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Abstract 

In this paper we examine the empirical features of both the business and financial 
cycles in Italy. We employ univariate and multivariate trend-cycle decompositions based on 
unobserved component models. Univariate estimates highlight the different cyclical 
properties (persistence, duration and amplitude) of real GDP and real credit to the private 
sector. Multivariate estimates uncover the presence of feedback effects between the real and 
financial cycles. At the same time, in the most recent period (2015-2016), the multivariate 
approach highlights a wider output gap than that estimated by the univariate models 
considered in this paper. 
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1 Introduction1

Since the global financial crisis, economic performance in the industrialised world has been

generally disappointing, and the growth rate of real GDP in many developed countries has

declined. This deceleration has called for potential explanations and raised questions about

future prospects for global economic growth.

On the one hand, it has been argued that industrialised economies are likely to suffer

from a structural surplus of saving over investment, resulting from an increasing propensity

to save as well as a decreasing propensity to invest (Summers, 2014). The consequence is

that excessive saving acts as a drag on demand, thus reducing economic growth and infla-

tion. At the same time, the imbalance between saving and investment exerts a downward

pressure on real interest rates. This “secular stagnation” hypothesis provides a narrative

that reflects much of what has been observed in the last decades. Real interest rates are

very low, demand is sluggish, and inflation is below target, just as we may expect in the

presence of excess saving.

On the other hand, it has been claimed that the excessive growth in credit supply to

the private sector that preceded the onset of the global financial crisis resulted in sizeable

financial shocks that spilled over to the real economy. According to this interpretation,

business cycle fluctuations may be largely magnified and prolonged by financial “booms

and busts”. This “financial cycle” hypothesis (see Borio, 2017, for a very recent summary)

has inspired a lively debate on the appropriate response of monetary policy to financial

imbalances: should it “lean against the financial cycle”, or should it neglect it? This

debate has emphasised the need to improve our understanding of financial cycles and

their relationship with real cycles.

Several attempts to characterise the financial cycle may be found in the literature.

1We would like to thank Fabio Busetti, Simone Emiliozzi, Giuseppe Grande, Stefano Neri, and Stefano
Siviero for useful comments. We are also grateful to Gerhard Rünstler and Marente Vlekke for sharing
their Matlab codes, in the framework of the Working Group on Econometric Modelling expert team.
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Drehmann, Borio, and Tsatsaronis (2012) have provided estimates of the US financial cycle

as well as those of other selected countries, by considering credit and property prices. These

authors maintain that house price and credit cycles have a longer duration than traditional

business cycles. Furthermore, they observe that business cycle recessions are much deeper

when they coincide with the contraction phase of the financial cycle. Borio (2012) has also

studied the main characteristics of the financial cycle in advanced economies, finding that

the “credit gap” – meaning the difference between the actual credit-to-GDP ratio and its

long-term trend (Drehmann and Tsatsaronis, 2014) – is a useful tool for the prediction of

financial crises, as well as for the evaluation of risks of systemic banking crises. A similar

view is shared by Schularick and Taylor (2012), who analyse a comprehensive macro-

financial historical database covering the last 150 years and conclude that financial crises

should be viewed as “credit booms gone wrong” (p. 1042). Likewise, Aikman, Haldane and

Nelson (2015) find that sustained growth in the credit-to-GDP ratio is strongly correlated

with subsequent banking crises.

Recent studies have also explored the interactions between business and financial cycles

either across countries (Claessens, Kose, and Terrones, 2012) or on a country-by-country

basis (Galati et al., 2016; Rünstler and Vlekke, 2016). To our knowledge, so far only

one paper has proposed a joint dating of business and credit cycles with a specific focus

on Italy (Bartoletto et al., 2017), by applying a local turning-point dating algorithm to

the level of real GDP and credit aggregates. An earlier work (De Bonis and Silvestrini,

2014) presented estimates of the Italian financial cycle using a dataset of historical data

from 1861 to 2011. As regards output gap estimates, Zizza (2006) estimated the Italian

potential output using both univariate and multivariate unobserved component models

including unemployment and industrial production; Bassanetti et al. (2010) provided a

comparison of univariate structural time series models, while Busetti and Caivano (2016)

estimated a bivariate unobserved component model with real GDP and inflation for the
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Italian economy.

Concerning the estimation approach, most studies have adopted univariate non-parametric

procedures to separate the trend from its cyclical deviations, such as the turning points

algorithm proposed by Bry and Boschan (1971) or the Christiano-Fitzgerald filter (Chris-

tiano and Fitzgerald, 2003). This latter belongs to the class of estimated band-pass filters,

which are used to extract cycles falling within a pre-defined band of frequency: usually,

8 to 32 quarters for business cycles and 32 to 120 quarters for financial cycles. However,

as stressed by Rünstler and Vlekke (2016), if the filter bands do not overlap, estimates

of the two cycles are uncorrelated by construction. This is a restriction one would like

to test rather than impose a priori. Alternatively, parametric trend-cycle decompositions

based on unobserved component models (Harvey, 1989) have been proposed in the litera-

ture. These models decompose the observed time series into a permanent trend and other

stationary components, such as a stochastic cycle and seasonal fluctuations. The cyclical

dynamics are then parameterized in terms of cycle length and persistence.

In this paper, we contribute to the “financial cycle” debate by exploring the empirical

features of both business and financial cycles in Italy. We use a parametric procedure

based on unobserved component models, using data for Italian real GDP and real credit

to the private sector covering the period from 1970:Q1 to 2016:Q3. Firstly, we apply the

univariate structural time series model with stochastic cycle to both series independently,

in order to identify their principal characteristics (persistence, duration, amplitude, etc.).

Various sub-samples are also considered, in order to assess the stability of model param-

eters. We next use the multivariate structural time series model with stochastic cycle

introduced by Harvey and Koopman (1997) and, more recently, adopted by both Chen et

al. (2012) and Rünstler and Vlekke (2016). This allows us to model jointly real GDP and

real credit dynamics and to account for interactions between the corresponding estimated

cycles.
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Consistently with previous studies, we find that univariate trend-cycle decompositions

result in markedly different cyclical properties of real GDP and real credit in Italy. The

former is characterised by relatively short cycles, while the latter follows longer cycles.

Multivariate models, which deliver a joint trend-cycle decomposition for GDP and credit,

unveil relevant feedback effects (measured as phase shifts) between the financial and busi-

ness cycles. In particular, the joint trend-cycle decomposition suggests that the financial

cycle Granger-causes the business cycle.2 Furthermore, multivariate model estimates re-

sult in longer and wider real business cycles; this finding is consistent with the hypothesis

of a financial accelerator mechanism (Bernanke, Gertler, and Gilchrist, 1996). In the most

recent sample period, the multivariate model suggests that the output gap is larger than

that estimated by the univariate models considered in this paper.

The rest of this paper will deal with the following issues. Section 2 illustrates the

econometric framework, describing the univariate and multivariate structural time series

models used in our empirical analysis. Section 3 presents trend-cycle decompositions of

real GDP and credit. Section 4 concludes and suggests ideas for further research.

2 Methodology

2.1 The univariate stochastic trend plus cycle model

We consider the stochastic trend plus cycle structural time series model proposed by

Harvey (1989):

yt = τt + ψt + εt, εt ∼ NID(0, σ2ε ), (1)

in which the univariate time series yt (t = 1, . . . , n) is thought of as being composed by a

stochastic trend component τt, a cyclical component ψt and a transitory disturbance term

εt normally and independently distributed, which captures the more erratic fluctuations

2Financial indicators do seem to have forecasting power for real activity, as shown in Borio and Lowe
(2004), English et al. (2005), Hatzius et al. (2010), and Ng (2011).
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of the data. Intervention variables, such as outliers and structural breaks, may be added

to (1).

In the context of unobserved component models, trends and cycles are latent variables

that have to be represented parametrically. The stochastic trend τt is assumed to follow

a local linear trend model, such as:

τt+1 = τt + βt + ξt, ξt ∼ NID(0, σ2ξ ),

βt+1 = βt + ζt, ζt ∼ NID(0, σ2ζ ), (2)

where βt is a stochastic slope which moves up or down because of the innovation term ζt.

The estimate of the slope represents the underlying growth rate of the trend component.

The trend and the slope innovations are normally and independently distributed.

The local linear trend is a very flexible parameterization since it encompasses several

alternative specifications widely employed in empirical applications. For instance, when

σ2ζ = 0 and σ2ξ > 0, the slope is fixed and the trend is a random walk with constant

drift. In contrast, when σ2ξ = 0 and σ2ζ > 0, the trend is an integrated random walk and

the resulting specification is often referred to as “smooth trend” (see Harvey and Jaeger,

1993).3

In equation (1), we have included a stochastic cycle ψt, which evolves according to the

following bivariate AR(1) process[
ψt
ψ∗t

]
= ρ

[
cosλ sinλ
− sinλ cosλ

] [
ψt−1
ψ∗t−1

]
+

[
κt
κ∗t

]
,[

κt
κ∗t

]
∼ NID

([
0
0

]
;

[
σ2κ 0
0 σ2κ

])
, (3)

where 0 < ρ < 1 is the damping factor, 0 < λ < π is the frequency of the cycle (measured

in radians) and ψ∗t is an auxiliary process that only appears by construction. Being ρ < 1,

the cycle ψt is stationary with E(ψt) = 0 and Var(ψt) = σ2
κ

1−ρ2 , its spectral density has

3The popular Hodrick-Prescott filter is equivalent to a restricted version of the smooth trend model,
in which the smoothing constant is fixed a priori in an ad-hoc way (e.g., 1600 for quarterly data).
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a peak at λ, and its periodicity is 2π
λ . Furthermore, it has an ARMA(2,1) reduced form

representation, with roots lying in the complex plane; see Harvey (1989, p. 46).

The local linear trend model with stochastic cycle (1)-(2)-(3) has the following state

space representation:

yt =
[

1 0 1 0
] 

τt
βt
ψt
ψ∗t

+ εt, εt ∼ NID(0, σ2ε ), (4)


τt+1

βt+1

ψt+1

ψ∗t+1

 =


1 1 0 0
0 1 0 0
0 0 ρ cosλ ρ sinλ
0 0 −ρ sinλ ρ cosλ



τt
βt
ψt
ψ∗t

+


ξt
ζt
κt
κ∗t

 ,

ξt
ζt
κt
κ∗t

 ∼ NID(0,Q), (5)

where Q = diag
(
σ2ξ , σ

2
ζ , σ

2
κ, σ

2
κ

)
.

The state space representation will be used later on in Section 2.3 to carry out es-

timation of the unobserved components (see, e.g., Harvey, 1989; Durbin and Koopman,

2001).

2.2 The multivariate stochastic trend plus cycle model

We now present the generalization of the univariate stochastic trend plus cycle model

described in Section 2.1 to the multivariate case. The multivariate stochastic cycle model

has been originally proposed by Harvey and Koopman (1997) and applied, among others,

by Harvey and Trimbur (2003) and Carvalho, Harvey and Trimbur (2007). It has been

extended by Rünstler (2004) to account for phase shifts and more recently used by Rünstler

and Vlekke (2016) for analysing the properties of business and financial cycles in the U.S.

and in the five largest European economies.

We consider a N × 1 vector yt, observed over the period t = 1, . . . , n, which can be

decomposed as:

yt = τt +ψt + εt, εt ∼ NID(0,Σε), (6)
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in which τt is a N × 1 vector of stochastic trend components while ψt is a N × 1 vector

of a cyclical components. The N × 1 vector εt contains the irregular components. It is

normally and independently distributed with mean-zero vector and N × N non-negative

definite covariance matrix Σε.

The stochastic component τt is modelled as a multivariate local linear trend model:

τt+1 = τt + βt + ξt, ξt ∼ NID(0,Σξ),

βt+1 = βt + ζt, ζt ∼ NID(0,Σζ), (7)

where Σξ and Σζ are N ×N non-negative definite covariance matrices and E(ξtζ
′
t−s) = 0

∀s. When Σζ = 0 and Σξ is positive definite, each trend is a random walk with drift.

When Σζ is positive definite and Σξ = 0, we have a N × 1 vector of integrated random

walks. The innovations may be correlated across the N units and accordingly the Σξ and

Σζ matrices contain the contemporaneous covariance structure of the different levels and

slopes, respectively.4

The elements of the vector ψt = [ψ1,t, . . . , ψN,t]
′ are modelled as stochastic cycles, with

i = 1, . . . , N : [
ψi,t
ψ∗i,t

]
= ρi

[
cosλi sinλi
− sinλi cosλi

] [
ψi,t−1
ψ∗i,t−1

]
+

[
κi,t
κ∗i,t

]
,[

κi,t
κ∗i,t

]
∼ NID

([
0
0

]
;

[
σ2i,κ 0

0 σ2i,κ

])
, (8)

where ψ∗t =
[
ψ∗1,t, . . . , ψ

∗
N,t

]′
, 0 < ρi < 1 are the damping factors and 0 < λi < π are

the cycle frequencies, measured in radians.5 Correlations across innovations driving the

individual cycles are allowed via the N -dimensional covariance matrix Σκ. Specifically,

the vector of innovations κ̃t = (κ′t,κ
∗′
t )′ ∼ NID(0, I2 ⊗Σκ).

4This specification is commonly referred to as “Seemingly Unrelated Time Series Equations” (SUTSE);
see Harvey (1989, Chapter 8).

5Under the restriction ρi = ρ and λi = λ ∀i, the model features “similar cycles” (Harvey and Koopman,
1997).
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Rünstler (2004) proposes to model the multivariate cycle as

ψ̃t = [A,A∗]

[
ψt
ψ∗t

]
, (9)

where A and A∗ are arbitrary N × N matrices such that the cyclical components are

expressed as linear combinations of N independent stochastic cycles. Indeed, ψ̃t loads

on N distinct independent stochastic cycles with potentially different dynamics. At the

same time, this specification allows to introduce phase shifts among cyclical components

and therefore cross covariances among cycles which are shifted in time with respect to one

another.

We now turn to the state space representation, which will be used in Section 2.3

for parameter estimation. For the sake of simplicity, we consider the bivariate case with

N = 2. Then, the multivariate stochastic cycle model in (6)-(7)-(8)-(9) can be represented

as:

[
y1,t
y2,t

]
=

[
1 0 0 0 a11 a12 a∗11 a∗12
0 1 0 0 a21 a22 a∗21 a∗22

]


τ1,t
τ2,t
β1,t
β2,t
ψ1,t

ψ2,t

ψ∗1,t
ψ∗2,t


+

[
ε1,t
ε2,t

]
,

(10)



τ1,t+1

τ2,t+1

β1,t+1

β2,t+1

ψ1,t+1

ψ2,t+1

ψ∗1,t+1

ψ∗2,t+1


=


1 0 1 0
0 1 0 1
0 0 1 0
0 0 0 1

04,4

04,4 C





τ1,t
τ2,t
β1,t
β2,t
ψ1,t

ψ2,t

ψ∗1,t
ψ∗2,t


+



ξ1,t
ξ2,t
ζ1,t
ζ2,t
κ1,t
κ2,t
κ∗1,t
κ∗2,t


,

(11)
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with

C :=


ρ1 cosλ1 0 ρ1 sinλ1 0

0 ρ2 cosλ2 0 ρ2 sinλ2
−ρ1 sinλ1 0 ρ1 cosλ1 0

0 −ρ2 sinλ2 0 ρ2 cosλ2

 . (12)

where E(εtε
′
t) = Σε, E(ξtξ

′
t) = Σξ, E(ζtζ

′
t) = Σζ , E(κtκ

′
t) = E(κ∗tκ

∗′
t ) = Σκ, E(κtκ

∗′
t ) =

0.

For estimation purposes, identifying restrictions on the elements of A and A∗ matrices

have to be imposed. Specifically, when considering similar cycles (ρi = ρ and λi = λ ∀i),

we require aij = 0 for i < j and a∗ij = 0 for i ≤ j (Rünstler, 2004). With non-similar

cycles, it is sufficient to impose a normalization of phase shifts, which can be achieved

setting a∗ii = 0 (i = 1, 2, . . . , N) (Rünstler and Vlekke, 2016).

This delivers the following vector of cyclical components:[
ψ̃1,t

ψ̃2,t

]
=

[
a11ψ1t + a12ψ2t + a∗12ψ

∗
2t

a21ψ1t + a22ψ2t + a∗21ψ
∗
1t

]
. (13)

It is straightforward to see that both cycles are a linear combination of three stochas-

tic components. Specifically, the coefficients aij load the contemporaneous relationships,

while the coefficients a∗ij load the phase shifts. Those coefficients allow the interaction

(contemporaneous and lagged) among stochastic cycles with potentially different features.

2.3 Estimation, filtering and smoothing

Consider the following linear Gaussian state space model:

yt = Zαt + εt, εt ∼ N (0,H),
αt+1 = Tαt + ηt, ηt ∼ N (0,Q), t = 1, . . . , n,

(14)

where yt is the N × 1 vector of observed variables, εt is the N × 1 vector of measurement

errors, αt is the m× 1 vector of state variables and ηt is the corresponding m× 1 vector

of innovations. The two innovation vectors are assumed to be Gaussian distributed and

uncorrelated for all time periods, that is, E(εtη
′
s) = 0 ∀t, s.6 The initial value of the state

vector is also assumed to be Gaussian α1 ∼ N (a1,P1) and uncorrelated ∀t with ε and η.

6This assumption can be relaxed at the cost of a slight complication in some of the filtering formulae.
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Conditional on the information set Yt−1 = {yt−1, ...,y1} and on the vector of parame-

ters θ, the observations and the state vector are Gaussian, i.e., yt|(Yt−1;θ) ∼ N (Zat,Ft)

and αt|(Yt−1;θ) ∼ N (at,Pt). It follows that the log-likelihood function at time t is:

`t = log p(yt|(Yt−1,θ)) ∝ −1

2

(
log |Ft|+ v′tF−1t vt

)
. (15)

The prediction error vt, its covariance matrix Ft, the state vector conditional mean at,

and its mean square error (MSE) matrix Pt are estimated optimally7 by means of the

Kalman Filter:

vt = yt −Zat, at+1 = Tat +Ktvt,
Ft = ZPtZ

′ +H, Pt+1 = TPtL
′
t +Q,

Kt = TPtZ
′F−1t , at|t = at + PtZ

′F−1t vt
Lt = T −KtZ, Pt|t = Pt − PtZ ′F−1t ZPt, t = 1, . . . , n,

(16)

with initial values a1 and P1.
8 Once the vector of parameters θ is estimated by Maximum

Likelihood (ML) using the prediction error decomposition of the likelihood provided by

the Kalman Filter, the unobserved components can be extracted from the observations

using the predictive filter and the associated smoother.

The vector at = E(αt|(Yt−1,θ)) is the so-called predictive filter and Pt = E[(at −

αt)(at −αt)′] is the associated MSE, while the real-time filter is at|t = E(αt|(Yt,θ)) and

its MSE is Pt|t = E[(at|t −αt)(at|t −αt)′]. It is worth stressing that in this linear model

the MSEs are independent from the observations, thus they are also the unconditional

covariance matrices associated with the conditional mean estimators; see Harvey (1989,

sec. 3.2.3).

The smoother algorithm allows us to estimate the state vector given all the avail-

able information, namely at|n = E(αt|(Yn,θ)) and the associated MSE Pt|n = E[(at|n −

αt)(at|n −αt)′]. It is a backward recursion:

rt−1 = Z ′F−1t vt +L′trt, Nt−1 = Z ′F−1t Z +L′tNtLt,
at|n = at + Ptrt−1, Pt|n = Pt − PtNt−1Pt, t = n, . . . , 1.

(17)

with initial values rn = 0 and Nn = 0.

7Producing the minimum mean squared linear estimator (MMSLE) of the state vector.
8See the original papers by Kalman (1960) and Kalman and Bucy (1961).
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3 Empirical results

In this section we present the main characteristics of real and financial cycles in Italy. In

Sections 3.1 and 3.2 we will focus on univariate trend-cycle decompositions. The analysis

is preliminary to the multivariate one, as it highlights peculiarities and commonalities

between real and financial cycles, based on visual inspection of the estimated cyclical

components. This information is exploited in setting up and estimating the bivariate

model in Section 3.3.

3.1 Univariate trend-cycle decompositions for GDP

We fit the univariate local linear trend model plus stochastic cycle in equations (1)-(2)-(3)

to real GDP for Italy. In particular, we use the integrated random walk specification

(σ2ξ = 0 and σ2ζ > 0), which delivers a smooth trend function. The sample period is

1970:Q1-2016:Q3 and estimation is conducted via the method of Maximum Likelihood.

Figure 1 reports the smoothed estimates resulting from maximization of the likelihood,

with their approximate 95% confidence intervals. The estimated cyclical component is

characterised by 11 full cycles from peak to peak. While the main peaks and troughs

align well with the official dating produced by ISCO-ISAE-ISTAT, the resulting cyclical

component is also characterised by several additional cycles: in particular, one complete

cycle (from peak to peak) in the late Eighties, one in the late Nineties, and the cyclical

peak soon after 2010. However, the recovery recorded in 2010 was too feeble and short-

lived to qualify as a cyclical peak, also in light of the depth of the previous recession.

More technically, we find that the estimated value of λ is consistent with a cycle length

of 14 quarters – in line with findings reported in Zizza (2006) – and the amplitude of the

resulting cycles is always comprised between +2 and -2 percent, with the exception of the

early 1970s and the 2009–2012 cycles.
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Figure 1: Real GDP: Smoothed estimates of trend, slope and cycle

1970 1980 1990 2000 2010

12.2

12.4
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12.8

Data and trend Data (growth rate) and long-run (slope)

1970 1980 1990 2000 2010

-0.02

-0.01

0

0.01

0.02

0.03

Cycle

1970 1980 1990 2000 2010

-0.04

-0.02

0

0.02

0.04

The estimated model is the integrated random walk trend plus stochastic cycle in equations (1)-(2)-(3).

The sample period is 1970:Q1-2016:Q3. The variance of the irregular component is estimated to be zero,

thus we impose σ2
ε = 0. The first graph on the top left displays the data (in levels) and the estimated

trend. The first graph on the top right shows the data in first differences (quarterly growth rate) and the

estimated slope with 95% confidence intervals. The bottom panel displays the estimated cycle with 95%

confidence intervals. Recessions are highlighted by grey shaded areas.

Overall, the estimation of the univariate model leads to short cyclical fluctuations

with little or no difference in amplitude across cycles. This last feature can be better

appreciated turning our attention to the resulting trend (slope) component of GDP in

Figure 1, which can be economically interpreted as the long-run potential growth of the

economy. The latter shows a significant degree of volatility, which is reflected in periods

of increasing and decreasing potential growth. On the one hand, the pro-cyclicality of the

estimated trend component explains why the cycle amplitude does not vary significantly
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over time. On the other hand, it suggests the presence of some residual cyclicality in the

trend component, perhaps due to a longer cycle uncorrelated with the one uncovered so

far.

The resulting decomposition obtained at the likelihood’s global maximum resembles

what could be obtained using the Hodrick-Prescott filter. This result confirms Zizza’s

(2006) findings and Busetti and Caivano’s (2016) earlier analysis, with the caveat that

the global maximum we find seems to coincide with their local maximum. In order to

investigate whether our results are driven by the choice of the initial conditions and by the

presence of multiple local maxima, we perform a recursive estimation of model parameters

(ρ, λ, σ2ζ , and σ2κ) based on expanding-window (partial samples of increasing size). The

expanding-window estimation starts in 2000:Q1. The size of the first window is therefore

121 quarterly observations, i.e., approximately 30 years of data, while the final window

coincides with the full sample period, 1970:Q1-2016:Q3. Starting from two different initial

values of λ (2π/20 and 2π/40), Figure 2 shows that the ML estimation procedure selects

the same optimal parameters throughout the sample period (i.e., the blue and orange line

overlap). Also the evolution over time of parameter estimates shows only limited upward

movements from 2009-2010 onwards. The likelihood function is well shaped throughout

the sample and does not point to the presence of multiple local maxima nor to significant

time variation.9

9We also performed a rolling window exercise whereby at each iteration a new data point is added and
the oldest data point discarded so as to maintain the length of the estimation window fixed. While this
set-up tends to magnify time variation, we reached very similar conclusions to those reported in the main
text. The only exception are the estimates based on sample windows including the period between the
early 80’s and 2008 when the likelihood function shows two maxima, one local at λ = 0.48 (period ≈ 13
quarters) and one global at λ = 0.15 (period ≈ 40 quarters), confirming Busetti and Caivano’s findings.
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Figure 2: Real GDP: Parameter instability analysis based on an expanding
estimation window
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The estimated model is the integrated random walk trend plus stochastic cycle in equations (1)-(2)-(3),

without irregular component. The sample period is 1970:Q1-2016:Q3. Two different initial values for the

frequency of the cycle λ are considered: 2π/20 and 2π/40. In both cases, the initial value for the damping

factor ρ is set at 0.9. The expanding-window estimation starts in 2000:Q1. Then, recursive estimation is

performed by adding a quarter at a time, up to 2016:Q3.

Overall the ML estimation of the univariate model for GDP delivers an estimated

cycle characterised by relatively short duration and moderate amplitude. These estimates

are in line with previous research (see for instance Zizza, 2006) and result in a rather

robust (time-invariant) business cycle. Moreover, the slope of the trend component shows

evidence of residual cyclicality.
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Since an oscillatory slope component (long-run growth rate of potential output) is un-

reasonable from an economic perspective,10 in Figure 3 we compare the trend and cyclical

components of GDP obtained under maximization of the likelihood with an alternative

estimate obtained by calibrating the standard deviation of the slope innovations: this

calibration delivers a smoother long-run growth rate of potential output. In particular,

we restrict σ2ζ (blue line) such that the signal-to-noise ratio σ2
κ

σ2
ζ

is approximately equal to

50 (note that in this case the estimated period is ≈ 39 quarters).11 The red line instead

refers to the estimated value of unrestricted model in Figure 1, yielding σ2
κ

σ2
ζ

= 4 and the

estimated period approximately equal to 14 quarters. For comparison purposes, we also

report the trend and cycle produced by the HP filter (green line).

As the slope innovations variance is decreased, the trend component becomes progres-

sively smoother and cyclical fluctuations more pronounced. In this way, it is possible to

obtain cycle estimates that feature greater amplitude and duration. As a result, in Figure

3 the stochastic slope component delivered by the calibrated model changes very gradu-

ally over time, therefore providing a more reasonable estimate of potential growth. At the

same time, the cyclical component at the end of the sample is still negative, in line with

the evidence of persistent slack in the economy as suggested by recent unemployment and

inflation developments.12

10The growth rate of potential output should be as smooth as possible.
11We tried different calibrations and finally chose the one that, in our view, delivers a plausible long-run

growth rate of real GDP.
12See Banca d’Italia (2016).
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Figure 3: Real GDP: Cycle and slope smoothed estimates with different cali-
brations of the signal-to-noise ratio
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The red line is the estimated model (1)-(2)-(3), without irregular component. The sample period is

1970:Q1-2016:Q3. The blue line represents the same model in which σζ is calibrated such that σκ
σζ
≈ 35

(the estimated period is ≈ 39). The green line represents the HP filter.

In the remainder of this section, after analysing the results of a univariate trend-

cycle decomposition applied to real credit and characterising the financial cycle, we will

investigate if a bivariate model that allows for interactions between the real and financial

cycles is able to deliver a trend-cycle decomposition of GDP closer to the calibrated one.
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3.2 Univariate trend-cycle decompositions for credit

We now turn the focus to credit. We estimate the univariate local linear trend model plus

stochastic cycle in equations (1)-(2)-(3) to total credit to the private sector. The sample

period is 1970:Q1-2016:Q3. The data source is the Bank of International Settlements

(2016) database. The time series is converted into real terms using the GDP deflator.

Figure 4: Real credit: Profile of the log-likelihood as a function of the cycle
period (2π/λ)
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The estimated model is (1)-(2)-(3) over the sample period 1970:Q1-2016:Q3.

Figure 4 shows a slice of the likelihood as a function of the period (2π/λ). Clearly

two maxima exist and the associated parameter values depend on the initial conditions.

However, a value of λ corresponding to a period of around 70 quarters maximizes the
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likelihood globally. A second local maximum appears on the left, corresponding to a

period of 30 quarters.

A similar picture emerges in Figure 5, which shows a slice of the likelihood function as

a function of the damping factor ρ. Also in this case a global maximum can be identified

for values of ρ close to 0.99, while a local maximum occurs at ρ ≈ 0.93.

Figure 5: Real credit: Profile of the log-likelihood as a function of the damping
factor (ρ)

0.88 0.9 0.92 0.94 0.96 0.98

Damping factor (;)

612.4

612.6

612.8

613

613.2

613.4

613.6

613.8

614

Lo
g-

lik
el

ih
oo

d

Double maxima (1970:Q1-2016:Q3)

The estimated model is (1)-(2)-(3) over the sample period 1970:Q1-2016:Q3.

In order to shed further light on the shape of the likelihood function, Figure 6 (top

panel) shows its three-dimensional plot as a function of the cycle frequency (λ) and the

damping factor (ρ). Two maxima are clearly visible in the graph: one is located in a region
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in which ρ is close to 0.93 and the period is comprised between 30 and 35 quarters. The

other one is on the right-hand corner, where ρ is close to 0.99 and the period is around

70 quarters. Figure 6 (bottom panel) shows the three-dimensional plot from directly

overhead, providing an even more immediate visual insight about the precise location of

both maxima.

Figure 6: Real credit: Three-dimensional log-likelihood plot as a function of
cycle frequency (λ) and damping factor (ρ)
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As in the case of GDP, we investigate whether our findings are driven by the specific

sample considered or are a stable feature of credit data. To this end we consider an

expanding estimation window scheme (Figure 7).

Figure 7: Real credit: Parameter instability analysis based on an expanding
estimation window
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The estimated model is (1)-(2)-(3) over the sample period 1970:Q1-2016:Q3. Two different initial values

for the frequency of the cycle λ are considered: 2π/30 and 2π/85. In both cases, the initial value for the

damping factor ρ is set at 0.9. The expanding-window estimation starts in 2000:Q1. Then, recursive

estimation is performed by adding a quarter at a time, up to 2016:Q3.

The expanding-window estimation starts in 2000:Q1. Two different initial values for

the frequency of the cycle λ are considered: 2π/30 and 2π/85. The initial value for the

damping factor ρ is always set at 0.9. The estimation procedure delivers two different
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parameter estimates consistent with the full sample analysis: if the initial value for λ is

set to 2π/85, the estimated ρ is close to 0.98-0.99, and the estimated period is around 70

quarters; the signal-to-noise ratio is larger than 400. On the other hand, if the initial value

for λ is set to 2π/30, the resulting ρ is comprised between 0.92 and 0.94, while the period

is close to 30 quarters and the signal-to-noise ratio (cycle/slope) is less than 20. The

influence of initial conditions on λ is quite uniform over the entire sample, the recursive

exercise is consistent with the full sample analysis and clearly points to the presence of

two maxima of the likelihood function.

Having established the existence of two maxima, we now describe the main features

of the corresponding cycles and trends. Figure 8 shows the estimates of trend, slope and

cyclical components, along with the 95% confidence intervals, obtained by the Kalman

filter and smoother. In this case the initial value of the period (2π/λ) for ML estimation

is 40 quarters (10 years), and the resulting estimate is approximately 30 quarters (almost

8 years). The trend slope is rather erratic and is not as smooth as one would expect from

a series that should only include a pure long-term variation. The cycle is also very volatile

and its dynamics is difficult to interpret.
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Figure 8: Real credit: Smoothed estimates of trend, slope and cycle (short
cycle)
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The estimated model is (1)-(2)-(3) over the sample period 1970:Q1-2016:Q3. The first graph on the top

left displays the data (in levels) and the estimated trend. The first graph on the top right shows the data

in first differences (quarterly growth rate) and the estimated slope with 95% confidence intervals. The

bottom panel displays the estimated cycle with 95% confidence intervals. The initial value for the period

(2π/λ) is 40 quarters (10 years).

A different picture can be obtained by setting the initial value for the period (2π/λ) to

85 quarters (21 years), which leads to an estimated period of roughly 70 quarters (almost

18 years). The resulting trend-cycle decomposition is reported in Figure 9. In general,

the trend (slope) component changes very slowly over time and is characterised by three

distinct phases: the first one of low but slowly increasing trend growth before the euro

adoption, a second one of higher and stable trend growth up to 2009, and a third one of

decreasing trend growth after 2009.
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Figure 9: Real credit: Smoothed estimates of trend, slope and cycle (long
cycle)
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The estimated model is (1)-(2)-(3) over the sample period 1970:Q1-2016:Q3. The first graph on the top

left displays the data (in levels) and the estimated trend. The first graph on the top right shows the data

in first differences (quarterly growth rate) and the estimated slope with 95% confidence intervals. The

bottom panel displays the estimated cycle with 95% confidence intervals. The initial value for the period

(2π/λ) is 85 quarters (21 years).

In Figure 9 the cyclical component has a wider amplitude and a much longer duration

than the one displayed in Figure 8. Its dynamics appears to be broadly consistent with

the historical evidence for Italy. Since 1970, only two complete cycles occurred (from peak

to peak); the third one, which started in 2009 is still underway. A lending boom is visible

in the early 1970s; then, in the mid-1970s, Italy entered a phase of credit contraction:

this is in accordance with the fact that, in those years, credit ceilings were introduced

to steer monetary policy. Between the mid-1980s and the first 1990s, Figure 9 shows an
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acceleration in total credit. A cycle peak seems to be present between 1992 and 1993. Soon

afterwards, a phase of credit contraction occurred: indeed, the main Southern banks were

hit by the 1992 crisis, when Italy was forced to leave the European Monetary System (De

Bonis and Silvestrini, 2014). Afterwards, a long credit expansion took place, lasting until

2008. The situation changed drastically at the end of 2008, when most of the advanced

economies were hit by the global financial crisis. At the end of the sample, the deviation

of credit from its long-run trend is still largely negative and close to -10%, in line with the

official estimates produced by the Bank of Italy.13

3.3 Multivariate trend-cycle decomposition

In this section we estimate a bivariate model for real GDP and real credit over the full-

sample 1970:Q1-2016:Q3. As the univariate analysis clearly points out, the business and

the financial cycle are remarkably different, therefore we do not impose similar cycle

restrictions. The resulting cyclical components therefore differ from the univariate ones,

see equation (13). However, we allow for cross-correlations as well as phase shifts between

cycles. As a matter of fact, while we do not take a stand on which variable is leading

which, the financial stability literature suggests some sort of intertemporal correlation

between the two cycles.

Figure 10 shows the output of the multivariate trend-cycle decomposition. The esti-

mated credit cycle is very similar to the univariate one and close to -10% at the end of

the sample, while the business cycle shows longer and sharper fluctuations.14

13For the underlying methodology, we refer to Alessandri et al. (2015).
14This is mainly due to the fact that the volatility of ψ2,t (measured by the signal-to-noise ratio) is much

higher than the volatility of ψ1,t. Specifically, small values of a12 and a∗12 convey a significant impact of
ψ2,t on ψ̃1,t, while the coefficients a21 and a∗21 need to have higher magnitude in order to induce a sizeable
impact of ψ1,t on ψ̃2,t. In terms of estimates, we obtain that a12 ≈ a21 ≈ 0 while a∗12 > a∗21.

28



Figure 10: Real and financial cycles smoothed estimates: Output of the mul-
tivariate model
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The estimated model is the multivariate integrated random walk trend plus stochastic cycle in equations

(6)-(7)-(8)-(9). The sample period is 1970:Q1-2016:Q3.

Figures 11 and 12 allow to better appreciate the difference between the univariate and

the multivariate decompositions. Focusing on the business cycle, in the figures we report

the univariate cycle (light blue line) and three multivariate decompositions that differ

among themselves for the degree of interconnectedness between the real and financial cy-

cles: one model (green line) allows for the business cycle to affect (with lags) the financial

cycle. Not surprisingly, the resulting business cycle (green line) closely matches the uni-

variate one. On the contrary, the second model allows for the financial cycle to affect the

business cycle, and the resulting cycle differs from the univariate one. In particular, the

business cycle (dark blue line) is deeper and longer than the univariate one, suggesting
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that financial boom and bust may have a significant impact on economic activity (Sil-

vestrini and Zaghini, 2015). Finally, the unrestricted multivariate model, which delivers

the highest log-likelihood, allows both for feedback from the financial to the business cy-

cle and vice versa. The resulting cycle (red line) shows slightly deeper fluctuations than

the previous one, suggesting that the full interaction between financial and business cycle

tends to further amplify the business cycle. This points at the existence of a financial

accelerator mechanism, for which the phases of the two cycles feed into each other with

magnifying effects on the amplitude of the swings in economic activity. This mechanism is

particularly strong following the euro-area sovereign debt crisis, when the red line clearly

signals a much wider output gap than the one obtained from the univariate model. At

the end of the sample period (2015-2016) the estimate of the output gap produced by the

unrestricted multivariate model is negative and lower than the corresponding univariate

estimate (the difference between the two is about 2%).
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Figure 11: Real cycle: a comparison of univariate and multivariate models
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The estimated univariate model is in (1)-(2)-(3). The estimated multivariate model is in (6)-(7)-(8)-(9). For

real GDP, the model is estimated without the irregular component. The sample period is 1970:Q1-2016:Q3.
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Figure 12: Real trend and cycle: a comparison of univariate and multivariate
models
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This plot shows estimates of the trend (potential output) and cycle (output gap) from 2000 onwards. The

estimated univariate model is in (1)-(2)-(3). The estimated multivariate is in (6)-(7)-(8)-(9). For real GDP,

the model is estimated without the irregular component. The sample period is 1970:Q1-2016:Q3.

4 Conclusions

In this paper we have examined the empirical properties of real and financial cycles in

Italy through the lenses of unobserved component models. Univariate trend-cycle decom-

positions deliver a short cycle of approximately 14 quarters for real GDP and two longer

cycles of around 30 and 70 quarters for real credit to the private sector. The multivariate

model allows to exploit the rich stochastic structure introduced by cross-correlations at

leads and lags between real and financial cycles. The presence of these feedback effects

results in much wider real cyclical fluctuations than those emerging from the univariate
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models. In addition, the financial cycle appears to contain forecasting power for the busi-

ness cycle. By contrast, the cyclical fluctuations of GDP exert less impact on the credit

cycle, which results to be very similar to that obtained by the univariate specification.

Finally, the inclusion of the financial variable in the multivariate specification leads to a

negative estimate of the output gap in 2015-2016, which is roughly 2% lower than the

corresponding univariate estimates.

In this paper we have focused on the connection between real activity and real credit

volume. Two natural extensions with additional variables come to mind. First, we could

include nominal variables such as the inflation rate in order to reproduce Phillips-curve

dynamics. Second, we could introduce foreign determinants of cyclical fluctuations, which

an important strand of literature has pointed out as key drivers of financial cycles (Rey,

2013). We leave all these extensions to future research.
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