Zombie Lending and Policy Traps

Viral Acharya Simone Lenzu Olivier Wang

NYU Stern

December 2021

1

Introduction

Zombie lending (ZL) is the provision of subsidized credit to poorly performing firms

Topical issue Japan 1990-, Europe 2008-, India 2012-, China, US?

Burgeoning empirical evidence but scant theoretical work e.g., Caballero-Hoshi-Kashyap (2008) model **without banks/policies**

This paper: Equilibrium model of ZL consistent with evidence

- Interaction between ZL & macro/prudential/monetary policies
- Diabolical sorting of undercapitalized banks with distressed borrowers
- Dynamic interplay of policies & ZL can lead to **policy trap** and **sclerosis**
- Importance of maintaining well-capitalized banks in good times

Zombie lending: What do we know?

Existing empirical studies

Peek-Rosengren (2005), Caballero-Hoshi-Kashyap (2008), Giannetti-Simonov (2013), Acharya et al. (2015), McGowan-Andrews-Millot (2018), Banerjee-Hoffman (2018), Blattner et al. (2019), Schivardi-Sette-Tabellini (2019), Acharya et al. (2020), Bonfim et al. (2020), Passalacqua et al. (2020), Kulkarni et al. (2021), Schmidt et al. (2021), ...

document four key facts about zombie lending...

Zombie lending: What do we know?

#1 How ZL is done

Roll-over or extend more credit, at low interest rates

#2 Why weakly capitalized banks engage in ZL

Risk shifting incentives, avoiding recognition of losses ("evergreening")

#3 Consequences of ZL

Misallocation, depressed entry and exit, congestion externalities, real spillovers

#4 How is ZL affected by monetary/financial stability policies

Unconventional MP, regulatory forbearance, capital and liquidity injections, capital requirements, banking supervision

Model

A theory of ZL with the key empirical features

- Heterogeneous firms
- Heterogeneous banks
- Policies affect ZL

Heterogeneous firms: technology

Two types i = G, B

type i project yields
$$\begin{cases} y^{i}(z) & \text{with prob. } \theta^{i} \\ 0 & \text{with prob. } 1 - \theta^{i} \end{cases}$$

1

Projects require \$1 of capital borrowed from a bank, and (labor) cost c + ϵ

- Common cost c may be endogenous due to congestion
- Idiosyncratic cost shock $\epsilon \in [0, \bar{\epsilon}] \sim \operatorname{cdf} H$

G firms safer and better than B:

$$\begin{split} \theta^g &> \theta^b \\ \theta^g y^g - \bar{\varepsilon} &> \theta^b y^b \end{split}$$

Heterogeneous firms: entry and exit

Firm with type i and cost realization ϵ produces if **E**[profitⁱ] \geq 0 or

 $\epsilon \leq \theta^{i}(y^{i} - R^{i}) - c$

Total mass 1 of active firms

 λ incumbents become distressed B, $1 - \lambda$ remain healthy G

Fringe of λ potential G entrants

Creative destruction: G entrants replace B incumbents... ...if they obtain the capital

Heterogeneous banks

Mass 1 of banks with equity $e \sim cdf F$ over $[e_{min}, e_{max}] \subset (0, 1)$ e exogenous for now, endogenous later

Bank with capital e borrows 1 - e debt, invests 1 in either

- safe assets: return $\mathbf{R}^{\mathbf{f}}$ with prob. $\boldsymbol{\theta}^{\mathbf{f}} = \mathbf{1}$
- loan to G firm: return $\mathbf{R}^{\mathbf{g}}$ with prob. $\theta^{\mathbf{g}}$, 0 otherwise
- loan to B firm: return $\mathbf{R}^{\mathbf{b}}$ with prob. $\theta^{\mathbf{b}}$, 0 otherwise

"Switching cost" of recognizing losses on legacy B borrower: e ightarrow e – δ

- $\delta > 0$ leads to evergreening in presence of cap. requirements
- start with δ = 0: frictionless reallocation

Two policy tools

Conventional monetary policy ${\ensuremath{\mathsf{R}}}^f$ affects:

- return on safe assets = hurdle rate for lending
- banks' cost of funds

but may be constrained by $R^f \geq \mathsf{ELB}$ constraint

"Forbearance" p captures any lending subsidy:

- regulatory forbearance
- deposit insurance
- bailouts/lender of last resort
- unconventional policy: ECB's OMT, Fed lending programs

Assume p untargeted [vs. targeted p(i, e)], has fiscal cost

Banks' choices

Investment choice: Expected return from choice i for bank with capital e

$$\theta^{i}\left[R^{i}-\tilde{R}^{i}(1-e)\right]$$

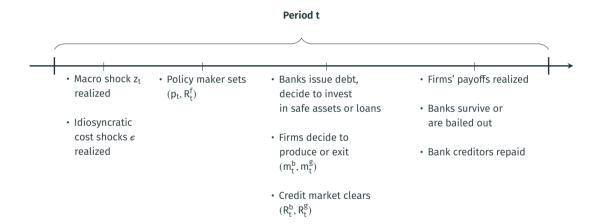
where rate on debt \tilde{R}^i depends on policy variables (R^f,p)

Debt pricing: Debt holders require expected return R^f , hence rate \tilde{R}^i

$$\theta^{i}\tilde{R}^{i} + (1 - \theta^{i})\mathbf{p} = R^{f}$$

where $p \in [0, 1]$ denotes lending subsidy set by policy p = 0: Modigliani-Miller (and no ZL)

Timeline



Roadmap

1. Equilibrium in the static model

Diabolical sorting: undercapitalized banks lend to bad firms

2. Optimal policy

Combination of monetary policy R^f and subsidy p

3. Dynamic model and policy

Policy trap and sclerosis: transitory shocks can lead to permanent output losses

4. Extensions

Equity issuance Capital requirements useful ex ante but **can backfire if raised too late**

Diabolical sorting of weak banks and weak firms

Proposition

- Banks with equity $e < e^*$ lend to a B borrower
- Banks with $e^* < e < e^{**}$ lend to a G borrower
- Banks with $e > e^{**}$ do not lend and invest in safe assets

Diabolical sorting of weak banks and weak firms

Proposition

- Banks with equity $e < e^*$ lend to a B borrower
- Banks with $e^* < e < e^{**}$ lend to a G borrower
- Banks with $e > e^{**}$ do not lend and invest in safe assets

$$\theta^{i}\left[R^{i} - \tilde{R}^{i}(1 - e)\right] = \underbrace{\theta^{i}R^{i} - R^{f}}_{M-M \text{ return}} + \underbrace{p(1 - \theta^{i})(1 - e)}_{\text{subsidy}}$$

 \Rightarrow complementarity between policy p, risk 1 – θ^{i} and leverage 1 – e

General equilibrium

Supply of loans

to B firms: $F(e^*)$ to G firms: $F(e^{**}) - F(e^*)$

Demand for loans

$$\label{eq:homoscillator} \begin{split} & \text{from B firms: } \lambda \cdot H(\theta^b(y^b-R^b)-c) \\ & \text{from G firms: } H(\theta^g(y^g-R^g)-c) \end{split}$$

Loan market clearing [e^{*}, e^{**} depend on R^b, R^g and policy]

$$\begin{split} \mathsf{F}(e^*) &= m^b = \lambda \cdot \mathsf{H}\big(\theta^b(y^b - \mathsf{R}^b)\big) \\ \mathsf{F}(e^{**}) - \mathsf{F}(e^*) &= m^g = \mathsf{H}\left(\theta^g(y^g - \mathsf{R}^g)\right) \end{split}$$

Allocation of credit and aggregate output

Let $\underline{Y} =$ (inelastic) baseline output from investing in safe assets, with

$$\theta^{b}y^{b} - c < \underline{Y} < \theta^{g}y^{g} - c - \bar{\varepsilon}$$

Aggregate output

$$Y = \underline{Y} + \int_{0}^{\theta^{g}(y^{g} - \mathbb{R}^{g}) - c} \underbrace{\left[\theta^{g}y^{g} - c - \varepsilon - \underline{Y}\right]}_{>0} dH(\varepsilon)$$
$$+ \lambda \int_{0}^{\theta^{b}(y^{b} - \mathbb{R}^{b}) - c} \underbrace{\left[\theta^{b}y^{b} - c - \varepsilon - \underline{Y}\right]}_{<0} dH(\varepsilon)$$

Potential output

$$Y \le Y^* = \theta^g y^g - c - \mathbf{E}[\epsilon]$$

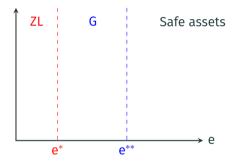
Potential output Y* is attained when all banks lend to G firms

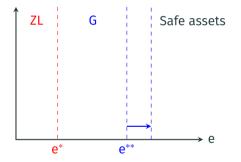
- no bank lends to B firm ($e^* \leq e_{min})$
- no bank invests in safe assets ($e^{**} \ge e_{max}$)

Requires maximal creative destruction: all B incumbents are replaced by entrants

Next: can policy (R^f, p) implement Y*?

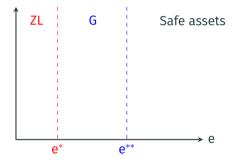
Policy





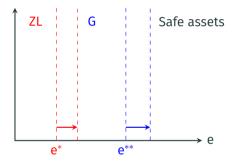
Decreasing R^f for given p

makes safe assets less attractive lower hurdle rate stimulates lending increases e**



Decreasing R^f for given p

makes safe assets less attractive lower hurdle rate stimulates lending increases e**



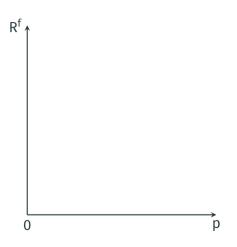
Decreasing R^f for given p

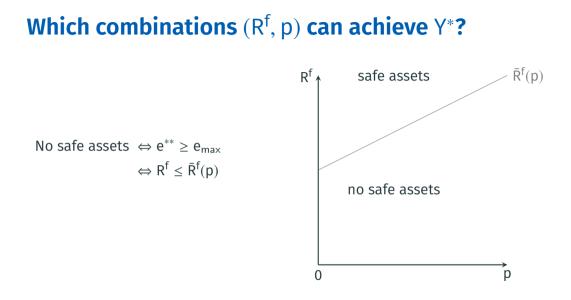
makes safe assets less attractive lower hurdle rate stimulates lending increases e**

Increasing **p** for given R^f

makes safe assets less attractive stimulates G lending by strong banks but induces ZL by weak banks increases e^{**} and e^{*}

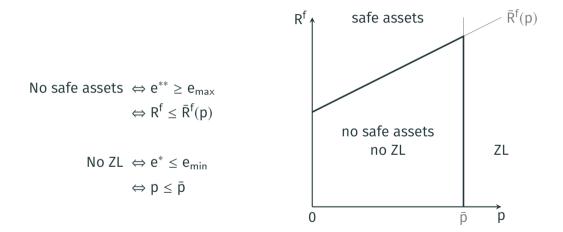
Which combinations (R^f, p) can achieve Y^* ?



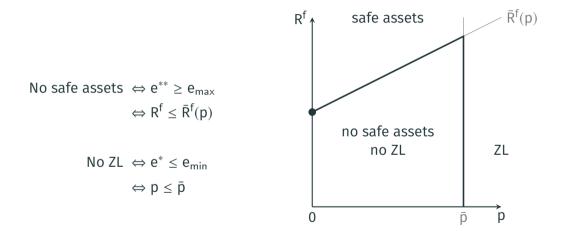


Which combinations (R^f, p) can achieve Y*? $\bar{R}^{f}(p)$ safe assets Rf No safe assets $\Leftrightarrow e^{**} > e_{max}$ $\Leftrightarrow R^{f} \leq \overline{R}^{f}(p)$ no safe assets 71 no ZL No ZL $\Leftrightarrow e^* \leq e_{\min}$ $\Leftrightarrow p \leq \bar{p}$ 0 Đ р

Which combinations (R^f, p) can achieve Y*?



Which combinations (R^f, p) can achieve Y*?



Shocks z to potential output

Macro supply/demand/financial shock leads to **output loss** $z \ge 0$ for good firms

 $y^g = \bar{y}^g(1-{\color{black}{z}})$

therefore potential output Y* depends on z

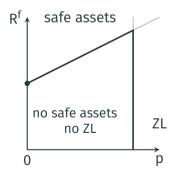
$$Y^*(z) = \theta^g \bar{y}^g (1 - z) - c - \mathbf{E}[\boldsymbol{\varepsilon}]$$

Q: What is the optimal joint policy response $(R^{f}(z), p(z))$?

Unconstrained interest rate policy

Proposition

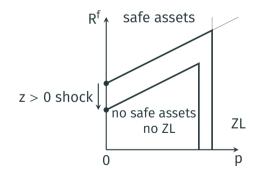
If R^{f} can adjust freely, **conventional MP alone** $R^{f}(z)$ with p(z) = 0 implements $Y^{*}(z)$.



Unconstrained interest rate policy

Proposition

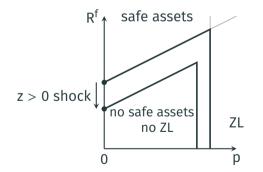
If R^{f} can adjust freely, **conventional MP alone** $R^{f}(z)$ with p(z) = 0 implements $Y^{*}(z)$.



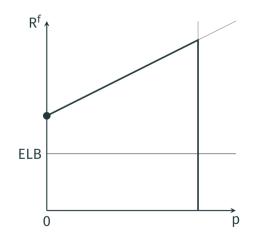
Unconstrained interest rate policy

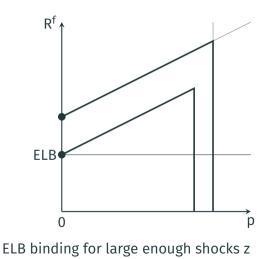
Proposition

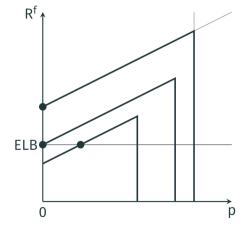
If R^{f} can adjust freely, **conventional MP alone** $R^{f}(z)$ with p(z) = 0 implements $Y^{*}(z)$.



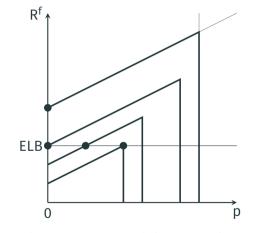
No role for p? Unless required R^f too low and hits **ELB constraint**...





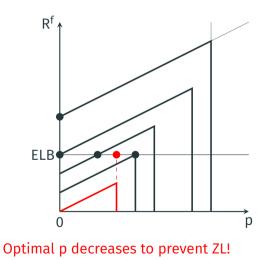


Optimal p increases to subsidize G lending...



Optimal p increases to subsidize G lending...

ELB constraint on R^f **calls for unconventional policy**



21

Optimal p **is non-monotonic**

Proposition

 $z \in [0, \underline{z}]$: optimal policy can achieve $Y = Y^*(z)$ with R^f alone and

p = 0

Optimal p **is non-monotonic**

Proposition

 $z \in [0, \underline{z}]$: optimal policy can achieve $Y = Y^*(z)$ with R^f alone and

p = 0

 $z \in (\underline{z}, \overline{z}]$: **ELB binding**, optimal policy can achieve $Y = Y^*(z)$ with

p(z) > 0 increasing in z

Optimal p **is non-monotonic**

Proposition

 $z \in [0, \underline{z}]$: optimal policy can achieve $Y = Y^*(z)$ with R^f alone and

p = 0

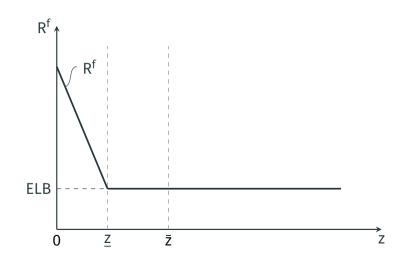
 $z \in (\underline{z}, \overline{z}]$: **ELB binding**, optimal policy can achieve $Y = Y^*(z)$ with

p(z) > 0 increasing in z

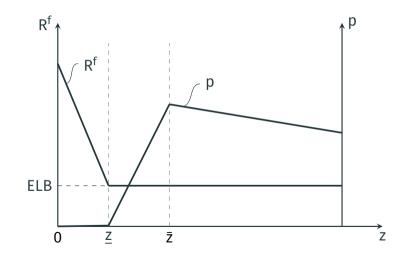
 $z > \overline{z}$: **ELB binding**, optimal policy can only achieve max output $\mathbf{Y} < \mathbf{Y}^*(\mathbf{z})$ with

p(z) > 0 decreasing in z

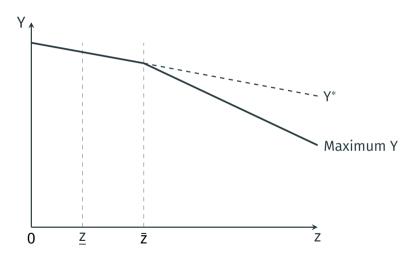
Optimal joint policy (R^f,p) in response to shocks z



Optimal joint policy (R^f,p) in response to shocks z



Optimal joint policy (R^f,p) in response to shocks z



Dynamic model

Congestion externalities

Now, unpack real costs of ZL. Suppose in the short run:

 $\frac{Y}{2} < \theta^{b}y^{b} - c < \theta^{g}y^{g} - c - \bar{e}$ vs. before: $\theta^{b}y^{b} - c < \underline{Y} < \theta^{g}y^{g} - c - \bar{e}$

also stand-in for short-run costs of unemployment empirically, congestion, lower investment and lower productivity over time

But congestion externality α on healthy firms in the next period

$$y_{t+1}^g = \bar{y}^g(1 - z_{t+1})$$
output loss $z_{t+1} = \underbrace{\eta_{t+1}^z}_{\text{exog.}} + \underbrace{\alpha m_t^b}_{\text{endog.}}$

We consider dynamics following one-time shock $z_0 = \eta_0^z > 0$

Dynamic equilibrium

Given shocks η_t^z , a dynamic equilibrium is a sequence of policies, allocations and prices

$$\left.\mathsf{R}_{t}^{f}, p_{t}, z_{t}, \mathsf{F}_{t}\left(\cdot\right), e_{t}^{*}, e_{t}^{**}, \mathsf{R}_{t}^{g}, \mathsf{R}_{t}^{b}\right\}$$

such that for all t

- banks sort optimally given policies
- firms enter and exit optimally given rates and productivity
- loan markets clear
- zt evolves according to congestion externality
- distribution of equity F_{t} evolves according to bank returns
- policies set optimally

Policy response depends on policymakers' horizon

New trade-off: maximize short-run output vs. hurt future productivity

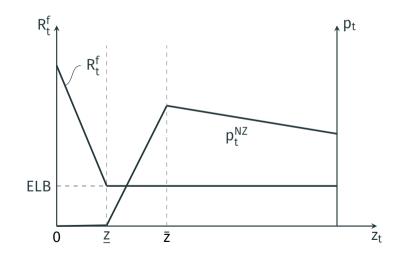
$$\max_{\mathsf{R}_{t}^{f},\mathsf{p}_{t}}\mathsf{Y}_{t}+\frac{\beta}{\beta}\mathsf{Y}_{t+1}+\frac{\beta^{2}}{\beta}\mathsf{Y}_{t+2}+\ldots$$

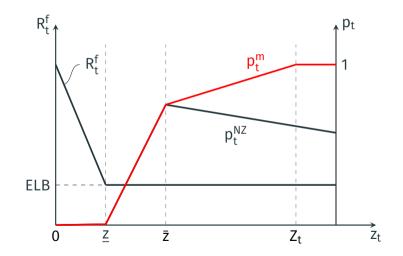
Abstract from franchise value effects so no gains from commitment.

Proposition

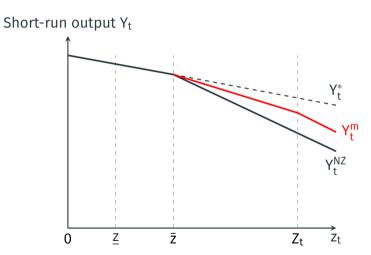
High β : **No-Zombie Lending policy** $p_t = p^{NZ}(z_t)$ decreasing in z_t Low β : **Myopic policy** $p_t = p^m(z_t)$ increasing in z_t

Crucial parameters: (α, β, z_0) . We simplify β dimension to focus on α, z_0





Short-run output Y_t Y* Y^{NZ} Ζ ź Źt Zt 0



Equilibrium path under No-ZL policy

Proposition

Suppose $z_0 > \bar{z}$. Under the No-ZL policy, there is a **transitory recession**

$$\label{eq:relation} \begin{split} R_0^f &= ELB \\ p_0 &> 0 \\ Y_0 &< Y^*(z_0) \end{split}$$

followed by an immediate recovery. For $t \geq 1$

$$\label{eq:relation} \begin{split} R^f_t > & \text{ELB} \\ p_t = 0 \\ Y_t = Y^* \end{split}$$

Myopic response leads to policy trap and sclerosis

Sclerosis: steady state with permanent output loss z > 0

Proposition

Suppose high congestion externality $\alpha \geq \underline{\alpha}$ and myopic policy

There exist two stable steady states: No-ZL and sclerosis

Myopic response leads to policy trap and sclerosis

Sclerosis: steady state with permanent output loss z > 0

Proposition

Suppose high congestion externality $\alpha \geq \underline{\alpha}$ and myopic policy

There exist two stable steady states: No-ZL and sclerosis

• for small shocks $z_0 < z^*(\alpha)$

the economy converges to the No-ZL steady state with $p_t, z_t \rightarrow 0$

Myopic response leads to policy trap and sclerosis

Sclerosis: steady state with permanent output loss z > 0

Proposition

Suppose high congestion externality $\alpha \geq \underline{\alpha}$ and myopic policy

There exist two stable steady states: No-ZL and sclerosis

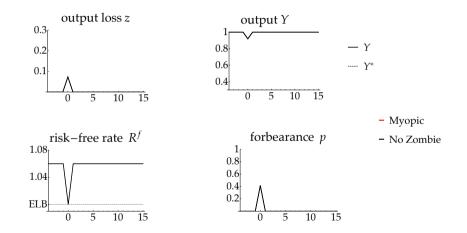
• for small shocks $z_0 < z^*(\alpha)$

the economy converges to the No-ZL steady state with $p_t, z_t \rightarrow 0$

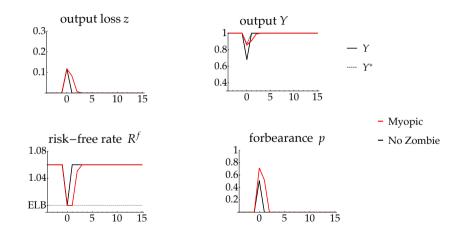
• for large shocks $z_0 > z^*(\alpha)$

the economy converges to the sclerosis steady state Policy trap: ELB binds forever and $p_t \rightarrow 1$ if $z_0 \ge Z_0 > z^*(\alpha)$ then $p_t = 1$ always

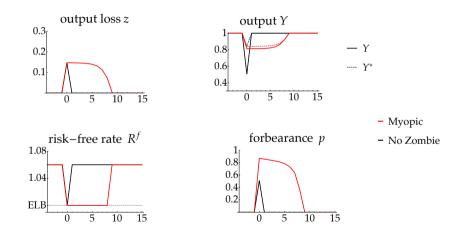
Small shocks: endogenous persistence



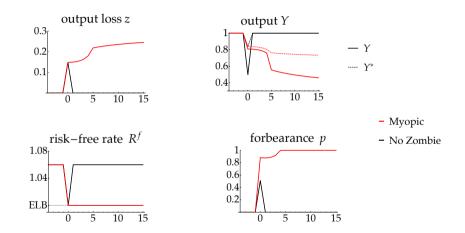
Small shocks: endogenous persistence



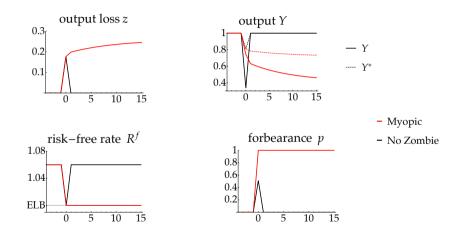
Small shocks: endogenous persistence



Large shocks: policy trap and sclerosis



Large shocks: policy trap and sclerosis



Mapping parameters into economic factors

Policy trap and sclerosis more likely when

- High congestion externality α
- Low policy horizon β
- High initial shock z₀
- Low baseline productivity of G firms $\theta^g \bar{y}^g$
- High rate of distress (and required creative destruction) λ

Extensions

Q: What if banks can issue equity?

Suppose issuing Δe costs $\kappa(\Delta e)$, κ increasing and convex

Proposition

A decrease in R^f increases ZL.

An increase in p increases ZL more than without issuance.

Intuition: lower R^f decreases cost of debt more than cost of equity

Capital requirements & evergreening

Q: How do capital requirements affect ZL?

healthier banks \rightarrow lower risk-shifting incentives but may increase cost of recognizing losses on legacy loans

Extend the model:

- Equity issuance: recapitalization possible but costly
- · Capital requirement: minimal level of equity ê
- Relationship lending: Legacy ≠ new loans zombie loan rolled over if positive surplus for bank+borrower pair at renegotiated low rate (Nash bargaining over surplus)

Capital requirements useful, but may backfire

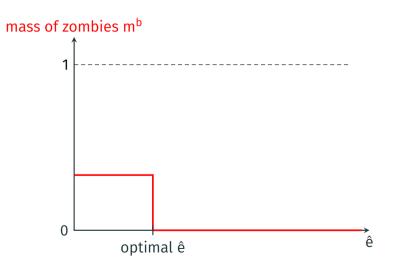
 δ = cost of recognizing losses and switching to new G borrower

Proposition

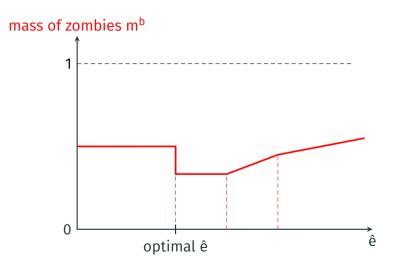
- If $\delta \leq \bar{\delta}$, capital requirement \hat{e} can deter ZL completely
 - forcing banks to recapitalize above e* works
- If $\delta > \bar{\delta}$, capital requirement \hat{e} **cannot** deter ZL completely
 - starting from laissez-faire, ZL decreasing in ê...
 - then increasing in ê
 - positive ZL remains even at "optimal" ê

Intuition: If both δ and \hat{e} high, better to roll over than recapitalize from $e - \delta$ to \hat{e}

Low δ : capital requirement prevents ZL



High δ : ZL is non-monotonic in capital requirement



Conclusion

Implications of our analysis

Model predictions consistent with existing empirical evidence on ZL

- Regulatory forbearance can distort credit allocation and have real effects
- Diabolical sorting of undercapitalized banks with poorly performing firms
- Imposing too high a capital requirement may backfire

Novel predictions regarding policy dynamics

- ZL creates **policy traps**
- · Some accommodation is optimal once ELB binds, but not too much
- Focus on short-run stimulus may lead to long-run sclerosis

Tractable model could be foundation for many extensions

• Interaction with fiscal space (doom loop)