Are Your Labor Shares Set in Beijing? The View Through the Lens of Global Value Chains

Ariell Reshef and Gianluca Santoni

Reshef: CNRS, Paris 1, PSE, CEPII. Santoni: CEPII

Banca d'Italia, 14 December 2021

Why labor shares? Why China? And why GVCs?

Income inequality.

- ► Capital ownership and income highly concentrated (e.g., Piketty 2014).
- Smaller labor share implies increase in income inequality among people.
- ▶ Most of literature: globalization plays minor role in the evolution of LS.
- But does it?
- Understanding role of globalization difficult w/o considering GVCs.
 - Labor shares defined over value added.
 - Apply methodology to address production and GVCs in VA terms.
- Freeman (1995) asked: "Are your wages set in Beijing?". Answering such questions increasingly requires a different data approach.
 - Grossman & Rossi-Hansberg (2008).
 - Gross trade stats misleading: Johnson (2014), Ito, Rotunno & Vézina (2017), Timmer, Miroudot & de Vries (2018).
 - Increasingly so since China joined WTO in 2001: Koopman, Wang & Wei (2012), Kee & Tang (2016), Jakubic & Stolzenburg (2018).

$$\mathsf{WLS}\;(\mathsf{GDP}): y_{ct} = lpha_c + eta_t + arepsilon_{ct} \Longrightarrow \mathsf{plot}\; \widehat{eta}_t + \mathsf{level}$$

▶ This paper: focus on 2001–2007 acceleration in decline of LSs.

- Labor share stops falling as GVC intensity levels off.
- Also in Gutirez & Piton (2020) Grossman & Oberfield (2021).
- LS from PWT 9.1, includes self-employment (other measures).

What we find, main takeaway messages

- ► Forward GVC integration contributes to LS↓.
 - Due to upstream, intermediate input exporting.
 - Strong association in 2001–2007, not in other periods.
- China accounts for much of this.
 - ▶ 2001 accession to WTO \longrightarrow 2007, "slowbalization".
 - Think of China importing upstream inputs, not exporting them; consistent with Kee & Tang (2016), Chor, Manova & Yu (2020).
- > Patterns of specialization consistent with within-VC HO mechanics.
 - Upstream intermediate input production more K-intensive.
 - Sposi, Yi & Zhang (2020).
- ► LS↓ via change in **functional specialization** of labor:
 - Fabrication↓↓, but also management↓, marketing↓, while ≈R&D.
 - Consistent with ideas in Baldwin (2016).

MNEs associated with offshoring of both assembly and input prod.

Related literature on labor shares

Classics

Smith (1776), Ricardo (1817), Kaldor (1957), Solow (1958)...

Technological and technical change.

- Kennedy (1964), Acemoglu (2003), Acemoglu & Restrepo (2018), von Lehm (2018).
- Karabarbounis & Neiman (2014) vs. Oberfield & Raval (2014), Glover & Short (2020).

Structural change.

Ngai & Pissarides (2007), Buera & Kaboski (2012), McAdam & Willman (2013).

Deregulation, concentration/competition, monopsony, role of firms.

Blanchard & Giavazzi (2003), Weinberger & Leblebicioglu (2020), Kyyrä & Maliranta (2008), Autor, Dorn, Katz, Patterson & Van Reenen (2020), Brooks, Kaboski, Li, and Qian (2019).

Many papers focus on U.S. / few on LDCs.

- Blanchard (1997), Elsby, Hobijn & Sahin (2013, suggest offshoring), Rognlie (2016).
- Harrison (2005) and Rodriguez and Jayadev (2010), Weinberger & Leblebicioglu (2021).

Very few address role of GVCs.

IMF (2017), closest to ours, but: no causal inference, little on mechanisms, limited discussion.

Data and Methodology

Data

• World I/O tables (WIOT) and labor shares by $cty \times ind \times year$.

- ▶ 1995–2007: WIOD 2013 release, 40 countries, 35 industries (ISIC rev. 3).
- ▶ 2007-2014: WIOD 2016 release, 43 countries, 56 industries (ISIC rev. 4).
- We harmonize countries and industries dimensions.
- But cannot merge (1993 vs. 2008 System of National Accounts).
- Caveats for WIOD: proportionality assumptions
- Cross-border ownership indicators: from Ramondo, Rodrguez-Clare & Tintelnot (2015) (average values for 1996–2001).
- CEPII gravity database.

Leontief (1936) at the international level

$$X = AX + Y$$

X = output, Y = world demand final goods, A = unit requirements.
 a^{od}_{ij} = value of inputs from industry *i* located in country *o* that is needed to produce 1\$ worth of product *j* in country *d*.

$$X = (I - A)^{-1} Y = BY$$

Pre-multiply by factor f cost share in gross output

$$V_f = F_f V$$

where V = VA intensity of output, $F_f = factor f$ share in VA.

$$V_f X = V_f B Y$$

• $V_f BY$ = factor incomes for any factor f in every $c \times i$.

$V_f BY$

- Matrix describes the (ultimate) sources of primary factor income.
- Typical element of $V_f BY$ matrix: $(v_f by)_{ii}^{od}$:
 - Payments to factor f employed in sector i in origin country o from contributing to production of final good j in destination country d, through any and every type of linkage.
 - Export of intermediate inputs if $o \neq d$.
 - Exports of final goods: splits of y.
- Accounting identities (world is closed economy)
 - ▶ World GDP = sum all elements of Y (expenditure approach).
 - ▶ World GDP = sum all elements of VBY (income approach).

Accounting for changes in LSs

- ► Factor payments become more reliant on forward GVC participation.
- Decompose $\Delta(V_f BY)$ into parts due to
 - ΔV_f = within-industry changes.
 - ΔB = change in network structure (industry composition).
 - $\Delta Y =$ change in final demand (industry composition).
- On average, $\Delta LS = -2.45$, of which :
 - $\Delta V_f \Longrightarrow -1.06$, within-industry changes.
 - $\Delta Y \implies -0.44$, due to shift towards foreign demand.
 - $\Delta B \Longrightarrow -0.47$, due to changes in supply chains.
- Upshot: analysis both at industry and country level.
- Magnitudes of changes within manufacturing larger, but similar relative importance of various dimensions (dropped to ease presentation).

Accounting for changes in LSs: changes in GVC network

• Stone's decomposition of ΔB into parts due to

- ΔB^d = strictly domestic VCs (domestic I/O linkages).
- ΔB^{x} = strictly bilateral VCs (exports of intermediate inputs).
- ΔB^g = complex GVCs (exports of intermediate inputs).
- $\Delta B = -0.47$ (changes in supply chains) :
 - Due to shift from domestic VCs ($\Delta B^d = -1.59$)
 - to foreign VCs ($\Delta B^{\chi} + \Delta B^{g} = 0.42 + 0.70$),
 - where $\Delta B^g = 62\%$ of $\Delta B^x + \Delta B^g$.
- Upshot: complex GVCs important, cannot use only direct links.

Table 2

Regressions

Stacked panel of changes

$$\Delta LS_{ict} = \gamma_1 \Delta FWD_{ict} + \gamma_2 \Delta BACK_{ict} + \gamma_3 \Delta EXP_{ict} + \gamma_4 \Delta IMP_{ict} + \kappa_1 \Delta \ln q_{ct} + FEs + \varepsilon_{ict}$$

Globalization

- FWD = forward GVC intensity in VA.
- ► BACK = offshoring of intermediate inputs intensity in total inputs.
- *EXP* = export intensity of final goods in VA.
- ► *IMP* = import intensity of final goods in domestic absorption.

Technical change

- $\Delta \ln q =$ change in relative price of investment (standardized).
- ▶ Panel of changes: 1995–2001, 2001–2007, 2007–2014.
- ▶ WLS (VA weights), two-way clustered SEs by c and by i.

Concerns for identification

$$\Delta LS_{ict} = \gamma_1 \Delta FWD_{ict} + \gamma_2 \Delta BACK_{ict} + \gamma_3 \Delta EXP_{ict} + \gamma_4 \Delta IMP_{ict} + \kappa_1 \Delta \ln q_{ct} + FEs + \varepsilon_{ict}$$

• Measurement error in VA would bias coef. to ΔFWD towards 1.

- Works against finding negative coef. to ΔFWD .
- Main threat: biased technological change.
 - Suppose

$$Q = \left[lpha \left(A K
ight)^{
ho} + \left(1 - lpha
ight) \left(B L
ight)^{
ho}
ight]^{1/
ho},$$

then

$$LS = 1 - \alpha^{\sigma} \left(A/R \right)^{\sigma-1}$$

- ► A affects both *LS* and exports (similarly, *B*, *R*); direction depends on whether $\sigma \ge 1$ (KN vs OR and GS debate).
- Structural gravity-based IV: purge trends in A + production costs.

Instrument: sketch

Consider gravity relationship à la Eaton & Kortum (2002):

$$\ln X_{cd} = -\theta \ln \tau_{cd} + \underbrace{\ln T_c - \theta \ln w_c}_{\gamma_c} + \underbrace{\ln X_d - \ln \Phi_d}_{\delta_d},$$

where

$$\Phi_{d} = \underbrace{T_{c} w_{c}^{-\theta}}_{\exp\{\gamma_{c}\}} \tau_{cd}^{-\theta} + \sum_{j \neq c} T_{j} (w_{j}\tau_{jd})^{-\theta}$$

1. Purge X_{cd} from variation in γ_c , including inside $\Phi_d \Longrightarrow \widetilde{X}_{cd}$. 2. IV uses changes in \widetilde{X}_{cd} over time

$$\Delta Z_{ict} = \ln \sum_{d
eq c} \widetilde{vby}_{cd}^{i,t} - \ln \sum_{d
eq c} \widetilde{vby}_{cd}^{i,t-1}$$
 ,

where we use $vby_{cd}^{i,t}$ for X_{cd} .

- exogenous to cty × ind technological change, cost variation.
- ▶ *w_c* absorbs costs of domestic factors + imported inputs.

Instrument: discussion

$$\ln X_{cd} = -\theta \ln \tau_{cd} + \underbrace{\ln T_c - \theta \ln w_c}_{\gamma_c} + \underbrace{\ln X_d - \ln \Phi_d}_{\delta_d},$$

- Gravity structure above is for trade in gross terms (EK).
- We apply to VA payments to primary factors.
 - Similar structure in multi-industry I/O of Caliendo and Parro (2015).
 - Can adapt sequential GVC model of Antras and de Gortari (2020) to this structure, if VA share in gross output declines with downstreamness at rate 1/n (n = 1 is first step, N is the last), which is what we find.

VA share and downstreamness

Instrument: implementation

$$X_{cd} = \exp\{-\theta \ln \tau_{cd} + \underbrace{\ln \tau_c - \theta \ln w_c}_{\gamma_c} + \underbrace{\ln X_d - \ln \Phi_d}_{\delta_d}\}$$

▶ For each industry *i* and $t \in \{1995, 2001, 2007, 2014\}$:

▶ PPML for
$$X_{cd}^{i,t} = (vby)_{cd}^{i,t} = \sum_j (vby)_{cd}^{ij,t}$$
, including $c = d$.

- obtain $\hat{\gamma}_c^{i,t}$, $\hat{\delta}_d^{i,t}$ and residual $(\widehat{\tau^{-\theta}})_{cd}^{i,t}$ —up to some normalization.
- $\widehat{\Phi}_{d}^{i,t} = X_{d}^{i,t} / \exp{\{\widehat{\delta}_{d}^{i,t}\}}$, where $X_{d}^{i,t} = \sum_{c} (vby)_{cd}^{i,t}$ is data. • replace $\widehat{\gamma}_{c}^{i,t}$ by its average across c, $\widetilde{\gamma}^{i,t}$, $\Longrightarrow \widetilde{vby}_{cd}^{i,t}$.

• IV for ΔFWD_{ict} :

$$\Delta Z_{ict} = \ln \sum_{d \neq c} \widetilde{vby}_{cd}^{i,t} - \ln \sum_{d \neq c} \widetilde{vby}_{cd}^{i,t-1}$$

Instrument: sensitivity

Alternative 1:

$$\Delta Z_{ict} = \frac{\sum_{d \neq c} \widetilde{vby}_{cd}^{i,t}}{\sum_{d} \widetilde{vby}_{cd}^{i,t}} - \frac{\sum_{d \neq c} \widetilde{vby}_{cd}^{i,t-1}}{\sum_{d} \widetilde{vby}_{cd}^{i,t-1}}.$$

Significantly weaker IV; ΔEXP_{ict} includes VA in denominator, too.
 Alternative 2:

$$\Delta Z_{ict} = \ln \sum_{d \neq c} \widetilde{vay}_{cd}^{i,t} - \ln \sum_{d \neq c} \widetilde{vay}_{cd}^{i,t-1}$$
,

where $v\mathbf{a}y$ uses only direct I/O linkages (vs. $v\mathbf{b}y$).

- Similar results within manufacturing, but weak IV when all industries included; few, ill-identified direct links in services.
- Conley, Hansen & Rossi (2012)'s "Local-to-Zero Approximation".
 - Reasonable uncertainty about exclusion restriction does not render W2SLS results uninformative (SEs remain small).

			Depender	nt variable: Δ	labor share		
	(1)	(2)	(3)	(4)	(5)	(6)	(7)
A. Manufacturing industries							
Δ forward intensity	-0.276**	-0.224*	-0.313**	-0.321**	-0.365**	-0.296***	-0.429***
	(0.118)	(0.105)	(0.110)	(0.123)	(0.123)	(0.053)	(0.080)
∆ backward intensity	-0.159	-0.137	-0.228	-0.179	-0.259	-0.217	-0.287
	(0.179)	(0.171)	(0.198)	(0.190)	(0.225)	(0.206)	(0.298)
Δ exports of final goods intensity	0.031	0.049	0.066	0.077	0.115	0.130*	0.135
	(0.090)	(0.068)	(0.063)	(0.096)	(0.087)	(0.067)	(0.096)
∆ imports of final goods intensity	0.015	0.015	0.013	0.013	0.012	0.013	0.022
	(0.015)	(0.013)	(0.013)	(0.015)	(0.012)	(0.010)	(0.013)
Δ log relative price of investment	-0.006	0.006	-0.017	-0.006	-0.017	0.002	0.012
	(0.050)	(0.057)	(0.061)	(0.051)	(0.061)	(0.075)	(0.075)
Fixed effects	-	Per	Cty	Ind	Cty, Ind	Cty, Ind, Per	Cty-Ind, Per
Observations	1,532	1,532	1,532	1,532	1,532	1,532	1,522
R-squared	0.026	0.079	0.117	0.044	0.135	0.185	0.301

Table 4. Changes in Labor Shares and Forward GVC Integration in 1995-2014

▶ IQR ΔFWD associated with 20% of IQR of ΔLS (column 7).

	Dependent variable: Δ labor share							
	(1)	(2)	(3)	(4)	(5)	(6)		
	Manu	facturing ind	ustries	Priva	Private sector industries			
	WLS	W2SLS	1st stage	WLS	W2SLS	1st stage		
∆ forward intensity	-0.429***	-0.685***		-0.283**	-0.305**			
	(0.080)	(0.115)		(0.107)	(0.145)			
∆ backward intensity	-0.287	-0.399	-0.292***	-0.153	-0.160	-0.194***		
	(0.298)	(0.306)	(0.082)	(0.149)	(0.153)	(0.055)		
∆ exports of final goods intensity	0.135	0.188	0.072	0.126	0.132	0.135*		
	(0.096)	(0.109)	(0.050)	(0.129)	(0.139)	(0.068)		
∆ imports of final goods intensity	0.022	0.024*	0.006	0.013*	0.013*	0.006		
	(0.013)	(0.013)	(0.004)	(0.007)	(0.007)	(0.003)		
∆ log relative price of investment	0.012	0.029	0.022	0.019	0.020	-0.001		
	(0.075)	(0.074)	(0.017)	(0.044)	(0.043)	(0.014)		
ΔZ			0.124***			0.080***		
			(0.026)			(0.017)		
Fixed effects: Cty-Ind, Period	Yes	Yes	Yes	Yes	Yes	Yes		
Observations	1522	1,522	1,522	3,241	3,241	3,241		
R-squared	0.301		0.744	0.310		0.651		
Kleibergen-Paap F statistic		23.29			21.53			

Table 5. Changes in Labor Shares and Forward GVC Integration in 1995-2014: W2SLS

- Larger W2SLS coef. consistent with measurement error, and role for technology (e.g., labor augmenting tech chg + σ < 1).
- ▶ IQR ΔFWD associated with 32% of IQR of ΔLS (manuf).

	Dependent variable: ∆ labor share									
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
		Manu	facturing ind	ustries		Private sector industries				
∆ forward intensity	-0.429***					-0.283**				
	(0.080)					(0.107)				
1995-2001		-0.160					-0.152			
		(0.247)					(0.239)			
2001-2007		-1.038***					-0.815***			
		(0.271)					(0.232)			
2007-2014		0.479					0.181			
		(0.391)					(0.183)			
∆ forward intensity to China			-1.582**					-1.266**		
			(0.698)					(0.551)		
1995-2001				-0.616					-1.625***	
				(0.442)					(0.454)	
2001-2007				-1.744**					-1.624***	
				(0.679)					(0.490)	
2007-2014				2.154					0.568	
				(1.519)					(0.447)	
∆ forward intensity to RoW			-0.220					-0.183		
			(0.196)					(0.114)		
1995-2001				-0.082					-0.055	
				(0.279)					(0.235)	
2001-2007				-0.769***					-0.649***	
				(0.234)					(0.177)	
2007-2014				0.310					0.087	
				(0.338)					(0.155)	
∆ forward intensity, net of assembly offshoring					-0.379***					-0.308***
					(0.051)					(0.094)
Fixed effects: Cty-Ind, Period	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Observations	1,522	1,522	1,522	1,522	1,483	3,241	3,241	3,241	3,241	3,160
R-squared	0.301	0.395	0.323	0.412	0.313	0.310	0.346	0.319	0.354	0.320

Table 6. Changes in Labor Shares and Forward GVC Integration in 1995-2014: period splits, China and assembly offshoring

▶ Effect concentrated in 2001–2007, stronger for China.

Country level regressions

$$\begin{split} \Delta LS_{ct} &= \gamma_1 \Delta FWD_{ct} + \gamma_2 \Delta BACK_{ct} + \gamma_3 \Delta EXP_{ct} + \gamma_4 \Delta IMP_{ct} \\ &+ \kappa_1 \Delta \ln q_{ct} + FEs + \varepsilon_{ct} \end{split}$$

- ▶ Panel of changes: 1995–2001, 2001–2007, 2007–2014.
- ▶ WLS (VA weights), two-way clustered SEs by *c* and by *i*.
- IV constructed in the same way as above.

		Dependent variable: Δ labor share							
-	(1)	(2)	(3)	(4)	(5)	(6)			
A. Manufacturing industries									
		W	/LS		W2SLS	1st stage			
∆ forward intensity	-0.652***	-0.560***	-0.802***	-0.679**	-1.245***				
	(0.193)	(0.202)	(0.261)	(0.314)	(0.278)				
∆ backward intensity	-0.541	-0.595	-0.562	-0.616	-0.466	-0.213			
	(0.538)	(0.440)	(0.624)	(0.610)	(0.688)	(0.308)			
Δ exports of final goods intensity	-0.085	-0.055	-0.171	-0.122	-0.070	0.324			
	(0.455)	(0.453)	(0.490)	(0.522)	(0.572)	(0.250)			
∆ imports of final goods intensity	0.357	0.395*	0.268	0.378*	0.287	0.068			
	(0.246)	(0.223)	(0.246)	(0.196)	(0.238)	(0.100)			
Δ log relative price of investment	-0.014	0.013	0.005	0.042	0.009	0.023			
	(0.054)	(0.063)	(0.071)	(0.079)	(0.075)	(0.020)			
ΔZ						0.049***			
						(0.008)			
Fixed effects	-	Per	Cty	Cty, Per	Cty	Cty			
Observations	117	117	117	117	117	117			
R-squared	0.208	0.319	0.448	0.546		0.729			
Kleibergen-Paap F statistic					42.69				

Table 7. Changes in Labor Shares and	Forward GVC Integration in 1995-2014:	Country level regressions
--------------------------------------	---------------------------------------	---------------------------

- Similar results as for country×industry-level variation.
- Larger coefficients, greater explanatory power.

Mechanisms

Is there a role for endowments?

- Sposi, Yi & Zhang (2020): model of within-VC specialization.
 - Extension of Antras & de Gortari (2020 *ECMA*).
 - Capital abundant countries specialize in capital intensive production.
 - When fragmentation not possible, only across final goods.
 - Once fragmentation possible, this manifests across tasks within VCs:
 - labor intensive final good assembly \implies labor abundant country.
 - ightarrow capital intensive upstream inputs \Longrightarrow capital abundant country.
- ▶ We show: upstream production less labor intensive.
 - ► GVCs account for >100% of increases in upstreamness (on avg.).
- Predictions
 - FWD more K-intensive when origin more K-abundant,
 - ► FWD larger (level) when origin more K-abundant,
 - and these associations should strengthen over time, with reductions in barriers to fragmentation.

Capital intensity of FWD regression, OLS

$$rac{(V_{\mathcal{K}}\mathcal{BY})_{od} - (V_{\mathcal{L}}\mathcal{BY})_{od}}{GDP^{o}} = eta \cdot \mathsf{RKA}_{od} + \gamma' \mathit{gravity}_{od} + lpha_o + lpha_d + arepsilon_{od}$$

where relative capital abundance =

$$RKA_{od} = \ln\left(\frac{E_o^K}{E_o^K + E_d^K}\right) - \ln\left(\frac{E_o^L}{E_o^L + E_d^L}\right)$$

Level regression, PPML

$$VBY_{od} = \exp\{eta \cdot \textit{RKA}_{od} + \gamma'\textit{gravity}_{od} + lpha_o + lpha_d\} + arepsilon_{od}$$

- Two cross sections: 2001 and 2007.
- ► SEs clustered by *o* and *d*.

Table 10. Factor endowme	nts and forward GVC integration
--------------------------	---------------------------------

	(1)	(2)	(3)	(4)	(5)	(6)
Estimator:	OLS	OLS	PPML	PPML	PPML	PPML
Dependent variable:	(VKBY-VLBY)/GDP, 2001	(VKBY-VLBY)/GDP, 2007	VBY, 2001	VBY, 2007	V(Bx)Y, 2007	V(Bg)Y, 2007
Relative capital abundance	0.268**	0.317**	0.522**	0.863***	1.067***	0.293***
	(0.113)	(0.149)	(0.229)	(0.208)	(0.287)	(0.101)
Log distance	0.017	0.015	-0.484***	-0.526***	-0.635***	-0.175***
	(0.022)	(0.018)	(0.071)	(0.061)	(0.075)	(0.032)
Common border	-0.093	-0.023	0.155	0.143	0.190	-0.302***
	(0.057)	(0.073)	(0.108)	(0.107)	(0.124)	(0.070)
Colonial ties	-0.011	-0.045	0.174	0.153	0.213	0.018
	(0.057)	(0.060)	(0.115)	(0.107)	(0.135)	(0.032)
Common language	0.038	0.053	0.242**	0.315***	0.399**	0.016
	(0.067)	(0.070)	(0.117)	(0.116)	(0.157)	(0.038)
Free trade agreement	0.017	0.080*	0.259	0.099	0.084	0.127***
	(0.024)	(0.043)	(0.163)	(0.121)	(0.151)	(0.047)
Common currency	-0.032	-0.056*	0.084	0.044	0.077	0.198***
	(0.029)	(0.028)	(0.137)	(0.145)	(0.187)	(0.065)

- Stronger associations in 2007 vs. 2001 (no claim for stat sig).
- Level effect stronger via direct exports of inputs $[B^x]$.
- Sensible gravity correlates: language, FTA, currency.

Measuring upstreamness

$$U_i^r = 1 \times \frac{Y_i^r}{X_i^r} + 2 \times \frac{\sum_s \sum_j a_{ij}^{rs} Y_j^s}{X_i^r} + 3 \times \frac{\sum_s \sum_j \sum_t \sum_k a_{ij}^{rs} a_{jk}^{st} Y_k^t}{X_i^r} + \dots$$

- ▶ If produce only final goods $(a_{ij}^{rs} = 0 \text{ for all } s, j)$, then $U_i^r = Y_i^r / X_i^r = 1$.
- If output used also for inputs $(a_{ii}^{rs} > 0 \text{ for some } s, j)$, then $U_i^r > 1$.
- Can split

$$U = U^D + U^F$$

- U^D = upstreamness due to domestic VCs.
- U^F = upstreamness due to GVCs.

GVCs drive upstreamness up

$$\mathsf{WLS}\;(\mathsf{GDP}): y_{ct} = \alpha_c + \beta_t + \varepsilon_{ct} \Longrightarrow \mathsf{plot}\; \widehat{\beta}_t - \widehat{\beta}_{1995}$$

▶ Most of the increase due to Foreign, in 2001–2007.

Table 8. Upstreamness and Labor Shares, 2001-2007													
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)					
A. Manufacturing in	A. Manufacturing industries												
							Depender	it variable:					
		D	∆ labo	r share									
Upstreamness	-0.041	-0.136	-0.125*				-0.128*						
	(0.047)	(0.081)	(0.069)				(0.064)						
	[-0.132]	[-0.438]	[-0.402]				[-0.210]						
Domestic				-0.085**	-0.020	-0.028		0.036					
				(0.038)	(0.042)	(0.049)		(0.041)					
				[-0.217]	[-0.052]	[-0.071]		[0.055]					
Foreign				0.059	-0.240***	-0.232***		-0.227***					
				(0.065)	(0.060)	(0.064)		(0.043)					
				[0.141]	[-0.575]	[-0.555]		[-0.347]					
Downstreamness	-0.109	-0.007	0.042	-0.091	0.029	0.035	-0.035	-0.059					
	(0.100)	(0.083)	(0.089)	(0.089)	(0.070)	(0.078)	(0.078)	(0.065)					
	[-0.153]	[-0.010]	[0.058]	[-0.126]	[0.041]	[0.049]	[-0.046]	[-0.077]					
Fixed effects	Year	Cty X Ind	Cty X Ind, Yr	Year	Cty X Ind	Cty X Ind, Yr	-	-					
Observations	3,727	3,725	3,725	3,727	3,725	3,725	530	530					
R-squared	0.069	0.952	0.954	0.130	0.956	0.956	0.081	0.182					

U^D associated with lower LS in cross section (also Antras *et al.* 2012).
 Increases in U^F associated with reductions LS (new): over time within industries, and long changes.

Functional specialization

 Timmer, Miroudot & de Vries (2019) split labor payments into: management (MGT), R&D, fabrication (FAB), and marketing (MKT),

 $\Delta LS_{ic} = \Delta MGT_{ic} + \Delta R\&D_{ic} + \Delta FAB_{ic} + \Delta MAR_{ic}$

- Inspection of underlying data: particularly meaningful in manufacturing, less so services (MAR is a residual).
- Estimate over 2001–2007

 $\Delta FUNCTION_{ic} = \beta^{D} \Delta U_{ic}^{D} + \beta^{F} \Delta U_{ic}^{F} + \delta \Delta D_{ic} + \text{fixed effects} + \varepsilon_{ic}$

 $\begin{array}{lll} \Delta \textit{FUNCTION}_{ic} &=& \gamma_1 \Delta \textit{FWD}_{ic} + \gamma_2 \Delta \textit{OFF}_{ic} + \gamma_3 \Delta \textit{EXP}_{ic} + \gamma_4 \Delta \textit{IMP}_{ic} \\ &+ \kappa_1 \Delta \ln q_c + \textit{fixed effects} + \varepsilon_{ic} \end{array}$

• D_{ic} is downstreamness, $FUNCTION \in \{MGT, R\&D, FAB, MAR\}$.

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)
A. Manufacturing												
Dependent variable:	ΔMGT	ΔR&D	Δ FAB	Δ MAR	ΔMGT	ΔR&D	Δ FAB	Δ MAR	ΔMGT	ΔR&D	Δ FAB	Δ MAR
∆ upstreamness, foreign	-0.043***	-0.009	-0.140***	-0.035***	-0.042**	0.006	-0.112***	-0.020**	-0.038***	-0.018	-0.143**	-0.029**
	(0.014)	(0.015)	(0.038)	(0.010)	(0.016)	(0.017)	(0.035)	(0.008)	(0.009)	(0.015)	(0.057)	(0.012)
∆ upstreamness, domestic	0.003	-0.006	0.029	0.010	0.009	0.004	-0.029	-0.002	-0.003	-0.010	0.026	0.013
	(0.010)	(0.014)	(0.029)	(0.010)	(0.011)	(0.013)	(0.029)	(0.010)	(0.009)	(0.013)	(0.037)	(0.014)
∆ downstreamness	-0.040*	0.016	-0.000	-0.034**	-0.041	0.009	0.041	-0.024	-0.011*	0.027***	0.026	-0.027
	(0.022)	(0.014)	(0.043)	(0.015)	(0.025)	(0.017)	(0.045)	(0.017)	(0.006)	(0.008)	(0.054)	(0.028)
∆ forward intensity	-0.167***	-0.019	-0.398***	-0.141***	-0.181**	-0.007	-0.256***	-0.102***	-0.091***	-0.018	-0.368*	-0.093*
	(0.049)	(0.047)	(0.101)	(0.038)	(0.066)	(0.058)	(0.071)	(0.029)	(0.026)	(0.032)	(0.194)	(0.045)
Fixed effects	-				Ind	Ind	Ind	Ind	Cty	Cty	Cty	Cty

Table 9. Functional Specialization, Upstreamness and Forward Foreign GVC Integration, 2001-2007

• ΔU^F and ΔFWD associated with declines in *FAB*, roughly $\times 2$ the combined effect on *MGT* + *MAR*.

- Baldwin (2016): GVC integration, moving production stages within VC across borders involves technology and management transfer.
- Alternative interpretation: final good production requires more management of VC + marketing for consumers.

▶ R&D not affected by *U*, but small effect of downstreamness (10).

Role of multinationals, direction of offshoring

- What is the likely ownership structure of offshoring?
- ► Are exports of intermediate inputs from *o* to *d* associated with
 - ▶ MNEs in *d* outsourcing upstream input production to affiliates in *o*?
 - MNEs in o outsourcing downstream assembly to affiliates in d?

$$\begin{array}{lll} VBY_{od} & = & \exp\{\beta \cdot \operatorname{arcsinh}(\mathit{affiliates}_{od}) + \delta \cdot \operatorname{arcsinh}(\mathit{affiliates}_{do}) \\ & & + \gamma' \mathit{gravity}_{od} + \alpha_o + \alpha_d\} + \varepsilon_{od} \end{array}$$

• Estimate by PPML, one cross section in 2001.

- affiliates_{od} = no. affiliates located in o with parents in (owned by) d.
- $affiliates_{do} =$ no. affiliates located in d with parents in (owned by) o.
- ► Affiliates from RR&T (2015), average in 1996–2001.
- $\operatorname{arcsinh}(x) = \ln[x + (1 + x^2)^{1/2})] (\ln(1 + x) \text{ yields similar results}).$

Table 11. Multinationals and forward GVC integration

	(3)	(6)	(9)
	Forward GVC	Direct bilateral exports	Complex global value
	integration	of intermediate inputs	chains
Dependent variable:	VBY(o,d) = V(Bx)Y(o,d)	V(Bx)Y(o,d)	V(Bg)Y(o,d)
arcsinh no. of affiliates in o with parents in d	0.099***	0.127***	0.035**
	(0.024)	(0.031)	(0.014)
arcsinh no. of affiliates in d with parents in o	0.112***	0.141***	0.043***
	(0.038)	(0.050)	(0.014)
Log distance	-0.357***	-0.419***	-0.115***
	(0.057)	(0.071)	(0.033)
Common border	0.206**	0.267**	-0.267***
	(0.091)	(0.108)	(0.063)
Colonial ties	0.041	0.068	0.000
	(0.100)	(0.124)	(0.033)
Common language	0.208**	0.263*	-0.021
	(0.106)	(0.144)	(0.041)
Free trade agreement	0.242**	0.270*	0.184***
	(0.119)	(0.148)	(0.050)
Common currency	-0.023	-0.014	0.159**
	(0.139)	(0.179)	(0.065)

- MNEs associated in both types of offshoring.
- Sensible gravity correlates: border, language, FTA.

Conclusions, takeaway messages

Conclusions, takeaway messages

- ► LSs decline significantly in 1995–2007, level-off in 2007–2014;
 - Skilled labor shares increase strongly and uniformly throughout.
 - Corollary: unskilled labor bears the burden (reminiscent of Wood 1995, Richardson 1995).
- Forward GVC integration explains part of 2001–2007 acceleration in decline in LSs.
 - Greater upstream, capital intensive intermediate input trade.
 - Changes in functional specialization.
- China accounts for much of this.
- Evidence for within-VC HO mechanics.
- ► Tasks not affected equally: mostly FAB, but also MGT and MKT.
- MNEs offshore both upstream input production and downstream assembly.

Bonus Slides

WLS (GDP)
$$y_{ct} = \alpha_c + \beta_t + \varepsilon_{ct}$$
: figure plots $\widehat{\beta}_t$, $\widehat{\beta}_{1983} = 0$

Proportionality assumptions in WIOD

$$V_f X = F_f V B Y = F_f V (I - A)^{-1} Y$$

- Imports of inputs allocated across industries in A using same proportions as domestic IO tables.
- ► VA intensity V does not depend on end use, global sourcing, etc.
 - de Gortari (2019): can have significant quantitative implications.
 - Puzzello (2012): not so much.
- Factor intensity F_f does not depend on end use, global sourcing, etc.
 - ▶ We know: exporters more capital intensive, skill intensive.
 - Ignoring this may under-estimate the role of globalization (lots of lit.).

Back to data

Labor shares: 1995-2007 decrease, 2007-2014 increase

- ► 1995-2007: avg decline 2.5pp. 2007-2014: avg increase 1pp.
- Very similar pattern in PWT data.

GVCs: 1995-2007 deepening, 2007-2014 slowdown

 forward^o = share of payments to domestic factors in o that originate from supplying inputs to foreign industries (forward algebra).

▶ 1995–2007 deepening +3pp; 2007–2014 slowdown +0.5pp.

Forward foreign GVC intensity

- Define $vby^{od} = \sum_i \sum_j (vby)_{ij}^{od}$.
- forward^o = share of payments to domestic factors in o that originate in foreign industries

$$\textit{forward}^{o} = \sum_{d \neq o} \frac{(\textit{vby})^{od}}{\textit{GDP}^{o}} = \sum_{d \neq o} \frac{(\textit{vby})^{od}}{\sum_{d} (\textit{vby})^{od}}$$

- GDP^o = total payments to primary factors *located* in *o*, originating from supplying services to anywhere in the world.
- Similar trends for $\Delta backward^o$ (offshoring in VA terms).

Back to forward GVC figure

Technical change

- Price of investment declines Pinv figure.
- ► Karababounis & Nieman (2014): $P_{inv} \downarrow + \widehat{EoS}_{K,N} > 1 \Longrightarrow LS \downarrow$.
- ► Oberfield & Raval (2014): EoS_{K,N} < 1 in manufacturing ⇒ KN mechanism cannot explain decline in LS in manufacturing.</p>
- Glover & Short (2020): KN miscalculate rental rate; correction gives EoS_{K,N} < 1.</p>
- We don't take a stand in this debate; we just control for changes in price of investment.

Back to endogeneity

		Percent in GDP											
-	K income from domestic industries	L income from domestic industries	K income from foreign industries	L income from foreign industries	K income (domestic + foreign)	L income (domestic + foreign)	Income from domestic industries	Income from foreign industries					
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)					
1995	35.01	56.11	3.48	5.40	38.49	61.51	91.12	8.88					
2007	35.88	52.39	5.06	6.67	40.94	59.06	88.27	11.73					
Change	0.87	-3.72	1.57	1.27	2.45	-2.45	-2.84	2.84					

- ▶ Factor payments become more reliant on GVC participation (7,8).
- ▶ K-intensity increases both in domestic VCs (1,2) and GVCs (3,4).
- Of $\Delta LS = -2.45$:
 - $\Delta V_f \Longrightarrow -1.06$, within-industry changes.
 - $\Delta Y \implies -0.44$, due to shift towards foreign demand.
 - $\Delta B \Longrightarrow -0.47$, due to changes in supply chains.

		1995		Δ1995-2007			
	from domestic industries (1)	from foreign industries (2)	Domestic + foreign (3)	from domestic industries (4)	from foreign industries (5)	Domestic + foreign (6)	
Value chains (B)							
Domestic	55.99	0	55.99	-1.59	0	-1.59	
Bilateral trade	0	4.52	4.52	0	0.42	0.42	
Complex GVCs	0.12	0.88	1.00	0.05	0.64	0.70	
Total	56.11	5.40	61.51	-1.53	1.07	-0.47	

• $\Delta B = -0.47$ (changes in supply chains) :

- Due to shift from domestic VCs ($\Delta B^d = -1.59$)
- to foreign VCs ($\Delta B^x + \Delta B^g = 0.42 + 0.70$).
- Within foreign VCs, $\Delta B^g = 62\%$ of $\Delta B^x + \Delta B^g$.
- Upshot: study both within-industry and aggregate ΔLS .

Composition or within-industry variation?

• Decompose true changes in factor shares $\Delta(V_f BY)$

$$V_{f2}B_2Y_2 - V_{f1}B_1Y_1 = \Delta V_fB_1Y_1 + V_{f1}\Delta BY_1 + V_{f1}B_1\Delta Y + V_{f1}\Delta B\Delta Y + \Delta V_fB_1\Delta Y + \Delta V_f\Delta BY_1 + \Delta V_f\Delta B\Delta Y$$

- Δ denotes the element-by-element change operator.
- Counterfactuals:
 - Changes only in V_f (within-industry): $\Delta V_f B_1 Y_1$
 - Changes only in *B* (composition, I/O): $V_{f1}\Delta B Y_1$
 - Changes only in Y (composition, demand): $V_{f1}B_1\Delta \mathbf{Y}$
 - Changes only in BY (composition, overall):

$$V_{f1}\Delta(\mathbf{BY}) = V_{f1}\Delta\mathbf{B}Y_1 + V_{f1}B_1\Delta\mathbf{Y} + V_{f1}\Delta\mathbf{B}\Delta\mathbf{Y}$$

Report weighted (by GDP) averages of true and counterfactuals.

Sources of declines in labor shares, 1995-2007

	Shares in GDP								
	K income	L income							
	from	from	K income	L income	K income	L income	Income from	Income from	
	domestic	domestic	from foreign	from foreign	(domestic +	(domestic +	domestic	foreign	
	industries	industries	industries	industries	foreign)	foreign)	industries	industries	
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	
Levels									
VBY 1995	35.01	56.11	3.48	5.40	38.49	61.51	91.12	8.88	
VBY 2007	35.88	52.39	5.06	6.67	40.94	59.06	88.27	11.73	
Changes									
V2007*B1995*Y1995 - VBY 1995	0.95	-0.77	0.11	-0.29	1.06	-1.06	0.18	-0.18	
V1995*B2007*Y1995 - VBY 1995	-0.66	-1.53	1.13	1.07	0.47	-0.47	-2.19	2.19	
V1995*B1995*Y2007 - VBY 1995	-0.12	-1.65	0.56	1.21	0.44	-0.44	-1.77	1.77	
V1995*B2007*Y2007 - VBY 1995	-0.42	-2.71	1.28	1.85	0.86	-0.86	-3.13	3.13	
VBY 2007 - VBY 1995	0.87	-3.72	1.57	1.27	2.45	-2.45	-2.84	2.84	

- Globalization = increase in foreign-sourced income (col. 8, Δ forward).
 - Globalization associated with composition ΔBY , not ΔV .
 - forward (level) and Δ forward more capital intensive (cols 1–4).
- Decline in LS associated with
 - within-industry $\Delta V = -1.06$ pp, 46% of drop in LS.
 - composition/globalization $\Delta BY = -0.86$ pp, 38%.

Sources of increases in labor shares, 2007-2014

	Shares in GDP							
	K income	L income						
	from	from	K income	L income	K income	L income	Income from	Income from
	domestic	domestic	from foreign	from foreign	(domestic +	(domestic +	domestic	foreign
	industries	industries	industries	industries	foreign)	foreign)	industries	industries
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Levels								
VBY 2007	38.17	50.68	5.43	5.71	43.61	56.39	88.85	11.15
VBY 2014	37.20	51.10	5.33	6.37	42.53	57.47	88.30	11.70
Changes								
V2014*B2007*Y2007 - VBY 2007	-1.02	1.04	-0.35	0.33	-1.37	1.37	0.02	-0.02
V2007*B2014*Y2007 - VBY 2007	-0.30	-0.06	0.27	0.09	-0.03	0.03	-0.36	0.36
V2007*B2007*Y2014 - VBY 2007	-0.17	-0.81	0.31	0.66	0.15	-0.15	-0.97	0.97
V2007*B2014*Y2014 - VBY 2007	-0.14	-0.46	0.22	0.37	0.08	-0.08	-0.59	0.59
VBY 2014 - VBY 2007	-0.97	0.42	-0.10	0.65	-1.07	1.07	-0.55	0.55

- Increase in LS = +1.07pp, in contrast to decline in 1995–2007.
- Most of this not related to composition/globalization.
 - ΔV accounts for more than 100% of increase in LS.
 - ► ΔBY accounts for -8% of increase; globalization still associated with decline in LS, but much less due to slowdown in GVC deepening.

Sources of increases in skilled labor shares, 1995-2007

		Shares in payments to labor						
			(domestic + foreign)					
	High skill labor	Low skill labor	High skill labor	Low skill labor	High skill labor	Low skill labor		
	income from	income from	income from	income from	income	income		
	domestic	domestic	foreign	foreign	(domestic +	(domestic +	High skill labor	Low skill labor
	industries	industries	industries	industries	foreign)	foreign)	income	income
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Levels								
VBY 1995	17.44	38.67	1.40	4.00	18.83	42.68	30.62	69.38
VBY 2007	20.76	31.63	2.33	4.34	23.09	35.97	39.10	60.90
Changes								
V2007*B1995*Y1995 - VBY 1995	3.64	-4.42	0.33	-0.62	3.97	-5.03	7.11	-7.11
V1995*B2007*Y1995 - VBY 1995	0.01	-1.54	0.27	0.80	0.27	-0.74	0.68	-0.68
V1995*B1995*Y2007 - VBY 1995	-0.18	-1.46	0.35	0.86	0.17	-0.61	0.50	-0.50
V1995*B2007*Y2007 - VBY 1995	-0.12	-2.59	0.55	1.29	0.43	-1.30	1.15	-1.15
VBY 2007 - VBY 1995	3.33	-7.04	0.93	0.34	4.26	-6.70	8.48	-8.48

- ▶ Increase in skilled labor share in GDP (col. 5), in labor income (col. 7).
- Most of this not related to composition/globalization.
 - ΔV accounts for 93% (GDP) or 83% (labor income).
 - ΔBY accounts for 10% (GDP) or 19% (labor income).
 - Forward, ∆forward and domestic counterparts roughly equally skill intensive (not shown).

Taking stock of decompositions/counterfactuals

- ► Composition (∆GVCs, ∆global demand patterns) accounts for similar share of drop in LS in 1995–2007 as within industries changes.
- ▶ Within industries changes account for increase in LS in 2007–2014.
 - ► Globalization still pushes LS down in 2007–2014, but not much.
- ▶ Within industries changes account for increase in skilled LS.
- Magnitudes of changes within manufacturing larger, but similar relative importance of various dimensions (dropped to ease presentation).
- China accounts for much of compositional changes, but not within-industry changes (omitted for brevity).

VA share in gross output and downstreamness

$$extsf{vash}_{ic} = \delta_1 D_{ic} + \delta_2 D_{ic}^2 + \lambda_1 U_{ic} + \lambda_2 U_{ic}^2 + \mu_i + \mu_c + arepsilon_{ic}$$

Back to IV discussion