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Abstract

The paper proposes a method to decompose the total uncertainty in a large panel of

time series into common and idiosyncratic components. The decomposition uses factors

extracted using standard econometric techniques appropriate for long, wide panels. The

factors extracted are then rotated to create a set of volatility factors that satisfy appro-

priate orthogonality conditions. The model proposed for common factor volatility is not

required to be fully heteroskedastic and so a subset of the rotated factors may be condition-

ally homoskedastic. Estimation of model parameters is described using either maximum

likelihood estimation or composite maximum likelihood estimation. The model is applied

to a set of monthly macroeconomic time series spanning 1959 until 2017. The data sup-

port between 2 and 4 volatility factors. These volatility factors drive the vast majority of

the dynamics of uncertainty. Measuring common factor variance provides a much sharper

measure of uncertainty than a measure based on the total volatility of the individual series.
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1 Introduction

The role of uncertainty in economics decisions has been an increasing focus over the past two

decades. Uncertainty can increase the probability of losses when investments are irreversible

and so may lead to large swings in aggregate activity. Recently, Baker, Bloom, and Davis

(2016) have introduced an index of policy uncertainty in an attempt to begin to quantify this

uncertainty. Jurado, Ludvigson, and Ng (2015) proposed using the volatility in a large number

of series to measure macroeconomic uncertainty. Their main measure of uncertainty is defined

as

Uyjt (h) =

√
E
[

(yjt+h − E [yjt+h|Ft])2
∣∣∣Ft]

which is the conditional volatility of the residual for a single series h periods in the future.

They then define aggregate uncertainty as

Uyt (h) = plimNy→∞

Ny∑
j=1

wjUyjt (h) = Ew

[
Uyjt (h)

]
.

This uncertainty measure makes use of simple techniques to estimate factors from long, wide

panels of macroeconomic time series (Bai and Ng 2002; Stock and Watson 2002). These models

posit that observable series are contemporaneously related to common factors so that

yit = Λ′ift + ηit.

Principal component analysis can be used to extract theses common factors up to some nor-

malization (scale and rotation).

The measurement of macroeconomics uncertainty has been an active field with many re-

cent contributions. Bijsterbosch and Guérin (2014) study period of very high uncertainty in a

panel framework using a regime switching model to capture the state of uncertainty. Jo and

Sekkel (2017) use a factor stochastic volatility model in a small panel of series that have fore-

2



casts available to measure uncertainty. They show that there is a strong factor and that this

factor is best identified using early vintage data. Rossi and Sekhposyan (2015) use mistakes

relative to historical accuracy to characterize uncertainty. Rossi, Sekhposyan, and Soupre

(2016) propose a new measure using the density of the errors of professional forecasters to

separate Knightian uncertainty from risk.

The contribution of this paper is to refine an uncertainty measure in the spirit of Jurado,

Ludvigson, and Ng (2015). I propose a joint model for the factor innovations and the individual

macroeconomic time series innovations. This model attempts to stay close to the structure of

factor models and volatility factors are assumed to have conditional covariance that is orthog-

onal. This requires rotating the factors computed using the usual normalization that arises

from PCA extraction. I also explicitly consider that case where the number of volatility factors

is less than that number of mean factors, potentially substantially. The model shares common

features with both BEKK (Engle and Kroner 1995)and GO-GARCH (Van der Weide 2002).

These models share a common structure in that they are closed to rotations. This is important

when modeling the conditional covariance of factors since the choice of normalization is made

for computational convenience rather than driven by identification concerns.

I propose a novel estimator using composite likelihood to estimate the model parameters

using information in both the factor innovations as well as in the individual macroeconomic

time series that underlie the factors. This estimator improves precision although the parame-

ter estimates are similar to those found using more standard maximum likelihood estimation.

The paper is structured as follows. Section 2 describes the model. Second 3 discusses esti-

mation and inference including using composite likelihood. Next, a test is proposed to examine

whether the number of heteroskedastic factors is lower than the total number of factors in the

model. Section 5 contains a Monte Carlo study of the estimator while section 6 describes the

data used. Section 7 contains the main empirical findings and section 8 concludes.
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2 Model

We consider a model where observable variables are driven by contemporaneous factors, ft,

where the process may have additional dynamics through an autoregressive component,

yjt = υ′jft +

pj∑
i=1

φiyjt−1 + ξjt (1)

where ξjt is a white noise error that is weakly correlated with the factors.1 We further assume

that factors can be well described by a vector autoregression so that

ft =

pf∑
i=1

Φift−i + ξft . (2)

Eq. (1) is not a forecasting model since ft is only time t-measurable. Substituting in for the

contemporaneous factor allows a forecasting model to be specified,

yjt = υ′j

pf∑
k=1

Φkft−k +

pj∑
j=1

φjyjt−1 + ξjt

=

pF∑
k=1

Υkft−k +

pj∑
j=1

φjyjt−1 + υ′jξ
F
t + εjt

Let the conditional covariance of the factor residuals and the residual from the observable

series by specified as

Cov

 ξjt+1

ξft+1

|Ft

 ≡ Σt+1 =

 ζ2
jt+1 Σjf

t+1

Σfj
t+1 Σf

t+1

 .
The time-t conditional variance of the forecast residuals of the observable variables yjt can be

decomposed into three components: idiosyncratic variance, factor covariance and any covari-

ance between the factor shocks and the idiosyncratic shock.
1We assume that both y and f have unconditional mean 0. This is imposed by demean the data.
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Var [yjt+t|Ft] ≡ Var
[
ξjt+t|Ft

]
= ζ2

jt+1 = τ2
jt+1 + υ′jΣ

F
t+1υj + 2υ′jΣ

Fj
t+1.

The approach taken in Jurado, Ludvigson, and Ng (2015) model the total variance of the

error, including the factor variance, the idiosyncratic variance and the covariance between the

two. This may mask the important dynamics of macroeconomic uncertainty for two reasons.

First, some of the components of the conditional variance may not be dynamic, and so aver-

aging across these will attenuate shifts in uncertainty. Second, the variance dynamics of the

total error may have complex dynamics even if the components can be modeled using a simpler

specification. This decomposition allows the components of macroeconomic uncertainty to be

identified using the conditional covariance of the factors and the idiosyncratic shocks. When

the simplifying assumption is made that the idiosyncratic shock has no conditional correla-

tion with the factors, then a natural measure of the importance of the common exposure can

be expressed

Vji + Vjf =
τ2
jt+1

τ2
jt+1 + υ′jΣ

F
t+1υj

+
υ′jΣ

F
t+1υj

τ2
jt+1 + υ′jΣ

F
t+1υj

.

Measuring these quantities requires models of these three components: factor covariance,

loadings on the factors and idiosyncratic variance.

2.1 Fully Heteroskedastic Factor Models

Common factor extraction methods use convenient, but arbitrary, normalization to identify the

factors. For example, when using PCA is it common to normalize the factors so that so that

the factors are orthogonal and factor loadings are orthonormal (F ′F is diagonal and Λ′Λ = I).

When factors are conditionally heteroskedastic, it is desirable to use a simple model to specify

the dynamics. Suppose there exists a rotation of the factors, denoted F̃ , have innovations that
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follow scalar univariate GARCH models. Denote these innovations as ξft so that

ξft |Ft−1 ∼ G


0,



σ2
1t 0 0 0

0 σ2
2t 0 0

...
... . . . ...

0 0 0 σ2
kt




where G is some distribution with finite second moments. Further suppose the conditional

variance for each component follows

σ2
it = ωi + αi

(
ξfit−1

)2
+ βiσ

2
i,t−1. (3)

Both the conditional and unconditional correlations are assumed to be zero in this specifi-

cation. The assumption that the innovations are unconditionally correlated is insufficient to

uniquely determine the space of the residuals.2 Suppose that the unconditional covariance of

the residuals, Σ was diagonal. Then QΣ
−1/2

ξft would have a covariance equal to the identity

matrix for any orthonormal rotation Q.

Identification of the volatility factors relies on mispecification of the model when a rotation

of the factors is used that differs from true rotation – imposing the wrong rotation will not

produce the correct conditional covariance. In particular, assuming that the unconditional

variance of each series is unity and defining ξ̃ft = Qξft for some rotation matrix Q different

from the identity, imposing simple dynamics on the conditional covariance will result in a
2Many applications of factor analysis are interested in identifying the factors up to some arbitrary rotation.

Here the identification of the factors would be up to a set of labels since, even if the specific series can be identified,
one can always swap the position of the series by relabeling.
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specification of the form

σ̃2
it = ω̃it + α̃i

(
ξfit−1

)2
+ β̃iσ̃

2
it−1 (4)

σ̃2
it = ω̃it + α̃i

 k∑
j=1

Q[ij]ξ
f
jt−1

2

+ β̃iσ̃
2
it−1 (5)

When all elements of Q are non-zero, fitting the model with the incorrectly rotated innovations

will include the squares and cross-products of all of the factors weighted by the elements of Q,

and so it will not be possible to correctly specify the variance dynamics.

Rather than attempting to specify the rotation to correlctly fit the model, it may be possible

to recover the volatility space. The volatility space is similar to the factor space since it is

identified up to a rotation. Directly building on eq. (4), it may be feasible to fit

σ̃2
it = ω̃it +

k∑
j=1

k∑
l=j+1

α̈jlξ̃
F
jt−1ξ̃

F
lt−1 + β̃iσ̃

2
it−1

which has an innovation term that nests the innovation term in eq. (4). The extra flexibility

added by allowing fully general innovation terms – in both squares and cross-products – is,

however, still not sufficient to produce a correct fit except under an additional assumption that

the values of β are common across factors in eq. (3).

The incorrectly rotated model is a special case of a general BEKK model (Engle and Kroner

1995). BEKK models have the unique property (among multivariate ARCH models) of being

closed to rotations. The BEKK is not directly applicable if conditional correlations are assumed

to be 0 since it would only naturally assume unconditional correlations are zero. Suppose that

the true factor residuals had conditional covariance dynamics that could be described by

Σt = CC ′ +AξFt−1

(
ξFt−1

)′
A′ +BΣt−1B

′
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where CC ′ = Ik − A− B, Ik is the identity matrix and A and B are diagonal. The conditional

variances in this specification are identical to the variance dynamics in eq. (3). However, the

conditional covariance also follow similar dynamics so that

σijt =
(
I −A2

ij −B2
ij

)
I[i=j] +AiiAjjξ

F
it−1ξ

F
jt−1 +BiiBjjσijt−1

where I is an indicator functions. When the true factor residuals are rotated by a non-identity

matrix Q , then the conditional covariance

QΣtQ
′ = QCC ′Q′ +QAQξFt−1

(
QξFt−1

)′
A′Q′ +QBQΣt−1Q

′B′Q′

Σ̃t = C̃C̃ ′ + Ãξ̃Ft−1

(
ξ̃Ft−1

)′
Ã′ + B̃Σ̃t−1B̃

′.

This model can be verified to nest the simple specification in eq. (3) if the matrices A

and B are constructed such that the columns are mutually orthogonal. In this specification

the parameter matrices C̃, Ã and B̃ will generally be full even though the original parame-

ters matrices were diagonal.3 The model specification in eq. (3) also allows the possibility

of have reduced dimension dynamics in this model since some of the factors’ variances (and

covariance) would be constant. While it is appealing in practice to consider that the volatility

process is lower-dimension than the number of factor innovations, recovering the volatility

space requires fitting a full model even if there was only a single dynamic factor.

2.2 Volatility Factor Models

The initial specification will make use of a number of simplifying assumption. First, id-

iosyncratic shocks will be assumed to be conditionally homoskedastic. Second, the number
3Formally each parameter matrix will have

(
k2 + k

)
/2 parameters to account for the restrictions on Q. There

are also cross-parameter restrictions to account for the common rotation when directly implementing this model.
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of volatility factors, m, will typically be less than the number of factors in the model. The

1-volatility-factor model is specified as

Q1ξ
f
t ∼ G


0,



σ2
1t 0 0 0

0 σ2
2 0 0

0 0
. . . 0

0 0 0 σ2
k




where Q1 is an orthonormal rotation matrix that will uniquely identify the first factor but

notht he remaining k − 1 factors.

Factor residuals are assumed to be unconditionally orthogonal and have unit variance.

This is a simplifying assumption and has no consequence on the ability of the factor model to

fit the conditional mean of the data since rotating any set of correlated factor residuals can be

directly implemented by rotating the factors. When there are k mean factors (the factors used

to model the conditional mean of the panel of variables) but there is only 1 volatility factor, it

isn’t possible to fully identify Q since many rotation matrices can be constructed that uniquely

identify the volatility factor in the first position but will have an identical covariance structure

for the remaining factor residuals. For example, defining

Q̈ = Q

 1 0

0 Q̃


where Q̃ is any non-identify rotation of size k − 1would preserve the dynamics in the first

factor while applying some other rotation to the remaining k − 1 factors. The rotation used

in the 1-volatility-factor model consists of k − 1 rotation parameters which uniquely define a

unit vector as the first column of Q and then the remainder of the matrix is assured to be

orthogonal to the first factor but is otherwise unspecified.

Models with multiple factors allow additional flexibility when choosing Q. The general
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m-factor volatility model has dynamics given by

Qmξ
f
t ∼ G


0,



σ2
1t 0 0 0 0 0

0
. . . 0 0 0 0

0 0 σ2
mt 0 0 0

0 0 0 σ2
m+1 0 0

0 0 0 0
. . . 0

0 0 0 0 0 σ2
k




(6)

where Qm uniquely identified the first m factors, and the remaining k − m are assumed to

be homoskedastic. In general, a m-factor model requires mk −m (m+ 1) /2 parameters when

specifying Qm. When m = k − 1 then the parameters full identify all elements of Qm.

2.3 Utilizing the Full Panel

Under an assumption that the idiosyncratic shocks to the individual series are uncorrelated

with the factor residuals, the joint covariance of the factors and the individual model shocks

covariance can be specified as

Σt =

 Σi
t Σf

t υ

υ′Σf
t Σf

t


where Σf

t is defined in eq. (6) and Σi
t is the conditional covariance of the combined idiosyncratic

shock that include the common factors
(
ξjt

)
. When the components of the idiosyncratic errors

that is uncorrelated with the factor shocks
(
εit
)

are homoskedastic so that E
[(
εit
)2 |Ft−1

]
= τ2

i ,

the the conditional covariance of the individual series forecast residuals is

σ2
it = υ′Σf

t υ + τ2
i . (7)
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This decomposition motivates using a complete covariance model for the joint dynamics of

the factor innovations, ξft and the individual series innovations, ξit. Expanding from the core

model with k mean factors and m variance factors, this model will add the k by N array of

factor loadings υ and the N parameters of τ2.

3 Estimation and Inference

Conditional Mean

Estimation of all specifications is done using Gaussian Quasi MLE where residuals are as-

sumed to be conditionally normally distributed. All model make use of residuals filtered by

mean equations. In order to ensure comparability across specifications, all model residuals

are computed in the same manner. k factors are extracted from the cross-section of individ-

ual time series. The number of factors utilized ranges from 3 – 6. This range of factors has

commonly been found to be beneficial in forecasting time series and out-of-sample forecasting

results are broadly similar. Factors are extracted from mean-zero unit variance data using

principal components. All series are used to extract factors and the EM algorithm is used

to address the problem of missing data The EM algorithm estimates PC by iteratively filling

missing values with their expectation given the current factors, and then extracting the fac-

tors from the augmented data set. The factor residuals are computed using a first-order vector

autoregression,

ft = Φft−1 + ξft .

Idiosyncratic residuals for observable series i are computed using a model which regresses

each series on the first lag of the factors and pilags of series i,

yit = ψ′ft−1 +

pi∑
j=1

φjyit−1 + ξit.
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The lag length pi was selected from {0, . . . , 12} by minimizing the Schwartz/Bayes Information

Criteria. Estimating these n + 1 models produced the residuals ξ̂t that are used in all of

the volatility estimation models. For simplicity of exposition, the hat is suppressed in the

discussion of the volatility estimation.

Maximum Likelihood Estimation

Model parameters are estimated using maximum likelihood or composite maximum likeli-

hood. The latter utilizes information in the components series when estimating the parame-

ters of the model. I will first present the estimation and inference details for the MLE before

turning to the CMLE.

The model has three distinct groups of parameters. The first, Σ̄, is an estimate of the

long-run covariance of the factor residuals, ξft . Denote the unique parameters of this matrix

as ψΣ̄ = vech
(
Σ̄
)′. The second are the parameters of the volatility dynamics, αi, βi for i =

1, 2, . . . ,m where there are m volatility factors. These parameters are restricted to be non-

negative and αi + βi < 1 for i = 1, 2, . . .m. These parameters are collectively denoted ψαβ =

(α1, β1, . . . , αm, βm)′. The final set of parameters are the angles used to rotate the m factors

with conditional heteroskedasticity. When there are k mean factors and m volatility factors,

the model will include m (2k −m− 1) /2 angles where each angles θi ∈ (−π, π). Let ψθ =(
θ1, . . . , θm(2k−m−1)/2

)′. The complete set of model parameters is then ψ =
(
ψ′

Σ̄
, ψ′αβ, ψ

′
θ

)′
.

The parameters are estimated in two stages. The first stage uses a simple moment-based

estimator for ψΣ̄,

ˆ̄Σ = T−1
T∑
t=1

ξft

(
ξft

)′
.

The standardized residuals are then

ξ̇ft =
(

ˆ̄Σf
)−1/2

ξft ,
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which have an unconditional covariance equal to an identity matrix. This transformation has

no effect on the conditional mean models since these are the residuals that would occur if(
ˆ̄Σf
)−1/2

ft was used in place of ft . As long as Σ̄f is full rank, the fit of the models, and the

estimated residuals (up to a factor
(

ˆ̄Σf
)1/2

), are unaffected by this alternative normalization.

The volatility factor model is then estimated using ξ̇ft . The parameters of the model are the

estimated by maximizing the log-likelihood,

max
ψαβ ,ψθ

l
(
ξ̇f ;ψαβ, ψθ

)
= − 1

2T

T∑
t=1

(
ck + ln |Σt|+

(
ξ̇ft Qm

)′
Σ−1
t

(
ξ̇ft Qm

))
(8)

= − 1

2T

T∑
t=1

ck +
m∑
i=1

lnσ2
it +

m∑
j=1

(
ξ̇ft Q

(j)
m

)2

σ2
jt

+ (k −m)


where Q

(j)
m is column j of Qm and ck is a constant. The simplification of the log-likelihood

is possible since the rotated factor covariance is diagonal and the remaining unit variances

of the k − m static factor variances. Ignoring constants, the this log-likelihood is also the

log-likelihood of the first m components – those with dynamics. This is natural since, by

construction, there is no information in the remaining k −m components and so these make

no contribution to the log-likelihood. The m conditional variances evolve according to

σ2
it = (1− αi − βi) + αi

(
ξ̇ft−1Q

(j)
m

)2
+ βiσ

2
it−1.

The rotation matrix Qm are parameterized using km − m (m+ 1) /2 angles where each

angle is restricted to be in (−π, π) using Given’s rotations. Specifically,

Qm (ψθ) =
m∏
i=1

k∏
j=i+1

Gij (θij)

where Gij (θij), i < j, is an identify matrix except for elements (i, i), (i, j), (j, i) and (j, j) which
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are cos (θij), − sin (θij), sin (θij) and cos (θij), respectively. Givens rotations are simple methods

to parameterize orthonormal matrices. Qm is equivalent to a full set of givens rotations across

all coordinates where angles used for the missing coordinates are set to 0.

The m-volatility factor model with k mean factors has km − m (m− 3) /2 parameters the

require optimization using some non-linear optimizer. This is linear in m and O (1) in N , the

number of observed series. For example, a small model with k = 3 and m = 1 will have 4

parameters while a complete model with k = m = 6 will have 27 parameters. While this struc-

ture is sufficient to uniquely identify the parameters of the model, there can be label swapping

could be an issue during estimation where two components switch order in the product Qmεt.

To avoid this issue, I order the volatility parameters by sorting αi + βi.

Under standard regularity conditions (see Comte and Lieberman (2003) and pedersen2014multivariate),

the estimated parameter vector is ψ̂ is asymptotically normal. Using standard asymptotic the-

ory for 2-step estimators (Newey and McFadden 1994), the asymptotic distribution is

√
T
(
ψ̂ − ψ0

)
d→ N

(
0, A−1B

(
A′
)−1

)
(9)

where

A = E


∂g
∂ψΣ̄

0 0

∂2l
∂ψΣ̄∂ψ

′
αβ

∂2l
∂ψψαβ∂ψ

′
ψαβ

∂2l
∂ψθ∂ψαβ

∂2l
∂ψΣ̄∂ψ

′
θ

∂2l
∂ψψαβ∂ψ

′
θ

∂2l
∂ψθ∂ψ

′
θ


where

g
(
ξft ; Σ̄

)
= T−1

T∑
t=1

gt = T−1
T∑
t=1

vech
(
ξft

(
ξft

)′
− Σ̄

)

is the moment function used to estimate the unconditional covariance. Â is estimated using

the sample analogue to the theoretical value.
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B is the asymptotic covariance of the scores, and is defined

B = avar
(
T−

1/2
∑

st

)

where st =
(
g′t,

∂lt
∂ψ′

)′
are the moment conditions and scores of the log-likelihood. Since the mo-

ment conditions are not martingale difference sequence when the model is correctly specified,

a log-run covariance estimator is used. I use the estimator of Newey and West (1987) with

bandwidth proportional to 3
√
T .

Composite Likelihood Estimation

It may be possible to improve estimation using the entire cross-section including both the

factor residuals as well as the forecast errors of the individual models. The full joint model

includes the factor covariance as well as the covariance of the idiosyncratic terms. The full log-

likelihood is likely challenging to optimize since the idiosyncratic innovations are not assumed

to have zero covariance, and the number of individual series is large relative to the sample

size. Moreover, there is little interest in the off-diagonal terms of this matrix when examining

macroeconomic uncertainty. Recently, Pakel et al. (2017) have proposed a composite likelihood

estimator for large N , large T panels. These estimators make use of simple moment-based

estimators to avoid non-linear estimation in high-dimensional spaces. They also intentionally

discard the information in the full cross-section and instead focus on “submodels” of the full

model to estimate the unknown parameters.

Using the decomposition in eq. (7), the conditional variance of idiosyncratic shock i can be

expressed as

σ2
it = υ′iΣ

f
t υi + τ2

i

When estimating factor volatilities, the natural unit to estimate the common parameters is
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the k + 1 block consisting of the factors and one of the individual series.

Cov

 ξft

ξit

|Ft−1

 =

 Σt Σtυi

υ′iΣt ς2
it

 .
The log-likelihood for this sub-model is then

li

 ξft

ξit

 ;ψαβ, ψθ

 = T−1
T∑
t=1

ln |Ωit|+
((

ξft

)′
, ξit

)
Ω−1
it

((
ξft

)′
, ξit

)′
.

The information across the N models can be combined by averaging each of the sub-models

to construct the composite likelihood,

cl
(
ξf , ξi;ψαβ, ψθ

)
= N−1

N∑
i=1

li.

There are two sets of parameters constant parameters that are identified though moment

conditions. The first is Σ̄ which is estimated using the standard moment estimator for the

covariance. The second is υi. These parameters are estimated using the regression-based

estimator where ξit is regressed on ξft , so that

υ̂i =

(
T∑
t=1

ξft

(
ξft

)′)−1( T∑
t=1

ξft ξ
i
t

)
.

The estimator of υi, which easily written in the form of a standard linear regression, is only

a function of the joint unconditional covariance matrix of the factor innovations and the id-

iosyncratic innovation, and so the moment-based estimator used in the jth composite likelihood

component is

Ω̂ = T−1
T∑
t=1

[(
ξft

)′
ξit

]′ [(
ξft

)′
ξit

]
.
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Inference on composite likelihood parameters is similar to procedure described in the MLE

estimation section. Further details are presented in Pakel et al. (2017).

4 Testing the Number of Volatility Factors

The number of volatility factors is a model parameter. When the hypothesized number of

volatility factors is less than the number of factors then estimation of the model with m=k

volatility factors has some novel challenges. If the correct rotation were known, testing for

volatility would be standard and any ARCH-LM type test could be used. However, when the

correct rotation is not known, as is the assumed case, then it is not possible to test whether

the loading on recent innovations is zero since this creates an unidentified nuisance parameter

problem. The problem arises since when a subset of the series is conditionally homoskedastic,

any orthonormal rotation will produce the same likelihood, and so the rotation can only be

consistently estimated for the heteroskedastic factors.

A general test can be developed by ignoring the structure of the problem. Let Qm is the

rotation matrix for m volatility factors. This matrix can be decomposed as Qm =
[
QDmQ

S
m

]
where QDm are the columns that rotate the factors with dynamic volatilities and QSm corre-

spond to the factors that have static (homoskedastic) volatilities. When the true number of

volatility factors, there is some matrix Q̃k−m that only rotates the final k −m factors that will

produce at least one additional volatility factor. However, under the null that the number

of volatility factors is m this matrix cannot be identified. A natural solution is to sidestep

the identification issue by over-parameterizing the dynamics that might be present in the hy-

pothesized static series. This over-parameterized model will parameterize the upper bound of

k−m + m (m+ 1) /2 parameters in the correct model with (k −m)2 parameters. In particular,

neglected dynamics in the static block much have shocks of the form

DQsmξ
f
t

(
Qsmξ

f
t

)′
D′
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where if there are additional factors then D = diag(δ)Q̃k−m so that the final form of the

innovations to variance will follow the model. Substituting in for D,

diag(δ)Q̃k−mQ
s
mξ

f
t

(
Q̃k−mQ

s
mξ

f
t

)′
diag (δ) = diag(δ)

(
Q̈kξ

f
t

)(
Q̈kξ

f
t

)′
diag(δ)

where Q̈k is also a rotation matrix. However, if the data in the remaining k − m factors are

homoskedastic, then all elements of D will be 0. This suggests specifying additional dynamics

using (k −m)2 parameters inD to avoid creating an unidentified nuisance parameter problem.

Remark 1. When the data in the remaining k−m factors are heteroskedastic, it would normally

be the case that lagged variance would be included in the model. This poses additional issues

since when the data are homoskedastic then the parameter on lagged variance is not identified

(Andrews 2001). I avoid this issue by using an ARCH-LM-type test that only included lags of

innovations.

I implement this test by augmenting the model to allow for a lag of volatility in the as-

sumed static factors. Parameters are estimated using 2-step MLE where Σ̄ is estimated using

moment estimator and the remainder of the parameters, ψαβ, ψθ and ψδ = vec(D) are esti-

mated to maximize the log-likelihood

max
ψαβ ,ψθ

l
(
ξ̇f ;ψαβ, ψθ, ψδ

)
= − 1

2T

T∑
t=1

ck +
k∑
i=1

lnσ2
it +

k∑
j=1

(
ξ̇ft Q

(j)
m

)2

σ2
jt

 (10)

where the variance dynamics for the first m series are unchanged and the variance dynamics

for σ2
jt, j = m+ 1, . . . , k are

σ2
jt = 1−

k−m∑
i=1

D2
ji +

(
k−m∑
l=1

Djl

(
ξ̇ft Q

(m+l)
m

))2

.
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The variance dynamics of the k−m additional series can be equivalently parameterized as the

diagonal elements of

Ik−m −DD′ +D
(
QSmξ̇

f
t

)(
ξ̇ft Q

S
m

)′
D′.

Inference is implemented using the asymptotic distribution in eq. (9) where the matrices

are extended to account for ψδ. The hypothesis test for homoskedasticity of the remaining

k −m components is H0 : δ = 0 against an alternative H1 : δ 6= 0. The test is implemented as

a Wald test

T δ̂′
(
SÂ−1B̂Â−1S

)−1
δ̂ ∼ χ2

(k−m)2

where S is a selection matrix that selects the final (k −m)2 rows and columns of the covariance

matrix.

5 Monte Carlo

A Monte Carlo study was conducted to assess the ability of the model to correctly estimate

the volatility of the model under alternative number of factors when the number of volatility

factors was less than the number of mean factors. Factor model residuals were simulated by

generating m independent univariate GARCH processes and augmenting these series with

k −m homoskedastic series. The innovations in all series were normal. The initial T by k set

of residuals ξ were then rotated by a rotation matrix Q, which was randomly drawn where

each of the mk − m(m + 1)/2 angles was uniformly distributed on (−π, π). The first set of

simulations considers models with between 3 and 6 mean factors and only 1 volatility factor.

The parameters of the volatility factor were varies across α ∈ (.1, .15) and α+ β ∈ (.9, .95, .99).

All experiments were repeated 1,000 times, used 500 observations and 200 observations were

burned when generating samples.

Table 2 contains parameter bias and RMSE for the volatility parameters as well as mea-
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sures of the accuracy of the rotation parameters. The panels range across persistence and

the size of the innovation shock. The number of factors has a small effect on the precision

of the volatility parameters when the volatility is not highly persistent. In the specification

with the highest persistence, α = 0.15, β = 0.84, there is no effect of increasing the cross-

sectional dimension. In all specifications, the volatility parameters were more precisely esti-

mated when the persistence was higher and when the parameter on the recent innovation was

larger. These two features both make the conditional volatility more apparent and so this is

not surprising.

The final four columns provide measures of the parameters that determine the rotation.

The columns labeled θ directly examine the precision of the model parameters used to compute

the rotation while the columns labeled Q1 look at the first column of the rotation matrix Q.

This column corresponds to the actual weights used to construct the volatility factor. The bias

is negligible for both measures of the accuracy of the rotation. The second measure computes

the angle between the true parameters and the estimates divided by π. This angle is computed

as

cos−1

(
u′v√

u′u
√
v′v

)
/π

where u and v are the inputs. When the values coincide, this value will be 0. If the parameters

were uncorrelated it would be 1. This measure indicates that both θ and the first column of the

rotation matrix are accurately estimated with only a small discrepancy between the estimates.

Like volatility parameters, estimating the angle parameters is easier when the volatility pa-

rameters are easier to identify. It is also more challenging to estimate these parameters when

the number of mean factors k increases.

The performance in multi-factor models was also examined. The number of mean factors

was fixed at k = 3 and the number of volatility factors was allowed to vary between 1 and

3. The parameters of the three factors were (αi, βi) ∈ {(.1, .87) , (.15, .73) , (.2, .6)} where the

order was preserved so that the first factor was always the most persistent. Results from this

20



simulation study are presented in figure 3. The top two panels show the bias and RMSE of

the parameters. Increasing the model’s complexity by introducing additional factors does not

affect the accuracy of the estimation of other factors. If anything, larger models are easier

to estimate. This happens since additional volatility factors make it simpler to identify the

rotation required to orthogonalize the residuals when constructing the shocks to the volatility

factors. The final panel contains measures of the accuracy of the rotated residuals which

serve as shocks to the factors and the fitted variances. The columns labeled ρ measure the

correlation between the estimated series and the true series. These are all very high indicating

that the model is accurate. The columns labeled σ measure the standard deviation between

these. Both of these measures indicate that larger models are easier to identify than smaller

models. Again, this is due to the increased accuracy of estimating the rotation.

6 Data

All data are from the FRED-MD (McCracken and Ng 2016) using the August 2017 vintage.

The FRED-MD is freely available from the St. Louis Federal Reserve Bank and is regularly

updated. This database is an alternative to the database commonly used in factor modeling

based on the Global Insights Basic Economics Database (GSI) (Stock and Watson 2005; Stock

and Watson 2006). Factors extracted from FRED-MD have predictive power as those extracted

from the GSI database.

The database contains 128 series from January 1959 until August 2017. The components

in the FRED-MD span 8 broad categories where the number if parentheses reports the number

of components in each: output and income (17), labor market (32), housing (10), consumption

(14), orders and inventories (14), money and credit (15), interest and exchange rates (22),

prices (21) and stock market (4).

Data were transformed according to the recommended transformation. When consider-
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Factor 1 Factor 2 Factor 3 Factor 4 Factor 5

Factor 2 -0.006
Factor 3 0.518 0.409
Factor 4 0.176 0.107 -0.104
Factor 5 0.515 -0.024 0.359 -0.373
Factor 6 -0.251 0.110 -0.269 -0.053 -0.159

Table 1: Correlations between factor residuals when factor normalization requires factors to
be orthogonal.

ing uncertainty timing, this has some impact since most variables are differenced or log-

differenced. I align all variables in the month in which they were observable. All variables

were further transformed so that they have zero mean and unit variance. Factors were ex-

tracted using principal component analysis. Variables with missing values were included in

any sample where at least 120 monthly observations were not missing. Principal components

were extracted using the E-M algorithm which iterates between replacing missing values by

their expected value given the current value of the estimated factors and updating the factors

using the augmented data. This procedure is monotonic in reducing the sum of squared resid-

uals for a fixed number of factors and continues until the change in the factors is negligible.

The E-M algorithm was initialized using the sample mean of the non-missing values for each

component. While the factors extracted by PCA are normalized to be orthogonal, the main in-

put into the analysis is the residuals from the forecasting model for the dynamic factors. These

value of the correlation for the first six factors, extracted from a VAR(1) on these factors, is

presented in table 1.

Many of these correlations are far from zero. These are standardized so that they are

uncorrelated with unit variance by multiplying the factors (and so their residuals) by the

symmetric square root of the inverse of the sample covariance matrix.
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7 Results

All models were estimated on the full sample of 128 series. Models ranging from 3 to 6 mean

factors were estimated using MLE where the number of volatility factors was allowed to vary

between 1 and the number of mean factors. Volatility parameter estimated for a subset of the

models estimated are presented in table 4. The first three rows include 3 mean factors and

vary the number of volatility factors from 1 to 3. The parameters for the factors do not mean-

ingfully as the number of volatility factors is increased. The first factor has a total persistence

of α1 + β1 ≈ 0.97 with a large innovation parameter (α1 ≈ 0.18). While the persistence is sim-

ilar to what is found in financial data, the innovation sensitivity is higher. The second factor,

only included when m = 2 or 3, is also highly persistent with a larger innovation parameters

of α2 =0.25. The third factor, which only was included in one specification, is meaningfully less

persistent with α3 +β3 = 0.87. Inference on the parameter indicates all are strongly identified

with very small standard errors. Increasing the number of volatility factors does not have an

effect on the precision of the more important factors.

The bottom three rows of table 4 contain volatility parameters for a fixed number of volatil-

ity factors, m = 2, varying the number of mean factors from 4 to 6. These results show some

important regularity – larger model have volatility factors that more persistent with smaller

innovation parameters (α1). The persistence rises of 0.99 when 6 mean factors are included.

The volatility parameters of the second factor do not change as the number of factors changes,

and all are highly statistically significant.

One concern when estimating factor models with different orders is that the estimated

factors are not comparable across parameterizations. The model is parameterized using angles

which are converted to orthonormal weighting matrices where column j contains the weights

for volatility factor j. Table 5 contains weight parameters for two factors from models with k

between 3 and 6 and m = 2. This shows that the first factor changes dramatically when the

number of factors included in the model rises above 4. When the model has k = 3, the first
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factor has large weights on the residuals from the first and third component. This weighting

will have positive weights on real variables and negative weights on rates. For larger models

where k ≥ 4, the first component is dominated by the fourth factor, although it also has non-

negligible weights on the first and third components. The fourth component is especially

sensitive to interest rates. When k = 5 or 6, the first factor also receives non-negligible weight.

The second factors in all models are broadly comparable, with a large weight on the second

factor. These results indicate that, at least from the point-of-view of modeling the conditional

variance of the factors, models with k = 3 factors may be missing important components of

uncertainty.

An alternative method to examine weight stability is to hold the number of mean factors,

k, constant while varying the number of volatility factors. Table 6 contains three panels which

examine stability in this dimension. The top panel contains the weights on the first factor as

the number of volatility factors increases from 1 to 3. These parameters are virtually identical

indicating that the factor identification, conditional on the number of mean factors, is stable.

The bottom two panel contain similar results for a model with 6 mean factors. Both of these

panels indicate that the choice of volatility factor is not sensitive to the number of included

volatility factors.

Figure 1 contains plots for the estimated factor volatility for k between 3 and 6 when the

models included 2 volatility factors. The fitted values for k = 3 are considerably different from

the fitted values when k = 4, 5 or 6. The first factor, in particular, is considerably different. In

the larger models, this factor has a very large, pronounced volatility spike in the early 1980s.

It also has smaller spikes in the mid 1970s as well as the early 2000s and during the financial

crisis. When k = 3 the first factor also indicates considerable volatility in the early 1980s and

during the financial crisis, but differs in the early 2000s as well as in the early years where

this component indicates considerable volatility that does not appear in the models with k ≥ 4.

The second component is virtually identical across the four specifications. This isn’t surprising
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since both the estimated volatility parameters and the weights were very similar.

While factor volatilities can be interesting when if the factors can be clearly identified,

a more natural measure of the volatility is the volatility that appears in the series used to

construct the factors. The innovations of these series depend on the factor innovations as

well as an idiosyncratic shock. The dependence on the factor innovations is measures by υ̂i

which is computed from a regression of the idiosyncratic shock on the factor shocks. Using

this decomposition, the variance attributable to the common factors for series i is

υ′iΣtυi,

and the average total volatility is then

σ̄2
f,t = N−1

N∑
i=1

υ̂′iΣ̂tυ̂i.

Figure 2 contains four panels plotting
√
σ̄2
f,t corresponding to k = 3, 4, 5 and 6. In each

panel, the dynamics for specification with m between 1 and k are plotted, although m = 2 is

highlighted. In all specification setting m = 1 produced total volatility series which nearly

constant aside from the early 1980s. Expanding this to two factors produced total volatility

series that show spikes for a number of events. When k ≥ 4 the fitted total volatility series are

virtually identical. Increasing the number of volatility factors changes the fit by improving

the fit during low volatility periods which not affecting the fit during spikes. The notable

exception to this is the spike in volatility in the early 1960s which is not evident unless m > 2

when k ≥ 4. A closely related measure is the share of total volatility that can be attributed to

common factors. This is computed as

s̄2
f,t = N−1

N∑
i=1

υ̂′iΣ̂tυ̂i

τ2
i + υ̂′iΣ̂tυ̂i

25



and accounts for the different constant in each of the individual series variances. Figure 5

shows the plot of this series for m = 2 where k ranges from 3 to 6. The model with k = 3 is

again different from the larger models, which are all nearly indistinguishable from each other.

There are three very large spikes in these series – mid-1970s, early 1980s and the financial

crisis.

The model was also estimated using composite likelihood (CMLE). Estimating model pa-

rameters using this method allows the model to utilize both the factor residuals as well as the

individual residuals when estimating the dynamics of factor variances. Results from fitting

the model using CMLE are presented in tables 7 and 8. The estimated parameters are similar

to those from the MLE estimates with one important distinction. All estimates indicate higher

persistence than the ML estimates. The parameters on the first factor across all specification

had persistence very close to unity. The second factor was also highly persistent with a typical

persistence of 0.98. In the one model that included the first component, it was also highly

persistent with an average persistence 0.97. Sensitivities, especially for the first factor, were

generally larger. The increase in sensitivity was especially pronounced for specifications based

on 4 or more factors. The estimated factor loadings were broadly similar to those in the models

fit using ML. The first factor differed substantially once the fourth factor was allowed to enter.

Figure 3 and 4 contain the factor and total volatility from the models estimated using

composite likelihood. Like the parameter estimates, these are similar to the corresponding

figures for the models estimated using ML. The fitted factor volatilities or total volatilities are

virtually indistinguishable when k is larger than 4.

While labeling factors is difficult, figure 6 contains a heat map of factor loadings in both the

original PCA-extracted mean factors and in the final rotated volatility factors from a model

with four mean and four volatility factors (k = m = 4). There are large differences in the

important blocks in the two figures. In the mean factors the first and second components are

broadly real and nominal factors. The third has positive weights on a number of interest and
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exchange rates and negative loadings on real factors. The fourth has positive loadings on

interest rates and negative loadings on housing-related measures. When re-rotated through

the volatility model the importance of the components shifts. The first volatility factor has

large positive loadings on interest rates and relatively small loadings on real components.

The second factor has positive exposure to real components. Both the first and the second

have negative loadings to monetary policy variables and exchange rates. The third volatility

factor is nearly identical to the second mean factor, and the fourth factor has positive loadings

on monetary policy variables and negative loadings on housing. The differences in the loadings

show that prices are less important for uncertainty measurement and that interest rates – the

largest set of series that are financial in nature – play an important role.

7.1 Recursive Estimation

Volatility models in many financial time series are not stable. This has been attributed to

number of factors including structural change. The stability of these models was examined

by recursively estimating the models starting in 1989 after 30 years of data was available.

Table 9 contains the results for models estimated using 30, 40, and 50 years as well as the

full sample. The left panel contains model estimates for 3 mean factors while the right panel

contains results for 6 mean factors. The number of volatility factors was fixed at 2 in both

panels. The first factor is fairly stable across specifications. In the larger model there is

some evidence of decline in the sensitivity to recent news (α1) in the longer samples, although

the persistence is consistent across sample sizes. The second factor appears to be less well

identified in the sub-samples. Specifically the persistence is fairly low until the sub-sample

that ended in 2009. This is not surprising considering the time-series dynamics of the second

volatility factor which was highly variable post-2000 but considerably less so in the early

sample. The larger model stabilizes a bit sooner and shows high persistence from 1999 for

both volatility factors.
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Figure 7 contains the fitted total total volatilities for the two models estimated using the

4 sub-samples. The highlighted portion indicate the segment estimated using the most recent

data. In both plots the total variance is not meaningfully altered using parameters estimated

on longer series. This is due to the model capturing the salient factor volatility in each period

even though all factors were not equally well measured. Moreover, the factors are weighted by

the exposure of the individual series υi when computing total volatility and so small exposures

make factors less important.

7.2 Forecasting

An alternative method to assess model performance is to examine how well the model fore-

casts future volatility. This forecasting exercise examines the effect of the number of volatility

factors on the ability of the model to forecast the volatility of future factor covariance. Param-

eters were estimated using a 30-year moving window. In each window the subset of available

data was constructed subject to a minimum of 120 non-missing observations for each series.

The series were standardized by subtracting the mean and dividing through by the standard

deviation. The standardized series were used to estimate factors and the weights used to

construct the factors. The factor residuals were then estimated using a VAR(1). Finally, the

volatility model was estimated on the factor residuals.

The models were evaluated using 1-step ahead data. Since the data are factor residuals,

care was required to construct meaningful residuals. Each set of 360 monthly observation

was extended by one observation. These were then standardized using the in-sample mean

and variance used in the original factor construction. These standardized values were then

multiplied by the factor factor weights to produce out-of-sample factors. Finally, the evaluation

residual was constructed taking by subtracting the t + 1 set of factors from the period t set of

factors multiplied by the in-sample VAR(1) coefficients. This produced an evaluation sample

of 343 observations. The residual construction was repeated for each k between 3 and 6 since
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the residuals are constructed by a VAR, and so are not directly comparable. These residuals

are used to proxy for the unknown conditional covariance.

Forecasts for factor residual covariance were constructed by taking the diagonal condi-

tional covariance matrix of the rotated residual and rotating them back to the original series.

These were then rotated so that the one-step ahead forecast is

Ωt+1|t = ΣtQ̂m
ˆ̄Σ

1/2.

Forecasts were evaluated using the QLIK loss function was has been found to provide good

power in model evaluation (Patton and Sheppard 2009; Laurent, Rombouts, and Violante

2014) and to be robust to the use of a proxy for covariance. The loss was computed as

L
(

Ωt+1, ξ
f
t+1

)
= ln |Ωt+1|+

(
ξft+1

)′
Ω−1
t+1ξ

f
t+1

Two tests were performed. The first is a Diebold-Mariano-Giacomini-White test which exam-

ines the pairwise difference in loss differential, δt = L
(

ΩA
t+1, ξ

f
t+1

)
−L

(
ΩB
t+1, ξ

f
t+1

)
(Diebold

and Mariano 1995; Giacomini and White 2006). The test statistic is the mean loss difference

divided by a consistent estimator of the long run variance,

t =
δ̄√

V ar
(
δ̄
) .

The long-run variance was estimated using the stationary bootstrap of Politis and Romano

1994 using an average window size of 18 periods. Since residuals depend on the size of the

model, the models were only compared with a particular k. Results of the pairwise compari-

son are presented in table 10. In each panel, negative values indicate the model in the row

(indicated by the value of m) was superior. When k = 3 the one factor model is statistically su-

perior to either the two or the three. In he larger models the one-factor model is also superior
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to the 2 factor model for k = 4 and 6. When k = 4 there were no other rejections although the

model with 4 factors was work than all others. In the largest two models the 4 factor model

performed well and was better than all others, although the performance difference was not

statistically significant. In general models with more volatility factors performed better than

models with fewer volatility factors.

The model confidence set of Hansen, Lunde, and Nason 2011 was used to jointly test all

specifications. While this test is likely less powerful than pairwise DMGW tests, it has the

advantage of controlling family-wise error rate. The MCS was applies to all models for each

k. Results of using the MCS are presented in table 11. In the smaller models the single factor

model was superior while in the larger models the 4 factor models were the best. The MCS was

only able to remove a small number of models in each group and there are no clear winners.

7.3 Comparing Alternative Measures of Uncertainty

One natural measure of uncertainty in a large panel is the average volatility of all of the data.

This measure has been explored in Jurado, Ludvigson, and Ng 2015 as the average volatility of

the forecast residuals. In the original version, this was computed using a standard one-factor

log stochastic volatility model. I computed a similar measure using univariate GARCH(1,1)

models where each series has independent volatility. I also consider a pooled model where all

series share common parameters but have different long-run levels of volatility. In either case,

the conditional for the ith series is given by

ς2
it = ωi + αi

(
ξit−1

)2
+ βiς

2
it−1.

When composite likelihood is used to estimate parameters, αi = αj and βi = βj for all i, j.

This can be used to measure total volatility by averaging cross-sectionally and then taking

the square root. The fitted volatility computed using this method is produced in the top panel
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figure 8. The two method produce similar fits although the composite method appears less

noisy. The dynamics of this series appear to be very similar to those of the total volatility that

can be attributed to common factors. The average parameters values when estimating the

model while allowing for heterogeneity was ᾱ = 0.283, β̄ = 0.599. When the parameters were

pooled, the estimates were considerably larger α̂ = 0.226, β̂ = 0.709. Both of these estimates

indicate less persistence that was seen in the factor volatility. This difference is the root of

the discrepancies between total factor volatility and total volatility. The individual models are

conflating dynamics of factors and shocks.

The same model was estimated on forecast residual shocks purged of the effect of the com-

mon factors, defined as ηit = ξit−υiξ
f
f . The bottom panel of figure 8 shows that average volatility

of these series computed using the same methods. The volatility spikes in these series are sub-

stantially mitigated. This difference is not due to a reduction in persistence since ᾱ = 0.228

and β̄ = 0.636 when individual models were fit and α̂ = 0.180, β̂ = 0.727 when composite likeli-

hood was used. These parameters indicate more persistence in the factor-free shocks than in

the total shocks. Instead the difference is due to less commonality in the factor-free volatility

series which produces cross-sectional averages which has less pronounced dynamics.

Figure 9 plots the three series together. The overall dynamics of the common factor volatil-

ity and the idiosyncratic volatility are very similar. However, it can be clearly seen that the

volatility of the idiosyncratic residual contaminates the common factor volatility and makes

large changes in uncertainty more difficult to detect. The volatility of the idiosyncratic resid-

ual is nearly flat with two important exceptions – that early period in the 1960s and the

financial crisis. Both of these also appear in the common factor volatility and are much more

pronounced.
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8 Conclusions

I propose a new method to measure and decompose macroeconomic uncertainty. Factors ex-

tracted from macroeconomic panels are typically normalized using a convenient but ultimately

arbitrary normalization. This motivates searching for an alternative normalization that emits

volatility factors – rotations of the original factors – that have conditional covariance that are

uncorrelated and have simple volatility dynamics. The model allows the dimension of the

heteroskedasticity to be smaller than number of factors in the series. This is an important

consideration when modeling macroeconomic data which has often been hypothesized to have

homoskedastic residuals. Conditional on a specific rotation, the model has simple dynamics

where each volatility factor has dynamics that follow a standard GARCH model. The permits

simple likelihood-based estimation. I also propose a composite likelihood-based estimator of

the model parameters that utilizes information in the full panel of macroeconomics variables.

Monte Carlo evidence demonstrates that the model parameters can be accurately recovered

from empirically relevant sample sizes. They also show that many aspects of the estimation

are easier when the heteroskedasticity is pervasive rather than limited to a small number of

volatility factors. This occurs since the additional heteroskedasticity improves the identifica-

tion of the rotation of the original factors to produce the volatility factors.

The model is applied to a panel of 128 monthly macroeconomic series from the FRED-

MD. The model suggests macroeconomic volatility is both pervasive and highly persistent.

Composite likelihood estimation suggests the macroeconomic volatility components are more

persistence than the maximum likelihood estimates, although both show high persistence.

Construction of total common factor volatility shows that between 2 and 4 volatility compo-

nents capture the lion share of the dynamics in the series. This is confirmed by comparing

the total volatility in the series with idiosyncratic-only volatility where the latter is relatively

homoskedastic. The proposed measure of common factor volatility provides much sharper

identification of large changes in macroeconomic uncertainty than models using the full fore-

32



cast residual from the individual series.
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Single Factor Monte Carlo Results

α β θ Q1

k Bias RMSE Bias RMSE Bias Angle Bias Angle
α = 0.1, β = 0.8

3 0.010 0.047 -0.035 0.149 -0.001 0.039 -0.001 0.060
4 0.012 0.051 -0.038 0.164 0.010 0.059 0.000 0.076
5 0.014 0.054 -0.033 0.162 0.013 0.075 0.001 0.092
6 0.023 0.058 -0.057 0.187 -0.014 0.089 -0.001 0.105

α = 0.1, β = 0.85

3 0.004 0.039 -0.017 0.090 -0.005 0.027 0.001 0.041
4 0.008 0.045 -0.024 0.110 0.005 0.042 0.003 0.056
5 0.008 0.042 -0.020 0.097 0.001 0.061 -0.001 0.062
6 0.012 0.048 -0.031 0.116 0.002 0.079 -0.001 0.077

α = 0.15, β = 0.84

3 -0.000 0.037 -0.002 0.041 0.001 0.011 0.001 0.014
4 0.002 0.037 -0.004 0.042 0.005 0.022 0.000 0.018
5 0.004 0.038 -0.006 0.043 -0.006 0.037 0.000 0.021
6 0.002 0.034 -0.004 0.039 -0.002 0.045 0.001 0.024

Table 2: Results from one volatility factor (m = 1), 3 mean factor (k = 3) models. The three
panels differ in the specification of volatility model dynamics. In each panel, the left four
columns report bias and RMSE of the estimated volatility parameters. The columns corre-
sponding to θ report the bias in the estimated rotation angles and the average angle divided
by π between the estimates of θ̂ and the true values. The final two columns report the bias
and average angle divided by π between the first column of the rotation matrix, the weights
on the volatility factor, and the first column of the true rotation matrix.
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Multi-Factor Monte Carlo Results

Bias
m α1 β1 α2 β2 α3 β3

1 -0.000 -0.006
2 -0.001 -0.004 0.006 -0.020
3 -0.003 -0.000 0.005 0.002 0.005 -0.031

RMSE
m α1 β1 α2 β2 α3 β3

1 0.035 0.065
2 0.034 0.051 0.049 0.115
3 0.034 0.049 0.048 0.087 0.057 0.139

Correlations
m ρξf σξf ρσ2 σσ2

1 0.990 0.056 0.966 0.072
2 0.992 0.014 0.965 0.071
3 0.995 0.007 0.971 0.048

Table 3: Results from Monte Carlo simulations for k = 3 varying m from 1 to 3. The top
panel reports the bias of the estimated volatility parameters and the middle panel reports
the RMSE of the estimated volatility parameters. The left two columns of the bottom panel
reports correlations between the estimated and true volatility factor weights and the variance
of the factor weights. The right two columns report the correlation between the true factor
variances and the estimated factor variances, and the standard deviation between these two.
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Volatility Model Parameters

k m α1 β1 α2 β2 α3 β3

3 1 0.183
(0.052)

0.789
(0.054)

3 2 0.181
(0.053)

0.791
(0.054)

0.256
(0.047)

0.708
(0.057)

3 3 0.181
(0.051)

0.791
(0.057)

0.256
(0.047)

0.708
(0.057)

0.187
(0.103)

0.688
(0.216)

4 2 0.193
(0.048)

0.782
(0.058)

0.254
(0.047)

0.713
(0.057)

5 2 0.169
(0.052)

0.815
(0.061)

0.253
(0.046)

0.716
(0.055)

6 2 0.150
(0.035)

0.840
(0.040)

0.261
(0.047)

0.706
(0.056)

Table 4: Volatility parameter estimated using MLE. The first three rows report the parameters
for models based on 3 mean factors (k = 3), varying the number of volatility factors between 1
and 3. The final 3 lines report the model parameters holding the number volatility factors (m)
constant while varying the number of mean factors from 4 to 6.

Volatility Model Factor Weights

First Factor
k w1 w2 w3 w4 w5 w6

3 0.800 -0.004 -0.600
4 0.234 0.064 -0.294 0.924
5 0.297 0.012 -0.214 0.887 -0.280
6 0.303 0.083 -0.224 0.865 -0.276 -0.167

Second Factor
k w1 w2 w3 w4 w5 w6

3 0.018 1.000 0.017
4 0.024 0.981 0.191 -0.013
5 0.047 0.983 0.177 0.006 -0.023
6 0.043 0.931 0.355 -0.015 -0.043 0.055

Table 5: Estimated volatility factor weights on the first and second volatility factors for models
based on between 3 and 6 mean factors (k). All models estimated included 2 volatility factors.
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Comparison of Volatility Model Factor Weights

k = 3, First Factor
m w1 w2 w3

1 0.800 0.020 -0.600
2 0.800 -0.004 -0.600
3 0.798 -0.004 -0.603

k = 6, First Factor
m w1 w2 w3 w4 w5 w6

2 0.303 0.083 -0.224 0.865 -0.276 -0.167
3 0.307 0.049 -0.162 0.863 -0.333 -0.145
4 0.290 0.048 -0.161 0.870 -0.329 -0.149
5 0.292 0.045 -0.151 0.870 -0.333 -0.145
6 0.288 0.051 -0.164 0.874 -0.321 -0.142

k = 6, Second Factor
m w1 w2 w3 w4 w5 w6

2 0.043 0.931 0.355 -0.015 -0.043 0.055
3 0.040 0.943 0.328 -0.009 -0.026 0.043
4 0.026 0.941 0.335 -0.002 -0.026 0.040
5 0.031 0.937 0.344 -0.002 -0.025 0.039
6 0.024 0.939 0.338 0.009 -0.009 0.066

Table 6: Estimated volatility factor weights.The top panel shows the weights in the first
volatility factor for a model estimated with 1, 2 or 3 volatility factors. The bottom two pan-
els show the weights used to construct the first and second volatility factors for models that
included between 2 and 6 volatility factors.
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Composite Likelihood Volatility Model Parameters

k m α1 β1 α2 β2 α3 β3

3 1 0.199 0.801
3 2 0.197 0.803 0.292 0.698
3 3 0.209 0.791 0.290 0.699 0.263 0.715
4 2 0.247 0.753 0.287 0.703
5 2 0.227 0.771 0.289 0.703
6 2 0.204 0.794 0.294 0.698

Table 7: Volatility model parameter estimates from model which use Composite Likelihood to
estimate model parameters.

Composite Likelihood Volatility Model Weights

First Factor
k w1 w2 w3 w4 w5 w6

3 0.809 0.000 -0.587
4 0.424 0.125 -0.391 0.808
5 0.345 0.054 -0.233 0.890 -0.180
6 0.342 0.084 -0.137 0.871 -0.290 -0.118

Second Factor
k w1 w2 w3 w4 w5 w6

3 0.041 0.998 0.057
4 0.041 0.974 0.209 -0.071
5 0.074 0.975 0.198 -0.046 -0.049
6 0.075 0.913 0.388 -0.080 -0.062 -0.026

Table 8: Volatility model parameter estimates from model which use Composite Likelihood
to estimate model parameters. Estimated volatility factor weights on the first and second
volatility factors for models based on between 3 and 6 mean factors (k). All models estimated
included 2 volatility factors.
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Recursively Estimated Volatility Model Parameters

k = 3 k = 6
α1 β1 α2 β2 α1 β1 α2 β2

1989 0.173
(0.035)

0.807
(0.090)

0.275
(0.059)

0.493
(0.034)

0.206
(0.039)

0.785
(0.031)

0.415
(0.053)

0.473
(0.030)

1999 0.128
(0.035)

0.853
(0.077)

0.263
(0.057)

0.540
(0.033)

0.161
(0.035)

0.828
(0.025)

0.234
(0.049)

0.718
(0.027)

2009 0.199
(0.026)

0.767
(0.118)

0.201
(0.051)

0.760
(0.031)

0.156
(0.044)

0.833
(0.024)

0.209
(0.024)

0.763
(0.032)

2017 0.181
(0.049)

0.791
(0.030)

0.256
(0.026)

0.708
(0.115)

0.150
(0.042)

0.840
(0.027)

0.261
(0.025)

0.706
(0.034)

Table 9: Parameter estimates using a recursive estimation scheme. Parameters were esti-
mated using 30 (ending in 1989), 40 (1999), 50 (2009) years of data as well as the full sample.
The left panel shows parameter estimates for k = 3, m = 2 model. The right panel shows
results from k = 6, m = 2.
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Pairwise Comparison of Forecasting Models

k = 3
2 3

1 −5.54? −4.15?

2 −0.59

k = 4
2 3 4

1 −2.03? −1.29 −1.51
2 0.55 −0.07
3 −1.32

k = 5
2 3 4 5

1 0.74 0.91 2.15? 0.71
2 −0.04 0.82 −0.14
3 2.78? −0.52
4 −3.50?

k = 6
2 3 4 5 6

1 −1.99? −1.07 1.03 0.91 −0.53
2 1.39 1.63 2.56? 3.21?

3 1.18 1.35 1.05
4 −0.94 −1.07
5 −1.20

Table 10: Pairwise Diebold-Mariano-Giacomini-White test statistics. Negative values indicate
the model with the number of volatility factors indicated on the row (left) was superior to the
model indicated on the column (top). Positive number indicate the that the column model is
superior to the row model.
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Best Forecasting Model and Models in MCS

k Best m MCS Excluded m

3 1 2,3
4 1
5 4 3,5
6 4 2

Table 11: The left columns identified the best number of volatility factors, m, for each model
dimensions k. The right columns indicates the models which were excluded from a Model
Confidence Set using a size of 5%.
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Figure 1: Estimated factor volatilities for the first and second volatility factor for models with
mean factors varying from 3 to 6.
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Figure 2: Average total volatility attributable to common factor exposure. Models included
mean factors (k) ranging from 3 to 6. In each panel the total volatility is plotted for the
number volatility factors (m) ranging between 1 and the number of mean factors in the model.
In each panel, the 2-volatilty factor model is highlighted.
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Figure 3: Estimated factor volatilities using composite likelihood for the first and second
volatility factor for models with mean factors varying from 3 to 6.
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Figure 4: Average total volatility attributable to common factor exposure using models esti-
mated by composite maximum likelihood. Models included mean factors (k) ranging from 3
to 6. In each panel the total volatility is plotted for the number volatility factors (m) ranging
between 1 and the number of mean factors in the model. In each panel, the 2-volatilty factor
model is highlighted.
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Common Factor Share of Total Volatility
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Figure 5: Share of total volatility attributable to common factor volatility. Each model uses 2
volatility factors (m = 2). The number of mean factors (k) was varied between 3 and 6.
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Absolute Mean Factor Loadings
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Figure 6: Factor loadings of the mean factors, as extracted using PCA on the full data set, and
the volatility factor loadings, which are weighted averages of the original factors.
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Figure 7: Recursively estimated volatilities. The top panel uses 3 mean factors (k) while the
bottom panel uses 6. All models included 2 volatility factors (m = 2). Models were estimated
using 30, 40 and 50-years of data as well as the full sample.
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Full Residuals, ξi
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Figure 8: Average volatility when estimated using individual model shocks. The top penal uses
the entire shock while the bottom uses only the idiosyncratic component assuming loading are
constant. Model parameters were estimated in two way. The first fit n individual models to the
residuals. The second used composite likelihood to estimate a single set of common dynamic
parameters across all models.
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Dynamics of Alternative Measures of Uncertainty

1969 1979 1989 1999 2009

Idiosyncratic
Idiosyncratic Residual
Common Factor

Figure 9: These three series plot the average idiosyncratic volatility as computed from individ-
ual model residuals

(
ξi
)
, the volatility of the component of the individual model residuals that

is orthogonal to factor shocks
(
ξi − υiξf

)
, and total volatility that can be explained by com-

mon factors. Both idiosyncratic volatility series are from models estimated using composite
likelihood. The common factor volatility is from a model with m = k = 4.
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