. A quantum approximate optimization
algorithm. URL https://arxiv.org/abs/1411.4028., 2014.

13. Claudio Gambella and Simonetto Andrea. Multi-block ADMM heuristics for Mixed-Binary
Optimization on Classical and Quantum Computers. ArXiv:2001.02069v2, 39:1–26, 2 2021.

14. Gartner. https://www.gartner.com/en/documents/3887767/understanding-gartner-s-hype-
cycles. web, 2020.

15. Oded Goldreich. P, NP and NP-completeness- the Basics of Computational Complexity. Cam-
bridge University Press, 2010.

16. Lov K. Grover. Fast quantum mechanical algorithm for database search. Proceedings of 28th
ACM Symposium on Theory of Computing, pages 212–219, 1996.

17. Lov K. Grover. Quantum Mechanics helps in searching for a needle in a haystack. Physical
Review Letters, 79:325–328, 1997.

18. Aram W. Harrow, Avinatan Hassidim, and Set Lloyd. Quantum algorithm for linear system of
equations. Physical Review Letters, 15, 2009.

19. Philippe Jorion. Value at risk: the new benchmark for managing financial risk. New York
mcGraw-Hill, 2001.

20. Richard Jozsa. An Introduction to Measurement Based Quantum computation. ArXiv-
Quantum Physics, pages 1–22, 8 2005.

24

21. Sangil Kwon, Akiyoshi Tomonaga, Gopika Bahi, Devitt Simon, and Jaw-Shen T. Gate-based
Superconducting Quantum Computing. Journal of Applied Physics, pages 1–51, 1 2021.

22. Ray LaPierre. Introduction to Quantum Computing. Springer, 2021.
23. E. Moore, Gordon. Quantum computer 40 years later. Electronics, 38:1–42, April 1965.
24. Basel Committee on Banking Supervision. Developments in modelling risk aggregation. Bank

for International Settlements, October 2010.
25. John Preskill. Quantum Computing in the NISQ era and beyond. Quantum, 2:79, August

2018.
26. John Preskill. Quantum computer 40 years later. ArXiv:1801.00862v3, 39:1–42, 10 2021.
27. Patrick Rebentrost, Brajesh Gupt, and Thomas R. Bromley. Quantum computational finance:

Monte Carlo pricing of financial derivatives. Physical Review, 98:1–15, August 2018.
28. Yakov M. Shafransky and Alexander A. Doudkin. An Optimization Algorithm for the clearing

of interbank payments. European Journal of Operational Research, 171:743–749, 2006.
29. Peter W. Shor. Algorithms for Quantum Computation: Discrete Logarithms and Factoring.

Proceedings 35 Annual Symposium on Foundations of Computer Science, pages 124–134,
1994.

30. Peter W. Shor. Polynomial-time Algorithms for Prime Factorization and Discrete Logarithms
ona Quantum Computer. SIAM Journal of Computation, 5:1484–1509, 1997.

31. Hal Varian. High-technology industries and market structure. Proceedings - Economic Policy
Symposium - Jackson Hole, 1:65–101, 2001.

32. Oldrich Vasicek. Loan portfolio value. RISK magazine, pages 160–162, 2002.
33. Jiaxing Wang, Lihua Shen, and Wuyuan Zhou. A Bibliometric Analysis of Quantum Com-

puting literature: mapping and evidences from scopus. Technology Analysis & Strategic Man-
agement, 33:1347–1363, 2021.

34. Stefan Woerner and D.J. Egger. Quantum risk analysis. npj Quantum Information, 5, 2019.

25

	Pagina vuota

