The Transmission of Keynesian Supply Shocks*

Ambrogio Cesa-Bianchi

Bank of England, CEPR, and CfM

Andrea Ferrero

University of Oxford, CEPR & CfM

*This paper does not necessarily represent the views of the Bank of England or of any of its Committees.

Introd	inction.

- Two sectors: cinemas and popcorn
- Negative supply shock affects cinemas only
 - * Excess demand for cinemas, price increases

- Two sectors: cinemas and popcorn
- Negative supply shock affects cinemas only
 - * Excess demand for cinemas, price increases \rightarrow What happens to popcorn?

- Two sectors: cinemas and popcorn
- Negative supply shock affects cinemas only
 - * Excess demand for cinemas, price increases → What happens to popcorn?
- **Substitutability:** Consumers switch from watching movies to eating popcorn at home
 - * Excess demand for popcorn, price increases

- Two sectors: cinemas and popcorn
- Negative supply shock affects cinemas only
 - * Excess demand for cinemas, price increases → What happens to popcorn?
- **Substitutability:** Consumers switch from watching movies to eating popcorn at home
 - * Excess demand for popcorn, price increases

Complementarity: Nobody wants popcorn since people eat popcorn only at the movies

* Deficient demand for popcorn, price falls

- Two sectors: cinemas and popcorn
- Negative supply shock affects cinemas only
 - * Excess demand for cinemas, price increases → What happens to popcorn?
- **Substitutability:** Consumers switch from watching movies to eating popcorn at home
 - * Excess demand for popcorn, price increases

Complementarity: Nobody wants popcorn since people eat popcorn only at the movies

* Deficient demand for popcorn, price falls

► Sectoral supply shocks can lead to aggregate demand deficiencies → Keynesian Supply

What We Do

- **Question:** Do the data support notion of Keynesian supply shocks?
 - * And offer evidence about their transmission mechanism?

What We Do

- **Question:** Do the data support notion of Keynesian supply shocks?
 - * And offer evidence about their transmission mechanism?

Approach:

- 1. Multi-sector factor-augmented VAR
- 2. New-Keynesian multi-sector DSGE model

What We Do

- **Question:** Do the data support notion of Keynesian supply shocks?
 - * And offer evidence about their transmission mechanism?

Approach:

- 1. Multi-sector factor-augmented VAR
- 2. New-Keynesian multi-sector DSGE model
- Main Result: Data consistent with Keynesian supply view
 - * General feature of business cycles (not driven by Covid shock)
 - * Key role of complementarities + heterogeneity in price stickiness and production network

► Keynesian supply and aggregate demand shocks imply same restrictions on aggregate data...

* Aggregate output and aggregate prices move in same direction

Keynesian supply and aggregate demand shocks imply same restrictions on aggregate data...

- * Aggregate output and aggregate prices move in same direction
- ...But imply different restrictions on sectoral data

Keynesian supply and aggregate demand shocks imply same restrictions on aggregate data...

- * Aggregate output and aggregate prices move in same direction
- ...But imply different restrictions on sectoral data
 - [1] Demand: Output and prices move in same direction in all sectors

- Keynesian supply and aggregate demand shocks imply same restrictions on aggregate data...
 - * Aggregate output and aggregate prices move in same direction
- ...But imply different restrictions on sectoral data
 - [1] Demand: Output and prices move in same direction in all sectors
 - [2] Keynesian supply: Output and prices move in opposite direction in one or more sectors

Those hit by the

- Keynesian supply and aggregate demand shocks imply same restrictions on aggregate data...
 - * Aggregate output and aggregate prices move in same direction
- ...But imply different restrictions on sectoral data
 - [1] Demand: Output and prices move in same direction in all sectors
 - [2] Keynesian supply: Output and prices move in opposite direction in one or more sectors

In practice

- Identify a shock that moves aggregate output and prices in same direction in a VAR
- Estimate response of sectoral output and prices to such shock to disentangle [1] vs. [2]

Those hit by the

Literature and Contribution

Supply shocks and complementarities

* Corsetti, Dedola and Leduc (2008); Guerrieri, Lorenzoni, Straub and Werning (2020)

Granular fluctuations and production networks

* Gabaix (2011); Foerster, Sarte and Watson (2011); Smets, Tielens and Van Hove (2018); Baqaee and Farhi (2020a, 2020b); Gabaix and Koijen (2020)

Supply vs. demand shocks in the pandemic

* Bekaert, Engstrom and Ermolov (2020); Brinca, Duarte and Faria-e-Castro (2020); del Rio-Chanona, Mealy, Pichler, Lafond and Farmer (2020), Bilbiie and Melitz (2020)

A Multi-Sector Factor-Augmented VAR

A Multi-Sector Factor-Augmented VAR

Economy consists of N sectors indexed by i = 1, 2, ..., N

• Model sectoral output growth (y_{it}) and inflation (π_{it}) through a factor-augmented VAR(1)

$$x_{it} = \Phi_{i0} + \Phi_{i1}x_{it-1} + \Gamma_i f_t + u_{it}$$
 $i = 1, 2, ..., N$

where

- * $x_{it} \equiv [y_{it} \ \pi_{it}]'$
- * f_t is a vector of unobserved factors common across sectors
- * uit is a vector of idiosyncratic (i.e. cross-sectionally weakly correlated) sectoral innovations

All results

to VAR(P)

A Multi-Sector Factor-Augmented VAR

Economy consists of N sectors indexed by i = 1, 2, ..., N

• Model sectoral output growth (y_{it}) and inflation (π_{it}) through a factor-augmented VAR(1)

$$x_{it} = \Phi_{i0} + \Phi_{i1}x_{it-1} + \Gamma_i f_t + u_{it}$$
 $i = 1, 2, ..., N$

where

*
$$x_{it} \equiv [y_{it} \ \pi_{it}]'$$

- * f_t is a vector of unobserved factors common across sectors
- * uit is a vector of idiosyncratic (i.e. cross-sectionally weakly correlated) sectoral innovations

Note: Common factors (elements of f_t) capture *all* cross-sectional comovement in x_{it} due to [1] Truly aggregate shocks (e.g. TFP, aggregate demand, etc)

[2] Sector-specific shocks with aggregate effects (Foerster, Sarte and Watson, 2011)

All results extend to VAR (p)

A Multi-Sector Factor-Augmented VAR

Economy consists of N sectors indexed by i = 1, 2, ..., N

• Model sectoral output growth (y_{it}) and inflation (π_{it}) through a factor-augmented VAR(1)

$$x_{it} = \Phi_{i0} + \Phi_{i1}x_{it-1} + \Gamma_i f_t + u_{it}$$
 $i = 1, 2, ..., N$

where

*
$$x_{it} \equiv [y_{it} \ \pi_{it}]'$$

- * f_t is a vector of unobserved factors common across sectors
- * uit is a vector of idiosyncratic (i.e. cross-sectionally weakly correlated) sectoral innovations

- ldentification of f_t 'by aggregation' as in Cesa-Bianchi, Pesaran and Rebucci (2020)
 - * Factors can be approximated by cross-sectional averages of observables (Skip derivations

All results extend to VAR (p)

Notation:

- * Consider set of sectoral weights $w = \{w_1, w_2, ..., w_N\}$
- * Denote weighted average of generic variable z_{it} across all sectors *i* with $\bar{z}_t = \sum_{i=1}^{N} w_i z_{it}$
- * Denote vector of cross-sectional weighted averages with $\bar{x}_t \equiv [\bar{y}_t \ \bar{\pi}_t]'$

Notation:

- * Consider set of sectoral weights $w = \{w_1, w_2, ..., w_N\}$
- * Denote weighted average of generic variable z_{it} across all sectors *i* with $\bar{z}_t = \sum_{i=1}^{N} w_i z_{it}$
- * Denote vector of cross-sectional weighted averages with $\bar{x}_t \equiv [\bar{y}_t \ \bar{\pi}_t]'$

Key assumption: Sectoral innovations *u_{it}* are cross-sectionally weakly correlated

$$\bar{u}_t = \sum_{i=1}^N w_i u_{it} = O_p\left(N^{-\frac{1}{2}}\right) \qquad \qquad \text{Details}$$

Solve for x_{it} in terms of current and past aggregate and sectoral shocks

$$x_{it} = \mu_i + \sum_{\ell=0}^{\infty} \Phi_{i_1}^{\ell} \Gamma_i f_t + \sum_{\ell=0}^{\infty} \Phi_{i_1}^{\ell} u_{it}$$

Solve for x_{it} in terms of current and past aggregate and sectoral shocks

$$x_{it} = \mu_i + \sum_{\ell=0}^{\infty} \Phi_{i_1}^{\ell} \Gamma_i f_t + \sum_{\ell=0}^{\infty} \Phi_{i_1}^{\ell} u_{it}$$

Pre-multiply both sides by w_i and sum equation by equation over i

$$\bar{x}_t = \bar{\mu} + \sum_{\ell=0}^{\infty} \sum_{i=0}^{N} w_i \Phi_i^{\ell} \Gamma_i f_{t-\ell} + \sum_{\ell=0}^{\infty} \sum_{i=0}^{N} w_i \Phi_{i1}^{\ell} u_{i\ell}$$

Solve for x_{it} in terms of current and past aggregate and sectoral shocks

$$x_{it} = \mu_i + \sum_{\ell=0}^{\infty} \Phi_{i_1}^{\ell} \Gamma_i f_t + \sum_{\ell=0}^{\infty} \Phi_{i_1}^{\ell} u_{it}$$

Pre-multiply both sides by w_i and sum equation by equation over i

$$\bar{x}_t = \bar{\mu} + \sum_{\ell=0}^{\infty} \sum_{i=0}^{N} w_i \Phi_i^{\ell} \Gamma_i f_{t-\ell} + \sum_{\ell=0}^{\infty} \sum_{i=0}^{N} w_i \Phi_{i1}^{\ell} u_{i\ell}$$

• Weak correlation (+ regularity conditions on Φ , Γ_i , and w) imply

$$\bar{x}_t = \bar{\mu} + \Omega(L)\Gamma f_t + O(N^{-\frac{1}{2}})$$

See all assumptions

Solve for *x_{it}* in terms of current and past aggregate and sectoral shocks

$$x_{it} = \mu_i + \sum_{\ell=0}^{\infty} \Phi_{i_1}^{\ell} \Gamma_i f_t + \sum_{\ell=0}^{\infty} \Phi_{i_1}^{\ell} u_{it}$$

Pre-multiply both sides by w_i and sum equation by equation over i

$$\bar{x}_t = \bar{\mu} + \sum_{\ell=0}^{\infty} \sum_{i=0}^{N} w_i \Phi_i^{\ell} \Gamma_i f_{t-\ell} + \sum_{\ell=0}^{\infty} \sum_{i=0}^{N} w_i \Phi_{i1}^{\ell} u_{i\ell}$$

• Weak correlation (+ regularity conditions on Φ , Γ_i , and w) imply

$$\bar{x}_t = \bar{\mu} + \Omega(L)\Gamma f_t + O(N^{-\frac{1}{2}})$$

See all assumptions

Approximate common factors by inverting and truncating previous expression

$$f_t = \boldsymbol{\theta} + \Theta_0 \bar{x}_t + \sum_{\ell=1}^k \Theta_\ell \bar{x}_{t-\ell} + O(N^{-\frac{1}{2}})$$

Unobserved factor model can be approximated by

$$x_{it} = \varphi_{i0} + \Phi_{i1} x_{it-1} + \Xi_{i0} \bar{x}_t + \sum_{\ell=1}^k \Xi_{i\ell} \bar{x}_{t-\ell} + u_{it}$$

Unobserved factor model can be approximated by

$$x_{it} = \varphi_{i0} + \Phi_{i1}x_{it-1} + \Xi_{i0}\bar{x}_t + \sum_{\ell=1}^k \Xi_{i\ell}\bar{x}_{t-\ell} + u_{it}$$

▶ But how to interpret loadings Ξ_{io} given elements of \bar{x}_t are correlated?

Unobserved factor model can be approximated by

$$x_{it} = \varphi_{i0} + \Phi_{i1}x_{it-1} + \Xi_{i0}\bar{x}_t + \sum_{\ell=1}^k \Xi_{i\ell}\bar{x}_{t-\ell} + u_{it}$$

▶ But how to interpret loadings \equiv_{io} given elements of \bar{x}_t are correlated?

[1] Rotate \bar{x}_t with a SVAR to extract orthogonal innovations to common factors

$$\bar{x}_t = A_0 + \sum_{\ell=1}^k A_\ell \bar{x}_{t-\ell} + Be_t$$

[2] Then plug rotated \bar{x}_t back in sectoral VAR

• Compute cross-sectional averages of the observables $\bar{x}_t = \sum_{i=1}^{N} w_i x_{it}$

• Compute cross-sectional averages of the observables $\bar{x}_t = \sum_{i=1}^{N} w_i x_{it}$

Estimate aggregate VAR and identify orthogonal innovations *e*_t to the common factors

$$\bar{x}_t = A_0 + \sum_{\ell=1}^k A_\ell \bar{x}_{t-\ell} + B e_t$$

• Compute cross-sectional averages of the observables $\bar{x}_t = \sum_{i=1}^{N} w_i x_{it}$

Estimate aggregate VAR and identify orthogonal innovations *e*_t to the common factors

$$\bar{x}_t = A_0 + \sum_{\ell=1}^k A_\ell \bar{x}_{t-\ell} + B e_t$$
 Aggregate shocks

• Compute cross-sectional averages of the observables $\bar{x}_t = \sum_{i=1}^{N} w_i x_{it}$

Estimate aggregate VAR and identify orthogonal innovations *e*_t to the common factors

$$\bar{x}_t = A_0 + \sum_{\ell=1}^k A_\ell \bar{x}_{t-\ell} + B[e_t]$$
 Aggregate shocks
Sectoral shocks with aggregate effects

• Compute cross-sectional averages of the observables $\bar{x}_t = \sum_{i=1}^{N} w_i x_{it}$

Estimate aggregate VAR and identify orthogonal innovations *e*^{*t*} to the common factors

$$\bar{x}_{t} = A_{0} + \sum_{\ell=1}^{k} A_{\ell} \bar{x}_{t-\ell} + B \underbrace{e_{t}}_{\text{et}} \xrightarrow{\text{Aggregate shocks}}_{\text{aggregate effects}}$$

Estimate sectoral VARs and recover sectoral loadings Λ_i to common shocks e_t

$$x_{it} = \Psi_{i0} + \Phi_{i1}x_{i,t-1} + \Lambda_i \hat{e}_t + \sum_{\ell=1}^k \Psi_{i\ell}\bar{x}_{t-\ell} + u_{it}$$

• Compute cross-sectional averages of the observables $\bar{x}_t = \sum_{i=1}^{N} w_i x_{it}$

Estimate aggregate VAR and identify orthogonal innovations *e*^{*t*} to the common factors

$$\bar{x}_{t} = A_{0} + \sum_{\ell=1}^{k} A_{\ell} \bar{x}_{t-\ell} + B[e_{t}] \xrightarrow{\text{Aggregate shocks}} Sectoral shocks with aggregate effects}$$

Estimate sectoral VARs and recover sectoral loadings Λ_i to common shocks e_t

$$x_{it} = \Psi_{i0} + \Phi_{i1}x_{i,t-1} + \bigwedge_{i\hat{e}_{t}} + \sum_{\ell=1}^{k} \Psi_{i\ell}\bar{x}_{t-\ell} + u_{it}$$
Main Object
of interest

Empirical Results
Data

- **Data:** Quarterly real gross output and its deflator at sectoral level (source: BEA)
 - * 64 sectors (NAICS 3-digits, ex 'Oil and Petroleum'), from 2005Q1 to 2019Q1

Data

Data: Quarterly real gross output and its deflator at sectoral level (source: BEA)

* 64 sectors (NAICS 3-digits, ex 'Oil and Petroleum'), from 2005Q1 to 2019Q1

Sectoral output growth

Data

> Data: Quarterly real gross output and its deflator at sectoral level (source: BEA)

* 64 sectors (NAICS 3-digits, ex 'Oil and Petroleum'), from 2005Q1 to 2019Q1

Sectoral inflation

▶ Bayesian VAR(1) for aggregate output growth (\bar{y}_t) and inflation $(\bar{\pi}_t)$

 $\bar{x}_t = A_0 + A_1 \bar{x}_{t-1} + u_t$

▶ Bayesian VAR(1) for aggregate output growth (\bar{y}_t) and inflation $(\bar{\pi}_t)$

 $\bar{x}_t = A_0 + A_1 \bar{x}_{t-1} + u_t$

ldentification of $Be_t = u_t$ with sign restrictions

	Demand-like shock	Supply shock
Aggregate output growth	+	+
Aggregate inflation	+	-

Introduction			

▶ Bayesian VAR(1) for aggregate output growth (\bar{y}_t) and inflation $(\bar{\pi}_t)$

 $\bar{x}_t = A_0 + A_1 \bar{x}_{t-1} + u_t$

► I0	dentification of $Be_t = u_t$ with sign re-	estrictions	AGGregate demand or Keynesian supply	
	De	emand-like shoc	ck Supply shock	
	Aggregate output growth	+	+	
	Aggregate inflation	+	-	

▶ Bayesian VAR(1) for aggregate output growth (\bar{y}_t) and inflation $(\bar{\pi}_t)$

 $\bar{x}_t = A_0 + A_1 \bar{x}_{t-1} + u_t$

Ident	ification of $Be_t = u_t$ with si	ign restrictions	7 Aggregate demand or Keynesian supply
		Demand-like shoc	k Supply shock
	Aggregate output growth	+	+
	Aggregate inflation	+	-

Inference

- * Sign restrictions as in Uhligh(2005) and Rubio-Ramirez, Waggoner and Zha (2010)
- * Gaussian-inverse Wishart / Haar prior with 5, 000 draws

> For each draw and associated sign restriction rotation estimate

 $x_{it} = \Psi_{i0} + \Phi_{i1}x_{i,t-1} + \Lambda_i \hat{e}_t + \Psi_{i1}\bar{x}_{t-1} + u_{it}$ for i = 1, 2, ..., N

> For each draw and associated sign restriction rotation estimate

 $x_{it} = \Psi_{i0} + \Phi_{i1}x_{i,t-1} + \Lambda_i \hat{e}_t + \Psi_{i1}\bar{x}_{t-1} + u_{it}$ for i = 1, 2, ..., N

> For each draw and associated sign restriction rotation estimate

 $x_{it} = \Psi_{i0} + \Phi_{i1}x_{i,t-1} + \Lambda_i \hat{e}_t + \Psi_{i1}\bar{x}_{t-1} + u_{it}$ for i = 1, 2, ..., N

How do sectoral output and inflation comove in response to demand-like shocks?

Plot distribution of loadings $\Lambda_i \equiv [\lambda_{i,y} \lambda_{i,\pi}]$

16

> For each draw and associated sign restriction rotation estimate

 $x_{it} = \Psi_{i0} + \Phi_{i1}x_{i,t-1} + \Lambda_i \hat{e}_t + \Psi_{i1}\bar{x}_{t-1} + u_{it}$ for i = 1, 2, ..., N

- ▶ Plot distribution of loadings $\Lambda_i \equiv [\lambda_{i,y} \lambda_{i,\pi}]$
 - * Pool loadings across all sectors and draws (64 sectors × 5, 000 draws)

> For each draw and associated sign restriction rotation estimate

 $x_{it} = \Psi_{i0} + \Phi_{i1}x_{i,t-1} + \Lambda_i \hat{e}_t + \Psi_{i1}\bar{x}_{t-1} + u_{it}$ for i = 1, 2, ..., N

- ▶ Plot distribution of loadings $\Lambda_i \equiv [\lambda_{i,y} \lambda_{i,\pi}]$
 - * Pool loadings across all sectors and draws (64 sectors × 5, 000 draws)
 - * Normalize output loadings $\lambda_{i,v}$ to be negative (account for a few counter-cyclical sectors)

> For each draw and associated sign restriction rotation estimate

 $x_{it} = \Psi_{i0} + \Phi_{i1}x_{i,t-1} + \Lambda_i \hat{e}_t + \Psi_{i1}\bar{x}_{t-1} + u_{it}$ for i = 1, 2, ..., N

- ▶ Plot distribution of loadings $\Lambda_i \equiv [\lambda_{i,y} \lambda_{i,\pi}]$
 - * Pool loadings across all sectors and draws (64 sectors × 5, 000 draws)
 - * Normalize output loadings $\lambda_{i,y}$ to be negative (account for a few counter-cyclical sectors)
 - * Plot distribution of inflation loadings $\lambda_{i,\pi}$ associated with normalized $\lambda_{i,y}$

Distribution of the Sectoral Loadings Λ_i

Almost 40% of inflation loadings $\lambda_{i,\pi}$ lie on 'wrong' side of distribution

* Not consistent with a strict view of aggregate demand shocks

Empirical Results

Distribution of the Sectoral Loadings Λ_i

Interpretation: Evidence supportive of Keynesian supply transmission mechanism

* VAR mis-classifies sectoral supply shock (+ complementarities) as aggregate demand shock

Two Examples

Distributions of estimated loadings in response to a demand shock in two sectors

- * Results not driven by tail observations
- * In 16 sectors, not even one out of 5, 000 loadings behaves 'demand-like'

Robustness

- Including 2020Q1 600
- Value added instead of gross output 600
- Richer dynamics (4 lags)
- Specification in levels (4 lags)
- Identify oil shocks alongside demand and supply

Adding EBP to aggregate/sectoral VARs 600

A Multi-Sector DSGE Model

A Multi-Sector DSGE Model

• Objective: Validate empirical results (and interpretation) with structural model

A Multi-Sector DSGE Model

• Objective: Validate empirical results (and interpretation) with structural model

- Multi-sector DSGE model with production network
 - * Similar to Pasten, Schoenle and Weber (2020) and Ghassibe (2021)
 - * Heterogeneity in price stickiness
 - * Asymmetric input-output linkages
 - * Complementarities in consumption and production

Model-Based Validation Exercise

Calibrate model to same 64 sectors as in empirical analysis

- * Input/output linkages and intermediates intensity (BEA)
- * Frequency of price adjustment stickiness (BLS)
- Elasticity of substitution across intermediates $\eta^{Z} = 0.5$ Elasticity of substitution across goods $\eta^{C} = 1$

Pasten, Schoenle and Weber (2020)

 $\left.\right>$ Baqaee and Farhi (2020a,B)

Model-Based Validation Exercise

Calibrate model to same 64 sectors as in empirical analysis

- * Input/output linkages and intermediates intensity (BEA)
- * Frequency of price adjustment stickiness (BLS)
- * Elasticity of substitution across intermediates $\eta^{Z} = 0.5$ * Elasticity of substitution across goods $\eta^{C} = 1$

Apply our empirical methodology to simulated data on sectoral gross output and its deflator

Pasten, Schoenle and Weber (2020)

Model-Based Validation Exercise

Calibrate model to same 64 sectors as in empirical analysis

- Input/output linkages and intermediates intensity (BEA)
- * Frequency of price adjustment stickiness (BLS)
- * Elasticity of substitution across intermediates $\eta^{Z} = 0.5$ Bagaee and Farbi (2020a B)

Pasten, Schoenle and Weber (2020)

Apply our empirical methodology to simulated data on sectoral gross output and its deflator

Experiments Exogenous processes driving model's dynamics

- 1. Sectoral TFP shocks
- 2. Sectoral demand shocks (weights in consumption bundle)
- 3. Aggregate demand shocks

Simulated Data Driven by Sectoral TFP Shocks

- Distribution of loadings in line with empirical evidence
 - * Share of wrong loadings 41%
 - * Number of sectors with wrong loadings 21

Simulated Data Driven by Sectoral Demand Shocks

- > Distribution of loadings weakly in line with empirical evidence
 - * Share of wrong loadings 6%
 - * Number of sectors with wrong loadings 3

Simulated Data Driven by Aggregate Demand Shocks

- Distribution of loadings inconsistent with empirical evidence
 - * Share of wrong loadings o%
 - * Number of sectors with wrong loadings o

Inspecting the Mechanism

- Compute the response of aggregate inflation to each sectoral TFP shock
- > What dimensions of sectoral heterogeneity drive the Keynesian supply transmission?

Inspecting the Mechanism

- Compute the response of aggregate inflation to each sectoral TFP shock
- What dimensions of sectoral heterogeneity drive the Keynesian supply transmission?

Inspecting the Mechanism

- Compute the response of aggregate inflation to each sectoral TFP shock
- > What dimensions of sectoral heterogeneity drive the Keynesian supply transmission?

Conclusions

> Data supportive of Keynesian supply transmission of sectoral shocks

* Demand-like shocks derived from aggregate data contaminated by Keynesian supply shocks

Conclusions

> Data supportive of Keynesian supply transmission of sectoral shocks

* Demand-like shocks derived from aggregate data contaminated by Keynesian supply shocks

Why do we care?

- * Optimal policy mix in response to sectoral shocks (like Covid-19)
 - + Tilt balance in favor of fiscal policy? (Guerrieri, Lorenzoni, Straub and Werning, 2020; Woodford, 2020)
- * Beyond pandemic, debate about sources of business cycle fluctuations
 - + Granular shocks and production networks (Gabaix, 2011; Baqaee and Farhi, 2020a, b)

29

Conclusions

> Data supportive of Keynesian supply transmission of sectoral shocks

* Demand-like shocks derived from aggregate data contaminated by Keynesian supply shocks

Why do we care?

- * Optimal policy mix in response to sectoral shocks (like Covid-19)
 - + Tilt balance in favor of fiscal policy? (Guerrieri, Lorenzoni, Straub and Werning, 2020; Woodford, 2020)
- * Beyond pandemic, debate about sources of business cycle fluctuations
 - + Granular shocks and production networks (Gabaix, 2011; Baqaee and Farhi, 2020a, b)

Future research: Identification of sectoral shocks

- * Estimation of multi-sector DSGE model
- Cross-country analysis

29

Appendix

A1: Assumptions

Weights and Sectoral Innovations: Theory

Weights satisfy smallness conditions

$$||w|| = O(N^{-1})$$
 and $\frac{w_i}{||w||} = O(N^{-1/2})$

Sectoral innovations *uit* are cross-sectionally weakly correlated

 $\varrho_{\max}(\Sigma_u) = O(1)$

where $\rho_{\max}(\Sigma_u)$ denotes largest eigenvalue of covariance matrix $\Sigma_u = Var([u_{1t} \ u_{2t} \ \dots \ u_{Nt}]')$

Weights and Sectoral Innovations: Data

Back
Common Factors, Factor Loadings and Coefficients

- The unobservable common factors ft have zero means and finite variances, are serially uncorrelated, and are distributed independently of sector-specific shocks uit for all i and t
- The **factor loadings** (i.e. the elements of Γ_i for i = 1, 2, ..., N) are distributed independently across *i* and from f_t for all *i* and *t*. Denoting a generic element of Γ_i by γ_i , the loadings satisfy

$$\gamma = \sum_{i=1}^{N} w_i \gamma_i \neq 0$$
 and $\sum_{i=1}^{N} \gamma_i^2 = O(N).$

In addition, $\Gamma \equiv \mathbb{E}[\Gamma_i]$ is invertible

► **Coefficients:** The constants Φ_{i0} are bounded, the autoregressive coefficients Φ_{i1} are independently distributed for all *i*, the support of $\rho(\Phi_{ij})$ lies strictly inside the unit circle, for i = 1, 2, ..., N, and the inverse of the polynomial $\Omega(L) = \sum_{\ell=0}^{\infty} \Omega_{\ell} L^{\ell}$, where $\Omega_{\ell} = \mathbb{E}(\Phi_{i}^{\ell})$, exists and has exponentially decaying coefficients, namely $||\Omega_{\ell}|| \le C_0 \rho^{\ell}$, with $0 < \rho < 1$

A2: Additional Results

Aggregate VAR: IRFs

nelize

A1: Assumption

Factor Loadings to 'Demand-Like' Shock (2020Q1)

Factor Loadings to 'Demand-Like' Shock (Value Added)

Factor Loadings to 'Demand-Like' Shock (4 lags)

Factor Loadings to 'Demand-Like' Shock (4 lags, Levels)

Factor Loadings to 'Demand-Like' Shock (Oil Shock)

Back

Factor Loadings to 'Demand-Like' Shock (EBP)

Back

A3: Model

Multi-Sector DSGE Model: Ingredients

- Continuum of monopolistically competitive firms j in sector k produce one variety
- > Varieties bundled into sectoral intermediate input and sectoral consumption good
- Each firm *j* employs CES aggregate of sectoral intermediate bundles
 - * Weights calibrated using input-output matrix
- Representative household consumes CES aggregate of sectoral consumption bundles
 - * Weights calibrated using sectoral data
- Intermediate good producers set prices on a staggered basis (Calvo, 1983)
- Competitive labor markets clear at sectoral level
- Complete financial markets
- Central bank sets interest rate according to feeback rule (Taylor, 1993)

Multi-Sector DSGE Model: Calibration

Parameter	Value/Source	Description
β	0.995	Individual discount factor
φ	2	Inverse Frisch elasticity of labor supply
ω_{ck}	Ghassibe (2021)	Consumption shares
ω_{kr}	Ghassibe (2021)	Input-Output coefficients
α_k	Ghassibe (2021)	Sectoral input shares
ξ _k	Pasten et al. (2020)	Price rigidity parameters
θ	6	Elasticity of substitution among varieties
η	0.5	Elasticity of substitution across sectors (intermediates)
η	1	Elasticity of substitution across sectors (final good)
$ ho_i$	0.75	Interest rate rule inertia
ϕ_{π}	1.5	Interest rate rule inflation feedback
ϕ_y	0.125	Interest rate rule output growth feedback
ρa	0.975	Persistence of sectoral TFP shocks
$ ho_b$	0.95	Persistence of aggregate demand shocks