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Abstract

We consider the classic problem of estimating group treatment effects when individuals sort
based on observed and unobserved characteristics. Using a standard choice model, we show that
controlling for group averages of observed individual characteristics potentially absorbs all the
across-group variation in unobservable individual characteristics. We use this insight to bound
the treatment effect variance of school systems and associated neighborhoods for various out-
comes. Across multiple datasets, we find that a 90th versus 10th percentile school/neighborhood
increases the high school graduation probability and college enrollment probability by at least
0.047 and 0.11 and permanent wages by 19%.
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1 Introduction

Society is replete with contexts in which (1) a person’s outcome depends on both individual and
group-level inputs, and (2) the group is endogenously chosen either by the individuals themselves or
by administrators, partly based on the individual’s own inputs. Examples include health outcomes
and hospitals, earnings and workplace characteristics, and test scores and teacher value-added.!
Generations of social scientists have studied whether group outcomes differ because the groups
influence individual outcomes or because the groups have attracted individuals who would have
thrived regardless of the group chosen. In some cases, sources of exogenous variation are available
that may be used to assess the consequences of a particular group treatment. However, assessment of
the overall distribution of group treatments is much more difficult, and researchers and governments
frequently rely on non-experimental estimators of group treatment effects (e.g. school report cards

and teacher value-added).

In this paper we show that in certain circumstances the tactic of controlling for group averages of
observed individual-level characteristics, generally thought to control for “sorting on observables”
only, will absorb all of the between-group variation in both observable and unobservable individual
inputs. We then show how this insight can be used to estimate a lower bound on the variance in
the contributions of group-level treatments to individual outcomes. We also examine the conditions

under which causal effects of particular observed group characteristics can be estimated.

We apply our methodological insight and demonstrate its empirical value by addressing a classic
question in social science: How much does the school and surrounding community that we choose

for our children matter for their long-run educational and labor market outcomes?

To illustrate the sorting problem consider the following simplified production function relating
education outcomes to individuals’ characteristics and the inputs of the schools/neighborhoods they
choose. Let Y;; denote the outcome (e.g. attendance at a four-year college) of student i who attends

and lives near school 5.2 Suppose that Yj; is determined according to’
Yi = [XiB +xf'] + [ZsT+27] . (1)

The vector X; is a set of student and family characteristics observed by the econometrician (with
corresponding productivities B), while xLU = XiU B U is a scalar index that combines the outcome
contributions of unobserved student and family characteristics XiU. Together, [X, XIU] represent the

complete set of student and family characteristics that have a causal impact on student i’s educational

! Ash et al. (2012) provide an overview of the issues involved in assessing hospitals. Doyle Jr et al. (2012) also discuss
the issues and provide a short literature survey. They are among a small set of studies that use a quasi-experimental
design to assess effects of particular hospital characteristics on outcomes. See Chetty et al. (2014) and Rothstein (2014)
for discussions and references related to the estimation of teacher value-added.

2Despite the growing popularity of open enrollment systems, most school choice is still mediated through choice
of community in which to live, and most students still choose schools close to home even when given the opportunity
to attend more distant schools. Thus, we aim instead to measure the importance of the combined school/neighborhood
choice.

3Later we will introduce additional components to the outcome model.



attainment. Analogously, the row vector Zg is a set of school and neighborhood characteristics
observed by the econometrician (with corresponding productivities '), while 7V = ZEI"U is a scalar
index that combines the effects of unobserved school and neighborhood characteristics. Together,
[Zs,ZY] capture the complete set of school and neighborhood level influences common to students

who live in s, so that the school/neighborhood treatment effect is given by [Zs[ +zY].

Sorting leads the school average of X}J, denoted XY, to vary across s. This contaminates esti-
mates of I' and fixed effect estimates of the school treatment effect ZsI" +z¥. While various studies
have included controls for group-level averages of individual observables (denoted Xj), the role

played by such controls in mitigating sorting bias has generally been underappreciated.

Our key insight follows directly from the parent’s school/neighborhood choice decision—average
values of student characteristics differ across schools only because students/families with different
characteristics value school or neighborhood amenities differently. This means that school-averages
of individual characteristics such as parental education, family income, and athletic ability will be
functions of the vector of amenity factors (denoted Ag) that parents consider when making their
school choices. Thus, the school averages X5 and XY will be different vector-valued functions
of the same common set of amenities: X5 = f(As) and XU = fU(A;). The functions f and fU are
determined by the sorting equilibrium and reflect the equilibrium prices of the amenities. If the
dimension of the amenity space is smaller than the number of observed characteristics, then un-
der certain conditions one can invert this vector-valued function to express the amenities in terms of
school-averages of observed characteristics: Ag = f~1(Xs). But this implies that the vector of school
averages of unobserved characteristics can also be written as a function of observed characteristics:
XU = fU(f-1(X;)). This function of X can serve as a control function for XY when estimating

group effects.

We formalize this intuition by introducing a multidimensional spatial equilibrium model of
neighborhood/school choice and providing conditions under which the mapping from X; to XV is
exact. We provide further conditions (most notably an additively separable specification of utility)
under which this mapping from Xs to XV is linear. When these conditions are satisfied, including

X in a linear regression of the outcome Y; fully controls for XE.

As we make precise in Proposition 1 below, X; and XiU need not affect preferences for all of
the amenities Ag. Partition XiU into a subvector Xg that is correlated with X; and a subvector Xgl
that is not correlated with Xj. Roughly speaking, the key requirement is that (1) X; and/or XE
affect preferences for all amenities that any element of Xg shifts preferences for, and (2) that Xj
has enough elements to span this amenity space. The theoretical analysis assumes that group sizes
are sufficiently large so that random variation in group choice does not affect the group averages. It
also assumes that the number of groups is considerably larger than the number of amenity factors

agents consider when evaluating each group.

To take a simple example, suppose that school/neighborhood combinations differ in only one

dimension that people observe and systematically care about—perceived school quality—plus a



random idiosyncratic component specific to each family/location combination.*

Suppose further
that two uncorrelated characteristics, parental education (observed) and student athleticism (un-
observed), both increase families’ willingness-to-pay for school quality, and that both affect the
outcome Yj; (e.g. graduation from high school). In equilibrium the expected values of both parental
education and student athleticism will be increasing in perceived school quality, so that the neigh-
borhood average of parents’ education will be a perfect proxy for the neighborhood average of
student athleticism. Now suppose that the quality of athletic facilities also varies across neigh-
borhoods and that student athleticism influences willingness to pay for better athletic facilities but
parental education does not. Then variation in the quality of athletic facilities will lead to between-
neighborhood variation in average athleticism that average parental education cannot predict. In
this case we would need to control for the neighborhood average of another observable characteris-
tic (e.g. parental income) that either directly affects willingness to pay for athletic facility quality or

is correlated with student athleticism.

While this control function approach potentially solves the sorting-on-unobservables problem,
the observed group averages Xg control for too much. They will absorb peer effects that depend
on Xs and/or XY. They will also absorb a part of the unobserved school/neighborhood quality
component that is both orthogonal to the observed school characteristics and correlated with the
amenities that families consider when choosing where to live. As a result, without further assump-
tions, our estimator will only place a lower bound on the variance of the overall contribution of

schools/neighborhoods to student outcomes.

The empirical part of the paper applies the control function approach in the school choice con-
text. Implementation requires rich data on student characteristics for large samples of students
from a large sample of schools, as well as longer-run outcomes for these students. We use four
different datasets that generally satisfy these conditions: three cohort-specific panel surveys (the
National Longitudinal Study of 1972 (NLS72), the National Educational Longitudinal Survey of
1988 (NELS88), and the Educational Longitudinal Survey of 2002 (ELS2002)), along with admin-

istrative data from North Carolina.

For each dataset, we provide lower bound estimates of the overall contribution of differences
between school systems and associated neighborhoods to the variance in student outcomes: high
school graduation, enrollment in a four-year college, and adult wages (NLS72 only). In addition,
we also convert each lower bound variance estimate into a lower bound estimate of the expected
impact on the chosen outcome of starting at a school system and associated neighborhood at the
10th quantile in the distribution of school contributions instead of a 50th or 90th quantile system (a

more intuitive scale).

Even our most conservative North Carolina results suggest that, averaging across the student
population, choosing a 90th quantile school and surrounding community instead of a 10th quantile

school increases the probability of graduation by at least 8.4 percentage points. In the NELS88

4The weights families place on the amenities may also depend on other unobserved characteristics that do not have a
direct effect on the outcomes of interest. These additional characteristics are the Q; variables in the analysis below.



and ELS2002 the corresponding estimates are 4.7 and 6.8 percentage points, respectively, although
these may be less reliable due to sampling error in school average characteristics. We estimate
large average impacts despite the fact that our lower bound estimate only attributes between 1 and
4 percent of the total variance in the latent index determining graduation to schools/neighborhoods.
However, the average impact of moving to a superior school on binary outcomes such as high school
graduation or college enrollment can be quite large even if differences in school quality are small,

as long as a large pool of students are near the decision margin.

Estimates of the impact of a shift in school environment on the probability of enrolling in a four-
year college are similarly large: choosing a 90th instead of a 10th quantile school and surrounding
community increases the probability of four-year college enrollment by at least 11-13 percentage
points across all three survey datasets. It would increase the permanent component of adult wages
by 19 percent (in NLS72). A one-standard deviation shift in school/neighborhood quality would
raise wages by about 7 percent, or .23 standard deviations. Note that our estimates are derived from
a static model of what is in fact a dynamic process. The most conservative interpretation is that
our estimates represent lower bounds on the cumulative effects of growing up in different school

systems/neighborhoods.

The methodological part of the paper draws on and contributes to a number of literatures. First,
the basic idea that observed choices reveal information about choice-relevant factors unobserved
by the econometrician has been utilized in a number of settings, including the estimation of firm
production functions (e.g., Olley and Pakes (1996), Levinsohn and Petrin (2003), and Ackerberg
et al. (2006), among others), labor supply functions (e.g., Metcalf (1974) and Altonji (1982)), dis-
tinguishing between uncertainty and heterogeneity in earnings (e.g., Cunha et al. (2005)), and even
estimating neighborhood effects (Bayer and Ross (2009)).> Our application is unusual in that the
control function involves group aggregates that reflect individual choices rather than relationships
among different choices by the same agent.

Second, we draw on the rich theoretical and empirical literature on equilibrium sorting and
matching models across several fields. Browning et al. (2014) and Chiappori and Salanie (forthcom-

ing) provide recent surveys of the extensive literature on marriage and matching more generally. A

5Qur econometric approach is only loosely related to the large literature on the use of control functions to estimate
triangular systems with continuous or discrete treatment variables. In that literature, model assumptions relating to
how the endogenous treatment variable and outcome of interest are determined imply that a function of the endogenous
variable and an instrument or set of instruments can control for the source of endogeneity in the equation for Y. See
Imbens (2007) for a survey in the context of nonadditive models, and Kasy (2011) for necessary and sufficient conditions
for the existence of a control function. In our case, there is no instrument, but the sorting model implies a relationship
between observable and unobservable group averages.

5Qur estimation strategy is also closely related to the correlated random effects approach (Mundlak (1978), Chamber-
lain (1980), Chamberlain et al. (1984)). In that literature a function of the vector of observations on X; from members
of group s is used to control for correlation between Xj and the group error term. In many applications the mean Xg is
used. However, in that literature, much of the focus is on estimating the effects of person specific variables, such as B
in our application, while accounting for correlation with a common group error. In our application, the focus is on the
group effect, a model of sorting provides the justification for the use of X as a control, and B is not identified. Despite
the similarity in titles, our analysis is also completely distinct from that of Altonji et al. (2005) and Altonji et al. (2013).
Those papers examine the econometric implications of how observed variables are drawn from the full set of variables
that determine the outcome and the treatment variable of interest.



central concern of this literature is who marries whom-the sorting of marriage partners with het-
erogenous characteristics. A number of recent papers analyse labor market sorting based on firm and
worker quality, including Lise et al. (2013) and Melo (2015). Lindenlaub (2013) presents a closed
form solution to the sorting equilibrium of a labor market in which jobs differ on a continuum in
the skill vectors they require and workers differ on a continuum in the skill vectors they supply. The
match between consumers and products (which could be locations with various characteristics) is
a central concern of the hedonic demand literature, including the important contributions of Rosen
(1974), Ekeland et al. (2004), and Heckman et al. (2010) among others.

Most directly relevant is the large literature on sorting across neighborhoods and schools that
grew out of Tiebout (1956), particularly Epple and Platt (1998) and Epple and Sieg (1999). Epple
and Platt’s model features one dimension of neighborhood quality and two dimensions of hetero-
geneity across households—income and tastes for the public good. They show that in equilibrium
the distributions of income and tastes both shift with the level of the public good in a location. This
implies a mapping between income in a location and tastes in a location—the same type of map-
ping that we exploit. They also show that house prices are monotonic in location quality.” Bayer
and Ross (2009) consider the implications of Epple and Platt’s analysis for dealing with sorting on
unobservables when estimating the effects of school and neighborhood characteristics on outcomes.
They assume neighborhood quality depends on a vector of observed characteristics (Zg in our nota-
tion) and a one dimensional unobservable. They use housing prices to construct a control function
for the unobservable. They recognize that both the control function and Zg are endogenous in the
outcome equation because of sorting on XiU.8 However, the estimation scheme that they propose to
address the issue is invalid in the presence of unobserved heterogeneity in location preferences and

multiple unobserved location amenities.

Third, the multinomial choice formulation that we use to characterize the school/location choice
problem is standard in the consumer choice literature. It assumes that preferences for observed
and unobserved location characteristics depend on both observed and unobserved student/parent at-
tributes, as in McFadden et al. (1978), McFadden (1984) and Berry (1994) and many subsequent
papers. Bayer et al. (2007) use a similar specification to estimate models of housing demand in
which the estimation of preferences for observed and unobserved characteristics of schools and
neighborhoods is a central objective. We do not estimate preferences. Our contribution is to show
that the sorting on observables and unobservables implied by multinomial choice models and he-
donic demand models implies that group averages of observables can serve as a control for group

averages of unobservables in the estimation of group treatment effects.

The empirical part of the paper adds to a vast literature on school and neighborhood effects

7See Bayer and Timmins (2005) for an analysis of the equilibrium properties of a model similar to that of Epple and
Platt (1998).

8The idea that the choice of a location, an occupation, a firm, or a school may reveal information about individuals
provides motivation for the use of “fixed effects” estimation in a variety of contexts. For example, Fu and Ross (2013) use
neighborhood fixed effects to control for worker heterogeneity when estimating the effect on wage rates of agglomeration
at workplace locations.



that we cannot do justice to here.® Our analysis of sorting is directly relevant to the large num-
ber of papers that feature regression models of the form of equation (1). A few recent papers
have employed experimental or quasi-experimental strategies to isolate the contribution of either
schools or neighborhoods to longer run student outcomes. Oreopoulos (2003) and Jacob (2004)
use quasi-random assignment of neighborhood in the wake of housing project closings to estimate
the magnitude of neighborhood effects on student outcomes. Similarly, the Moving To Opportu-
nity (MTO) experiment, evaluated in Kling et al. (2007), randomly assigned housing vouchers that
required movement to a lower poverty neighborhood to estimate neighborhood effects. None of
these studies find much evidence that moving to a low-poverty neighborhood improves economic
outcomes. However, Chetty et al. (2015) revisit the MTO experiment using Internal Revenue Ser-
vice data on later outcomes, including earnings, college attendance, and single parenthood. Their
treatment-on-the-treated estimates indicate that children who move to a lower poverty neighbor-
hood when they are under age 13 experience large gains in annual income in their mid-twenties,
while those who move after age 13 experience no gain or a loss. Their estimates of treatment effects
on adult earnings also increase with the number of years of exposure to a lower poverty neighbor-
hood.!” Using a sibling differences approach that also exploits high quality data from tax records,
Chetty and Hendren (2015) identify county-level neighborhood effects on earnings that are larger
than but qualitatively consistent with our results. Aaronson (1998) finds substantial effects of the
census tract-level poverty rate and high school dropout rate on dropout rates and years of education
using a sibling differences design and PSID data.!!

Deming et al. (2014), in contrast, exploit randomized lottery outcomes from the school choice
plan in the Charlotte-Mecklenburg district to estimate the impact of winning a lottery to attend
a chosen public school on high school graduation, college enrollment, and college completion.
They find large effects. Specifically, for students from low quality urban schools, the treatment
effects from winning the lottery are large enough to close 75 percent of the black-white gap in
graduation and 25 percent of the gap in bachelor’s degree completion. Angrist et al. (2016) also use

admissions lotteries and find positive effects of attending a Boston charter high school on test scores

9Jencks and Mayer (1990) provide a comprehensive review of earlier studies from economics and sociology. They
conclude that there is no strong evidence for neighborhood effects. However, some of the studies they summarize do
find effects. More recent reviews include Sampson et al. (2002), Durlauf (2004), and Harding et al. (2011). Duncan
and Murnane (2011) contains several recent papers on school and neighborhood effects, with references to the literature.
Meghir et al. (2011) discuss alternative approaches to estimating school fixed effects and the effects of particular school
inputs, and highlight the problem of endogenous selection of schools and neighborhoods, among other econometric
issues. The papers we discuss in the text also provide references to many other recent contributions to the literature on
school and neighborhood effects.

10° Aliprantis (2011) stresses the limitations of the MTO study for uncovering the full distribution of school system and
neighborhood effects on children. Aliprantis and Richter (2013) focus on the adults in MTO. They combine experimental
variation in the costs of moving to neighborhoods of different poverty levels with an ordered discrete choice model of
the decision to move. They find that neighborhood quality has a substantial effect on the outcomes of adults. They
also conclude that the overall effect of the experiment on adult economic outcomes was small because the induced
improvements in neighborhood quality were small for most families.

HTn contrast to Aaronson (1998), Plotnick and Hoffman (1995) do not find neighborhood effects on postsecondary
education using a sibling difference design with PSID data on sister pairs. Aaronson provides evidence that Plotnick and
Hoffman’s choice of sample and neighborhood quality measures led to weaker results. He also finds that neighborhood
effects are smaller for postsecondary education than for high school graduation.



and attendance at four-year colleges relative to two-year colleges. On the other hand, Cullen et al.
(2006) use a similar identification strategy with lotteries in Chicago Public Schools and find little
effect on the high school graduation probability.

In contrast to these papers, we do not exploit any natural experiments. Instead, we show that
rich observational data of the type collected by either panel surveys or administrative databases can
nonetheless yield meaningful insights about the importance of school and neighborhood choices for

children’s later educational and labor market performance.

The rest of the paper proceeds as follows. Section 2 presents our model of school choice, while
Section 3 formally derives our key control function result. Section 4 describes and presents re-
sults from a monte carlo analysis of the finite sample properties of our control function approach.
In Section 5 we elaborate on the model for long run outcomes presented above, and show that
OLS estimates combined with restrictions implied by our model of sorting are sufficient to place a
lower bound on the variance of school and neighborhood effects. Section 6 describes our empir-
ical methodology for placing lower bounds on school and neighborhood contributions to long run
student outcomes. Section 7 describes the four datasets we use to estimate the model of outcomes.
Section 8 presents our results. Section 9 briefly discusses other applications of our methodology,
including the assessment of teacher value added. Section 10 closes the paper with a brief summary

and research agenda.

2 A Multinomial Model of School Choice and Sorting

In this section we present a model of how families choose school systems and associated neigh-
borhoods. Throughout the paper, matrices, vectors, and matrix or vector valued functions are in

bold. The “prime” symbol denotes matrix or vector transposes.

We adopt a money-metric representation of the expected utility the parents of student i receive
from choosing school/neighborhood s, so that the utility function U;(s) can be interpreted as the

family’s consumer surplus from their choice. We assume U;(s) takes the following linear form:

Ui(s) = WiAg+ & — P. (2)
In the above equation Ag = [Ay;,...,Ag;| represents a vector of K underlying latent amenities that
characterize each location s € {1,...,5}. W; = [Wy;,...,Wk;| is a 1 x K vector of weights that cap-

tures the increases in family i’s willingness to pay for a school per unit increase in each of its K
amenity factors Ay, ...,Ak;s, respectively. P is the price of living in the neighborhood surround-
ing school s, and & is an idiosyncratic taste of the parent/student i for the particular location s.
Consider projecting the willingness to pay (hereafter denoted WTP) for particular amenities across

parent/student combinations onto these families’ observable (X;j) and unobservable (XiU) character-



istics. In particular, suppose that X;j has L elements, while XiU has LY elements. Then we obtain:
W =Xi0+X'0"+Q;, (3)

where ® (@Y) is an L x K (LY x K) matrix whose (k-th entry captures the extent to which the
willingness to pay for the k-th element of the amenity vector Ag varies with the /-th element of X;
(XiU). We sometimes refer to the elements of @ and ®Y as WTP slopes or WTP coefficients. The
1 x K vector Qj captures the components of i’s taste for the K amenities in Ag that are uncorrelated
with [X;, XiU ]. Since [X;, XP] is the complete set of student attributes that determine Yj;, the elements

of Q; influence school choice but have no direct effect on student outcomes.

Substituting equation (3) into equation (2), we obtain:
Ui(s) = (Xi®+ X7 OV + Qj)As + &, — P, 4)

In the absence of restrictions on the elements of @ and @Y, this formulation of utility allows for a
very general pattern of relationships between different student characteristics (observable or unob-
servable) and tastes for different school/neighborhood amenities, subject to the additive separability

assumed in (2).

Expected utility is taken with respect to the information available when s is chosen. The in-
formation set includes the price and the amenity vector in each school/neighborhood as well as
student/parent characteristics [Xi,XiU,Qi] and the values of &;, s = 1,...,S. The information set
excludes any local shocks that are determined after the start of secondary school. It also excludes
components of neighborhood and school quality that are not observable to families when a location
is chosen. Some of the elements of Ag may depend on school/neighborhood characteristics Zg that
influence educational attainment and labor market outcomes. The amenities may also include or de-
pend on aspects of the demographic composition of the school/neighborhood. Some determinants
of amenities (such as spending per pupil) may be influenced by demographic composition. Thus,

some of the amenities are influenced by the sorting equilibrium.

The parents of i choose s if net utility U;(s) is the highest among the S options. That is,

s(i) = arg max U(s)
s=1,..,8
Parents behave competitively in the sense that prices and Ag are taken as given, and choice is unre-
stricted. In equilibrium the values of some elements of Ag may in fact depend on the averages of X;
and XlU for the parents who choose s, but parents ignore the externalities that they are imposing on

others.



3 The Link Between Group Observables and Group Unobservables

In Section 3.1 we state and prove Proposition 1, which concerns the relationship between XY
and X implied by the above choice model. In Section 3.2 we discuss the proposition and the

assumptions that underlie it.

3.1 Proposition 1: XU Is a Linear Function of X

Before stating Proposition 1, we need to define more notation. Decompose X}j into its projection

on X; and the orthogonal component f(iUzlz
XY = X;Iyuy + XV (5)

Use (5) to rewrite (3) as W; = X;@ + XiU@U +Q;, where @ = CEE HXUX@)U]. In the rewritten
form, all three components of W; are mutually orthogonal. We are now prepared to present the

main proposition of the paper.

Proposition 1: Assume the following assumptions hold:

Al: Preferences are given by (4).
A2: Parents take P(Ag) and Ag as given when choosing location, and face a common choice set.

A3: The idiosyncratic preference components & have a mean of 0 and are independent of X;,
XiU, Qi , and A for all s.

Ad: E(X;|W;) and E(XU|W;) are linear in Wi;.
AS5: (Spanning Assumption) The row space of the WTP coefficient matrix @ spans the row space
of the WTP coefficient matrix oY relating tastes for A to XlU . That is,

o' = RO (6)

for some LY x L matrix R.

Then the expectation XY is linearly dependent on the expectation Xs. Specifically,

XY = X,[Mxux + Var(X;) " 'R'Var(XY)] @)

12We use the symbol Ipy to denote the vector or matrix of the partial regression coefficients relating a dependent
variable or vector of dependent variables D to a vector of explanatory variables V, holding the other variables that appear
in the regression constant. In the case of IIxux, D = XiU and V =X;.



3.1.1 Proof of Proposition 1:

Equation (2) states that the utility of each location s depends on X;, XiU, and Q; only through
W;. This fact and independence of &;; from X, XiU, and Qj, imply that

Pr(s(i) = s|X;, X}, Qi, Wi) = Pr(s(i) = 5|W;) (8)

where Pr(.) is the probability function. The above fact and Bayes rule imply that'3

F(Xi|Wi,s(i) = s) = f(Xi|Wi) )
FXP[Wi,s(i) = 5) = f(XT|Wj) . (10)

These equations then imply that E[X;|Wi, s(i) = s] = E[X;|Wi] and E[XV|W;, (i) = s] = E[X]|W;].

Consequently, using the Law of Iterated Expectations, we have:

XV = E[XV|s(i) = s] = E[E(XY|W;,s(i) = s)|s(i) = s] = E[E(XV|Wy)|s(i) =s] (11
Xs = E[Xi|s(i) =s] = E[E(X;|Wi,s(i) = s)|s(i) = s] = E[E(Xi|W;)|s(i) = s]. (12)

Next we find expressions for E[XY|W;] and E[X;/W;], which appear in the above equations.

Since by construction X}j is uncorrelated with Xj, and Q; is uncorrelated with both X; and XiU,

Cov(W;,XV) = Cov(@V XV XV) = @V var(XV) (13)
Cov(W},X;) = Cov(®'X},X;) = @' Var(X;). (14)

Since from assumption A4 E[X;|W;] and E[XV|W;] are linear in W;, E[XU|W;] is also linear in W;.

Consequently, assumption A4, equations (13)-(14), and basic regression theory imply that

E[XY|W;] = W;Var(W;) " 'Cov(W,XV) = W;Var(W;) '@V var(XV) (15)
E[Xi|Wi] = WiVar(W;) ' Cov(W,, X;) = W;Var(W;) '@ Var(X,). (16)

Next, if we use the spanning assumption A5 to replace 0V with @R’ in (15), and then use the

130ne can write the conditional density f(X;|Wj,s; = s) as

Pr(s(i) = s|X;, Wi) f(WilX;)
Pr(s(i) = s|W;) f(Wi)

_ Pr(s(i) = s|Wi) f(WilXi)
Pr(s(i) = s|W;) f(W;)

= f(X;|W;)

f(Xi|Wi,s;=35) =

F(X5)

£(X;)

where the first equality is Bayes rule, the second equality uses (8), and the third follows from cancellation of terms and
Bayes rule. The same line of argument establishes that f(XY|Wj,s(i) = 5) = £(XV|W;).

10



expression for E[X;|Wj] from (16), we obtain:

E[XY|W;] = W;Var(W;) '@ R'Var(XV)
— W;Var(W;) '@ Var(X;) Var(X;) 'R'Var(XV)
— E[X;|W;]Var(X;)'R'Var(XY). (17)

To find E[XlU |W;] first take expectations of both sides of (5) conditional on W;:
E[X{|W;] = E[X;|W;|TIxuy + E[X{|Wj]. (18)
Substitution for E[XU|W;] using (17) leads to
E[XU|W;] = E[X;|W;] (TTxux + Var(X;) 'R'Var(XV)). (19)

The final step is to take expectations of both sides of the above equation conditional on s(i) = s

and employ equations (11) and (12). Doing so leads to
XY = X,[[yux + Var(X;)'R'Var(XY)].

This completes the proof.

3.2 Discussion of Proposition 1

Proposition 1 lays out the conditions under which XY, the between group component of the vec-
tor of individual-level unobservables, will be an exact linear function of its observable counterpart
X,.!* Remarkably, the dependence between the group averages XU and X arises even when the
vector XiU is uncorrelated with the vector X; at the individual level. Note also that if unobservable
characteristics do not affect amenity preferences (i.e. individuals do not sort based on unobserv-
ables), so that @ = 0, then R = 0. When R = 0, (7) states that XV = X,Ixuy and XY = 0. As we
discuss in Section 8.5, this fact means that if sorting is driven by X; but not XiU , one can estimate

the variance in group treatment effects Var(ZsI +zY).

Note that Proposition 1 is a statement about the expectations Xs and XV. Thus, it concerns the
averages of Xj and XP when the number of individuals is large relative to the number of choices.
With a finite number of individuals per group, random variation associated with Q; and &; will cause
group averages at a point in time to deviate from their expectations. This could weaken the link
between group averages of observable and unobservable characteristics. Monte Carlo simulations

in Section 4 indicate that the procedure works fairly well with samples of 20-40 individuals per

141y Altonji and Mansfield (2014), we consider a version of the school choice model in which (a) we ignore the
idiosyncratic school-family taste match by setting &; = 0 V (s,i), and (b) we assume that S is sufficiently large so that
it can be well approximated by a continuum of neighborhoods that create a continuous joint distribution of amenities A.
Perhaps surprisingly, equation (7) in Proposition 1 holds for the continuous case.
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group. Note also that implementation of Xs as a control function for XV requires the number of
groups in the sample to be larger than the number of elements in Xy (and implicitly the number of

factors in Ag). Otherwise, one cannot estimate the coefficient vector on X.

The next two subsections discuss the assumptions underlying Proposition 1.

3.2.1 Discussion of Assumptions A1-A4

Assumption Al, which relates to the specification of preferences, is fairly general given that

both X; and XiU can include nonlinear terms.

Assumption A2 simply says that households take characteristics of neighborhoods as given. As
we mentioned above, this is fully consistent with the possibility that Ay depends on who chooses
s in equilibrium. If some of the neighborhood amenities are functions of resident characteristics,
the distribution of amenities will be endogenous. There might be multiple equilibria. However,
Proposition 1 follows entirely from utility maximization. The linear dependence between X and

XY will hold in any equilibrium of the model.

Assumption A2 also imposes that households face a common set of choices. In the next section
we discuss monte carlo simulations that demonstrate that our control function also works well when

different households face choice sets that are overlapping subsets of the full set of schools.

The independence assumption A3 seems minor given that &; can be defined to be uncorrelated
with Xj, XlU and Q; without loss of generality. A sufficient condition for the linearity in expectations
assumption A4 to hold is that the joint distribution of [X;, XiU, Q] belongs to the continuous elliptical
class. Examples include the multivariate normal, the multivariate t, the Laplace, and the multivariate
exponential power family.'> However, in our application X; contains a number of discrete variables,

so this sufficient condition will not be satisfied.

Proposition 2 in online Appendix A3 establishes that if A4 fails, then an approximation error
term appears in equation (7) for X¥. The approximation error consists of the average for s of a linear
function of the differences between E(X;|W;) and E(X}J |Wj) (respectively) and the best least square
linear predictions of Xj and XP given Wj. As we discuss in Section 6.1, this could lead to upward
bias in the less conservative of our two estimators of the variance of school/neighborhood effects.
Note, though, that because XV appears in the outcome equation through the index XEﬁU, any
upward bias depends on a weighted index of the approximation error terms for each element of XY,
with the elements of BU as the weights. This may lead to some cancellation of the approximation

€Irors.

We now turn to the spanning assumption AS5.

I5Elliptical continuous distributions have density functions that are constant over ellipsoids. Gémez et al. (2003) survey
some of the properties of these distributions.
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3.2.2 When Will the Spanning Assumption A5 Hold?

The key restriction on preferences in Proposition 1 is the spanning assumption (AS). It requires
the coefficient vectors @V relating tastes for amenities to the elements of XiU to be linear combina-
tions of the coefficient vectors @ relating tastes for amenities to the observables X; and/or elements
of XiU that are correlated with Xj. Given the importance and subtlety of this spanning condition, we

further develop the intuition underlying the condition and highlight cases in which it fails to hold.

Reconsider the more general function formulation used in the introduction. Let AX C A rep-
resent the subset of amenities that affect the distribution of observable school averages Xs. An
amenity will be included in AX if WTP for the amenity is affected by either X; or elements of X}j
correlated with X;. Likewise, AXY C A represents the subset of amenities that affect the distribution
of unobservable school averages XV. The between-school variation in Xg will only be driven by
AX, so that Xg = f(AX) for some vector-valued function f. Similarly, XY = fU(AX"). We can write
XY = g(X,) if we can write XU = fU(f~ (X)), where g(X;) = fV (fﬁ1 (Xs)). Thus, jointly sufficient
conditions are

Assumption A5.1: f is invertible, so that we can write AX = f~1(X)

Assumption A5.2: AXY C AX, s0 that the amenity space that X spans is the relevant amenity

space that drives the variation in XU (i.e. the range of £~ must encompass the domain of fU).

While these conditions are not necessary, they suggest two fundamental ways that the spanning
condition ®Y = R® can fail.'® The first way, which leads AS5.1 to fail, is that the vector X; may
affect tastes for more amenities than its own number of elements. That is dim(AX) > L where
dim(AX) is the number of elements in AX. In this case, the function f(*) is not invertible.!” In
the case of the additively separable utility function from (4), dim(AX) is equal to the row rank of
©. In the context of the simple example from the introduction, this condition might fail if the only
observable characteristic were parental income, and the amenity space consisted of two imperfectly
correlated factors: schools’ quality of teachers and quality of athletic facilities. Even if parental
income affected WTP for both amenities, one would not be able to disentangle the quality of athletic
facilities from the quality of teachers based on only neighborhood averages of parental income. We
would need to observe a second individual characteristic, such as parental education, in order to

satisfy the spanning condition.

The validity of A5.1 depends on the number and breadth of coverage of variables in Xj. It is

testable. The model implies a factor structure for the vector Xg, where the number of factors is

16 nvertibility of f(AX) is not a necessary condition. It is possible that the mapping from AX to X is one-to-many,
meaning that the same value of AX leads to multiple values of Xs. In this case the key is that one can still write AX
= h(Xs), where h(.) = f~!() in the one-to-one case. The mapping from AXY 1o XU need not be one-to-one either.
However, there must be a mapping XU = f(AXU ,Xs) = f(h(X;), Xs) = g(X;) that is one-to-one or many-to-one.

7More specifically, what is relevant for invertibility is not the number of elements of Xj (denoted L) per se but the
number of independent taste factors that these L observables represent. Suppose for example, that mother’s education
and father’s education were both observed, but they affected willingness to pay for each amenity in the same relative
proportions. Then adding father’s education to X; would not make f(x) invertible if it were not already when only
mother’s education was included in X;.
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determined by the row rank of 0. A finding that the number of factors that determine X is smaller
than the dimension of X; is consistent with the assumption that dim(AX) < L. A finding that the
number of factors is at least as large as the dimension of X; is also technically consistent with the
assumption, but would strongly suggest that dim(AX) > L. The evidence presented in Section 8.6

and online Appendix A2 is fully consistent with dim(AX) < L in our application.

What about Assumption 5.2? Partition XiU into a subvector XIIJl that is correlated with Xj and a
subvector Xgl that is not correlated with X;. Assumption 5.2 will fail if Xg affects preferences for

an amenity that neither X; nor XE affect preferences for.

Revisiting one of the examples from the introduction helps illustrate how the assumption can
fail. In that example parental education is the only observable and student athleticism is the only
unobservable. Parental education and student athleticism are assumed to be uncorrelated, so student
athleticism is an Xgl variable rather than an X}Ji. Furthermore, parental education does not affect
WTP for athletic facilities in the neighborhood, while student athleticism does. Athletic facility
quality is an element of AX" but not AX, so that AXY ¢ AX. Assumption 5.2 would fail. Conse-
quently, variation in athletic facility quality would drive between-neighborhood variation in average
student athleticism that average parental education would not capture. Online Appendix Al goes

through further examples that illustrate when the spanning condition will and will not be satisfied.

Assumption AS5.2 is a statement about unobservables and thus is not testable without more struc-
ture than we impose. But one can assess the assumption through the following thought process.
First, draw on the literature to identify the factors, both observed and unobserved, that are most
important for the outcome. Next consider each unobserved variable and ask whether it is likely to
be uncorrelated with all of the observed variables. Also ask whether it is likely to be the only deter-
minant of WTP for some amenity that influences location choice. If the answer to both questions is

“no” for all of the elements of XiU, then Assumption A5.2 is plausible.

This line of reasoning leads us to believe that A5.2 is plausible in an application such as ours in
which Xj contains a rich and diverse set of variables that are likely to matter for student outcomes.
Consider, for example, the priority that a child’s parents and broader family place on academic
learning and educational attainment. One would expect this unobservable to boost willingness to
pay for peer groups and community and school characteristics that foster achievement, such as en-
richment programs. However, parents’ education (observed in all 4 data sets), parents’ desired years
of education, parental school involvement (observed in EL.S2002 and NELS88), and grandparents’
education (observed in ELS2002) are likely to be correlated with the priority parents place on edu-
cation. They are also likely to directly affect willingness to pay for a similar set of education-related
school and neighborhood characteristics. To take another example, taste for/proficiency in music
may affect academic performance and influence willingness to pay for schools and communities
with good music programs and music venues. But parental education and parental income are likely
to be correlated with a child’s proficiency in music (through home investments). They also may

influence WTP for opportunities in music. One can make similar arguments about other unobserv-
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ables (e.g. wealth (unobserved) vs. income (observed)).!?

Online Appendix A4 derives an analytical formula for the component of XV that cannot be
predicted by X when the spanning assumption is violated (and thus may be a source of bias in
our lower bound estimates of the variance in school/neighborhood treatment effects). The variance
in this component depends on the following five factors: a) the joint distribution of amenities;
b) the joint distribution of the WTP index Wj; c) the matrix eV mapping unobserved individual
characteristics into willingness to pay for particular amenities; d) the joint distribution of the residual
component of unobserved outcome-relevant student characteristics X}J and e) the joint distribution

of the unobserved outcome-irrelevant (but school choice-relevant) student characteristics Q;.

Given the complicated manner in which each of these five factors enters the expression for the
unexplained component of XY, there does not appear to be any straightforward way to place a bound

on the variance in this error component.

4 Monte Carlo Evidence on the Performance of X as a Control Func-

tion

In this section we present monte carlo simulation results that examine the properties of our
control function approach across a number of key dimensions. We start by examining how well Xg
controls for XV with finite samples of students per school and when choice sets of parents differ. In
the initial designs the spanning condition (AS) is satisfied. We then turn to simulations in which the
spanning condition fails. A full description of our simulation methodology and results is contained

in online Appendix A5 and online Appendix Tables A8 and A9. Here we provide a brief summary.

We do not attempt to fully characterize the performance of our estimator.!® Instead, our simula-
tions center around a stylized test case that is calibrated to represent a plausible description of the

school/neighborhood choice context.

The first key result is that the control function can work extremely well even in settings where
1) there is only a moderate number of groups to join, and 2) only a subset of these are considered
by any given individual. In all of our simulations in such settings at least 99.5% of the variance in
group-average values of the unobservable index x¥ is absorbed by controlling for Xs. In all cases
the residual variance in x¥ not accounted for by Xj is negligible — less than 0.08% of the individual-

level outcome variance Var(Yy;). This is true even though the designs we consider feature very

180ne could in principle observe school averages Qs of the individual variables Q; that influence location preferences
but do not influence outcomes. The control function variables should include not only Xg but also Qg if Xy alone is
inadequate for the spanning condition to hold. Proposition 1 can easily be modified to account for the presence of Qs. We

. . .. . . XU . .
do not use Qs variables in our empirical analysis. Note also that if one observed an element of A*  that drives sorting on
Xgi, one could also include this observed amenity as part of the control function.

19 A full characterization is a daunting task given the large number of parameters that determine the full spatial equi-
librium sorting of students to schools. The parameters include those characterizing the joint distribution of the individual
characteristics affecting choice [Xi,XiU,Qi], the joint distribution of the amenities Ag, and the distribution of the id-
iosyncratic tastes &;. The parameters also include the ® and OV matrices that capture how observed and unobserved
characteristics affect WTP.
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U

strong sorting on unobservables: x;

accounts for between 10% and 14% of Var(Yy;) in all but one

case.

The second key result is that the control function also works well even when group-averages of
the observables X are constructed using small samples of group members rather than the full school
population. The R? exceeds .93 in all but one case. And the unexplained sorting variance is between
0.4% and 0.8% of the outcome variance even when samples of 20 are used to construct Xg. Given
our reliance on such small samples in the three panel survey datasets used in the empirical analysis
below, we revisit the issue in Section 7 and online Appendix A8. There we use the North Carolina
administrative data to directly assess the effect of using smaller samples of students to construct Xg
for some of the outcomes and characteristics we actually consider. Our main results are relatively
insensitive to restricting school sample sizes to match the distribution of sample sizes observed in
the NLS72, NELS88, and ELLS2002 datasets.

The third result is that the control function approach is quite robust to violations of the spanning
condition in which just a few outcome-relevant unobservables in XiU affect WTP for just a few
additional amenities that are not weighted by any elements of Xj. This is arguably the most plausible

case when rich data on students and parents are available.

5 The Econometric Model of Educational Attainment and Wage Rates

We start by elaborating on the underlying model of student outcomes presented in the introduc-
tion. Next, in Section 5.2 we show how sorting and omitted school and neighborhood characteris-
tics affect estimates of neighborhood/school effects based on OLS estimation of that model. Then
in Section 5.3 we show that the OLS estimates in combination with Proposition 1 are sufficient
to place a lower bound on the variance of school and neighborhood effects given the production
function (20) below.

5.1 The Model of Outcomes

In our application the outcomes are high school graduation, attendance at a four-year college,

a measure of years of postsecondary education, and the permanent wage rate. The outcome Y;

of student i whose family has chosen the school and surrounding neighborhood s is determined
according to

Yi=Xip+x/ +ZT+7Y +nu+ & . (20)

For binary outcomes such as college attendance, Yj; is the latent variable that determines attendance.

As discussed above, the student’s outcome contribution can be summarized by the index (X;B +

xV), where xV = XUBY is a scalar index summarizing the contributions of unobserved student
characteristics XiU, and the row vector [Xj, XlU] is an exhaustive set of child and family characteristics

that have a causal impact on student i’s outcome. Since X; and X}J may include non-linear functions,
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the linear in parameters specification for Yjs is without much loss of generality.

Analogously, the average school/neighborhood outcome contribution is captured by the index
ZT" + 7Y where 7V = ZUT'V is a scalar index summarizing the contributions of unobserved school
and neighborhood characteristics. The vector Zg captures the influence of observed school/neighborhood-
level characteristics (which in our empirical work do not vary among students within a school),
while ZY represents the remaining unobserved school/neighborhood influences which will vary be-
tween school attendance areas (e.g. quality of the school principal or the local crime rate). Note

that Zs and ZY may include averages of X; and X}j, respectively, which capture peer effects.

The unobserved scalar index 1,; captures variation in school/neighborhood contributions among
students within a school attendance area and within a school itself (e.g. trustworthiness of immediate
neighbors or distinct course tracks at the school). Indeed, some of the factors that determine 1,; may

represent the within-school components of Zg.

The component &; captures other influences on student i’s outcome that are determined after
secondary school but are not predictable given Xj, x,’-], Z,, zij and 1. These might include the
opening of a local college or local labor market shocks that occur after high school is completed.
It will prove useful to write &; as & + &;, where & is common to all students at school s and &;
is idiosyncratic. & is O for high school graduation. More generally, the productivity parameters
B and T and the indices x,U, 7V, ng and &; depend implicitly upon the specific outcome under

consideration as well as the time period in the case of wages.

In practice we only have data on observed student and school inputs X; and Zg at a single
point in time. Thus, some components of X; associated with student inputs (for example, student
aptitude) will have been determined in part by parental inputs from earlier periods (for example,
parent income).”’ Such links make it difficult to interpret the coefficient associated with a given
component of Xj, since once we have conditioned on the other components, we have removed many
of the avenues through which the component determines Y. Consequently, we do not make any
attempt to estimate the productivity parameters B or ﬂU, and thus do not attempt to tease apart
the distinct influences of child characteristics, family characteristics, and early childhood schooling
inputs, respectively. Similarly, we do not attempt to remove bias in estimates of I' stemming from
correlations between Zs and the omitted school/neighborhood factors z¥. We aim instead to separate
the effects of schools and associated community influences on outcomes from student, family, and

prior school/community factors.

To be more specific about what we mean by school/neighborhood effects, note that if a randomly
selected student attended school s' rather than s°, the expected difference in his/her outcome would
be (ZSIF+Z§]1) - (Zsol"+z§{)). We wish to quantify differences across schools/neighborhoods in
Z I +7Y. In the case of college attendance and permanent wage rates, the difference in expected
outcomes will also reflect the difference between &1 and & o, which are common to those who attend

s! or s° but are determined after high school is completed.?!

20See Todd and Wolpin (2003) and Cunha et al. (2006).
21 The outcomes of a specific student i will also differ across schools/neighborhoods because the values of the idiosyn-
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One could generalize the above model for Y; to allow the effects of school characteristics to
depend on individual attributes by adding interactions of Zgs and/or z with individual attributes X;
and/or XlU Indeed, the preference weights on amenities that represent school characteristics depend
on Xj and XiU in the choice model, as would be the case if parents choose locations with the match
to their child’s needs in mind. Allowing for non-separability in the outcome model does not break
the linear relationship between X and XV. However, it would imply that the distribution of school
treatment effects varies with X; and XlU We sketch out how one could proceed in the non-separable

case in footnote 29, but focus on the homogenous effects case in this paper.

5.2 The Bias in OLS Estimates of School Effects

In this section we discuss the slope parameters and error components that OLS recovers when

outcomes are regressed on only the observed student-level and school-level variables, X; and Zs.

To facilitate the analysis, first partition Zg into [Xs, Zs], where X consists of school-averages of
observable student characteristics, while Z is a vector of other observed school level characteristics
not mechanically related to student composition (e.g. teacher turnover rate or student-teacher ratio).
Partition the coefficient vector I' = [I'}, I';] analogously. Section 7.3 provides a discussion of which

variables should be included in X and Zyg, respectively.

Next, project the index of unobserved school inputs zﬁj onto X and Zg:
U _ U
Zy = Xsnzyxs + ZZSHZQZZS +2Z . (21
Similarly, project 1y; on the student-level variables:

Next, in order to more clearly demonstrate the impact of student sorting as separate from simple

omitted variables bias, we project xlU = XiU BU onto the space of observable variables in two steps.
U

First, we regress x; on the student-level observable vector X; only:

x| =Xillwy, +5 . (23)

The coefficient matrix Hx,UXi captures the relationship in the full population between the unobserved
student-level contribution to Y;; and observed student-level characteristics. It contributes to standard
omitted variables bias in estimation of the coefficient vector on X; even in the absence of non-
random student sorting to schools. In the second step, we project the residual from the first-step,

)?IU, onto both the student-level and school-level vectors of observables:

# =Xy, + XsIlwy +ZosTlwy, +E5 (24)

cratic terms 1; will differ.
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where efiu is an error component. If students with unobservable characteristics that boost long run
outcomes are more likely to sort into schools with particular observed characteristics (Xg and Zs),
then the matrices Hff’Xs and Hi}’Zzs need not equal 0. Furthermore, even though each component
of the vector &V is uncorrelated with X; given the regression equation (23) from step 1, I'Ifl;/Xi need
not equal zero once school characteristics have been conditioned on. For example, parents with
low income (included in Xj) who nonetheless choose an expensive school/neighborhood may be
revealing high residual taste for education. This unobserved characteristic might also improve their

kids’ outcomes regardless of school, thus belonging in X}J and contributing to .

Substituting the projections (21), (22), (23), and (24) for z¥, 1y, x¥, and &V into (20), we obtain:

Yi = XiB+XsGq +ZGy + v+ (vsi —vg), where (25)
B=[B+ux + Moy +Mwy )] (26)
Gy = [ + oy, + My ] (27)
G2 = [[2+1Lyz, + Ty, ] (28)
vi=2U el 4§ (29)
vi—vy =t (€ — &)+ iy (30)

The expressions for Gy, G2 and v, in (27), (28) and (29) reveal that the observable school com-
ponents XsG1 and ZsG; and the unobservable residual component v; all reflect a mixture of school
effects and student composition biases. Specifically, X;Gy and Z;G, will reflect XSI'I)EIUXs and
ZZSH)E,’/ZZS’ respectively, which capture differences across schools in £V that are predictable by X

U
and Z,s conditional on Xj. The unpredicted between-school component vy will reflect Sf’ , which
captures the part of the average unobservable student contribution that is not related to observed

school-level characteristics or average student-level characteristics. The terms Xngsta Zy 11w Lo

U
and &' capture sorting. They are not school/neighborhood effects, since a child who was re-
allocated to a school with a higher value of these components could not expect an increase in

test SCOI'eS.22

Without further assumptions about how students sort into schools, regression and
variance decomposition techniques cannot be used to identify or even bound the contribution of
schools/neighborhoods to student outcomes. However, in the next section we show that the assump-
tions laid out in Proposition 1 are sufficient to place a lower bound on the variance of school and

neighborhood effects given the production function (20) above.

5.3 Using Proposition 1 to Bound the Importance of School/Neighborhood Effects

Section 3 provides conditions under which the school-average values of student observables Xg

and unobservables XV are linearly dependent, as summarized in Proposition 1. We now show that

22Note that peer effects stemming from concentration of particular types of students at a school are captured by either
ZTor V.
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the relationship between Xg and XV implies restrictions on Gy and vy that allow the recovery of
a lower bound estimate of the contribution of schools (and groups more generally) to individual
outcomes. We also present the more demanding conditions under which unbiased estimates of the
causal effects of particular group-level characteristics can be recovered. Equations (5) and (7) from
Proposition 1 and (24) together reveal that [Ty, +TTwy | = Var(X;) 'R Var(XV) BY, My, =0,
and gf =0.23

Thus,

G2 = 1"2 +HZ§/ZZS (31)
vy = z? +& . (32)

We see that when the conditions of Proposition 1 are satisfied, the inclusion of Xy in Zg purges
both Gy and vy of biases from student sorting, so that Var(Z3G2) and Var(v) only reflect true
school/neighborhood contributions and, in the case of vy, later common shocks. However, the com-
ponents Var(Z,sGz) and Var(vy) only permit a lower bound estimate of the importance of school
and neighborhood effects, for three reasons. The first and obvious one is that the causal effect
of X on outcomes, XsI'j, will be excluded from estimates of school/neighborhood effects. If
peer effects are important, this could lead to a substantial underestimation of the importance of

school/neighborhood effects.

Second, if the school mean XE has external effects, it is part of zﬁj and therefore enters the
outcome equation separately from the individual level variable xlU . Since this component will be
absorbed by X,G1, school/neighborhood peer effects associated with XV also will be excluded from
the estimate of school/neighborhood effects.

U
S

Third, (27) reveals that Xy will also absorb part of the unobserved school contribution z; via
ILuy,. To see why, note that X spans the space of XV because the amenity vector, Ay, is the source
of variation in both Xg and XY. Given that parents are likely to value the contributions of schools
to student outcomes, many of the characteristics contributing to z that affect school quality are
likely to be reflected in Ag. Hence, while the inclusion of Xy in the estimated specification removes
sorting bias, it also absorbs some of the variation in z¥ associated with underlying amenity factors
for which X affects taste. Furthermore, if some elements of the school-level observables Z,s also
serve directly as amenities in Ag or perfectly determine them, then these elements will be collinear

with X, undermining our ability to estimate the vector G, %

ZPpost multiplying both sides of (5) by B Y and taking expectations conditional on s(i) = s establishes that
¥ =X MygoxBY + Y.

This fact and (7) from Proposition 1 (after multiplying both sides by B U) implies that iV = XsVar(Xi)flR/Var(f(}J) BY.
Comparing this result with the equation for & implied by taking expectations of both sides of (24) conditional on s(i) = s
establishes the claims in the text.

24Nor can we estimate the effect of a school level variable in the unlikely event that it is perfectly determined by Xg
through the political process.
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On the other hand, components of ZysI'; +2zY that are either not directly valued or only partially
known by parents at the time the school/neighborhood is chosen will not be elements of Ag, although
they may be correlated with Ag. Parents probably are not perfectly informed about specific school
quality determinants such as student/teacher ratio and in any event care about broader qualities of
schools rather than specific inputs. The broader qualities are the amenities in the model. Parents
would know some variables, such as whether a school is Catholic, but in many cases would have
chosen locations prior to high school based on education options more generally. Such compo-
nents will still produce variation in average outcomes across schools, and will break the collinearity
between X and Z,s. Similarly, if the outcome is measured after high school is completed, any
common shocks that affect the outcomes of all those who attended a particular high school will also

not be absorbed by X, yet will produce between-school variation in outcomes.

5.3.1 Identification of I',

The existence of Hzf/Zzs in the expression for G in (31) reveals that even when the conditions
of Proposition 1 are satisfied, Gy still reflects omitted variables bias driven by correlations between
Z5 and the unobserved school characteristics index zV. Thus, estimating the vector of causal effects

I, associated with the school characteristics Z,g will in general still require a vector of instruments.

However, the sorting model in Section 2 also sheds light on the circumstances in which IL.vz, =
0, so that Gz represents an unbiased estimator of the vector of causal effects I';. In particular,
suppose that every unobserved school characteristic that contributes to the index z¥ and is correlated
with Z,g is either an amenity considered by individuals at the time of choice or is perfectly predicted
by the vector of amenities. Furthermore, suppose the spanning assumption is satisfied so that Ag is
a function of Xs. This implies that X also perfectly determines the part of 7V that is correlated with
Z)s. In this case, the residual variation in zﬁj will be orthogonal to Zys. As a result, Hz_ifzzg =0, and

G, will be an unbiased estimator of I';.

Because we suspect that there are a large array of outcome-relevant school inputs, not all of
which are directly and accurately valued by parents when choosing schools, we do not assume
that IT.vz, = 0 in our empirical work. Thus, we do not attempt to interpret the individual coeffi-
cients estimated by G,.25 However, this analysis does suggest that controlling for group-averages
of individual characteristics can potentially remove part of the omitted variable bias from estimated
coefficients on group-level characteristics. This is particularly true in contexts where those choosing
groups are thought to consider and at least noisily observe most of the group-level characteristics

expected to have substantial causal effects.

25See Meghir et al. (2011) for a recent discussion of some of the issues in estimating the effects of particular school

characteristics. They highlight the vector of omitted school characteristics that determines z¥ as a key source of bias.
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6 Mechanics of Measuring School and Neighborhood Effects

6.1 Variance Decomposition

In the empirical work below, we estimate models of the form
Ysi = XiB + XsG1 + Z2sG2 + vi, (33)

where Xj is a vector of school-averages of student characteristics, and Zjg is a vector of observed
school characteristics (such as school size or student-teacher ratio). We can decompose the variance
of Y;; into observable and unobservable components of both within- and between- school variation

via

Var(Yy) = Var (Y — Y;) + Var(Y;) (34)
— [Var((Xi —X)B) + Var(vy; — v;)|+

[Var(X,B) 4 2Cov(XsB, X(G1) 4 2Cov(XsB, ZsG) + Var(XsGy)+
2Cov(XsGy,Z2sG2) + Var(ZasGy) + Var(vy)). (35)

Motivated by the model of sorting presented in Section 2, we introduce two alternative lower bound

estimators of the contribution of school/neighborhood choice to student outcomes.

The first lower bound estimator is @(ZZSGZ +vs). Due to the presence of X in (33) it will
be purged of any effects of student sorting (observable or unobservable). Thus, it isolates only
school/neighborhood factors. The component vy includes 7V, the unpredicted component of the
school/neighborhood contribution. However, for post secondary outcomes such as college enroll-
ment and permanent wage rates vy will also include &. Recall that & is an index of common
location-specific shocks (such as local labor demand shocks) that occur after the chosen cohort has
completed high school. One can argue that such shocks should not be attributed to schools because
they are beyond the control of school or town administrators. This bias is likely to be second order
for permanent wages because local shocks that persist for less than 6 years will not bias the partic-
ular method of moments estimator that we use. But we pointed out in Section 3.2 that v, will also
contain an approximation error if the linearity assumption A4 is violated. This could lead to upward

bias in our estimates of variance of school/neighborhood effects.

Consequently, we also consider a second, more conservative lower bound estimator: Va\r(Zszz).
This estimator only attributes to schools/neighborhooods the part of the residual between-school
variation that could be predicted based on observable characteristics of the schools at the time
students were attending. Va\r(ZZSGz) excludes true school quality variation that is orthogonal to
observed characteristics, but also excludes any truly idiosyncratic local shocks that occur after grad-

uation.2°

26The approximation error might also bias G, but we think this is likely to be minor given that we are controlling for
X.
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Online Appendix A6 describes the process by which the coefficients B, Gy, and G, are esti-
mated. We use random effects probit for the binary outcomes and linear regression for the con-
tinuous outcomes. Online Appendix A7 discusses how the empirical variance decomposition is

performed.

6.2 Interpreting the Lower Bound Estimates

The static sorting model presented in Section 2 is silent about when in a student’s childhood the
school/neighborhood decision is made. To illustrate how different assumptions about timing affect
the interpretation of our bounds, consider first the case in which changing schools/communities is
costless, so that each family decides each year where to live and send their children to school.
In this case, if the data are collected in 10th grade (as in ELS2002), then any impact of prior
schools/neighborhoods can be thought of as entering the outcome equation by altering the ob-
servable or unobservable student contributions Xj and XP Thus, if prior schooling inputs affect
WTP for school/neighborhood amenities, our control function argument suggests that 10th grade
school averages of Xj will absorb all between-school variation in prior school contributions to XiU.
In this case, the residual variance contributions Var(ZysGz) or Var(ZsG, + vy) that we identify
will represent a lower bound on the contributions of only the high schools and their surrounding

neighborhoods to our outcomes.

Now consider the opposite extreme: moving costs are prohibitive, and each family makes a
one time choice about where to settle down when they begin to have children. Suppose that the
observed characteristics X; are unaffected by early schooling.?’” Then X, will span the subspace
of the school/neighborhood amenities Ag as well as XU as they existed when the family made its
choice. In this scenario, the residual variance contributions Var(ZxsGz) or Var(Z»sGy + vs) that
we identify will represent a lower bound on the variation in contributions to our later outcomes of
entire sequences of schools (elementary, middle, and high) and entire childhoods of neighborhood
exposure. In reality, of course, moving costs are substantial but not prohibitive, so that our estimates
probably reflect a mix of elementary school and high school contributions, with a stronger weight
on high school contributions.?® However, note that as long as high school quality in a neighborhood
is positively correlated with elementary and middle school quality, a lower bound estimate of the
variance of high school contributions is itself a (very conservative) lower bound estimate of the vari-
ance of contributions of entire school systems. Thus, since our goal is to create a lower bound, the

safest interpretation is that our estimates represent lower bounds on the variance of the cumulative

27 As outlined in Section 7 below, we choose a set of variables in X; that satisfies this property in our baseline specifi-
cation for each dataset.

28This interpretation is consistent with the evidence on moving in our data. In the ELS2002 base year survey, parents
report the number of years they have lived in the current neighborhood. 22.5% report 3 years or less, 29.91% report 4 to
7 years, 14.32% report 8 to 10 years, and 42.3% report more than 10 years. Parents also report the number of times the
student changed schools, not counting natural transitions resulting from grade advancement (e.g., from the elementary
school building to the middle school building). The values are 43.31% for no changes, 24% for 1 change, 12.5% for 2
changes, 9.94% for 3 changes, 5.28% for 4 changes, and 4.99% for 5 changes.
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effects of growing up in different school systems/neighborhoods.

6.3 Measuring the Effects of Shifts in School/Community Quality

The fraction of outcome variance unambiguously attributable to school/neighborhood factors
provides a good indication of the importance of school/community factors relative to student-
specific factors. However, the effect of a shift in school/community quality from the left tail of
the distribution to the right tail of the distribution might be socially significant even if most of the
outcome variability is student-specific. This is particularly true in the case of binary outcomes such
as high school graduation and college enrollment, where many students may be near the decision
margin. Below we report lower bounds on the effect of a shift in school/neighborhood quality from
1.28 standard deviations below the mean to 1.28 standard deviations above the mean. This would
correspond to a shift from the 10th percentile to the 90th percentile if this component has a normal
distribution. We interpret these as lower bound estimates of the average change in outcomes from a
10th-to-90th quantile shift in the full distribution of school/neighborhood quality, where the average

is taken over the distribution of student contributions.

The more comprehensive estimates use @”(ZZSGZ + vy) to calculate the 10th-90th shifts, while
the more conservative estimates use \7(1\7‘(Z25G2). For binary outcomes, we estimate the effect of
the shift in Z,G» via:

E[P%_ §10] 12@ ( [XiB + X,G1 + Z2sG2 + 1.28(Var(22,G2)) ]
14 (1+Var(vy))?
1

Ly XiB + XoG1 + Z2sGr — 1.28(Var(ZasG3)) )
15 (14 Var(v,))*

)

); (36)

where [ is the sample size and ¢ is the normal PDF. This average effectively integrates over the
distribution of X;B + XGj + vy, but uses the empirical distributions of X;B and X;G; (since they
are observed) instead of imposing normality. Note that the scale of the latent index Yy; is unobserved,

so we have normalized Var(vy; — vy) to 1.

We estimate the effect of the shift in Z,sG; + v, analogously via:

- 99— Ly [XiB +XsG1 +Z2G2 + 1.28(Var(Z2,G2 + 1))~ )
15 (1
I o [XiB+ X6+ ZagGa — 1.28(Var(ZaGz +vy)))

—=-)y® 37
We also report lower bound estimates of the impact of a 10th-to-50th percentile shift in school/neighborhood
quality (a 1.28 standard deviation shift). Researchers often use a 1 standard deviation shift in treate-
ment variable when assessing treatment effect sizes. Another natural benchmark would be based

on the distribution of shifts in school/neighborhood quality resulting from moves that parents make,
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but we have not found a way to estimate this with our data.

For the binary outcomes, the impact of a shift in Z;Gy or (ZsG, + vs) will depend on the
values of a student’s observable characteristics, X;B. Thus, we report average impacts for certain

subpopulations of interest as well.?’

7 Data and Variable Selection

7.1 Overview of Data Sources

Our analysis uses data from four distinct sources. The first three sources consist of panel surveys
conducted by the National Center for Education Statistics: the National Longitudinal Study of 1972
(NLS72), the National Educational Longitudinal Survey of 1988 (NELS88), and the Educational
Longitudinal Survey of 2002 (ELS2002). These data sources possess a number of common proper-
ties that make them well suited for our analysis. First, each samples an entire cohort of American
students. The cohorts are students who were 12th graders in 1972 in the case of NLS72, 8th graders
in 1988 for NELS88, and 10th graders in 2002 for ELS2002. Second, each source provides a rep-
resentative sample of American high schools or 8th grades and samples of students are selected
within each school. Both public and private schools are represented.’® Enough students are sam-
pled from each school to permit construction of estimates of the school means of a large array of
student-specific variables and to provide sufficient within-school variation to support the variance
decomposition described above. Third, each survey administered questionnaires to school admin-
istrators in addition to sampled individuals at each school. This provides us with a rich set of both
individual-level and school-level variables to examine, allowing a meaningful decomposition of ob-
servable versus unobservable variation at both levels of observation. Fourth, each survey collects
follow-up information from each student past high school graduation, facilitating analysis of the
impact of high school environment on two or more of the outcomes economists and policymakers

care most about: the dropout decision, college enrollment, number of completed years of college,

29Recall that we have ruled out interactions between Xj or xf-] and Zg or zg/ in the production of Y;;. To see how such
nonseparabilities can be addressed, first consider the simple case in which the interaction involves observed student and
school characteristics. Suppose, for example, that low income students benefit disproportionately from a low student-
teacher ratio, one of the elements of Z,. One could add the interaction between family income and the student/teacher
ratio to the outcome equation. If Proposition 1 holds, then the interaction between family income and the student teacher
ratio will be unrelated to the error term conditional on X, which includes the mean of family income. One can estimate
the coefficient on the interaction term. Next consider the interaction between an observed student characteristic X;; and
the unobserved index z_y. This will show up as variation across schools in Cov(Yy;, Y |X); X;7) as well as variation across
schools in Var(Yy;|X;;). It might be possible to learn about the importance of X;;z¥ from such moments. Similarly, inter-
actions between xfj and elements of Zg would influence Var(Ys;|Zs). Note, though, that with a nonseparable education
production function schools may no longer be ordered. The best school for a low income student may not be the best
school for a high income student. When the nonseparability involves observed variables, one could measure the average
performance of a school over the distribution of student characteristics, and define the 10th and 90th percentile schools
accordingly. Alternatively, one could identify the 10th percentile school and the 90th percentile school for each student,
evaluate the difference in outcomes between the two schools, and then average over all students.

30We include private schools because they are an important part of the education landscape. However, the connection
between characteristics of the school and characteristics of the neighborhood may be weaker for private school students.
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and wage rates.

While these common properties are very helpful, differences in the surveys complicates efforts
to compare results across time. In our previous work (Altonji and Mansfield (2011)) we restricted
attention only to variables that are available and measured consistently across all three datasets.
However, because the efficacy of the control function approach introduced in this paper depends on
the richness and diversity of our student-level measures, for each dataset we include in X; student-
level measures that may not appear in the other datasets. Section 7.3 details the process by which

we chose what to include in Xj, X, and Z,s, and Table 1 provides a list.

The one major drawback associated with the three panel surveys is that only around 20 students
per school are generally sampled. The simulation results discussed in Section 4 indicate that sam-
ples of this size may reduce to some degree the ability of sample school averages of observable
characteristics to serve as an effective control function for variation in average unobservable student

contributions across schools.

Consequently, we also exploit administrative data from North Carolina on the universe of public
schools and public school students (including charter schools) in the state. Since the North Carolina
data contains information on every student at each school, it does not suffer from the same small
subsample problem as the panel surveys. Furthermore, we can use the North Carolina data to assess
the potential for bias in our survey-based estimates more directly. Specifically, we draw samples
of students from North Carolina schools using either the NLS72, NELS88, or ELS2002 sampling
schemes and re-estimate the model for high school graduation using these samples. By comparing
the results derived from such samples to the true results based on the universe of students in North
Carolina, we can determine which if any of the survey datasets is likely to produce reliable results.
Online Appendix Table A10 reports the results of this exercise. It shows that using school sample
sizes whose distributions match the NLS72, NELS88, or ELS2002 distributions generates only
relatively minor biases, generally increasing @(ZZSGZ) and decreasing Va\r(ZZSGz +vs) by less

than ten percent of their full sample values.

The North Carolina data are also the most recent: data are collected for all 2004-2006 public
school 9th graders. On the other hand, high school graduation is the only outcome we observe. And
the set of observable characteristics is not as diverse as in the panel surveys, though it is surprisingly

rich for administrative data.

We restrict our samples to those individuals whose school administrator filled out a school sur-
vey, and who have non-missing information on the outcome variable and the following key charac-
teristics: race, gender, SES, test scores, region, and urban/rural status.>’ We then impute values for
the other explanatory variables to preserve the sample size, since no other single variable is critical

to our analysis.>? Finally, we use panel weights. The appropriate weights depend on the analysis.

31SES and urban/rural status are not available in the North Carolina data.

32This results in sample sizes for the four-year college enrollment analyses of: 12,257 from 903 schools for NLS72,
11,937 from 942 schools for NELS88, 12,168 from 686 schools for ELS2002. The sample sizes and number of schools
for the high school graduation analyses are 12,307 and 943 for NELS88, 12,096 and 686 for ELS2002, and 283,157 and
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See online Appendix A9 for the details.

7.2 Outcome Measures

The outcome variables are defined as follows. The measure of college attendance is an indicator
for whether the student is enrolled in a four year college in the second year beyond the high school
graduation year of his/her cohort.3® It is not available in the North Carolina data. For NELS88
and ELS2002 the measure of high school graduation is an indicator for whether a student has a
high school diploma (not including a GED) as of two years after the high school graduation year
of his/her cohort. For the North Carolina data, the measure is an indicator for whether the student
is classified as graduated for the official state reporting requirement. Notice, though, that since
ELS2002 first surveys students in 10th grade, it misses a substantial fraction of the early dropouts.
Indeed, in NELSS88, about one third of the 16 percent who eventually drop out do so before the first
follow up survey in the middle of 10th grade. The North Carolina data considers students as eligible
for official dropout statistics if they are enrolled in a North Carolina school at the beginning of 9th
grade, so there is little scope for underestimating the dropout rate. Given that NLS72 first surveys
students in 12th grade, we cannot properly examine dropout behavior in this dataset. However,
because NLS72 re-surveys students in 1979 and 1986, when respondents are around 25 and 32
years old, respectively, we can use it to analyze completed years of postsecondary education and
wages during adulthood. We use years of academic education as of 1979, because attrition and
subsampling reduced the 1986 sample by a considerable amount relative to the 1979 follow-up
survey, and most respondents have completed their education as of 1979. For the permanent wage
analysis, our estimation procedure requires that we include only respondents who report wages in
both 1979 and 1986 .

7.3 Selection of X;, X, and Z,

X; should include variables that directly affect the outcome and/or are correlated with unob-
served student level characteristics that affect the outcome. In our “baseline” specification we only
use student-level characteristics that are unlikely to be affected by the high school the child attends.
However, we also provide results from a “full” specification which includes in X; measures of stu-
dent behavior, parental expectations, and student academic ability (standardized test scores). Such
measures may be influenced directly by school inputs, so including them could cause an underesti-

mate of the contribution of school-level inputs (our lower bound estimates will be too conservative).

338 for North Carolina respectively. The analysis of years of postsecondary education uses 12,229 observations from
902 schools from NLS72, and the wage analysis uses 4,932 individuals with 9,864 wage observations from 901 schools.
We include mother’s education combined with a missing indicator for mother’s education when performing imputation,
along with school averages of all the key characteristics above. Appendix Tables A11-A18 report percent imputed for
each variable.

33In NLS72 enrollment status is reported in January-March of the second full school year after graduation, while in
NELSS88 and ELS2002 it is reported in October.
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On the other hand, excluding such measures could instead cause an overestimate of the contribu-
tion of school-level inputs if the sparser set of student observables no longer satisfies the spanning
condition stated in Proposition 1. In this case there would exist differences in average unobserv-
able student contributions to outcomes across schools that are not predicted by the vector of school

averages of observable characteristics.

For purposes of the control function, Xg should contain aggregates of X;j. If one has school level
averages of student level variables for which one does not have individual level data, then these

aggregates should also be included (there are no such variables in the data sets we use).

What should be in Z,4? Observed school and neighborhood characteristics that could plausibly

influence the socioeconomic outcome of interest.

What should not be in Zys? Z,s should exclude variables that are simple aggregates of par-
ent/student traits that might also affect willingness to pay for neighborhood characteristics and thus
lead to sorting. These are Xy variables regardless of whether the source is aggregates of the student

micro data, Census data or administrative data from the schools.

School level variables that are determined both by school policy/efficacy and by the character-
istics of the students fall in a grey area. In ELS2002, we include Frequency of Fights at the school
in X in our full specification. This variable is determined by school and neighborhood quality and
by the unobserved characteristics of students. To the extent school policy and the skill of teachers
and the administration have a big effect on fighting, we are being conservative in our estimates of

school effects.

We also have a separate measure of school security policies. This belongs in Z,s even if the

policies in part are a response to the characteristics of students.

The other example we wish to highlight is average daily attendance percentage. Daily attendance
reflects both characteristics of the students and school quality. Suppose Proposition 1 fails, and Xg
is not sufficient to control for unobserved student body characteristics that directly influence school
attendance and education outcomes. Then including daily attendance in Zj¢ rather than in X might
bias our estimates of school/neighborhood effects upward. On the other hand, including it in Xg
would lead us to understate school/neighborhood effects if school policy/quality has a big effect on

attendance. In the end we opted to exclude average percent daily attendance from the model.

The same issues apply to test scores measured during high school. Test scores are determined
by school quality and by student characteristics. We include them in Xj in the “full” specification.

We never include them in Z,s. This is conservative.

Table 1 lists the final choices of individual-level and school-level explanatory measures used in
each dataset. Online Appendix Tables A11 - A18 provide the mean, standard deviation, and percent
of observations imputed for each individual-level and school-level characteristic for each of our four

datasets.
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8 Results

We now turn to the results. Along with the point estimates, we report bootstrap standard error
estimates based on re-sampling schools with replacement, with 500 replications. To preserve the
size distribution of the samples of students from particular schools, we divide the sample into five

school sample size classes and resample schools within class.

8.1 High School Graduation

The full variance decompositions described in Section 6 are provided for each of our outcomes
in online Appendix Tables A19, A20, and A21. Panel A of Table 2 displays our lower bound
estimates of the fraction of variance in the latent index that determines high school graduation that
can be directly attributed to school/neighborhood choices for each dataset. The first row presents
estimates that exclude Var(v,) (labeled “no unobs”), while the second row presents estimates that
include Var(vy) (labeled “w/ unobs”). However, recall that the rationale for excluding vy is that it
may reflect common shocks that occur after high school that may not be responsive to any changes
in school or neighborhood policies. Since graduation is not a post-secondary outcome, vy is likely
to contain only school and neighborhood contributions that are orthogonal to the observed school-
level measures Zyg (or sorting bias if the spanning condition from Proposition 1 fails). Thus, for
high school graduation we focus on the results that contain v,. The first column displays the results
from the baseline specification using the North Carolina data: our lower bound estimate is that at
least 4.9 percent of the total student-level variance can be attributed exclusively to school system
and neighborhood contributions. Since the set of observed individual-level measures contained in
X; is limited in the North Carolina data, it is possible that our control function of school-averages
X does not span the full amenity space, so that unobservable sorting bias may contribute to this
estimate. Thus, the second column displays results from the full specification that augments X;
by adding past test scores and measures of behavior. Since these measures could potentially have
been altered by the school, including them removes some true school system contributions, but also
makes the spanning condition in Proposition 1 more plausible. The estimated lower bound falls

from 4.9 percent to 3.6 percent of the latent index variance.

A couple of noteworthy patterns emerge when we compare the North Carolina results to those
of NELS88 (Columns 3 and 4) and ELS2002 (Columns 5 and 6). First, across both specifications
and both lower bound estimates, NELS88 features smaller fractions of outcome variance unambigu-
ously attributable to schools/neighborhoods than either NC or ELS2002 (~ 1% relative to ~ 2-3%).
One possible explanation for this finding is that NELS88 school-level observables (Z;s) reflect the
8th grade school environment while the corresponding measures in the other two datasets reflect
the high school environment. It could be that the nature of the high school environment is partic-
ularly critical to dropout prevention. Second, comparing Row 2 across columns, we see that the

North Carolina administrative data features the largest gap between the lower bound estimates that

29



include versus exclude the school level residual, v, while the gap is negligible for ELS2002. This
is not surprising; the North Carolina data has the sparsest set of school-level observables, which
leads to a small Var(ZasG,) relative to Var(vy), since less true variation in school quality is cap-
tured by observables. North Carolina also has the sparsest set of student-level observables (even
in the full specification), which may cause v, to contain some between-school variation in student
unobservables x¥ that is unabsorbed by the control function (the spanning condition in Proposition
1 fails). By contrast, ELS2002 has the richest set of both student-level and school-level observables,
so that there is very little residual school-level variation that cannot be captured by either the control

function X or the school-level observables Z.

The small fractions of variance attributed to schools in Panel A are consistent with the consider-
able literature emphasizing the importance of student talent, parental inputs, and even luck relative
to school and neighborhood inputs in determining who completes high school. Online Appendix
Table 19 provides a full variance decomposition that shows the critical role that individual-specific
factors play. However, to get a more intuitive sense of the difference that an effective school sys-
tem and neighborhood can make, in Panel B we use these two alternative lower bound variance
estimates to form estimates of the average impact on the probability of graduation across the dis-
tribution of student contributions of choosing a school at the 90th percentile of the distribution of
school/neighborhood contributions instead of a school at the 10th percentile. We can think of this as
a thought experiment in which two students at each quantile in the student contribution distribution
are placed either in the 10th or the 90th quantile school system, and the difference in the graduation

status of these pairs is summed over all such pairs.

The most striking feature of the results is the large magnitude of the estimated changes in gradu-
ation rates. For North Carolina, the estimate from the baseline specification suggests that, averaged
across the student distribution, attending a 90th quantile school increases graduation rates by a
whopping 17.4 percentage points relative to a school at the 10th quantile (from 67.6% to 85.0%)
The corresponding estimates are 9.8 percentage points for NELS88 (80.7% to 90.5%) and 8.3 per-
centage points for ELS2002 (86.0% to 94.3%). Even the more conservative estimates from the
full specification, which likely removes mostly true school/neighborhood contributions, suggest in-
creases in graduation rates from a 10th-to-90th quantile shift of 15.2, 7.5 and 7.0 percentage points
in NC, NELS88, and ELS2002, respectively. Notice further that these estimates are quite large de-
spite the fact that the fractions of variance upon which they are based is quite small: 3.6, 1.6, and
2.5 percent for NC, NELS88 and ELS2002. One reason for this seeming disconnect is that squaring
of deviations to produce variances will naturally mute moderate differences in school contributions
relative to the standard deviations on which the 10-90 shifts are based. A second reason may be
related to our reliance on the probit function and the assumption of normality. If the true distribu-
tion of latent student contributions is normal, and the graduation rate is not too high, then there is
likely to be a large mass of students near the decision margin. Thus, even a small push from the
surrounding school/neighborhood environment may be enough to induce a significant fraction of

students to graduate.
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Second, notice that even though the estimated lower bound fractions of variance were smaller
for NELS88 than for ELS2002 in Row 2 of Panel A, the 10th-90th impact estimates displayed in
Row 2 of Panel B are larger for NELS88. This is due to differences in the sample average graduation
rates across the datasets. The graduation rate is 76 percent in the North Carolina data, 83 percent
in NELS88S, and 90 percent in ELS2002. As a result, a shift of the same magnitude will induce a
greater increase in NELS88 than in EL.S2002 (and an even larger shift in NC), because there seem
to be fewer students near the decision margin. Intuitively, as the sample average converges to 100
percent graduation, the variation in the latent index determining the personal relative benefit from

graduating becomes less relevant, as the entire population is far from the decision threshold.

Assuming the conditions of Proposition 1 are satisfied or nearly satisfied, the large lower bound
estimates suggest that school systems and neighborhoods have a considerable role to play in deter-

mining which students graduate from high school.

8.2 Enrollment in a Four-Year College

Panel A of Table 3 presents results for the decomposition of the latent index determining en-
rollment in a four-year college. Comparing the baseline specifications from NLS72, NELS88, and
ELS2002 (Columns 1, 3, and 5), we observe a surprising consistency in both of the lower bound
estimates of the school/neighborhood contribution across datasets and generations. Estimates that
exclude the between-school residual vy attribute at least 1.8 to 2.6 percent of the outcome variance
to schools/neighborhoods, while estimates that include v; attribute 3.8 to 4.6 percent. Including
test scores and behavioral variables reduces these lower bound estimates in a consistent fashion
across the three panel surveys (Columns 2, 4, and 6), with the estimates that exclude the residual vy
dropping to between 1.5 and 1.9 percent, and the estimates that include the residual vy dropping to

between 2.9 and 3.2 percent.

Panel B of Table 3 converts these variance fractions into the more easily interpreted average
impacts of a 10th-to-90th quantile shift in school/neighborhood environment. Note that the sample
average college enrollment rate is 27 percent in NLS72, 31 percent in NELS88, and 37 percent in
ELS2002. Since more of the students are not close to the college attendance threshold in 1972, fewer
of them reach the decision margin for a given shift in school/neighborhood environment, relative
to the cohorts from later generations. Despite these differences in baseline enrollment rates, the
estimated lower bounds on the increase in the four-year enrollment rate from moving every student
(one at a time) from the 10th to the 90th quantile school/neighborhood are fairly consistent across
generations. When the residual component v; is excluded and the full specification is considered,
the estimates for each dataset are between 11 and 13 percentage points (Row 1, Columns 2, 4, and 6
of Panel B). Specifically, a 10th to 90th quantile shift in the school/neighborhood component Z»;G»
increases enrollment rates from 21.0% to 32.9% in NLS72, from 26.1% to 37.3% in NELS88, and
from 30.2% to 43.4% in ELS2002. Including the residual between-school component boosts the

range of estimates to 15 to 17 percentage points. A 10th-to-50th quantile shift has an average
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estimated impact ranging from 5 and 8 percentage points.

As with the estimates for high school graduation, the estimates in Table 3 suggest that schools

and neighborhoods also play an important role in determining who enrolls in a four-year college.

8.3 Heterogeneous Effects of 10th-90th Percentile Shifts in School Quality

The estimates reported in Panel B of Tables 2 and 3 are based on starting the full distribution of
students at a 10th quantile school versus starting them at a 90th quantile school. However, many of
the students with superior background characteristics would be quite unlikely to ever be observed in
a 10th quantile environment. A more realistic estimate might place greater weight on the individual-
specific estimates associated with the kinds of students most likely to be observed in 10th quantile
schools. While our method does not allow us to discern the quality of any given school, we can
nonetheless explore the extent to which the estimates in Tables 2 and 3 conceal heterogeneity in
the relative impact of alternative schools across students with varying student backgrounds. Due
to the nonlinearity in the probit function that links Y;; to the binary outcome indicators for high
school graduation and enrollment in a four-year college, the sensitivity to school quality is higher
for groups with values of X;B that place them closer to an outcome probability of 0.5. High school
graduation is therefore more sensitive to school quality for disadvantaged groups and less sensitive

for advantaged groups. The opposite tends to be true for enrollment in a four-year college.

Table 4 reports the lower bounds (excluding and including the school-level residual vy) for the
effect of a 10th to 90th percentile shift in school quality on graduation rates for two extreme cases:
students whose value of the background index X;B places them at the 10th quantile of the X;B
distribution (Rows 1 and 2), and students at the 90th quantile of the Xiﬁ distribution (Rows 3 and
4). For the North Carolina sample and the full specification (Column 2), the lower bound estimates
that include the between-school residual component v, suggest a 22.9 percentage point increase for
students at the 10th quantile (43.2% to 66.1%) and a 6.3 percentage point increase for students at
the 90th quantile (90.8% to 96.2%), respectively. For NELS88 grade 8 (Column 4), the numbers are
smaller, particularly for the 90th quantile: lower bound estimates that include v, are 15.9 percentage
points (55.5 to 71.4) and 0.6 percentage points (99.0% to 99.7%). This partly reflects the fact that
the average dropout rate is lower for the NELS88 than for the state of North Carolina between
2007 and 2009. ELS2002 results are quite similar to those from NELS88. The results suggest
that advantaged students tend to graduate high school regardless of the school they attend, while
disadvantaged students are strongly affected by school quality.

Table 4 also reports the average impact of a 10th-90th shift on high school graduation rates
for three subpopulations of interest: black students, white students with single mothers who did
not attend college, and white students with both parents present, at least one of whom completed
college. For the full specification in the North Carolina sample, the shift increases the predicted
graduation rate among black students from 68.4% to 83.6% (a net gain of 15.2 percentage points).
The corresponding increase for white students with single mothers who did not attend college is
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20.6 percentage points (69.2% to 84.3%), while the increase for white students with both parents,
at least one of whom completed college, is 8.4 percentage points (86.3% to 94.6%). The estimated
increases in graduation rates are consistently smaller in the NELS88 and ELS samples, but are still
between 5 and 12 percentage points for black students and for white students with single mothers

who did not attend college.

Table 5 reports a corresponding set of results for enrollment in a four-year college. The college
enrollment rates for students at the 10th percentile of the X;B distribution are substantially less
sensitive to school quality, reflecting the fact that most such students are nowhere near the four-year
college enrollment margin. For example, the ELS2002 estimate from the full specification suggests
that a 10th-90th shift in the school system/neighborhood component Z,;G, + vy would increase the
college enrollment rates of students at the 10th percentile of X;B by 6.4 percentage points (from
2.1% to 8.6%). More generally, the lower bound estimates that exclude and include the residual vy
are between 2.7 and 5.0 percentage points and between 3.4 and 6.4 percentage points, respectively,
depending on the dataset and specification. In contrast, for students at the 90th percentile of X;B the
ELS2002 estimate from the full specification suggests that a 10th-90th shift in Z»3G, 4 v; would
increase enrollment rates at four-year colleges by 16.7 percentage points (from 72.8% to 89.6%).
More generally, across datasets the lower bound estimates excluding and including v, for students
at the 90th percentile of the X;B distribution are between 13 and 18 percentage points and 17 and
23 percentage points, respectively. The values for blacks and for whites with non-college-educated
single mothers are similar to the results for the full sample, while the values for whites with college

educated parents are close to those for the 90th percentile of the X;B distribution.

Overall, it appears that, except for the lowest stratum of student background, many students are
close enough to the decision margin for a major shift in school quality to be a deciding factor in

determining enrollment in a four-year college.

8.4 NLS Results for Years of Postsecondary Education and Permanent Log Wages

Table 6 displays the lower bound estimates of the impact of 10th-to-90th and 10th-to-50th shifts
in school/neighborhood quality on years of postsecondary education and permanent log wages for
the NLS72 sample. The baseline lower bound estimate that excludes the between-school residual
vy implies that a 10-90 shift in school quality increases years of postsecondary education by .31
years, which is about one fifth of a standard deviation. Including standardized tests among the
observable characteristics reduces this estimate to .20 years. Note, though, that since the NLS72
data is collected in 12th grade, the standardized test scores are particularly likely to reflect high
school quality, making the full specification a likely underestimate. Adding the variance in the
unexplained between-school component raises these estimates to .45 and .33 years respectively.
10th-to-50th quantile shifts are half as large by construction, since no non-linear transformation
takes place when the outcome is continuous (the “latent” index is perfectly revealed). Collectively,

the estimates suggest a substantive impact of shifts in school quality on years of college education.
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Columns 3-6 contain analogous estimates for the permanent component of log wages. Columns
3-4 reflect specifications in which years of postsecondary education is not included as a control,
while columns 5-6 include years of postsecondary education to focus on the effect on log wages
that does not occur via postsecondary education. In practice, the two sets of estimates are quite
similar. The estimates that exclude the residual v; imply that a 10-90 shift in school quality increases
wages by around 17 percent (100”137 —100). The 10-50 shifts are again half as large at around 8.5
percent. Estimates that include vy imply that a 10-90 shift in school/neighborhood quality increases
wages by 0.177 log points or about 19 percent. The standard deviation of the log permanent wage
component is 0.305. Thus, at least for the 1972 cohort, shifts in school/neighborhood quality seem

to have important impacts for longer run outcomes of prime importance for worker welfare.

Chetty and Hendren (2015) find that 20 years in a one standard deviation better neighborhood
raises the log of adult earnings by about 0.10. When we include v; we find that a one standard
deviation shift in school/neighborhood raises log permanent wage rates by 0.069. Several factors

contribute to the difference between the studies.’*

8.5 Alternative Estimators

In this subsection we compare our lower bound estimates above with two alternative estimators

of school and neighborhood effects more commonly observed in the literature.

First, in Online Appendix Tables Al - A2 we report estimates of Var(XsGy + ZsGz + vy),
or equivalently Var(Y; — XgB). By including XGj, this estimate reintroduces peer effects that
operate through school averages of observable or unobservable student characteristics as well as
other unobserved school inputs that are predictable based on Xy given Z,s. But XGj also includes

the component X IT B U, which reflects student sorting on unobservable characteristics. If there

XUX,
is no sorting on XiU, then the sorting component XSI'[Xq‘JXS BU =0, and Var(XsG1 + ZsG2 +vs) =
Var(ZsT + 7Y + &;). This is the true variance in school/neighborhood treatment effects. When
unobservables do contribute to sorting, then Var(XsG1 + Z»sG + v5) will generally overstate the

variance in school/neighborhood treatment effects.?

Indeed, across all of the specifications and outcomes for the panel surveys these estimates are

34First, families are mobile and we only condition on attendance in that same high school (or in 8th grade in the case
of NELS88). Consequently, our estimate represents the effect of a substantially shorter period of exposure than 20 years.
This fact alone could easily reconcile the studies. Second, if neighborhood/school quality raises employment and hours as
well as wage rates, then the wage effect will be smaller than the effects on earnings. Third, our estimates are likely to be
a lower bound. On the other hand, the fact that Chetty and Hendren estimate county-level effects is likely to reduce their
estimates relative to our school-level estimates. This is because the standard deviation of county level effects abstracts
from within-county heterogeneity in school/neighborhood quality. Fourth, inequality in both neighborhood environments
and the strength of the relationship between neighborhood quality and wages may have increased in the 30 years between
the NLS72 cohort and the cohort they examine.

3From (27),(31), and (32), Var(XsG1 + Z3sGy +vs) = Var(ZsT + 2V + &+ X[y, BY). If the covariances between
XSHX,‘/XS and the components of the school treatment effect ZsI" + zf/ + & are sufficiently negative, then one can find

Var(XsG1 + ZsGy +vs) < Var(ZsT +zV +&). In this case, which we consider unlikely, even Var(XsG1 + ZsG2 +vs)
would understate the true contribution of schools/neighborhoods to the variance in outcomes.
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noticeably larger than our lower bound estimates. For example, for the full specification in NELS8S,
the sorting-on-observables estimator attributes 5.2% of the variance in the latent index that deter-
mines high school graduation to schools/neighborhoods, compared to 2.5% for the lower bound es-
timate of Var(Z»sG2). The associated effect of a 10th-to-90th quantile shift in school/neighborhood
quality on graduation is .10 (relative to .07 for the lower bound estimate).*® For enrollment in a four-
year college, the corresponding school/neighborhood variance fractions for the ELS full specifica-
tion is 4.3% (versus 3.1% for the lower bound estimate), which corresponds to a 10th-to-90th shift in
the probability of enrollment of .205 (versus .170). The only case in which Va\r(XsGl +Z5G3 +vy)
is not substantially higher than @(ZZSGZ + vy) is for the high school graduation outcome in the
North Carolina administrative data, where @(XSGI) is nearly offset by a strong negative covari-

ance between Xsél and ZZSGZ.

Second, Online Appendix Table A3 reports estimates of Var(Z»sG3) and Var(ZsG2 + vy) from
a four-year college enrollment specification in which the school-averages Xg are omitted. A small
fraction of the variance previously absorbed by the control function is now captured by 7,563,
while the bulk of it now enters the between-school residual ¥;. Thus, @(ZZSGZ) increases slightly
relative to our main college enrollment estimates in Table 3, while Va\r(ZZSGz + vs) increases sub-
stantially, to the point where they nearly match the sorting-on-observables estimates @(XsGl +
Z,,G, + vy) reported in the previous paragraph. Columns 3 and 4 of Online Appendix Table A4
report corresponding estimates for years of postsecondary education, while columns 1 and 2 report
estimates from a specification in which B is estimated in a first stage in which school fixed effects
are included, and then Y — Xsﬁ is regressed on Z,g to recover @2 and 7. Each of these specifications

exhibits substantially higher estimates of Var(ZsG2 + vy).

Taken together, the results from these alternative estimators suggest that our lower bound es-
timates, while more conservative than other existing estimators, still seem to capture a substantial

portion of the variation in the contributions of schools/neighborhoods.

8.6 Empirical Evidence on the Spanning Condition

In Online Appendix A2 we explore the factor structure of Xg to test Assumption AS5.1, which
is a necessary condition for Assumption A5 and therefore Proposition 1. Recall that Assumption
AS5.1 is violated if the number of amenity factors driving sorting on X; (AX) exceeds the number
of observed characteristics that compose X;j (Dim(Xj)). We adopt two separate approaches. First,
we use principal components analysis to compute the eigenvalues and eigenvectors of @'(Xs), the

estimated covariance matrix of X;. While Var(Xg) must be positive semidefinite, @‘(Xs) need

36The effects a 10-t0-90th shift in XsGq + ZsG + vy are constructed as

1
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not be positive semidefinite given sampling error and the fact that our sample is unbalanced. In
practice we obtain small negative values for some of the eigenvalues. We interpret these estimates
as corresponding to eigenvalues that are in fact 0 or very close to 0. We find that for each of our three
survey datasets the number of positive eigenvalues is less than L, indicating that @(XS) is rank
deficient. This means that each element of Xg can be written as a linear combination of a smaller
number of latent factors (generally between 25 and 30 factors, depending on the specification and
dataset). Since the rank of Var(Xj) should reflect the dimension of the amenity vector AX, this
supports our assumption that the dimension of AX < L. Indeed, we further show that in each dataset
an even smaller number of latent factors (generally around 10) can explain 90% of the sum of
the variances of the elements of X, suggesting that the variation in student composition across
schools is driven primarily by a small number of amenity factors. Bootstrap 90% confidence interval
estimates of the number needed to explain 90% of the variances are fairly tight. The number of
latent factors required to explain a given percentage of the sum of the variances of the elements of
X is larger in the full specification, which contains more variables. This would be expected in the
presence of sampling error in @'(Xs). However, it might also indicate that there are in fact a few
additional amenity factors that play a very small role in driving sorting (and thus have very small

eigenvalues) and are picked up by the additional elements of X in the full specification.

Our second approach draws on the literature on testing for the number of factors or the matrix
rank, including Lewbel (1991), Cragg and Donald (1997), Robin and Smith (2000), Bai and Ng
(2002) and Kleibergen and Paap (2006). The test of the rank of a matrix proposed by Kleibergen
and Paap (2006) fits our application well. The test involves a singular value decomposition of
\//:;'(Xs), and can accommodate arbitrary forms of heteroskedasticity and correlation at the school
level. We perform tests of the null hypothesis of rank(Var(Xg)) = j) against the alternative that
rank(Var (X)) > j. For all three data sets and specifications, we cannot reject the null hypothesis
for values of j well below L. See Online Appendix Tables A6 and A7.

9 Other Applications

The control function approach can also be applied to other situations in which selective sorting
into units makes identification of the independent effect of the units difficult. Measurement of
teacher quality is a particularly important application given the widespread use of teacher value
added models to aid in the evaluation of teachers. It is also an example of a set of problems in
which sorting into groups (classrooms in this case) is mediated by an administrator rather than the

result of individual choices.

Most of the analysis in Section 2 can be adapted easily to the administrator choice context.” For
example, suppose that the school principal has already decided which teachers to allocate to which

courses for which periods of the day. A classroom ¢ can also be characterized by a vector of amenity

37See Online Appendix A10 for more details.
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values A.. The amenities might include the principal’s perceptions of various teacher attributes or
skills as well as other amenities such as whether the heating system works and the difficulty level
of the class. The ® and @Y matrices that relate preferences for different elements of A, to X; and
XiU will now reflect a principal’s belief about which types of students are most likely to benefit from
a better teacher, a higher difficulty level, etc. They might also reflect a desire to placate parents
or students, where students/parents with certain values of X; or XiU are more likely to advocate for

particular classroom assignments.

When the amenity vector A is taken to be exogenous to the principal’s choice (i.e. independent
of classroom composition), the classroom allocation problem aligns with the decentralized choice
problem considered in Section 2. The price vector P(A.) is the shadow price associated with the
capacity constraint of c. However, in the elementary and middle school contexts, it seems likely
that the principal would internalize the effect that allocating a student to a classroom ¢ has on the
classroom’s composition-dependent amenities A, whereas parents take the school amenities Ag as
given. We have not yet extended Proposition 1 to a classroom assignment problem with endogenous

amenities.

Nevertheless, our analysis of the exogenous amenities case does suggest that the common prac-
tice of including classroom averages of student characteristics (such as in Chetty et al. (2014)) may
play a potentially powerful role in purging value-added estimates of biases stemming from non-
random student sorting on unobservables and observables. Furthermore, as we note in the Online
Appendix A10, it may also reduce omitted variables bias from non-random assignment of teach-
ers to other unobserved outcome-relevant classroom environmental factors such as course difficulty
level (e.g. basic versus honors) or time of day. While there are many caveats to our analysis,
it may partially explain the otherwise surprising finding that non-experimental OLS estimators of
teacher quality produce nearly unbiased estimates of true teacher quality as ascertained by quasi-

experimental and experimental estimates (Chetty et al. (2014), Kane and Staiger (2008)).

We also mentioned the evaluation of hospitals and hospital inputs in the introduction. Recent
work by Fletcher et al. (2014) uses patient data matched to physicians to estimate the effects of
physicians on health outcomes. It controls for very detailed patient characteristics but not for the
physician-specific averages of patient characteristics. Our analysis suggests that adding these would

allay concerns about sorting on patient unobservables.?®

381n principle, one could adopt the model of group choice and the control function approach to the analysis of the
effects of years of schooling, dosage levels, or other endogenous choice problems that have a natural ordering. Let s
denote number of years of schooling. Each schooling level has an associated set of characteristics Ag governing the
pecuniary and non-pecuniary return to choosing level s. Ag is weighted by X; and X}J This leads to a relationship
between X and XE that could serve as the basis for a control function for XE However, as pointed out at the beginning
of Section 3.2, there must be at least as many levels of s as there are elements of X. Otherwise s will not vary conditional
on X unless restrictions are available that reduce the dimension of the index of X required to control for XE Essentially,
there are fewer degrees of freedom (the number of levels) than there are parameters in the coefficient vector on Xg (Gq in
our outcome equation). We leave a full analysis of the possibilities to future research.
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10 Concluding Remarks

In this paper we provide conditions under which the tactic of controlling for group averages of
observed individual-level characteristics can control perfectly for group averages of unobservables.
This insight leads to a way to estimate a lower bound on the contribution of group effects to indi-
vidual outcomes. We also examine the conditions under which causal effects of particular observed
group characteristics can be estimated. Going forward, we view the central message of the paper
to be that the features of the distribution of observables in a group contains information about the
distribution of unobservables in the group—not that the relationship between the observed and un-
observed group averages is necessarily linear. We would like to know if a variant of Proposition
1 carries over to more general specifications of preferences than the class that we work with. We
would also like to know how the choice mechanism affects sorting on observables and unobserv-
ables. In particular, does a version of Proposition 1 carry over to two sided selection problems,

such as the sorting of students across universities or workers across firms?

We apply our methodological insight and demonstrate its empirical value by addressing a classic
question in social science: How much does the school and surrounding community that we choose
for our children matter for their long run educational and labor market outcomes? The key takeaway
from the empirical analysis is that even conservative estimates of the contribution of schools and
surrounding neighborhoods to later outcomes suggest that improving school and neighborhood en-
vironments could have a large impact on high school graduation rates and college enrollment rates.
As we noted in the introduction, prior evidence on this topic is mixed, in part because prior re-
search showing substantial across-school and across-neighborhood variation in outcomes is subject
to concerns about sorting on unobservables that we address in this paper. Our results for wage rates
are qualitatively consistent with those of Chetty et al. (2015) and Chetty and Hendren (2015) for
earnings and with Aaronson’s (1998) findings for high school dropouts, although the magnitudes
are hard to compare for a number of reasons.

There is much to do on the empirical side. We briefly discussed the possibility of using an
outcome model that allows for interactions between observed and unobserved student characteristics
and observed and unobserved neighborhood characteristics. The details need to be worked out. The
application of our approach to distinguishing true group effects from sorting in other applications,

such as hospital quality, teacher productivity, and doctor quality should be explored.
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Tables and Figures

Table 1: Variables Used in Baseline and Full (in Italics) Specifications, by Dataset

Description of Variable(s) NLS72  NELS88 ELS2002 NC

Student Characteristics

Race Indicators, 1(Female) X X X X
1(Immigrant) X X X

Student Ability
Math Standardized Score, Reading Standardized Score X X X X
1(Gifted at Math), 1(Gifted at Reading) X

Student Behavior

Hrs./Wk. Spent on Homework

Hrs./Wk. Spent on Leisure Reading, Hrs./Wk. Spent Watching TV
Hrs./Wk. Spent on Computer

1(Physical Fight This Year), Parents Often Check Homework

XX
elalalsl
XX

>

Family Background

Standardized SES, Number of Siblings

Indicators for Presence of Biological Parents
Father’s Yrs. of Ed., Mother’s Yrs. of Ed.

Moth. Yrs. Ed. Missing

Average of Grandparents’ Education

Log(Family Income), 1(English Spoken at Home)
Indicators for Parental Religion

1(Parents are Married)

1(Immigrant Father), 1(Immigrant Mother)
Indicators for Father’s Occupation Group
Indicators for Mother’s Occupation Group

Home Environ. Indicators (1st Prin. Comp.) X
Parental Sch. Involv. Indicators (1st Prin. Comp.)

1(Eligible for Free/Reduced Price Lunch)

1(Currently Limited English Proficiency), 1(Ever LEP)

MK KX
P

e laolalotolatotol Tttt
elelalaelelatolatolatelote

ol

Parental Expectations

Mother’s Desired Yrs. Of Ed., Father’s Desired Yrs. Of Ed. X

o

School Characteristics (Treated as elements of Xg)*

School Pct. Minority X X
School Pct. Free/Reduced Price Lunch X
School Pct. LEP, School Pct. Special Ed. X
School Pct Remedial Reading, School Pct. Remedial Math X
Frequency of Fights (Administrator’s Impression) X

e latatalsl

School Characteristics (Treated as elements of Zy)

1 (Catholic School), 1 (Private Non-Catholic School) X
Total School Enrollment, Student-Teacher Ratio X
Log(Min. Teacher Salary)

% Tch. Turnover, % of Teachers w/ Master’s Degrees or More X
% of Teachers w/ Certification

School Teacher Pct. Minority X
1(Minimum Competency Test Exists)

1(Gifted Program Exists), 1(Collectively Bargained Contract)
1(Tracking System), Age of School Building

Distance to 4-year College, Distance to Community College

Teacher Evaluation Mechanism Indicators (1st Principal Component)
Teacher Incentives Indicators (1st Principal Component)

School Security Policy Indicators (1st, 2nd Principal Components)
School Security Implementation Indicators (1st & 2nd Prin. Comps.) X
Sch. Environ. Indicators (1st and 2nd Prin. Comps.)

Sch. Facilities Indicators (Admin. Survey, 1st & 2nd Prin. Comps.)

Teacher Access to Tech. Indicators (Admin. Survey, 1st Prin. Comp.)

Magnet School, Charter School, Sch. Tch. % Highly Qualified

# of Library Books per Student

> <
XX XXX
e lalalalalotsl
>

Lelatalalotalsl

kel

Neighborhood Characteristics (Treated as elements of Zg)

Urbanicity Indicators X X X X
Indicators for U.S. Census Region X X X
Neighborhood Crime Level Category (Sch. Admin. Survey) X

*School characteristics treated as elements of X are included to reduce measurement error in school sample averages of student char-

acteristics. They do not contribute to the estimated lower bound on contributions of schools/neighborhoods.
School averages of all student-level variables are also included in each specification. The school population average is used where

available (see the “School Characteristics (Treated as elements of Xs)” category in this table); otherwise the average among sampled
students is used in its place. 43



Table 2: Lower Bound Estimates of the Contribution of School Systems and Neighborhoods to
High School Graduation Decisions

Panel A: Fraction of Latent Index Variance Determining Graduation
Attributable to School/Neighborhood Quality

Lower Bound NC NELSS88 gr8 ELS2002

Baseline Full Baseline Full Baseline Full
(1) 2 3 4 S (6)

LB no unobs 0.018 0.013 0.011 0.006 0.025 0.024
Var(Z,sG3) (0.007) (0.005) (0.006) (0.005) (0.010) (0.010)
LB w/ unobs 0.049 0.036 0.028 0.016 0.036 0.025
Var(ZysGa +vs) (0.013) (0.008) (0.009) (0.006) (0.010) (0.010)

Panel B: Effect on Graduation Probability of a School System/Neighborhood at
the 50th or 90th Percentile of the Quality Distribution vs. the 10th Percentile

Lower Bound NC NELSS88 gr8 ELS2002

Baseline Full Baseline Full Baseline Full

(1 (2) 3) G (5) (6)
LB no unobs: 10th-90th 0.106 0.084 0.061 0.047 0.070 0.068
Based on Var(Z,sGz) 0.021) 0.015) 0.013) 0.012) 0.011) 0.011)
LB w/ unobs: 10th-90th 0.174 0.152 0.098 0.075 0.083 0.070
Based on Var(ZxsGz + vy) (0.024) (0.017) (0.017) 0.014) 0.011) (0.011)
LB no unobs: 10th-50th 0.056 0.044 0.033 0.025 0.040 0.038
Based on Var(Z,sGz) 0.012) (0.008) (0.008) (0.007) (0.007) (0.007)
LB w/ unobs: 10th-50th 0.096 0.083 0.055 0.041 0.048 0.039
Based on Var(ZsGz + vs) 0.014) (0.010) 0.010) (0.008) (0.007) (0.007)
Sample Mean 0.760 0.760 0.827 0.827 0.897 0.897

Bootstrap standard errors based on resampling at the school level are in parentheses.

Panel A reports lower bound estimates of the fraction of variance in the latent index that determines high school
graduation that can be directly attributed to school/neighborhood choices for each dataset.

The row labelled “LB no unobs” reports Var(Z,sG2) and excludes the unobservable v; while the row labeled “LB
w/ unobs” reports Var(ZsGy + vs).

Panel B reports estimates of the average effect of moving students from a school/neighborhood at the 10th quantile
of the quality distribution to one at the 50th or 90th quantile.

The columns headed “NC” are based on the North Carolina data and refer to a decomposition that uses the 9th
grade school as the group variable. The columns headed “NELS88 gr8” are based on the NELS88 sample and
refer to a decomposition that uses the 8th grade school as the group variable. The columns headed “ELS2002” are
based on the ELS2002 sample and refer to a decomposition that uses the 10th grade school as the group variable.
For each data set the variables used in the baseline and full models are specified in 1.

The full variance decompositions underlying these estimates are presented in Online Appendix Table A19.
Online Appendices A6 and A7 discuss estimation of model parameters and the variance decompositions. Section
6.3 discusses estimation of the 10-50 and 10-90 differentials.
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Table 3: Lower Bound Estimates of the Contribution of School Systems and Neighborhoods to
Four Year College Enrollment Decisions

Panel A: Fraction of Latent Index Variance Determining Enrollment
Attributable to School/Neighborhood Quality

Lower Bound NLS72 NELSS88 gr8 ELS2002

Baseline Full Baseline Full Baseline Full

1) (@) 3 “ &) ©)

LB no unobs 0.026 0.019 0.018 0.015 0.024 0.018
Var(ZG3) (0.006) (0.004) (0.006) (0.005) (0.007) (0.006)
LB w/ unobs 0.038 0.032 0.040 0.029 0.046 0.031
Var(ZasGy +vs) (0.008) (0.006) (0.008) (0.007) (0.009) (0.007)

Panel B: Effect on Enrollment Probability of a School System/Neighborhood at
the 50th or 90th Percentile of the Quality Distribution vs. the 10th Percentile

Lower Bound NLS72 NELS88 gr8 ELS2002

Baseline Full Baseline Full Baseline Full

(1) (2) 3) ) (5) (6)
LB no unobs: 10th-90th 0.138 0.118 0.127 0.112 0.155 0.132
Based on Var(Z,sG2) 0.013) 0.012) 0.017) 0.016) 0.018) 0.017)
LB w/ unobs: 10th-90th 0.168 0.153 0.188 0.155 0.216 0.172
Based on Var(ZxsGz + vy) (0.017) (0.016) (0.021) (0.019) (0.022) (0.019)
LB no unobs: 10th-50th 0.065 0.056 0.061 0.054 0.075 0.064
Based on Var(Z,sGz) (0.006) (0.005) (0.008) (0.007) (0.008) (0.008)
LB w/ unobs: 10th-50th 0.077 0.071 0.088 0.073 0.103 0.083
Based on Var(ZsG, + vx) (0.007) (0.007) (0.009) (0.008) 0.010) (0.009)
Sample Mean 267 267 310 310 365 365

Bootstrap standard errors based on resampling at the school level are in parentheses.

The notes to Table 2 apply, except that Table 3 reports results for enrollment in a 4-year college two years after
graduation.

The column headed NLS72 refers to a variance decomposition that uses the 12th grade school as the group
variable.
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Table 4: The Impact of 10th-90th Percentile Shifts in School Quality on High School Graduation
Rates for Selected Subpopulations

NC NELS8S gr8 ELS2002
Subpopulation Baseline  Full  Baseline  Full  Baseline Full
(1 (2) (3) G (5) (6)
XB: 10th Quantile
LB no unobs 0.146 0.127 0.110 0.099 0.123 0.140
Based on Var(Z,Gz) (0.028) (0.022) (0.024) (0.026) 0.019) 0.021)
LB w/ unobs 0.242 0.229 0.176 0.159 0.146 0.144
Based on Var(ZsGz + vy) (0.031) (0.024) (0.030) (0.030) (0.019) (0.021)
XB: 90th Quantile
LB no unobs 0.060 0.036 0.016 0.004 0.019 0.010
Based on Var(Z»Gz) 0.013) (0.007) (0.004) (0.001) (0.004) (0.002)
LB w/ unobs 0.098 0.063 0.026 0.006 0.022 0.010
Based on Var(ZsGz + vs) (0.015) (0.008) (0.005) (0.001) (0.004) (0.002)
Black
LB no unobs 0.107 0.085 0.061 0.053 0.079 0.082
Based on Var(Z,5G3) (0.021) (0.015) (0.015) (0.015) (0.014) (0.014)
LB w/ unobs 0.176 0.152 0.098 0.084 0.094 0.084
Based on Var(Z5G3 + vs) (0.024) 0.017) (0.018) 0.017) 0.014) (0.014)
White w/ Single Mother
Who Did Not Attend College
LB no unobs 0.142 0.114 0.099 0.078 0.101 0.096
Based on Var(ZxG2) 0.027) (0.020) 0.022) (0.020) 0.017) 0.017)
LB w/ unobs 0.235 0.206 0.159 0.125 0.120 0.099
Based on Var(ZxsGz + vy) 0.031) 0.022) (0.028) (0.024) 0.017) 0.017)
White w/ Both Parents,
At Least One Completed College
LB no unobs 0.062 0.047 0.025 0.016 0.032 0.016
Based on Var(Z»Gz) 0.013) (0.009) (0.006) (0.005) (0.006) (0.005)
LB w/ unobs 0.102 0.084 0.040 0.025 0.037 0.016
Based on Var(ZsGz + vs) (0.015) (0.010) (0.008) (0.006) (0.006) (0.005)

Bootstrap standard errors based on re-sampling at the school level are in parentheses.

The table reports the average effect for the subpopulation indicated by the row heading of moving students from
a school/neighborhood at the 10th quantile of the quality distribution to one at the 90th quantile.

“XB: 10th Quantile” and “XB: 90th Quantile” refer to students whose values of X;B is equal the estimated 10th
(90th) quantile value of the X;B distribution. See Section 8.3.

See the notes to Table 2 for row and column definitions
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Table 5: The Impact of 10th-90th Percentile Shifts in School Quality on Four-Year College
Enrollment Rates for Selected Subpopulations

NLS72 NELSS88 gr8 ELS2002

Subpopulation Baseline  Full Baseline Full Baseline  Full
&) &) (3) (G ®) (6)

XB: 10th Quantile

LB no unobs 0.078 0.027 0.064 0.032 0.100 0.050
Based on Var(Z,sG») (0.008) (0.004) 0.010) (0.005) 0.013) (0.008)
LB w/ unobs 0.094 0.034 0.093 0.046 0.138 0.064
Based on Var(ZsGz + vs) (0.010) (0.005) 0.011) (0.006) 0.016) (0.008)

XB: 90th Quantile

LB no unobs 0.191 0.182 0.160 0.128 0.166 0.128
Based on Var(ZzSGz) 0.018) 0.017) (0.022) (0.019) (0.020) 0.019)
LB w/ unobs 0.234 0.234 0.236 0.187 0.231 0.167
Based on Var(Z,sGz + vs) (0.024) (0.024) (0.026) (0.024) (0.024) (0.020)
Black
LB no unobs 0.132 0.109 0.125 0.111 0.145 0.121
Based on Var(Z,sG») 0.014) 0.012) 0.017) 0.015) 0.017) (0.016)
LB w/ unobs 0.161 0.140 0.184 0.152 0.201 0.158
Based on Var(ZsGz + vs) 0.017) (0.016) 0.021) 0.019) 0.021) (0.018)
White w/ Single Mother
Who Did Not Attend College
LB no unobs 0.110 0.099 0.091 0.074 0.140 0.124
Based on Var(Z,sG3) 0.012) 0.011) 0.014) 0.012) (0.018) 0.017)
LB w/ unobs 0.134 0.127 0.132 0.102 0.195 0.162
Based on Var(ZsGz + vs) (0.015) 0.013) 0.014) 0.013) 0.021) (0.019)
White w/ Both Parents,
At Least One Completed College
LB no unobs 0.180 0.158 0.157 0.139 0.173 0.148
Based on Var(ZzSGz) 0.017) 0.015) 0.021) (0.019) (0.020) (0.020)
LB w/ unobs 0.220 0.204 0.232 0.192 0.242 0.193
Based on Var(ZsGz + vs) (0.022) (0.021) (0.025) (0.023) (0.025) (0.022)

Bootstrap standard errors based on resampling at the school level are in parentheses.

The notes to Table 4 apply, except that Table 5 reports results for enrollment in a four-year college two
years after graduation, and the NLS72 is one of the data sets.

47



Table 6: Lower Bound Estimates of the Contribution of School Systems and Neighborhoods to
Completed Years of Postsecondary Education and Permanent Wages (NLS72 data)

Panel A: Fraction of Variance
Attributable to School/Neighborhood Quality

Perm. Wages Perm. Wages

Lower Bound Yrs. Postsec. Ed. No Post-sec Ed. w/ Post-sec Ed.

Baseline Full Baseline Full Baseline Full

1) (@) 3 “ &) ©)

LB no unobs 0.005 0.002 0.039 0.041 0.039 0.040
Var(ZysG3) (0.002) (0.002) (0.010) (0.011) (0.012) (0.012)
LB w/ unobs 0.010 0.006 0.052 0.052 0.050 0.049
Var(ZasGy +vs) (0.004) (0.002) (0.013) (0.016) (0.021) (0.021)

Panel B: Effects on Years of Postsecondary Education and Permanent Wages
of a School System/Neighborhood at the 50th or 90th Percentile
of the Quality Distribution vs. the 10th Percentile

Lower Bound Yrs. Postsec. Ed. Nzelr;(l)ls.t})sv:f?;d. WI;elggls.t—\:feig]Zii.
Baseline Full Baseline Full Baseline Full

(1) (2) (3) “) ) (6)
LB no unobs: 10th-90th 0.308 0.197 0.152 0.157 0.155 0.157
Based on Var(Z,sGz) (0.057) (0.045) 0.021) (0.020) (0.021) (0.021)

LB w/unobs: 10th-90th 0.445 0.334 0.177 0.177 0.175 0.173
Based on Var(ZsGz + vs) (0.065) (0.049) (0.028) (0.026) (0.028) (0.027)

LB no unobs: 10th-50th 0.154 0.098 0.076 0.079 0.077 0.078
Based on Var(ZzSGZ) (0.028) 0.022) 0.011) (0.010) 0.011) 0.010)

LB w/unobs: 10th-50th 0.222 0.167 0.088 0.088 0.087 0.087
Based on Var(ZsGz + vs) (0.032) (0.025) (0.014) (0.013) (0.014) (0.013)

Sample Mean 1.62 1.62 2.88 2.88 2.88 2.88

Bootstrap standard errors based on resampling at the school level are in parentheses.

Panel A of Table 5 reports lower bound estimates of the fraction of variance of years of postsecondary
education and permanent wage rates (with and without controls for postsecondary education) that can
be directly attributed to school/neighborhood choices for each dataset. The sample is NLS72.

The row labelled “LB no unobs” reports Var(ZsG2) and excludes the unobservable v, while the row
labeled “LB w/ unobs” reports Var(ZsGz + vs).

Panel B reports estimates of the average effect of moving students from a school/neighborhood at the
10th quantile of the quality distribution to one at the 50th or 90th quantile. It is equal to 2 1.28 times
the value of [Var(ZasGa +v5)]* or [Var(ZsG2)]*? in the corresponding column of the table.

See Table 1 for the variables in the baseline model and the full model. The full variance decomposi-
tions are in Online Appendix Table A21. Online Appendices A6 and A7 discuss estimation of model
parameters and the variance decompositions.
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Al Spanning Condition Examples

Consider first a scenario in which there are two observed student characteristics X = [X1,Xz], two
outcome-relevant unobserved student characteristics XU = [XY, X¥], and two school/neighborhood
amenity factors, A = [A],A;].

Case 1: rank(®Y) < rank(®) = dim(A)

Suppose that the matrices @ = @ + Ixux®Y and @Y, are each full rank. For example:

SRS

Then we can write @Y = R@, where

=l

Thus, the spanning condition is satisfied in this case. If ®U were rank-deficient, then the spanning
condition would still be satisfied, but R would be rank-deficient.

Now suppose that there are instead three outcome-relevant unobserved characteristics: XU =

X lU ,X2U ,X3U |, each of which affects WTP for the two amenities differentially. Suppose that X and
© are unchanged from Case 1:

13
|
—
O =
—_ =
——
@
c
I
—_— N =
—_— = NI

11
R=¢ 2 -1
1 0

Thus, the spanning condition is satisfied in this case. We see that dim(X) can be less than dim(XV)
without violating the spanning condition, as long as the row rank of @ is at least as large as the
row rank of @Y. Any scenario satisfying rank(®Y) < rank(®) = dim(A) will satisfy the spanning
condition in Proposition 1.
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Case 2: rank(®) < rank(®Y) < dim(A)

Suppose instead that neither X; nor X, predicts willingness to pay for A,. Further, suppose that
neither X; nor X; is correlated with any elements of XV that predict willingness to pay for A,. This
implies that the second column of @ is a zero vector:

SRS

Since @ is now rank-deficient; there is no matrix R such that R® = @Y. In particular, for any
matrix R, each entry in column 2 will always be zero, but the second column of @V contains non-
zero entries. Similarly, if both X; and X, affect WTP for A; and A, in the same proportion (and are

each uncorrelated with XY, so that IIxuy = 0, a rank-deficiency will also occur:

(13}

Here, an incremental unit of X; or X, will affect WTP for A, by twice as much as it will affect WTP
for A|. As in the previous example, there is no matrix R such that R® = @Y. For any choice of
R, in each row of R@® the second column will always be twice as large as the first column, but the
second row of @Y has a first column entry that is only half as large as its second column entry. Both
these examples violate the spanning condition. If the row rank of @ is less than the row rank of ey,

then the row space of @Y cannot possibly be a subspace of the row space of ©.

Case 3: rank(®V) < rank(®) < dim(A)

Suppose now that both X and XV are scalars: X = X;, XY = XIU . Consider first the case where
X only predicts WTP for Ay, XlU only predicts WTP for A,, and X; and XIU are uncorrelated:

6={10} e ={0 1}

Regardless of the 1x1 scalar R, the product R® will have a zero in the second column, which does
not match @Y. Despite the fact that rank(®) = rank(®V) = 1, the spanning condition fails because
the row space of @Y is not a subspace of the row space of ©.

Indeed, suppose that we alter ® and OV so that both X; and X1U affect WTP for both amenities
(but in different proportions):
6={1 1} e'={2 4}

There is no scalar R such that R® = @Y, since any value of R will preserve the one-to-one ratio
between the first and second entries in ®, while @Y has a one-to-two ratio between its first and

second entries. The spanning condition also fails in this case because the row space of @Y is not a
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subspace of the row space of ®. This example demonstrates that if the set of factors that individuals
consider when choosing groups is large, one will generally need an equally large set of observable

characteristics in order to satisfy the spanning condition in Proposition 1.

Finally, suppose that both X; and XIU only affect willingness to pay for A; (W may affect taste
for A,, so that A is still relevant for school choice):

6-{10} e -{20}

Then for R =2, R® = @Y, and the spanning condition is satisfied. Note that the row space of © is
a subspace of the row space of ey, despite the fact that both @ and 0V are rank deficient. This last
example illustrates that the observed characteristics need not predict WTP for all choice-relevant
amenities as long as the rows of @ span the same (or a superspace) of the amenity subspace spanned
by the rows of @Y.

A2 Testing Whether X Spans the Amenity Space AX

As discussed in Section 3.2.2, Assumption 5.1 is one of the two key sufficient conditions for the
spanning assumption, Assumption 5, to hold. Assumption 5.1 requires that the vector of observables
X; captures enough independent factors determining families’ preferences over group amenities so
that X can span the space of amenities (denoted AX) for which X; affects tastes, either through
direct effects on willingness to pay or indirectly through correlation between X; and elements of
XiU. For the particular linear specification of utility featured in (2), this condition is tantamount to
requiring that rank(@) > dim(AX).

The restriction rank(®) > dim(As¥) restricts rank(Var(Xs)), which forms the basis for our test.
To see this, note that taking expectations of both sides of (16) conditional on s implies that

X, = W Var(W;) '@ Var(X;),

where Wy = E(Wijls; = s) is the average of the willingness to pay vector for those who choose s.
Thus X is a linear combination of Wy. Recall that the length of Wy is K, the number of valued
amenities. Consequently, if L > K, then the L elements of Xy are all linear combinations of the
smaller number of components of the average willingness to pay vector Wy. But this implies that
Var(X;) will be rank deficient, with rank(Var(Xs)) = K. In fact, if WTP for some of the K amenities
is not influenced by X;, then some of the columns of @ will be 0. In this case, rank(Var(X)) =
dim(AX) < K further reducing the rank of Var(Xs). This is a testable condition.

More generally, suppose Assumption 5.1 is nearly satisfied, so that a small number of amenity
factors drive the vast majority of the variation in Xg, but elements of Xj slightly influence tastes
for several other amenities. Our simulations in section 4 suggest that such minor departures from

the Assumptions 5.1 and 5.2 have little impact on the ability of X to effectively control for the
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unobservable between-school variation X¥. But in such contexts, a small number of amenity factors
should account for a very large fraction of the variation in X, with only a very small amount of

unexplained residual variation.

We test these predictions by performing principal components analysis (PCA) on Xg. Because
the sample school averages of observable characteristics Xq are noisy measures of the expected
values X5 = E[Xj|s(i) = s], we do not fit the PCA model to X directly. Instead, we estimate the
underlying true covariance matrix Var(Xs)°, and then directly perform the principal components

analysis on the estimated covariance matrix.*

The results are in online Appendix Table AS5. Panel A reports, for each dataset we use, the
number of principal components necessary to explain 75%, 90%, 95%, 99%, and 100% of the sum
Z%:] Var(Xy) of the variances of the standardized values of the L characteristics in X, respectively.
This is the standard output from a factor analysis. In Panel B, we also provide the number of
principal components necessary to explain 75%, 90%, 95%, 99%, and 100% of the variance in
X,Gq, the regression index formed by using the estimated coefficients on school-level averages

from our empirical analysis.

Both Panel A and Panel B provide strong evidence that rank(®) > dim(AX), implying that
Assumption 5.1 for the spanning condition @Y = RO s satisfied in the datasets we use. Specifically,
in each dataset, Var(X;) is found to be rank deficient. For example, in the full specification using
ELS2002, only 33 latent factors are needed to explain all of the variance in X (Panel A, Row 6,
Column 6), compared to L = 51 elements of Xg. Similarly, in the NELS88 full specification, only

32 factors fully explain the variance in the 49 factors of X.

Furthermore, the PCA analysis also suggests that a much smaller number of factors can account
for the vast majority of the variation in either Zﬁzl Var(Xg) or Var(XSGI). In the ELS2002 full
specification, only 19 and 15 factors are needed to explain 95% of the variation in Zlgzl Var(X)
and Var(Xsél), respectively (Panels A and B, Row 4, Column 6). For NELSS88, only 20 and 13
factors are needed to explain 95% of the variation in the corresponding two measures (Panels A
and B, Row 4, Column 4). The number of latent factors required to explain a given percentage of
the sum the variances of the elements of Xj is larger in the full specification, which contains more
variables. This would be expected in the presence of sampling error in \/’a\r(Xs). However, it might
also indicate that there are in fact additional amenity factors that play a small role in driving sorting
(and thus have small eigenvalues) that can be picked up by the additional elements of X in the full

specification.

3 Specifically, we estimate @'(Xi) and \7a\r(Xi —X;) by taking the sample (weighted) covariances of X; and X; —
X, performing the requisite degrees-of-freedom adjustment, and then obtaining \/73\1'(Xs) via @'(Xs) = @'(Xi) —
Var(X; — X;).

40When constructing our control function in our main estimating equations we augment the vector Xg that comes from
directly aggregating student level variables Xj with school-level aggregates directly reported by the school administrators
(e.g. percent minority), since these are likely to measure the true school population average Xs with minimal error.
However, when performing the principal components analysis of X5, we do not include these additional measurements
that come directly from schools, since they are likely to be nearly collinear with X, and could cause us to find spurious
evidence of rank deficiency in Var(X).
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Note, though, that because we only observe small samples of students in each school in our panel
surveys and only have a sample of schools, the covariance matrix @(Xs) that is decomposed
by PCA is merely a consistent estimate of the population covariance matrix Var(Xs), and thus
contains sampling error. The assumption underlying the spanning condition pertains to the rank of
the population matrix Var(Xg). We address this issue in two ways. First, Panel A and B of online
Appendix Table A5 report 90% bootstrap confidence interval estimates of the number needed to

explain the specified percentages of Y- Var(Xy) and Var(XsGI). They are fairly tight.

Second, we also implement the formal test of rank proposed by Kleibergen and Paap (2006).
Building on Cragg and Donald (1997) and Robin and Smith (2000), this test exploits the fact that
a rank deficient matrix will have a subset of its singular values equal to 0, and tests whether the
smallest singular values are farther from zero than one would expect based on sampling error.*! The
test compares the null hypothesis that rank(Var(Xs)) = ¢, for some g < L, against the alternative
that rank(Var(Xs)) > ¢g. Thus, Table A6 report the p-value from this test for each possible rank
1,...,L—1 for each of our panel survey datasets for our baseline specification. Table A7 displays

the corresponding p-values across datasets for our full specification.

One advantage of this test is that it can accommodate both heteroskedasticity and autocorrelation
among the error components. However, while the tests that cluster at the school-level allow for the
most general correlation structure, they sometimes fail to converge in our samples (indicated by
“NaN” in Tables A6 and A7). Consequently, for each dataset we display p-values both from tests
that are robust to heteroskedasticity but assume zero autocorrelation as well as those that cluster at

the school-level and are robust to both heteroskedasticity and autocorrelation.

Across tests and datasets, the results are broadly quite consistent with the PCA results reported
above. In particular, not only do the tests consistently fail to reject rank values well below the
number of observables, but in fact the p-values generally converge to values indistinguishable from
1 as the numbers of factors being tested nears the number of principal components identified in Table
AS. In sum, the Kleibergen/Paap tests provide no evidence against the the null hypothesis that the
number of factors that drive sorting on the observables X is substantially small than dimension of
X;.

4l Specifically, Kleibergen and Paap (2006) show that if the vectorized form of the covariance matrix estimator has a
normal limiting distribution, then the limiting distribution of an orthogonal transformation of the smallest singular values
of this matrix is also normal. Their rank statistic thus consists of a quadratic form of this orthogonal transformation with
respect to the inverse of its covariance matrix, and hence follows a ¥ limiting distribution. Bai and Ng (2002) provide
an alternative approach.
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A3 The Relationship between XY and X when E(X;|W;) and E(XU|W;)

are Nonlinear
Decompose E[XV|W;] and E[X;|W;] as

E[XV|Wi] = E°[XV|Wi] +ef (39)
E[X;|W;] = E*(Xi|W;) +¢f (40)

where the vectors E*[XY|W;] and E*[X;|W;] are the linear least squares projections of XU and X;

vU U .
on W; and the error vectors ¢ and eX are uncorrelated with W;.

Proposition 2: Assume that Assumptions Al, A2, A3, and A4 hold.

Then the expectation XY is
XY = X [Myuy + Var(X;) 'R Var(XV)]
—E[¢f|s(i) = s][Var(X;) 'R'Var(X")] + E[ef |s; = s] (41)
A3.1 Proof of Proposition 2:

The key steps of the proof are identical to first steps of the proof of Proposition 1 that lead to
(11) and (12). These say that

XV = EXV[s(i) = 5] = E[[EXY|Wy)]ls(i) = o
X, = E[Xils(i) = s] = E[EXiW))][s(i) = 5.

Next we find expressions for E[XY|W;] and E[X;|W;] involving E*[XV|W;] and E*[X;|W;] and

e{( Y and ef‘ By definition of a linear projection,

E*[XY|W;] = W;Var(W;) '@V Var(XV) (42)
E*[Xi|W;] = W;Var(W;) 1 Var(X;). (43)

Assumption A4 says that el = RrO. Substituting for 0V'in (42) and using (43) for E*[X;|Wj] leads
to

E*[XV|W;] = W;Var(W;) '@'R'Var(X}))
— W;Var(W;) ' ®'Var(X;) Var(X;) 'R'Var(XV)
— E*[X;|W;] Var(X;) 'R'Var(XV). (44)

Using
E[X{'|W;] = E[X;|W;|TIxux + E[X{'|Wi]. (45)
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and (39), (40) and (44), we obtain:

E[XV|W;] = [E*[X;|Wi] + eX|TIxox + E*[X;|W;] Var(X;) " 'R'Var(XV) + ¢ . (46)

1

The final step is to take expectations of both sides of the above equation conditional on s(i) = s
and use (11) and (12). Doing so leads to

XY = E[E*[Xi|Wi]+e8ifs; = s][TIxux + Var(X;) " 'R'Var(XY)]
—E(ef|s; = 5)[Var(X;) " 'R'Var(XV)] + E[eX" |s; = s].
= X,[Myux + Var(X;) 'R'Var(XY)]
—E(eX|s; = 5)[Var(X;) 'R'Var(XV)] + E[¢X" |s; = s]

where the second and third terms combine to form an approximation error. This completes the

proof.

A4 Deriving an Analytical Formula for XE when the Spanning As-
sumption (A5) Is Not Satisfied

We begin by introducing new notation that will be necessary to generalize Proposition 1 to the

case where Assumption (AS5) is not satisfied.

Partition XP into a subset Xllji that is correlated with X; and a subset Xgl that is not correlated
with Xj. Let L denote the number of elements of X;, LY! denote the number of elements of Xﬂ, and
let LY? denote the number of elements of Xgi. Recall that Assumption 5.2 will fail if Xgl affects

preferences for an amenity that neither Xj nor X}]i affect preferences for.

Denote by AU2 the subvector of A that is not contained in AX. Similarly, let K; be the number

of amenities in AX and let K, capture the number of amenities in AU2. Write the taste matrix oY as:

U U U
el — O 6 ()6 0
1 ey ey [ | e} ef
21 922 21 922
Where @Y, is LV x K, @} is LV2 x K;, @Y, is LU! x K;, and @%, is LU x K,. Note that since XY

does not affect WTP for any amenities in AY2, ®IIJ2 = 0. Similarly, write the taste matrix © as

o={e o }={6 0},

where @1 is L x K and @, = 0is L x K>.
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We can then write @ as:

@Z{ @1 @)2 }:{ ®1+H}1(UX®IIJ1 0 }
Consider replacing assumption (A5) with the following assumptions, (A6) and (A7):
e (A6): There exists an LU! x L matrix Ry such that @)ﬂ —R;0,.

e (A7): There exists an LY? x L matrix Ry such that @El = R,0,

We can also define the LY x L matrix R as:

{n)

Given these definitions and additional assumptions, we are now ready to develop a more general
expression for E[XV|s(i) = s]. We begin by generalizing the expression for E[XU|W;]. Note first
that since E[X;|W;] and E[XV|W;] are linear in W; (from Assumption (A4), E[XV|W;] is also linear

in W;. Basic regression theory then implies that

E[XY|W;] = W;Var(W;) ' Cov(Wy', XV) (47)
E[X1|Wi] = WiVal’(Wi)_ICOV(Wi/,Xi). (48)

Next, recall that we can write W; as:
W; = Xi(;) + XP@U +Q;

where Xj, X}j, and Q; are mutually uncorrelated by construction. This leads to the following ex-
pression for Cov(W;/, XVY):

- S ey o} Xy U o
Cov(Wi'. Xf) = Cov(@UXY".XF) = Cov({ t ot ¢4 <t SR Y
12 22 2i
Cov(®} XY XU) 4 Cov(@5 XY, XY)  Cov(@Y XY, XY) + Cov(®5 XY, XY)
Cov(O1XY X)) + Cov(@5,XY X})  Cov(O;XY, XY)+ Cov(@5XY XY
{ Hivar(XY) + @3 Cov(XY,XY) @ Cov(XY,XY) + O Var(XY) }

| @%Cov(Xy X)) @}, Var(X5)
_ O R, Var(XY) + @Ry’ Cov(XY, XU) @R, Cov(X¥,XY) + R, Var(XY)
05, Cov(XY/,XY) @3, Var(XY)

Where the last line imposes (A6), (A7) and @}Jz =0.
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Similarly, we have:

Cov(W{,X;) = Cov(®'X],X;) = @' Var(X;) = (49)

{ (:),1 }Var(Xi):{ 1+ Oy }Var(Xi) (50)
0, 0

Plugging in the formulas for Cov(W;/,XV) and Cov(W;',X;) into 47 and 48 , we obtain:

~/ ~ ~/ ~rr o ~/ ~r o ~/ ~
EXV[W; :WiVar(Wi)l{ O,R/ Var(X})) + ®;R,'Cov(XY , XY) ©,Ry'Cov(X}},XY) + O;R; Var(X}) }

@5, Cov(XY , XY) 0%, Var(XY)
(6D
[ e
E[X;|W;] = W;Var(W;) { 0 }Var(Xi). (52)
Using (52), we can rewrite (51) as:
. _ Var(XY) COV(XU/,~ )
E[X|Wi] = E[X;/W;]Var(X;) "’ ' Ry ti 1‘ X 53
XPIWi] = E[X[WiVar(X) ' { R/’ R }{COV(XE’X}J]) Var (X! (53
+W,;Var(W;) ! 0
l l 05, Cov(Xy XV) @Y var(XY)
= E[X;|W;j]Var(X;) 'R'Var(XY) + W;Var(W;) {0 oU }Var( ) (54)
22

Plugging back into the original iterated expectations formula and taking expectations at the school

level, we recover:

XU = X,Var(X;)"'R'Var(XV) + W Var(W;) ! { g (;)U }Var(XiU) (55)
22
Note that in equilibrium E[Wj|s(i) = s] will depend on the full joint distribution of amenities and
the joint distribution of W;. With a finite number of students and schools and with idiosyncratic
student-school match components in preferences (&;), there exists no closed-form solution for the
equilibrium mapping between the amenity vector Ag and school averages of the WTP for amenities
W;.

However, we can gain additional insight by re-considering the continuous version of the model
analyzed in Altonji and Mansfield (2014). In that context we assumed a continuum of schools
and therefore a continuous joint distribution of amenity vectors. In Appendix A3 of Altonji and
Mansfield (2014), we solve for an explicit unique equilibrium mapping between Ag and Wy under
the assumptions that a) [Xi,XiU,Qi] and Ay are each jointly normally distributed (with variance
matrices Xw and X4 respectively), b) the g are 0, and c¢) the equilibrium allocation takes a linear
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form: Ay = WYW;'. The unique linear equilibrium mapping is
0 SRt S 0 g i (56)

Note that the spanning condition (AS5) is not necessary to derive the equilibrium relationship in

equation 56.

Furthermore, since every positive definite matrix is invertible, we can also express the vector W;

for any individual as a linear function of the amenity vector of their chosen school:
Wi= (P Ay (57)

In the continuous version of the model with g = 0, every individual at the same school has the

same value of W;. Thus, we also obtain:
E(Wils = s(i)) = Wy = (¥ 'Aqp)). (58)

Substituting equation (58) into the formula in the previous section, we obtain:

00

XY =X, Var(X;) 'R'Var(XU) + Ay;) ¥~ Var(W;) ! { 0 ey
22

} Var(X!) (59)

This shows more clearly that the variances and covariances involving Xj;, XIU and Qj play arole,
and that Var(Ay) plays a role.
0
0 O

ual variance of XE conditional on Xg. This is because X and Ag co-vary, which leads the two terms

However, note that the variance of A’ ¥ var(w;) ™! { } Var(XVY) is not the resid-

in equation (59) for XV to co-vary.

Next, recall the composition of Wj:
W =X;0+X'eV +Q; (60)

Taking expectations of both sides of the above equation conditional on s = s(i) one may substi-
tute for Wy in (55). This leads to.

0

Var(XV

XY = X {Var(X;) 'R'Var(XY) + [X,0+ X 0Y{ +XV@Y + Q,|Var(W;) " {

(61)

Now suppose that in addition to Assumption (A4), we assume that E[Q;|W;] is also linear in
W;, so that:

E[Q;|W;] = W;Var(W;) ' Cov(Wy,Q;). (62)
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If we take iterated expectations of equations (48), (47), and (62) conditional on school s(i) and
replace W with (¥~ As(i)) , we obtain:

XY = Ayp)¥'Var(W;) '@V var(XV) (63)
Xs = Ay 'Var(W;) ' Var(X;) (64)
Qs = Ayy)¥ ' Var(W;) ' Var(Qy) (65)

Collecting terms involving X and substituting equations (63) and (65) into (61) yields:

XU = X,{var(X;)"'R'Var(XV) + @' Var(W )1{ 0 OU, }Var(XiU)} (66)
0 6
+Aq)"¥ 'Var(W;)~ 1@)UVar(XU)@UVar( W;)~ 1{ 0 OU, }Var(f(iU) (67)
+As(i)/lp1Var(Wi)_1Var(Qi)Var(Wi)‘1{ g z)U’ }Var(XiU) (68)
22

Even this doesn’t let us decompose Var(XVY) into a term involving X and an uncorrelated resid-

ual piece, because Ay will be correlated with X.

But consider projecting the amenity subvectors A~ and AgY% onto Xg:
AN =X Iyxx +AY =X I xx, (69)
A =X g +A (70)

where Il xy is an L x K projection matrix, ITyxx_is an L x K, projection matrix, and Az((’i) and
AEZ’ are the residuals from these projections. Note that 1&3" = 0 as long as @ is full rank (essen-
tially Assumption A5.1 adapted to the linear utility case).

This implies:

00

XY = X, [Var(X)) 'R Var(XY) + & Var(W;) v

}Var(f(iU) +Mj

00

+{0, AV} ¥~ 'var(W;) ! [@Y Var(XV)®V + Var(Q;)| Var(W;)~ 1{ o

}Var(iiU) (71)

where the matrix M is

0

Var(XV

M = {Txxx,, Mpvy J¥ ' Var(W;) ' @V Var(XY)@V + Var(Q;)] Var(W;) - 1{
(72)

While cumbersome, the second term in equation (71) provides an expression for the component of
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XE that cannot be predicted by X (and thus may be a source of bias in our lower bound estimates
of the variance in school/neighborhood treatment effects). The variance in this component depends
on the following five factors: a) the full joint distribution of amenities (through ¥); b) the joint
distribution of the WTP vector W; (entering via the covariance matrix Var(Wj;)); c) the matrix @Y
mapping unobserved individual characteristics into willingness to pay for particular amenities; d)
the joint distribution of the residual component of unobserved outcome-relevant student character-
istics (entering via the covariance matrix Var(f(iU); and e) the joint distribution of the unobserved
outcome-irrelevant (but school choice-relevant) student characteristics (entering via the covariance
matrix Var(Q;).

Given the complicated manner in which each of these five factors enters the second term in
equation (71), there does not appear to be any straightforward way to place an bound on the variance

in this error component.

AS Monte Carlo Evidence on the Properties of the Control Function

Estimator

This section describes a set of monte carlo simulations designed to explore the performance of
our control function estimator across a number of key dimensions. As we noted in section 4, a full
characterization of these finite-sample properties is not feasible. Instead, we focus on sensitivity
to deviations of a set of key parameters from a stylized test case that is rich enough to reveal the
strengths and weaknesses of our approach. In the first set of simulations, we restrict attention to
cases in which the conditions of Proposition 1 are satisfied in an infinite population, and consider
the sensitivity of the performance of the control function approach in removing bias from sorting on
unobservables to various parameters capturing the structure of tastes, amenities, school sizes, and
survey sampling design. Then, in a second set of simulations, we fix the parameters considered in
the first set of simulations at a set of baseline values, and examine the sensitivity of our approach
to violations of the key spanning condition in Proposition 1 that vary in nature and degree. Section

AS.1 lays out the simulation methodology, while section A5.2 presents and interprets the results.

AS5.1 Methodology

The stylized test case we consider is one in which:

1. The elements of [Xi,XiU,Qi] are jointly normally distributed; the elements of Q; are inde-
pendent of each other and [X;, XiU], and each pair of characteristics in [Xj, XP] features a .25

correlation.*?

2. The latent amenity vectors Ag are normally distributed with a .25 correlation between any pair

of amenities across schools.

42This is the average correlation between observed continuous student-level characteristics in ELS2002.

62



3. The matrices of taste parameters ® and ev represent draws from a multivariate normal distri-
bution in which (a) corr(®, ® ) = pe if j =k or { =m, and 0 otherwise, (b) corr(®Y,, ®§]m) =
pe if j =k or £ = m, and 0 otherwise, and (c) corr(®yy, @ym) = pe if £ = m, and 0 otherwise.

4. The variances of the elements of Ag, [Xj, XiU, Qi], and €; ¢ (i.i.d. draws from a normal distribu-
tion) are chosen to create interclass correlations for X; and XiU of between .1 and .25 across
specifications. These values are in line with the range observed across the datasets used in the

empirical analysis.

5. There are no school/neighborhood effects, so that Y = X;8 +xlU, where xlU = XiU BU. Conse-
quently, our estimating equation also omits the school level controls Z,4 that are not averages
of student characteristics. These simplifications allow us to focus attention exclusively on the
extent to which a vector of group averages of observable individual characteristics can absorb
between-school variation in the outcome contributions of unobservable individual character-
istics.

6. All the observable and unobservable characteristics in Xj and XiU are equally important in

determining the outcome, so that each characteristic features the same (unit) variance, 8y =
1Vl and BY =1V L.

Our test case implies considerable sorting into schools along many dimensions of school ameni-
ties and along many observable and unobservable dimensions of student quality. It represents
a conservative case because one might expect that in reality a few key observable (and unob-
servable) individual level factors (e.g. parental income, education, and wealth) and a few key
school/neighborhood amenities (e.g. ethnic composition, crime, principal quality) drive most of
the systematic sorting of students to schools. Given restrictions 1-6, we complete the model by
choosing particular sets of seven remaining parameters. The first parameter is students per school.
For simplicity, we impose that each school has capacity equal to a common student/school ratio.*?
The student/school ratio is denoted “# Stu” in online Appendix Table A8. The second parameter is

the total number of school/neighborhood combinations available (denoted “# Sch”).

The parameter #Con is the number of schools in the consideration set for each household. This
captures the possibility that most parents only realistically consider a limited number of possible
locations. We implement this by distributing schools uniformly throughout the unit square, and
drawing a random latitude/longitude combination for each household. The households then consider
the preset number of schools that are closest to their location. Thus, consideration sets of different

households are overlapping.

The fourth and fifth parameters (denoted “# Ob.” and “# Un.”) specify the number of observed
and unobserved student characteristics that affect outcomes. The sixth parameter is the dimension
of the amenity vector over which households have preferences (#Am). In most of the specifications

we assume that it less then or equal to the number of observed characteristics and that the rows of

43We believe that this is essentially without loss of generality. Without a finite elasticity of supply of land/school
vacancies though, it is hard to avoid having tiny school sizes in locations with low values of amenities that tend to be
highly desired. Fixed costs would prevent this.
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@Y form a linear subspace of the rows of 0, as required by Proposition 1.

The seventh parameter is pg, introduced in the definition of our stylized test case, which governs
the correlation between pairs of random variables from which each (@, ®;,,) or G),(c]g,@?m) is a
draw. If pg is high, then student characteristics that have a strong positive effect on willingness to
pay for one amenity factor will also tend to have a relatively strong positive effect on WTP for other
amenities. And if pg is high, then amenities that are strongly weighted by one characteristic are
likely to be strongly weighted by other characteristics. That is, WTP for some amenity factors may

generally be particularly sensitive to student characteristics.

In addition, in a second set of simulations we hold fixed these seven parameters at their baseline
values, and consider additional specifications that illustrate the degree to which our control function
approach is robust to various failures of the spanning condition from Proposition 1 (i.e. cases
in which @V #* RO for any R). These simulations consider robustness of the control function
approach to changes in the structure of the three matrices that determine whether a one-to-one
mapping from a vector of group-average unobservables to a vector of group-average observables
exists at the population level: (1) the projection matrix Ilxuy, which captures the degree to which
individual-level unobservables project onto the space of individual-level observables, (2) the taste
matrix @, which captures the degree to which each of the student-level observables affects tastes for
each of the school/neighborhood amenities, and (3) the corresponding taste matrix for unobservable

student characteristics, ev.

We have two related metrics for evaluating the effectiveness of our control function approach.
The first is the fraction of the between-group variance in the outcome contribution of unobservable
individual-level characteristics (Var(x¥) = Var(XV BY) that can be predicted using group-averages
of observable characteristics. This is the R?> from a regression of the potential bias from unobserv-
able sorting, xV, on the vector Xg. In cases where the conditions of Proposition 1 are satisfied, the
R? should converge to 1 as the number of students per school gets large. However, the rate at which

it does so is important for the efficacy of the control function approach.

The second metric is [(1 — R?)Var(xY)]/Var(Yy;), which is the fraction of the total variance in
the outcome Y; accounted for by residual variance of x¥ not accounted for by Xs. In Appendix
tables A8 and A9, we denote our measures “R-sq” and “Resid” (short for “residual sorting variance

fraction”).

We present values of R-squared and the residual sorting variance fraction from specifications
where the full population of students is used to calculate the school averages of observables X that
compose the control function (denoted “R-sq (All)” and “Resid (All)”, respectively), as well as val-
ues from specifications in which random samples of 10, 20, or 40 students from each school are used
to calculate X (these values are denoted “R-sq (10/20/40)” and “Resid (10/20/40)”, respectively, in

our tables).
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We draw X;, XiU, Qi. and {¢g;} from the distributions described above to calculate the WTP of
each household for each school.** Since our method does not require observation of the equilibrium
price function P(A), rather than iterating on an excess demand function to find the equilibrium
matching, we instead exploit the fact that a perfectly competitive market will always lead to a pareto
efficient allocation. The problem of allocating students to schools to maximize total consumer
surplus can be written as a linear programming problem, and solved quickly at relatively large scale

using the simplex method combined with sparse matrix techniques.*

AS5.2 Simulation Results

The simulation results are presented in online Appendix Table A8. Row (1) presents the base
parameter set to which other parameter sets will be compared. It features 1000 students per school
and 50 schools in the area, all of which are considered by each family when the school choice is
made. It also features 10 amenities, 10 observable student characteristics, and 10 unobservable
student characteristics. The variances of these characteristics are all identical, so that sorting on
unobservables is as strong as sorting on observables. This is probably a conservative choice. Finally,
the within-row and within-column correlation pg among the elements of the random matrices from

which the taste weight matrices ® and @Y are drawn is assumed to be .25.

The first takeaway from Row (1) is that the control function approach is extremely effective
even with reasonably-sized schools of 1000 students each (most of the schools in the North Car-
olina sample enroll between 250 and 2000 students) and a moderate number of available schools:
99.8 percent of the variance in the school-level contribution of unobserved student characteristics
can be predicted by a linear combination of school-average observable characteristics (Column 9).
Furthermore, the control function only leaves two hundredths of a percent of the variance in the

outcome Yj; that can be attributed to residual between-school sorting (Column 10).

The second insight from Row (1) is that the performance of the control function may suffer
somewhat when estimation is based on small subsamples of students at each school. We see that
the R-squared falls from .998 to .896 when school averages are merely approximated based on
samples of 10 students (top entry in column (11)). Increasing the sample size to 20 students per
school (middle entry in column (11)) raises the R-squared to .941, while increasing it further to 40
students per school (bottom entry in column (11)) raises the R-squared to .967. Column (12) shows
that the fraction of the outcome variance consisting of residual between-school sorting unabsorbed
by the control function is .013/.007/.004 when 10/20/40 student samples, respectively, are used to

construct the vector of school averages, X.

Rows (2) and (3) illustrate the impact of adapting the specification in Row (1) by decreasing or

44To minimize the statistical “chatter” introduced by the particular ® and OV matrices that we happened to draw, we
drew ten different sets of ® and ®V matrices from the prescribed distributions, ran the simulations for each parameter set
for each of these sets of matrices, and then averaged the results across the ten iterations within each parameter set.

4The problem can actually be classified as a binary assignment problem (a subset of linear programming problems),
but we were unable to implement the standard binary assignment algorithms at scale.

65



increasing the number of individuals per group. Decreasing school sizes from 1000 to 500 decreases
the R-squared from .998 to .997, while increasing from 1000 to 2000 increases the R-squared to
999 (column (9)). Perhaps not surprisingly, more individuals per school has almost no impact on
the effectiveness of the control function if the larger number of individuals are not used to construct
the group averages of individual characteristics, X;. Incolumns (11) and (12), the R-squared values
and residual sorting variance fraction when samples of 10, 20 and 40 students are used to construct

X5 (R-sq(10/20/40)) are nearly identical across Rows (1) - (3).

Comparing Row (4) to Row (1), we see that increasing the number of schools from 50 to 100 has
minimal impact on the performance of the control function when the full population of students is
used to construct school averages. Interestingly, reducing the number of schools slightly reduces the
problems posed by using small samples of students from each school to construct Xg (column (11)).
Similarly, Row (5) shows that restricting the number of schools in each household’s consideration
set from 50 to 10 reduces the control function’s ability to absorb unobservable sorting, but only
negligibly. The R-squared is effectively unchanged when the full population of students is used to
construct Xg, but drops slightly from Row (1) to Row (5) when samples of 10, 20, or 40 students are
used instead. Nonetheless, the high R-squared and low variance of the residual sorting component
in Row (5) reveals that our approach works well even if households only consider a relatively small

number of schools.

Row (6) illustrates the impact of doubling both the number of observable and unobservable
outcome relevant characteristics. By increasing the numbers of both observable and unobservable
characteristics symmetrically, we can show the impact of utilizing a richer control set while holding
fixed the strength of sorting on observables relative to unobservables.*® Doubling the number of
elements of Xj and XiU increases the R-squared from .9983 in Row (1) to .9996, and decreases the
fraction of outcome variance attributable to the residual sorting component to one-hundredth of a
percentage point. This very small increase understates the importance of the richness of the control
set, since the control function was already nearly perfectly effective for the baseline parameter
set. Column 11 shows that when only 10 students are used to construct sample school averages,
doubling the control set from 10 to 20 characteristics increases the R-squared from .896 to .939.
This highlights the importance of collecting data on a wide variety of student/parent inputs that

capture different dimensions of taste (as the panel surveys we use do).

Row (7) shows that doubling the number of amenity factors from 5 to 10 very slightly reduces the
effectiveness of the control function, dropping the R-squared from .9983 in Row (1) to .9947. The
impact of doubling the number of amenities space is also small when small samples of students are

used to construct school averages. Comparing Row (8) to Row (6), reveals that the performance of

461n all of these simulations, we assumed that the strength of sorting on unobservables mirrored the strength of sorting
on unobservables. In results not shown, we also experimented with weakening the degree of sorting on unobservables by
making @Y smaller in magnitude and increasing the variance of Q; to compensate. While the control function absorbs
a slightly smaller fraction of the between-school variance of the regression index of unobservable outcome-relevant
characteristics when sorting on these characteristics is weak, this is precisely the case when the magnitude of the between-
school variance in outcome-relevant unobservables is small. Thus, there is very little potential bias to be absorbed.
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the control function really depends on the dimension of the amenity space relative to the dimension
of X, rather than the absolute number of amenities: when Xg has 20 elements, the fraction of

absorbed sorting bias barely changes as the number of amenities rises from 5 to 10.

Finally, Row (9) displays the results of a specification in which all of the ®;, and @),l{/Z elements
are drawn independently (pg = 0). Compared to Row (1), the R-squared for the full population falls
slightly (.9983 to .9953), but the R-squared when samples of (10/20/40) are used to construct Xg
falls more substantially, from (.90/.94/.97) to (.72/.82/.89). However, removing correlation among
the elements of @ also reduces the amount of sorting on unobservables to be explained, since the
school averages of the various unobservables become more weakly correlated with one another, so
that their contributions to student outcomes tend to cancel each other out. Consequently, the fraction
of between school outcome variation that can be attributed to residual school-level differences in
unobservable student characteristics that is unpredictable based on the vector of school-average

observables Xg remains quite small (Row 9, col. 12).

Overall, the results in online Appendix Table A8 indicate that the control function approach
could potentially work extremely well even in settings where 1) individuals have idiosyncratic tastes
for particular groups, 2) there are only moderate number of total groups to join, and 3) only a subset

of these are considered by any given individual.*’

The simulations suggest that the control function
works well even when only a small sample of individuals is observed in each group. In online
Appendix A8, we use the North Carolina administrative data to directly assess the effect of using
smaller samples of students to construct Xg for some of the outcomes and characteristics we actually
consider. We find that our main results are relatively insensitive to restricting school sample sizes

to match the distribution of sample sizes observed in the NLS72, NELS88, and ELS2002 datasets.

AS5.2.1 Performance of the Control Function When the Spanning Condition Fails

Note that all the specifications in online Appendix Table A8 consider cases in which the con-
ditions presented in Proposition 1 are satisfied, so that we should expect the control function to
perfectly absorb sorting on observables as the number of students per school gets sufficiently large.
However, there may also be many contexts in which the set of observables is not sufficiently rich to
make our spanning condition plausible. Thus, we are also interested in the extent to which the ad-
dition of group-averages of individual characteristics can substantially reduce bias from sorting on
unobservables, even if it cannot completely eliminate the bias. Online Appendix Table A9 considers

a number of such scenarios.
Recall from the discussion in Section 3.1 that ® can be represented as the sum of ® and

ITyv X@)U. The dependence on @ indicates that the mapping from XV to Xj is generated partly

because observed characteristics Xj and unobserved characteristics XiU directly affect WTP for over-

4TIn other simulations available upon request, we have also examined the impact of altering the variance of &;. We
find that increasing Var(g;) reduces the between school variance in both Xj and XF symmetrically, but does not erode
the effectiveness of Xs as a control for XV. Intuitively, as Var(g;;) — oo, idiosyncratic tastes fully drive choice, and the
between school variation in Xj and X]U disappears, so that there is no more sorting problem to address.
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lapping sets of amenities (which creates a degree of overlap in the row spaces of ® and @Y). The
term HXUXG)U captures the part of the mapping that arises because X; indirectly predicts WTP for
the amenities for which XiU predicts WTP through the correlation between X; and X}j (thereby cre-
ating further overlap in the row spaces of ® and ®V). The spanning condition (@V = R® for some
matrix LY x L matrix R) is satisfied whenever these two pathways, working in combination, produce

a preference matrix ®@ whose row space is a linear superspace of the row space of ev.

Thus, before investigating the impact of violations of the spanning condition, we illustrate the
importance of both pathways by considering specifications in which one or the other pathway is shut
down. Row (1) is identical to Row (1) of online Appendix Table A8, and represents the baseline
case against which the other specifications are compared. Row (2) considers the case in which the
entire vector of unobservable characteristics XiU is independent of the vector of observables Xj, so
that IIxux converges to the zero matrix as school sizes become large. However, X; and XiU predict
tastes for a common set of amenities (A; — As), so that @ has (full) rank K and the row space of oY
is a linear subspace of the row space of @. The results in Row (2) suggest that the control function
approach still works quite well when large populations of students at each school are available (R-
squared of .972), but suffers somewhat when school averages are constructed using subsamples of
10, 20 or 40 students: R-squared values of .60/.69/.78 (column 10), with substantial residual bias

from sorting on unobservables left uncaptured by the control function X4 (column 11).

Row (3) considers the opposite case in which the spanning condition is satisfied only through
the indirect pathway that operates via the correlation between Xj and XlU Specifically, in row (3)
the observables and unobservables affect tastes for disjoint sets of amenities ({Ay,...,A4} and {As}
respectively). This means that the row space of oYis orthogonal to the row space of @. However,
each element of X; is correlated .25 with each element of XiU, so that ITxuy is full rank and the
row space of @Y is a linear subspace of the row space of HXUXGU. The results in Row (3) are
quite similar to those in Row (2): strong when large samples are used to construct school averages,
weaker otherwise. Rows (2) and (3) combined illustrate that the two pathways by which a mapping
between Xs and XY may be generated are each sufficient in isolation to produce desirable finite
sample properties with large samples of students per school. But they also show that it is the blend
of both pathways to spanning that produced the surprisingly strong finite sample results in online
Appendix Table A8.

The remaining rows of online Appendix Table A9 consider cases in which the spanning con-
dition fails (the row space of @V is not a linear subspace of the row space of @ = @ + HXUX®U).
Row (4) presents results from the worst-case scenario: (a) the entire vector of unobservable char-
acteristics is independent of the entire vector of observable characteristics (IIyvy = 0), and (b) the
unobservable characteristics only predict WTP for an amenity (As) that the observable character-
istics do not affect taste for (they exclusively weight A} —A4). Thus, ® and 0V have orthogonal
row spaces as well. Since the group averages of the observables and unobservables are functions of

disjoint sets of amenities, it comes as no surprise that only 32% of the variance in XV is predictable
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given X, even when the universe of students at each school is observed (column 8).48

Row (5) alters the scenario from Row (4) by allowing the unobservable characteristics XiU to
predict WTP for amenities A; to A4 in addition to As. The control function performs somewhat

better: 62% of the variance in XY is absorbed by the coefficients on X;.

These two scenarios are quite pessimistic, however. If WTP for an amenity is unaffected by the
entire vector Xj, then it seems likely that a subset of the unobservables may not predict WTP for
this amenity either. Thus, we consider two additional scenarios in which WTP for the last amenity
(As) is only affected by one of the ten components of the unobserved vector XiU. In Row (6), X%O
affects WTP for As only. In Row (7), X}flo predicts willingness to pay for all amenities A; to As.
Rows (6) and (7) reveal that our control function performs quite well in these scenarios: it absorbs

around 96% of the variation in XV in each case.

Finally, Rows (8) and (9) replicate the scenarios in Rows (6) and (7) but allow each of the unob-
servable characteristics except the one affecting taste for As (le/lo) to exhibit a .25 correlation with
each of the observed characteristics. In this case both I'IXUX@U’and ® would be linear superspaces
of @Y in the absence of the last unobservable, Xil,/IO' The performance of the control function for
these specifications is every bit as strong as in the baseline specification in Row (1). This suggests
that a violation of the spanning condition in Proposition 1 need not produce appreciable bias if it is

driven by only a small number of characteristics that weakly affect school/neighborhood choices.

We conclude that our control function approach is may be quite robust to the violations of
the spanning condition that are arguably the most plausible: namely, cases in which just a few
components of the subvector of XiU that is orthogonal to X; affect WTP for just a few additional

amenities for which X; does not affect WTP.

A6 Estimation of Model Parameters

In this section we discuss estimation of the coefficients B, G, and G,. The estimation strategy

depends on the outcome, so we consider the outcomes in turn.

A6.1 Years of Postsecondary Academic Education

Parameter estimation is most straightforward in the case of years of postsecondary academic
education. We estimate B using ordinary least squares regression with high school fixed effects,

which controls for all observed and unobserved school and neighborhood influences.

Recall that Zg is comprised of two components: Zg = [Xg;Zos]. Zys consists of school and
neighborhood characteristics for which direct measures are available, such as student/teacher ratio,
city size, and school type. Xy consists of school wide averages for each variable in Xj, such as

parental education or income, which we do not observe directly but must estimate from sample

48The limited explanatory power we do obtain derives from correlation between As and A| — Ag.

69



members at each school. Consequently, the makeup of Xy differs across specifications that use

different X vectors. Gy and G are the corresponding subsets of the coefficients in G.

We replace Xg with X, where X is the average of X; computed over all available students from

1.49

the school.”™ We estimate G and G, by applying least squares regression to

Ysi — XiB = XG1 + Z2sG2 + vy

using the appropriate panel weights from the surveys.

A6.2 Permanent Wage Rates

Abstracting from the effects of labor market experience and a time trend, let the log wage Yj;, of

individual i, from school s, at time ¢ be governed by
Ysir = Ysi + €sie + Goir-

In the above equation Yy; is i’s “permanent” log wage (given that he/she attended high school s) as
of the time by which most students have completed education and spent at least a couple of years in
the labor market, which we take to be 1979 in the case of NLS72. ey; is a random walk component
that evolves as a result of luck in the job search process or within a company, or perhaps changes
in motivation or productivity due to health and other factors. We normalize eg;; to be 0 in 1979.%°
Gsir includes measurement error and relatively short term factors that have little influence on the
lifetime earnings of an individual. The determination of the permanent wage is given by (20). After

substituting for Yj;, the wage equation is
Ysie = XiB + XsG1 + ZsG2 + vsi + €5ir + Gir-

We estimate B by OLS with school fixed effects included.”’
Let Y =Yy — Xi]§. We estimate G1 and G; by applying OLS to

Ysit = XsGl +Z3Gy + vy + egir + GCsit (73)

49 A substantial number of students who appear in the base year of the surveys can be used to construct Xg but cannot be
used to estimate (A6.1) because some variables, such as test scores, are missing, or because the students are not included
in the follow-up surveys that provide the measure of Y;;. As we discuss in Section 7, we impute missing values for most
of our explanatory variables prior to estimating B and G, but we do not use the imputed values when constructing the
school averages.

30We include eg;; as well as G, because the earnings dynamics literature typically finds evidence of a highly persistent
wage component. Several studies cannot reject the hypothesis that eg;; is a random walk. Recent examples include Baker
and Solon (2003), Haider (2001), and Meghir and Pistaferri (2004).

511n reality, we also include a vector Tj; consisting of a dummy indicator for the year 1979 (relative to 1986), years of
work experience of i at time ¢, and experience squared. Let Y be the corresponding vector of wage coefficients. We adjust
wages for differences in labor market experience and for whether the data are from 1979 or 1986 by subtracting T; X from
the wage prior to performing the variance decompositions. The estimate of T depends on whether tests, postsecondary
education, or both are in Xj. We report results with and without these variables. In our main specification, we exclude
postsecondary education from Xj.
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The presence of g, complicates the variance decompositions, as we discuss below.

A6.3 High School Graduation and College Enrollment

The methods outlined in online Appendix A6.1 and A6.2 need to be adapted for binary measures
such as high school graduation and college attendance. Consequently, for high school graduation we
reinterpret Y; to be the latent variable that determines the indicator for whether a student graduates,
HSGRADy;. That is,

HSGRAD,; = 1(Y;; > 0).

Or, after substituting for Yj;,
HSGRAD;; = 1(XiB + XsG1 + Z2sG2 + vy + (vsi — v5) > 0) (74)
We replace Xg with Xg and estimate the equation
HSGRAD;; = 1(XiB +XG1 + Z2Ga + (X5 — Xs) G + vy + (vsi — v5) > 0) (75)

using maximum likelihood random effects probit. The procedure for enrollment in a four-year

college is analogous to that of high school graduation.

A7 Decomposing the Variance in Educational Attainment and Wages

In this section we discuss an analysis of variance based on equation (35) that can be used to place
a lower bound on the importance of factors that are common to students from the same school.>> As
with parameter estimation, the details of our procedure depend upon the outcome. We begin with

years of postsecondary education.

A7.1 Years of Postsecondary Education

One may decompose Var(Yy;) into its within and between school components
Var(Ysi) = Var(Yy; — Ys) + Var(Y;)

where (Y;; —Y;) is the part of Yj; that varies across students in school s and Y is the average outcome
for students from s. We estimate Var(Y,; — Y;) by using the sample variances of Var(Yy; —Yy) with
an appropriate correction for degrees of freedom lost in using the sample mean Y in place of Y;.

Then Var(Y;) can be estimated as

Var(Yy) = Var(Yy) — Var(Yy; — Y;).

32 Jencks and Brown (1975) propose and implement a similar decomposition.
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Then, from (33) we obtain
(Ysi - Yv) = (Xl - XS)B + (VSi - Vs)

and
Y = XB + XsG1 + Zas Gy + vy

Thus, one may express the outcome variance as>>

Var(Ys;) = [Var((X; — Xs)B) 4+ Var(vs — vy) ]+ (76)
[Var(XsB) +2Cov(XsB, XsG1) 4+ 2Cov(XsB, Z2sG32) + Var(XsGy )+ 77)
2Cov(XsG1,Z2G2) + Var(ZasGz) + Var(vy)) (78)

Given an estimate of B, Var((X; — Xs)B) can be estimated using its corresponding sample vari-
ance, Var((X; —Xs)B). Var(vs; — vy) can then be estimated as Va\r(Ysi -Y)— Va\r((Xi —Xs)B), and
Var(XsB) can be calculated as Var(X;B) — Var((X; — Xs)B). One can also estimate the compo-
nents Var(XsG1) and Var(Z»Gz) of the school/community contribution and the common terms
2Cov(XsB,XsG1), 2Cov(XsB,Z»sG3) and 2Cov(XsGy,Z2sG3) using the estimates of B, Gy, G2
and the data Xs and Zys. Var(vs) can be calculated as

Var(vy) =
Var(Y;) —Var(XB) —Var(X¢G1) — Var(ZGz)
—2Cov(XsB, XG1) — 2Cov(XsB, Z2sG) — 2Cov(XsG1, Z2sG2)

A7.2 Permanent Wage Rates

We focus on decomposing the permanent wage component Yy;. We take advantage of the ex-
istence of panel data on wages in NLS72 and work with a balanced sample of individuals who
report wages in both 1979 and 1986 (the fourth and fifth follow-ups, respectively). We estimate
the variance in the permanent component of the wage, Var(Yy;), using the covariance between wage

observations from the same individual in different years

COV(Yxita Ysit’) = COV(Yxi + egir + Gt Yii+egp + gm‘/)
= Var(YS,-),

where Cov(Gyir, Gsirr) is assumed to be 0 given that the observations are seven years apart and

Cov(ey, gy ) = 0 from normalizing eg; to be 0 in 1979. We use the sample estimate of Cov (Y, Yy

33The equation below imposes Cov(Xj, vs; — vs) = 0, which is implied by our definition of B and vs; — vs. The equation
also assumes Cov(Xs,vs) = 0 and Cov(Zy,vs) = 0, which are implied by our definition of [G1,G3] and v, (see Section
5).
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as our estimate of Var(Y;). We estimate this covariance by subtracting out the global mean for Yy;,
calculating the wage product (¥j;)(Yy;) for each individual, and taking a weighted average across
all the individuals in the sample using the weights discussed in online Appendix A9, adjusting for
degrees of freedom. Similarly, we estimate the between-school component of the permanent wage,
Var(Ys), by estimating the covariance between wage observations for different years (1979 and

1986) from different individuals from the same school. Specifically, we use the moment condition

Cov(Ysir,Ysjrr) = Cov(Ysi+ esic + Goir, Ysj + €sjo + Gjrr), i 7 ot 1
= Var(Yy),

where Cov(eg,eyjy) is defined to be 0, and Cov(Gi, Gsjrr) is assumed to be 0. We estimate this
covariance by first calculating ((¥yi; Yy ) + (YsirYsj))/2 for each pair of individuals i and j at school s
and then computing the weighted mean for each school s. We then average across schools, weighting
each school by the sum of the weights of the individuals who contributed to the school-specific

estimate.

We estimate the corresponding within school component using
Var(Yy —Y,) = Var(Yy) — Var(Y;).

Given @(Yg), Vc;(Ysi -Y5), Va\r(Ys), G1, G, and B, estimation of the contributions of X;B, XsG1,
755G, vy, and v, to Var(Yy;) proceeds as in previous subsection.

A7.3 High School Graduation and College Enrollment

For both of our binary outcomes, high school graduation and enrollment in a four-year college,
we decompose the latent variable that determines the outcome. Given that there is no natural scale
to the variance of the latent variable, we normalize Var(vs; — vy) to one, and define the total variance

of the latent variable to be

Var(Yy) = [Var((Xi — Xs)B) + 1]+ (79)
[Var(XsB) +2Cov(XsB, XsG1) +2Cov(XsB, Z2sG2) + Var(XsG1)+
2Cov(XsG1,Z2sGr) + Var(ZasGa) + Var(vy)) (80)

Given that the raw variance component estimates are specific to the choice of normalization, we

instead report fractions of the variance contributed by the various components.
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A7.4 Calculation of Standard Errors

We calculate bootstrap standard errors for each of our point estimates and bound estimates based
on re-sampling schools with replacement, with 500 replications. To preserve the size distribution
of the samples of students from particular schools, we divide the sample into 5 school sample size

classes and resample schools within class.

A8 Using the North Carolina Data to Assess the Magnitude of Bias
from Limited Samples of Students Per School

Before considering estimates from the three survey datasets, we first use the North Carolina
sample to better gauge the biases produced by the student sampling schemes used by each survey.
The monte carlo simulations in Section 4 suggested that estimation based on subsamples of 20 stu-
dents per school (similar to those in the three datasets) could diminish the ability of school-average
observables to capture sorting on unobservables. However, these simulations are based on particu-
lar assumptions about the dimensionality of the underlying desired amenities, the joint distribution
of the observable and unobservable characteristics, and the degree to which these characteristics

predict tastes for schools/neighborhoods.

In this appendix, we assess the potential for bias in our survey-based estimates more directly
by drawing samples of students from North Carolina schools using either the NLS72, NELS88, or
ELS2002 sampling schemes and re-estimating the model for high school graduation using these
samples. By comparing the results derived from such samples to the true results based on the
universe of students in North Carolina, we can determine which if any of the survey datasets is
likely to produce reliable results. To remove the chatter produced by a single draw from these
sampling schemes, we computed estimate averages over 100 samples drawn from each sampling

scheme.

Table A10 presents the results of this exercise. For comparison, the first column of Panel A
presents the variance decomposition described in Section 6 for the full North Carolina sample,
while the first column of Panel B converts the variance components isolating school/neighborhood
effects into our lower bound estimates of the average impact of moving from the 10th to the 90th
quantile of the distribution of school/neighborhood contributions. Columns 2 through 5 display the
results from recomputing these estimates for subsamples of the North Carolina population featuring
the same distributions of school-specific sample sizes as in NLS72, EL.S2002, grade 8 schools in
NELS88 and grade 10 schools in NELS88.%* Focusing first on Column 2, we see that the use of
small student samples at each school may actually produce a relatively small amount of bias in
our NLS72 results. Most of the rows of Panel A match quite closely across Columns 1 and 2. Of

particular interest are the last two rows of Panel A: we see that the NLS72 sample size distribution

3410th grade schools in NELS88 are the schools in which the original 8th grade NELS sample are observed in the first
follow-up survey.
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overstates the true variance fraction for the lower bound without common shocks, Var(Z,sG3), by
0.88%, and understates true variance fraction for the lower bound that may include common shocks,
Var(ZsGy + vy), by 0.48%. These translate to over/under estimates of the impact of a 10th-90th
quantile shift in school quality on the probability of graduation of .0198 and .0111, respectively.
Comparing the full NC sample with the NELS88 grade 8 and ELS2002 results (Columns 3 and 5),
we see a similar pattern. These results are comforting, and suggest that the estimates from these
samples may overstate the lower bound slightly in the estimates that attempt to exclude common

shocks, but may even understate appropriate lower bound estimates that include common shocks.

Column 4 reports results from NELS88 in which students are grouped by their 10th grade school
rather than their 8th grade school. Since grade 10 schools were not part of the original NELS88
sampling frame, they feature particularly small samples of students, and only produce large samples
of students to the extent that many students from a given grade 8 school attend the same grade
10 school. These results reveal that considerable bias may be produced if student samples are
sufficiently small. Looking at the last two rows of Panel A, we see that the NELS88 grade 10
sample size distribution overstates the true variance fraction for the lower bound without common
shocks by 1.7 percent, and the lower bound with common shocks by 1.4 percent. These translate to
overestimates of the impact of a 10th-90th quantile shift in school quality of 3.8 percentage points
and 2.2 percentage points, respectively. Due the poor performance of the NELS88 grade 10 school
sample size distribution in our simulation test, we do not report any NELS88 results that group
students by their grade 10 school.

A9 Construction and Use of Weights

In the NLS72 analyses of four-year college enrollment and postsecondary years of education, we
use a set of panel weights (w22) designed to make nationally representative a sample of respondents
who completed the base-year and fourth-follow up (1979) questionnaires. For the NLS72 wage
analysis, we chose a set of panel weights (comvrwt) designed for all 1986 survey respondents for
whom information exists on 5 of 6 key characteristics: high school grades, high school program,
educational attainment as of 1986, gender, race, and socioeconomic status. Since there are very
few 1986 respondents who did not also respond in 1979, this weight matches the wage sample
fairly well. For the NELS88 sample, we use a set of weights (f3pnlwt) designed to make nationally
representative the sample of respondents who completed the first four rounds of questionnaires
(through 1994, when our outcomes are measured). For the EL.S02 sample, we use a set of weights
(f2bywt) designed to make nationally representative a sample of respondents who completed the
second follow up questionnaire (2006) and for whom information was available on certain key
baseline characteristics (gathered either in the base year questionnaire or the first follow-up). This
seemed most appropriate given that our outcomes are measured in the 2006 questionnaire and we

require non-missing observations on key characteristics for inclusion in the sample.

We use panel weights in the estimation for a number of reasons. The first is to reduce the in-
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fluence of choice-based sampling, which is an issue in NELS88 and in the wage analysis based on
NLS72. The second is to correct for non-random attrition from follow-up surveys. The third is a
pragmatic adjustment to account for the possibility that the link between the observables and out-
comes involves interaction terms or nonlinearities that we do not include. The weighted estimates
may provide a better indication of average effects in such a setting. Finally, various populations
and school types were oversampled in the three datasets, so that applying weights makes our sam-
ple more representative of the universe of American 8th graders, 10th graders, and 12th graders,
respectively. Note, though, that we do not adjust weights for item non-response associated with the
key variables required for inclusion in our sample. Thus, even after weighting, our estimates do not
represent estimates of population parameters for the populations of American high school students

of which the surveys were designed to be representative.

A10 Other Applications: Estimating Teacher Value-Added

This section examines how our central insight that group averages of observed individual char-
acteristics can control for group averages of unobserved individual characteristics can be extended
to contexts in which group assignments are determined by a central administrator rather in a de-
centralized competitive equilibrium. The particular context we consider is one in which a school
principal is assigning students to classrooms based on a combination of observed and unobserved
(to the econometrician) student inputs, where the goal is to estimate each teacher’s value-added to

test score achievement.

A10.1 Sorting of Students Across Class Rooms

Assume for now that the administrator has already determined which teachers to allocate to
which courses for which periods of the day, so that a classroom c can be effectively captured by a
vector of amenity values A.. Some of the amenities are likely to reflect the demographic makeup of
the class and thus are endogenous to classroom assignment. Others can be considered exogenous
to the principal’s student-to-classroom allocation problem. These would include the principal’s per-
ceptions of various teacher attributes or skills, but could also include classroom amenities unrelated
to teacher quality that might capture whether the heating works, the quality of classroom technology
in the room, the time in the day that the class is held, or the difficulty level of the class.

We can then adapt the utility function featured in equation (2) to model the payoff that the prin-
cipal obtains from assigning student i to class ¢ (simply replace all s subscripts with ¢ subscripts).
As before, Xj is a vector of student characteristics that are observed by the econometrician and are
relevant for the outcome Yy;, the student’s end-of-year standardized test score. Similarly, X}j is a
vector of student characteristics that are unobserved by the econometrician but are observed by the
principal and are relevant for test score performance, and Q; represents a vector of student charac-

teristics that are unobserved by the econometrician and observed by the principal, but do not affect
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test score performance. The ® and OV matrices might capture a principal’s belief about which types
of students are most likely to benefit from a better teacher or difficulty level. ® and ®U might also
reflect the desire to placate parents or students, where students/parents with certain values of X;
or XiU are more likely to advocate for particular classroom assignments. Some parental or student
characteristics may predict a stronger preference for a particular difficulty level or time of day, while
others predict a stronger preference for teacher quality. Similarly, the idiosyncratic match value g
might capture, for example, the desire to fulfill a particular family’s request that their child be as-
signed to the same teacher that his brother had. Thus, we model parent and student preferences as

affecting choice through their impact on principal preferences.>

Let .7 represent the set of students to be allocated, and let ¢ represent the set of available class-
rooms (each of which has an associated teacher). First we consider the special case in which none
of amenities reflect the demographic makeup of the class and thus A, can be considered exogenous
to the principal’s student-to-classroom allocation problem The principal’s problem is to choose the
mapping ¢ : ¢ — € from students to classrooms that maximizes the sum of student utilities, sub-
ject to the constraints that each classroom cannot exceed its capacity and every student (or perhaps

student-subject combination at the high school level) can only be assigned to one classroom:

max Uici)
c:ﬂ—f«é)iej
s.t. le(c(i) =)=1Vi
st. Y Uc(i')=c)=C.Vce? (81)

where 1(c(i) = ¢’) indicates that student i is assigned to classroom ¢/, and C, is the capacity of
classroom ¢’. Some of the amenities are likely to reflect the demographic makeup of the class and

thus are endogenous to classroom assignment.

This optimization problem can be recast as a binary integer programming problem:

mglx axd

st.Myxd=1Vie ¥
st.Nexd=C.Vce¥
st.de{0,1} (82)

Here a consists of a 1 x (I C) row vector of the student utility values associated with each

3SRothstein (2009) provides a useful classroom assignment model in which principals assign students to classrooms
based on student characteristics that are observable to both the principal and the econometrician X; and student character-
istics that are only available to the principal (part of X}J) He discusses bias in VAM models that include Xj and possibly
other controls. He does not consider the potential for X, to control for X.V.
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potential student-classroom combination:

a:<U11 U11 U12 U[2 U1C U1c>

d consists of a (I xC) x 1 vector of potential student-classroom assignments:

di

dn
di»

dn

dic

dic

where d;» = 1(c(i) = ) is an indicator for whether student i is assigned to classroom ¢’

M; consists of a 1 x IxC row vector capturing the number of classrooms to which each student

(or student-subject combination) is assigned (restricted here to be 1V i):

i1 I—i i1 I—i
PN NN

M;=(0...010...0...0...010...0
N————

repeated C times

N, consists of a 1 x I+ C row vector capturing the number of students assigned to classroom ¢

(restricted to be less than or equal to the classroom capacity C..):

(e—=1)I (C—c)xI
—~ ~
Ne=10...01...10...0
~
I

Koopmans and Beckmann (1957) show that the solution to this binary integer program problem
can be sustained by a one-sided set of prices for classrooms {P.}.%® This means that the optimal

assignment for each individual is also the solution to his/her utility maximization problem:

c(i) = argmax U;. — P. = U, (83)
C

50The case they consider is 1:1, but it easy to recast the classroom assignment problem as assignment of students to
seats. Each class room has a fixed number of seats that have exactly the same value of A, and the same shadow price.
A student’s preferred seats will all be in one classroom, and he/she will be indifferent among them. The student lets the
principal (who is also indifferent) assign a specific seat.
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Notice that the structure of this utility maximization problem is isomorphic to that of the decentral-
ized school choice problem from Section 2. Consequently, if the spanning condition OV =ROis

satisfied for some matrix R, X, will be a linear function of XCU.

Exogeneity of the amenity vector may be a reasonable assumption in some high school and col-
lege contexts in which students submit course preferences and a schedule-making algorithm assigns
students to classrooms. However, in the elementary and middle school contexts, it is likely that
some elements of A, reflect the student makeup of the class. Anticipated peer effects complicates
the principal’s problem, since now the utility from assigning a given student to a classroom would
depend on the other students assigned to the classroom. The classroom sorting problem differs
from the school/neighborhood sorting problem in that the principal would internalize the effect that
allocating a student to ¢ has on A, while parents would take Ag as given. We not yet extended

Proposition 1 to a classroom assignment problem with endogenous amenities.

A10.2 Implications for Estimation of Teacher Value Added

Suppose that the true classroom contribution to a given student i’s test scores can be captured
by Z.I' + ¥ + 1., mirroring equation (20). As before, partition the vector of observed classroom
characteristics into two parts Z¢ = [Xc,Zac], where X captures classroom averages of observed
student characteristics and Z,. represents other observed classroom characteristics.’’ Consider the

classroom version of our estimating equation (33):
Ysi = XiB +XcG1 + Z2G2 +veis (84)

When past test scores are elements of X; and a design matrix D) indicating which classrooms were
taught by which teachers is included in Z,,, equation (84) represents a standard teacher value-added

specification.’®

Suppose that Proposition 1 can be extended to the classroom choice setting (as proven in the
exogenous amenities case) and that the corresponding spanning condition is satisfied, so that X,
and XV are linearly dependent. Suppose in addition that the principal’s perception of teacher
quality is noisy, so that D is not collinear with A, (and therefore not collinear with X;). Then
our analysis in Section 5.3 suggests that G, =I', + HZCUZZC. Since Z;, includes the teacher design
matrix D), we see that including classroom averages of student characteristics X, in teacher value-
added regressions will purge estimates of individual teachers’ value-added from any bias from non-
random student sorting on either observables or unobservables. Any remaining bias HZCUZ2c stems
from the possible correlation between the assignment of the chosen teacher to the classroom and

other aspects of the classroom environment.

However, suppose that all unobserved classroom factors that are inequitably distributed across

teachers are either being used as a basis for student allocation to classrooms or are directly included

57We assume here that teacher quality is not classroom-specific, as in most teacher value-added models.
387, might also include a set of indicators for the teacher’s experience level.
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as other controls in Z.. Then the analysis in Section 5.3.1 reveals that including classroom averages
of observed student characteristics will also purge teacher value-added estimates G, of any omitted
variables bias driven by inequitable access to advantageous classroom environments (the subvector

of ITzuy, corresponding to the teacher design matrix D¢ will equal 0).

Of course, our simulations suggest that the effectiveness of the control function approach de-
pends on observing moderately large samples of students with each teacher. And in practice there
may be classroom factors ignored by students and principals that do not even out across teachers.
While these caveats should be kept in mind, our analysis may partially explain the otherwise sur-
prising finding that non-experimental OLS estimators of teacher quality produce nearly unbiased
estimates of true teacher quality as ascertained by quasi-experimental and experimental estimates
(Chetty et al. (2014), Kane and Staiger (2008)).
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Appendix Tables

Table Al: Estimates of the Contribution of School Systems and Neighborhoods to High School
Graduation Decisions Under the Assumption that Only Observables X; Drive Sorting

Panel A: Fraction of Latent Index Variance Determining Graduation
Attributable to School/Neighborhood Quality

Lower Bound NC NELSS8S gr8 ELS2002

Baseline Full Baseline Full Baseline Full
(1) 2 (3) “4) (5) (6)

No Unobs. Sort. 0.050 0.038 0.072 0.048 0.064 0.052
Var(XsG1 + ZsGz +vs) 0.017) 0.011) (0.009) (0.009) 0.011) (0.010)

Panel B: Effect on Graduation Probability of a School System/Neighborhood at
the 50th or 90th Percentile of the Quality Distribution vs. the 10th Percentile

Lower Bound NC NELSS8S gr8 ELS2002

Baseline Full Baseline Full Baseline Full

(H 2) 3) G (5) (6)
No Unobs. Sort.: 10th-90th 0.177 0.155 0.156 0.132 0.111 0.100
Based on Var(XsGy + Z2sG2 + vy) (0.026) 0.017) (0.015) (0.012) (0.020) (0.008)
No Unobs. Sort.: 10th-50th 0.098 0.085 0.093 0.076 0.068 0.060
Based on Var(XsGy + Z25G2 + vy) 0.016) (0.010) (0.024) (0.008) 0.012) (0.006)
Sample Mean 0.760 0.760 0.827 0.827 0.897 0.897

Bootstrap standard errors based on resampling at the school level are in parentheses.

Panel A reports lower bound estimates of the fraction of variance in the latent index that determines high school
graduation that can be directly attributed to school/neighborhood choices for each dataset.

The label “No Unobs.  Sort” reports Var(XsGy + ZsGz + vg), which captures the variance in true
school/neighborhood contributions under the assumption that sorting is driven only by X;.

Panel B reports estimates of the average effect of moving students from a school/neighborhood at the 10th quantile
of the quality distribution to one at the 50th or 90th quantile.

The columns headed “NC” are based on the North Carolina data and refer to a decomposition that uses the 9th
grade school as the group variable. The columns headed “NELS88 gr8” are based on the NELS88 sample and
refer to a decomposition that uses the 8th grade school as the group variable. The columns headed “ELS2002” are
based on the ELS2002 sample and refer to a decomposition that uses the 10th grade school as the group variable.

For each data set the variables in the baseline and full models are specified in Table 1.
The full variance decompositions underlying these estimates are presented in Online Appendix Table A19.

Online Appendices A6 and A7 discuss estimation of model parameters and the variance decompositions. Section
6.3 discusses estimation of the 10-50 and 10-90 differentials.
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Table A2: Estimates of the Contribution of School Systems and Neighborhoods to Four Year
College Enrollment Decisions Under the Assumption that Only Observables Xj Drive Sorting

Panel A: Fraction of Latent Index Variance Determining Enrollment
Attributable to School/Neighborhood Quality

Lower Bound NLS72 NELSS8S gr8 ELS2002

Baseline Full Baseline Full Baseline Full

@ €] 3) “) ®) ©

No Unobs. Sort. 0.064 0.049 0.067 0.055 0.065 0.043
Var(XsG1 + ZsGz +vs) 0.012) (0.006) (0.009) (0.007) (0.007) (0.005)

Panel B: Effect on Enrollment Probability of a School System/Neighborhood at
the 50th or 90th Percentile of the Quality Distribution vs. the 10th Percentile

Lower Bound NLS72 NELSS88 gr8 ELS2002

Baseline  Full Baseline  Full  Baseline Full

(1 (2) (3) ) (5) (6)
No Unobs. Sort.: 10th-90th 0.220 0.190 0.245 0.213 0.258 0.205
Based on Var(XsGy + Z5G3 + vy) (0.015) (0.016) (0.020) (0.014) (0.018) (0.013)
No Unobs. Sort.: 10th-50th 0.098 0.087 0.112 0.099 0.121 0.098
Based on Var(XsGy + ZysGy + vy) (0.006) (0.007) (0.007) (0.006) (0.008) (0.006)
Sample Mean 267 267 310 310 .365 .365

Bootstrap standard errors based on resampling at the school level are in parentheses.

The notes to Table A1 apply, except that Table A2 reports results for enrollment in a 4-year college two years after
graduation.

The column headed NLS72 refers to a variance decomposition that uses the 12th grade school as the group
variable.
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Table A3: Lower Bound Estimates of the Contribution of School Systems and Neighborhoods to
Four Year College Enrollment Decisions (Naive OLS Specification: School-Averages Xy omitted
from estimating equation)

Panel A: Fraction of Latent Index Variance Determining Enrollment
Attributable to School/Neighborhood Quality

Lower Bound NLS72 NELSS88 gr8 ELS2002

Baseline Full Baseline Full Baseline Full
(1) 2 3 “4) (5 (6)

LB no unobs 0.030 0.020 0.023 0.021 0.028 0.020
Var(ZysGy) (0.005) (0.004) (0.004) (0.004) (0.004) (0.003)
LB w/ unobs 0.060 0.046 0.061 0.050 0.061 0.042
Var(ZasGsy +vs) (0.009) (0.007) (0.007) (0.006) (0.008) (0.006)

Panel B: Effect on Enrollment Probability of a School System/Neighborhood at
the 50th or 90th Percentile of the Quality Distribution vs. the 10th Percentile

Lower Bound NLS72 NELSSS gr8 ELS2002

Baseline Full Baseline Full Baseline Full

(H 2 3 4 5) (6)
LB no unobs: 10th-90th 0.147 0.119 0.140 0.130 0.164 0.136
Based on Var(ZxsGz) 0.012) 0.011) 0.012) 0.012) 0.012) 0.011)
LB w/ unobs: 10th-90th 0.211 0.182 0.229 0.201 0.245 0.199
Based on Var(ZsGz + vy) (0.016) 0.014) 0.014) 0.013) 0.017) (0.015)
LB no unobs: 10th-50th 0.068 0.056 0.067 0.062 0.079 0.066
Based on Var(Z,Gz) (0.005) (0.005) (0.006) (0.006) (0.005) (0.005)
LB w/ unobs: 10th-50th 0.095 0.083 0.105 0.093 0.116 0.095
Based on Var(Z5sG2 + vs) (0.006) (0.006) (0.006) (0.006) (0.007) (0.007)
Sample Mean 267 267 310 310 .365 .365

“Naive OLS Specification” refers to a specification in which school-averages of individual
characteristics X are omitted from the estimating equation (or equivalently, the coefficient

vector G is constrained to be equal to 0).

Bootstrap standard errors based on resampling at the school level are in parentheses.

The notes to Table 2 apply, except that Table A3 reports results for enrollment in a 4-year college two
years after graduation, and the naive OLS specification and estimates are used, as described in Section
8.5

The column headed NLS72 refers to a variance decomposition that uses the 12th grade school as the
group variable.
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Table A4: Lower Bound Estimates of the Contribution of School Systems and Neighborhoods to
Completed Years of Postsecondary Education in NLS72 data (Naive OLS Specification:
School-Averages X omitted from estimating equation)

Panel A: Fraction of Variance
Attributable to School/Neighborhood Quality

Yrs. Postsec. Ed.  Yrs. Postsec. Ed.

Lower Bound Fixed Effects  No Fixed Effects

Baseline Full Baseline Full

@ @ 3 “

LB no unobs 0.010 0.006 0.008 0.004
Var(Z5G;) 0.002) (0.002) (0.001) (0.001)
LB w/ unobs 0.045 0.029 0.040 0.026
Var(ZsG + vs) (0.007) (0.006) (0.006) (0.005)

Panel B: Effects on Years of Postsecondary Education
of a School System/Neighborhood at the 50th or 90th Percentile
of the Quality Distribution vs. the 10th Percentile

Lower Bound Yrs. Postsec. Ed. Yrs. Postsec. Ed.
Fixed Effects No Fixed Effexts

Baseline Full Baseline Full

(D) (2 (3) 4)
LB no unobs: 10th-90th 0.431 0.339 0.396 0.299
Based on Var(Z,sGz) (0.048) (0.036) (0.046) 0.034)
LB w/unobs: 10th-90th 0.923 0.747 0.875 0.703
Based on Var(ZsGz + vs) (0.074) 0.079) (0.069) 0.074)
LB no unobs: 10th-50th 0.216 0.169 0.198 0.149
Based on Var(Z,sGz) (0.024) (0.018) (0.023) 0.017)
LB w/unobs: 10th-50th 0.461 0.373 0.437 0.351
Based on Var(Z;Gz + vy) (0.037) (0.040) (0.035) (0.037)
Sample Mean 1.62 1.62 1.62 1.62

“Naive OLS Specification” refers to a specification in which school-averages of individual
characteristics X are omitted from the estimating equation (or equivalently, the coefficient
vector G is constrained to be equal to 0).

Bootstrap standard errors based on resampling at the school level are in parentheses.

Panel A reports lower bound estimates of the fraction of variance of years of postsecondary
education and permanent wage rates (with and without controls for postsecondary educa-
tion) that can be directly attributed to school/neighborhood choices for each dataset. The
sample is NLS72.

The row labelled “LB no unobs” reports Var(ZsGz) and excludes the unobservable v
while the row labeled “LB w/ unobs” reports Var(ZsG + vs).

Panel B reports estimates of the average effect of moving students from a
school/neighborhood at the 10th quantile of the quality distribution to one at the 50th
or 90th quantile. Tt is equal to 2 % 1.28 times the value of [Var(ZasGy + vy)]%> or
[Var(Z15G,)]*3 in the corresponding column of the table.

See Table 1 for the variables in the baseline model and the full model. The full variance
decompositions are in Online Appendix Tak&A‘AZ]. Online Appendices A6 and A7 discuss
estimation of model parameters and the variance decompositions.



Table AS5: Principal Components Analysis of the Vector of School Average Observable
Characteristics Xg

Panel A: Fraction of Total Variance in Xg
Explained by Various Numbers of Principal Components

NLS72 NELSS88 gr8 ELS2002
Baseline Full Baseline Full Baseline Full
() (2) 3) “) (&) ©)
(1) # of Variables in Xg 32 34 39 49 40 51
# Factors Needed to Explain:
(2) 75% of Total X Var. 7 7 7 9 6 8
[7.3] (8.3] [7.8] [8.9] [6,7] [7.8]
(3) 90% of Total Xg Var. 12 12 13 16 11 14
[11,12]  [12,13] [11,13] [14,15] [11,12] [14,15]
4)  95% of Total Xg Var. 15 15 17 20 14 19
[14,15] [14,15] [14,16] [18,19] [14,15] [17,19]
B)  99% of Total Xg Var. 20 21 22 26 20 25
[18,19] [17,18] [19,21] [23,25] [18,20] [23,25]
(6) 100% of Total Xg Var. 24 25 27 32 26 33
[21,23] [18,19] [23,26] [29,31] [23,25] [29,31]
Panel B: Fraction of Variance in the Regression Index Xsél
Explained by Various Numbers of Principal Components
NLS NELS gr8 ELS
Baseline Full Baseline Full Baseline Full
(1) (2 3) 4) (%) (6)
(1) # of Variables in Xg 32 34 39 49 40 51
# Factors Needed to Explain:
(2)  75% of Var(XsGq) 3 3 6 5 2 5
[3.5] [3.6] [3.7] [5.8] [2,3] [4.7]
(3)  90% of Var(XsGq) 8 7 10 10 5 11
[5,9] [5,10] [6,11] [9,14] [3,7] [8,14]
4)  95% of Var(XsGy) 10 9 13 13 7 15
[8,13] [7,11] [9,14] [12,17] [5,11] [11,17]
(5)  99% of Var(XsGq) 14 15 19 20 14 22
[13,17] [10,15] [13,19] [19,24] [11,16] [17,23]
(6) 100% of Var(XsG) 24 25 27 32 26 33
[21,23] [18,19] [23,26] [29,31] [23,25] [29,31]

See Online Appendix A2 for details. The numbers in brackets are bootstrapped 90% confidence in-
terval estimates of the number of factors required to explain the variance fraction specified in a given
TOW.
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Table A6: Estimating the Number of Latent Amenities (dim(Ag)): Kleibergen and Paap (2006)
Heteroskedasticity-Robust and Cluster Robust Tests of the Rank of the X Covariance Matrix
(Baseline Specification Results)

Dataset (Number of Variables in Xs)

NLS72 (32) NELSSS gr8 (39) ELS2002 (40)
Het. Only  Cluster Het. Only  Cluster  Het. Only Cluster
# Fact. @ @ 3 (C2) (&) ©)

Hy Hy P-val P-val P-val P-val P-val P-val
0 1+ 0 NaN 0 NaN 0 NaN
1 2+ 0 NaN 0 NaN 0 NaN
2 3+ 0 483 0 NaN 0 NaN
3 4+ 0 332 0 NaN 0 NaN
4 S5+ 0 137 0 NaN 0 NaN
5 6+ 0 .096 0 NaN 0 NaN
6 7+ 0 .049 0 NaN 0 NaN
7 8+ 0 .066 0 NaN 0 NaN
8 9+ 0 .230 0 NaN 0 NaN
9 10+ 0 270 0 485 0 NaN
10 11+ 0 210 0 401 0 NaN
11 12+ 0 .199 0 .370 0 NaN
12 13+ 0 211 .001 .389 0 NaN
13 14+ 016 354 .001 368 .047 NaN
14 15+ 278 A85 .009 .309 532 NaN
15 16+ 834 .641 139 253 942 NaN
16 17+ 995 .944 .557 .349 993 NaN
17 18+ 999 950 718 .349 .999 NaN
18 19+ 1 991 .879 .576 1 NaN
19 20+ 1 .996 984 705 1 NaN
20 21+ 1 .990 .998 147 1 NaN
21 22+ 1 .994 .999 .865 1 NaN
22 23+ 1 999 1 .867 1 NaN
23 24+ 1 .999 1 902 1 NaN
24 25+ 1 1 1 918 1 NaN
25 26+ 1 1 1 990 1 499
26 27+ 1 1 1 .986 1 .580
27 28+ 1 1 1 991 1 .690
28 29+ 1 1 1 997 1 701
29 30+ 998 .999 1 999 1 .888
30 31+ 982 978 1 999 1 973
31 32+ 921 .940 1 1 1 991
32 33+ - - 1 1 1 997
33 34+ - - 1 1 1 999
34 35+ - - 1 1 1 1
35 36+ - - 1 1 1 1
36 37+ - - .999 999 1 1
37 38+ - - 998 998 1 1
38 39+ - - 985 985 .998 1
39 40+ — — — - .886 1

Under the conditions laid out in Proposition 1 of the paper, the rank of the covariance of Xg
reveals the number of amenity factors driving sorting. See Online Appendix A2 for details.
Each element in the table reports a p-value from a test based on Kleibergen and Paap (2006)
of the null that the rank of the covariance matrix of school-averages of observable student
characteristics Xy is equal to value associated with the row label, against the alternative
hypothesis that the rank exceeds this value. “Het. Only” refers to the heteroskedasticity-
robust (but unclustered) version of the test. “Cluster” refers to the more general test that
is robust to arbitrary correlation in sampling error within clusters. We cluster at the school
level. Each test is implemented via the STATA ranktest.ado code provided by Kleibergen
and Paap (2006).

‘~’ indicates that the entry corresponds to a case in which the hypothesized rank associated
with the row is as large as or larger than the size of the covariance matrix whose rank is
being tested (which corresponds to the number of variables in X for the dataset associated
with the chosen column), thus obviating the need for a rank test.

‘NaN’ indicates that the entry corresponds to a case in which the Kleibergen-Paap rank test
returned an error due to a non-positive definite covariance matrix.
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Table A7: Estimating the Number of Latent Amenities (dim(Ag)): Kleibergen and Paap (2006)
Heteroskedasticity-Robust and Cluster Robust Tests of the Rank of the X Covariance Matrix
(Full Specification Results)

Dataset (Number of Variables in Xg)

NLS72 (34) NELSS88 gr8 (49) ELS2002 (51)
Het. Only  Cluster Het. Only  Cluster  Het. Only Cluster
# Fact. (1) (2) (3) 4) (5) (6)

Hy Hy P-val P-val P-val P-val P-val P-val
0 1+ 0 NaN 0 NaN 0 NaN
1 2+ 0 NaN 0 NaN 0 NaN
2 3+ 0 NaN 0 NaN 0 NaN
3 4+ 0 NaN 0 NaN 0 NaN
4 5+ 0 471 0 NaN 0 NaN
5 6+ 0 341 0 NaN 0 NaN
6 7+ 0 .199 0 NaN 0 NaN
7 8+ 0 .185 0 NaN 0 NaN
8 9+ 0 336 0 NaN 0 NaN
9 10+ 0 347 0 NaN 0 NaN
10 11+ 0 351 0 NaN 0 NaN
1 12+ 0 275 0 NaN 0 NaN
12 13+ 0 .187 0 NaN 0 NaN
13 14+ .001 399 0 NaN 0 NaN
14 15+ 074 .693 0 NaN 0 NaN
15 16+ 451 .596 0 NaN .001 NaN
16 17+ 918 745 .002 NaN 136 NaN
17 18+ 998 925 .021 NaN .632 NaN
18 19+ 999 .920 139 NaN 970 NaN
19 20+ 1 972 445 430 .996 NaN
20 21+ 1 .998 762 377 .999 NaN
21 22+ 1 .998 967 497 1 NaN
22 23+ 1 .999 .998 .576 1 NaN
23 24+ 1 1 .999 .590 1 NaN
24 25+ 1 1 1 725 1 NaN
25 26+ 1 1 1 .697 1 499
26 27+ 1 1 1 701 1 .580
27 28+ 1 1 1 .636 1 .690
28 29+ 1 1 1 .858 1 701
29 30+ 1 1 1 944 1 .888
30 31+ 1 1 1 952 1 973
31 32+ 1 1 1 996 1 991
32 33+ 991 .996 1 994 1 997
33 34+ 996 .997 1 1 1 999
34 35+ - - 1 1 1 1
35 36+ - - 1 1 1 1
36 37+ - - 1 1 1 1
37 38+ - - 1 1 1 1
38 39+ - - 1 1 1 1
39 40+ - - 1 1 1 1
40 41+ - - 1 1 1 1
41 42+ - - 1 1 1 1
42 43+ - - 1 1 1 1
43 44+ - - 1 1 1 1
44 45+ - - 1 1 1 1
45 46+ - - 1 1 1 1
46 47+ - - 1 1 1 1
47 48+ - - 999 998 1 1
48 49+ - - .993 992 1 1
49 50+ - - - - .998 998
50 51+ - - — - 919 911

Under the conditions laid out in Proposition 1 of the paper, the rank of the covariance of Xg reveals the number
of amenity factors driving sorting. See Online Appendix A2 for details. Each element in the table reports a
p-value from a test based on Kleibergen and Paap (2006) of the null that the rank of the covariance matrix of
school-averages of observable student characteristics X is equal to value associated with the row label, against
the alternative hypothesis that the rank exceeds this value. “Het. Only” refers to the heteroskedasticity-robust (but
unclustered) version of the test. “Cluster” refers to the more general test that is robust to arbitrary correlation in
sampling error within clusters. We cluster at the school level. Each test is implemented via the STATA ranktest.ado

code provided by Kleibergen and Paap (2006).
‘~’ indicates that the entry corresponds to a case in which the hypothesized rank associated with the row is as large

as or larger than the size of the covariance matrix whose rank is being tested (which corresponds to the number of

variables in X, for the dataset associated with the chosen column), thus obviating the need for a rank test.
‘NaN’ indicates that the entry corresponds to a case in which the Kleibergen-Paap rank test returned an error due

to a non-positive definite covariance matrix.
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Table A8: Monte Carlo Simulation Results: Cases in which the Spanning Condition
in Proposition 1 is Satisfied (@Y = RO For Some R)

var(xVBY) R-Sq  Resid R-Sq Resid
Row #Stu. #Sch. #Con. #Ob. #Un. #Am. pg Vel (Al) (Al (10/20/40)  (10/20/40)

@ @) 3 “ (&) © @ ® © 10) an 12

.896 .013

(€)] 1000 50 50 10 10 5 0.25 122 0.9983 .0002 941 .007
967 .004

.896 .013

2) 500 50 50 10 10 5 0.25 123 0.9969 .0004 941 .007
.968 .004

.896 .013

3) 2000 50 50 10 10 5 0.25 122 0.9991 .0001 .940 .007
967 .004

.881 .015

“4) 1000 100 50 10 10 5 0.25 122 0.9981 .0002 932 .008
.963 .005

.869 .013

(5) 1000 50 10 10 10 5 0.25 .100 0.9981 .0001 927 .007
.960 .004

.939 .008

(6) 1000 50 50 20 20 5 0.25 122 0.9996 .0001 967 .004
983 .002

.898 .014

(@) 1000 50 50 10 10 10 0.25 136 0.9947 .0007 939 .008
.962 .005

.946 .008

(8) 1000 50 50 20 20 10 0.25 135 0.9993 .0001 971 .004
984 .002

721 .013

9) 1000 50 50 10 10 5 0 .048 0.9953 .0002 .824 .008
.894 .005

# Stu.: Number of students per school

# Sch.: Total number of schools

# Con.: Number of schools in each family’s consideration set
# Ob: Number of observable student characteristics

# Un: Number of unobservable student characteristics

# Am.: Number of latent amenity factors valued by families

pe: Correlation in @y taste parameters across student characteristics for a given amenity and across amenities for a
given student characteristic

ugu
%{Yﬁ)) Fraction of variance in the student-level outcome accounted for by between-school variation in the re-

gression index of unobserved student characteristics

R-sq (All): Fraction of between-school variance in unobservable student characteristics XUBY explained by the
control function Xg (sample averages of both Xg and XE are computed using all students)

Resid (All): Fraction of outcome variance accounted for by the residual component of the between-school variation
in the regression index of unobserved student characteristics that cannot be predicted based on the vector of observed
school-averages Xs, [(1 — R?)Var(XYBY)]/Var(Y;) (sample averages of both X and XV are computed using all
students)

R-sq (10/20/40): Fraction of between-school variance in unobservable student characteristics XYY explained by
the control function Xy (sample school averages X are computed using 10/20/40 students, while school averages
XV are computed using all students.)

Resid (10/20/40): Fraction of outcome variance accounted for by the part of the between-school variation in the
regression index of unobserved student characteristics that cann§t§be predicted based on the vector of observed
school-averages X (sample averages X are computed using 10/20/40 students, while school averages XY are com-
puted using all students.)



Table A9: Monte Carlo Simulation Results: Sensitivity of Control Function Performance to the
Spanning Condition in Proposition 1

Row X/XV Corr. WTP for Al-A4  WTPfor A5 Assu. (A5) OV =RA@? OV =REM" ‘x@Us Var(xUBY) R-Sq  Resid R-Sq Resid
Structure Depends On Depends On Satisfied Var(Y) (All)  (All) (10/20/40) (10/20/40)

@ )] (3) 4 (5) ©) @] (8) ©) (10) (11)

Corr = .25 for each All elements All elements .896 .013

(1) pair of (obs. of Xj and XlU of Xj and XiU Yes Yes Yes 122 0.998 .0002 941 .007
or unobs.) char. 967 .004

Elements of XV All elements All elements .596 .041

?2) independent of of Xj and X|U of Xj and XiU Yes No Yes 101 0.972  .0028 .687 .032
elements of X 775 .023

Corr = .25 for each All elements All elements .699 .015

3) pair of (obs. of X of XiU Yes Yes No .049 0.974 .0012 177 011
or unobs.) char. 837 .008

Elements of XU All elements All elements 295 .049

“4) independent of of X; of XiU No No No .069 0.322  .047 306 .048
elements of X 315 .047

Elements of XV All elements All elements 463 .052

5) independent of of Xj and XlU of XiU No No No .098 0.621 .037 502 .049
elements of X .539 .045

Elements of XV All elements 673 .036

(©6) independent of of X; and XY XY, only No No No 109 0969 .003 747 028
elements of X .809 021

Elements of XU All obs. and .666 .032

7) independent of unobs. char. XFIO only No No No .095 0.962 .004 743 .024
elements of X except Xil_llo .806 .018

Corr = .25 for each All elements 925 .010

(8)  pair of obs. or unobs. char.  of X; and X! XY, only No No No 117 0.998 .0002 958 .005
except XY, (independent) 977 .003

Corr = .25 for each All obs. and 915 .010

(9)  pair of obs. or unobs. char. unobs. char. XY, only No No No 131 0.998 .0002 .954 .005
except XY, (independent) except XY, 975 .003

All specifications share the following parameter values: # Stu. = 1000, # Sch. = 50, # Con. = 50, # Ob = 10, # Un = 10, # Am. = 5, pg = 0.25 (See
Online Appendix Table A8 for definitions of parameters).
The column labeled “X/XY Corr. Structure” describes the correlation structure among and between the elements of the vectors of observed and
unobserved individual characteristics X; and XlU .
The columns labeled “WTP for A1-A4 Depends On” and “WTP for A5 Depends On” specifies which elements of the observable (Xj) and unobserv-
able (XiU) characteristics predict willingness-to-pay for amenity factors 1-4 and amenity factor 5, respectively.
The columns labeled “Assu. A5 Satisfied”, “@U = RA®?”, and “@U = RBHXUXG)U?" specify whether the taste matrix @Y can be written as
@V = RO (i.e. Assumption A5 is satisfied), 8/ = RA®, and @V = REIT*'¥@V, for some matrix (matrices) R, RA, and RP, respectively. The
condition ® = R® for some matrix R (Assumption A5) is a necessary condition for Proposition 1 to hold, while the conditions @Y =R*@ and
0V = REITI*"¥@ for some matrices R* and R® are each sufficient conditions for A5 to hold. See Section 3.2.2 for further discussion of these
conditions.
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Table A10: Bias from Observing Subsamples of Students from Each School: Comparing Results
from the Full North Carolina Sample to Results from Subsamples Mirroring the Sampling
Schemes of NLS72, NELS88, and ELS2002

Panel A: Fractions of Total Outcome Variance

Row Full NC Sample NLS72 NELSg8 NELSglO0 ELS2002
‘Within School:
Total 0.9153 09126 09131  0.8763 0.9120
Var(Yis —Ys)
Observable Student-Level (Within): 0.1244 01296 0.1296 01301  0.1285
Var((Xsi — Xs)B)
Unobservable Student-Level (Within) 0.7909 07828 07834 07461  0.7834
Var(vsi — vy)
Between School:
Total 0.0847 0.0874 00869  0.1237 0.088
Var(Ys)
Observable Student-Level: 0.0181 0018 00183 00179  0.0184
Var(XsB)
Student-Level/ 0.0165 00175 00170  0.0187 0.175
School-Level Covariance
2% Cov(XsB, XsG1 + Z25Gy)
School-Avg. Student-Level/ -0.0166 00047 00061  -0.0053  -0.0054
School Char. Covariance
2% Cov(XsG1,Z2G2)
School-Avg. Student-Level 0.0178 00125 00137 00290  0.0139
Var(XsGl)
School Char. 0.0181 0.0269  0.023 0.0353 0.0238
Va}’(Zszz)
Unobservable School-Level 0.0309 00173 00211  0.0283  0.0199
Var(vs)
Panel B: 10th to 90th Quantile Shifts in School Quality
Row Full NC Sample NLS72 NELSg8 NELSgl0 ELS2002
LB no unobs 0.1056 0.1254 01167  0.1435 0.1177
Var(Zszz)
LB w/unobs 0.1742 01631  0.164 01959  0.1626
Var(ZsGy +vy)

The column “Full NC Sample” reports variance decompositions based on the full North Carolina sample. They are the same as the
estimates reported for NC sample in Online Appendix Table A19.

The other columns report estimates based on draws of samples of students from the North Carolina schools to match the distributions
of sample sizes per school from the NLS72, NELS88 grade 8, NELS88 grade 10, or ELS2002 samples (respectively).

To remove the chatter produced by a single draw from these sampling schemes, we report averages of estimates for each of 100
samples drawn from each sampling scheme.
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Table A11: Summary Statistics for Student Characteristics in NLS72

Variable % Imputed Mean Std. Dev.

Student Demographics

1(Female) 0.00 .505 .500
1(Black) 0.00 .088 283
1(Hispanic) 0.00 .034 181
1(Asian) 0.00 .010 .101

Student Ability

Std. Math Score 0.00 .007 997
Std. Reading Score 0.00 .005 989

Student Behavior

[None]
Family Background Characteristics
SES Index 0.00 -.028 1.01
Number of Siblings 2.90 2.81 2.04
1(Both Parents Present) 43.17 154 360
1(Mother, Male Guardian) 43.17 .020 117
1(Mother Only Present) 43.17 123 272
1(Father Only Present) 43.17 .040 162
Father’s Years of Educ. 0.74 12.53 247
Mother’s Years of Educ. 0.00 12.28 2.05
1(Mother’s Ed. Missing) 0.00 .003 057
Log(Family Income) 19.98 10.89 661
1(Eng. Spoken at Home) 0.46 .920 271
1(Home Environ. Index) 3.33 112 1.25
1(No Religion) 0.00 .052 222
1(Eastern Religion) 0.00 .041 199
1(Jewish) 0.00 023 151
1(Catholic) 0.00 313 464
1(Oth. Christian Relig.) 0.00 181 385
1(Fath. Occ.: Service) 22.21 .106 276
1(Fath. Occ.: Security/Military) 2221 .050 195
1(Fath. Occ.: Farmer/Laborer) 22.21 .309 415
1(Fath. Occ.: Craftsman/Technician) 22.21 214 362
1(Fath. Occ.: Manager) 22.21 126 .306
1(Fath. Occ.: Owner) 22.21 .067 227
1(Fath. Occ.: Professional) 22.21 125 313
1(Moth. Occ.: Sales) 18.42 .035 171
1(Moth. Occ.: Service) 18.42 .060 216
1(Moth. Occ.: Clerical) 18.42 147 328
1(Moth. Occ.: Professional) 18.42 .088 267
1(Moth. Occ.: Other) 18.42 .095 267
Parental Beliefs/Desires
[None]
Outcomes
1(Enrolled at a 4-Yr. Coll.) 0.00 267 442
Years of Postsec. Education 0.00 1.62 1.72
Log Wage (1979) 0.00 2.78 451
Log Wage (1986) 0.00 2.98 479
Log Wage (Pooled) 0.00 2.88 475
The summary statistics reported above incorporate sample weights. See Appendix A9 for further details about
these weights.
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Table A12: Summary Statistics for School Characteristics in NLS72

Variable % Imputed Mean Std. Dev.

School Characteristics (Treated as elements of X)*

% Minority Students 1.87 146 228

School Characteristics (Treated as elements of Zg)*

1(Catholic School) 3.52 .074 .259
1(Private School) 3.52 .004 .060
% of Teachers with Masters’ Deg. 1.03 412 210
Teacher Turnover Rate 0.27 .082 .087
Total School Enrollment 0.86 1362 864
Student-to-Teacher Ratio 1.51 20.30 4.35
% of Minority Teachers 2.61 .070 137
1(Tracking System Exists) 17.80 761 .385
Age of School Building 1.32 20.83 16.84

Neighborhood Characteristics

Distance to 4-Year College 4.61 18.70 24.99
Distance to Community College 4.64 18.12 25.02
1(South Region) 0.00 282 450
1(Midwest Region) 0.00 296 457
1(West Region) 0.00 .167 373
1(Small Town) 0.00 294 456
1(Medium-Sized City) 0.00 .087 282
1(Suburb of Medium-Sized City) 0.00 .054 225
1(Large City) 0.00 .096 295
1(Suburb of Large City) 0.00 113 316
1(Huge City) 0.00 .074 262
1(Suburb of Huge City) 0.00 .087 281

*School characteristics treated as elements of Xy are included to reduce measurement error in school sample
averages of student characteristics. They do not contribute to the estimated lower bound on contributions of
schools/neighborhoods.

The summary statistics reported above incorporate sample weights. See Appendix A9 for further details about
these weights.
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Table A13: Summary Statistics for Student Characteristics in NELS88

Variable % Imputed Mean Std. Dev.
Student Demographics
1(Female) 0.00 .503 .500
1(Black) 0.00 127 333
1(Hispanic) 0.00 099 299
1(Asian) 0.00 .033 179
1(Immigrant) 6.80 .048 205
Student Ability
Std. Math Score (8th grd.) 0.00 .060 1.01
Std. Reading Score (8th grd.) 0.00 .061 1.00

Student Behavior

Parent checks HW 0.36 448 496
# Weekly HW Hours 5.71 5.85 4.93
# Weekly Reading Hours 4.28 2.21 2.58
# Weekly TV Hours 14.15 22.09 10.20
1(Often Missing Pencil) 4.20 221 406
1(Fought at School) 145 226 415

Family Background Characteristics

SES Index 0.00 .034 1.01
Number of Siblings 0.46 2.31 1.58
1(Both Parents Present) 0.84 648 476
1(Mother, Male Guardian) 0.00 115 319
1(Mother Only Present) 0.00 149 357
1(Father Only Present) 0.00 .053 225
Father’s Years of Educ. 6.38 13.24 2.92
Mother’s Years of Educ. 0.00 12.91 232
1(Mother’s Ed. Missing) 0.00 .024 152
Log(Family Income) 9.67 10.87 910
1(Eng. Spoken at Home) 0.87 .902 295
1(Moth. Is Immigrant) 7.66 113 .306
1(Fath. Is Immigrant) 8.62 .106 296
1(Parents Married) 7.70 176 403
1(No Religion) 0.00 .023 148
1(Eastern Religion) 0.00 .039 .193
1(Jewish) 0.00 .019 138
1(Catholic) 0.00 .286 452
1(Oth. Christian Relig.) 0.00 072 258
1(Home Environ. Index) 6.49 -.010 1.41
1(Fath. Occ.: Service) 24.39 .109 267
1(Fath. Occ.: Security/Military) 24.39 .047 183
1(Fath. Occ.: Farmer/Laborer) 24.39 286 403
1(Fath. Occ.: Craftsman/Technician) 24.39 .201 344
1(Fath. Occ.: Dentist/Lawyer/Etc.) 24.39 .040 207
1(Fath. Occ.: Accountant/Nurse/Etc.) 24.39 .093 287
1(Fath. Occ.: Manager) 24.39 120 313
1(Fath. Occ.: Owner) 24.39 .076 237
1(Moth. Occ.: Sales) 11.23 .055 218
1(Moth. Occ.: Service) 11.23 132 320
1(Moth. Occ.: Clerical) 11.23 231 405
1(Moth. Occ.: Teacher) 11.23 075 258
1(Moth. Occ.: Accountant/Nurse/Etc.) 11.23 .090 278
1(Moth. Occ.: Other) 11.23 .256 410
Parental Sch. Engage. Index 10.79 -.079 1.46

Parental Beliefs/Desires

Moth. Desired Educ. for Child 12.63 16.20 1.94

Fath. Desired Educ. for Child 16.09 16.13 1.94
Outcomes

1(High School Graduate) 0.00 827 379

1(Enrolled at a 4-Yr. Coll.) 0.00 310 463

The summary statistics reported above incorporate sample weights. See Appendix A9 for further details about

these weights.
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Table A14: Summary Statistics for School Characteristics in NELS88

Variable % Imputed Mean  Std. Dev.

School Characteristics (Treated as elements of Xg)*

% Minority Students 1.51 232 .300
% Limited English Proficient 1.31 .071 .090
% Receiving Free/Reduced Price Lunch 1.49 .243 234
% in Special Ed. 1.31 .068 .058
% in Remedial Reading 1.19 .104 127
% in Remedial Math 1.19 .081 112
Admin’s Perceived Sch. Problems Index 1.16 3.07 .671

School Characteristics (Treated as elements of Zys)*

1(Catholic School) 0.00 .076 267
1(Private School) 0.00 .038 .190
% of Teachers with Masters’ Deg. 3.75 473 246
Total School Enrollment 1.05 675.2 368.7
Student-to-Teacher Ratio 1.05 17.87 4.82
% of Minority Teachers 292 118 192
Log(Minimum Teacher Salary) 2.51 9.76 .188
1(Collectively Bargained Contracts) 1.49 590 491
1(Gifted Program Exists) 1.05 .693 461
Admin.’s Reported Security. Policies Index (1) 1.36 219 1.05
Admin.’s Reported Security. Policies Index (2) 1.36 -.046 1.03

Neighborhood Characteristics

1(Urban Neighborhood) 0.00 248 432
1(Suburban Neighborhood) 0.00 437 496
1(South Region) 0.00 358 479
1(Midwest Region) 0.00 .260 439
1(West Region) 0.00 .189 391

*School characteristics treated as elements of Xy are included to reduce measurement error in school sample
averages of student characteristics. They do not contribute to the estimated lower bound on contributions of
schools/neighborhoods.

The summary statistics reported above incorporate sample weights. See Appendix A9 for further details about
these weights.
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Table A15: Summary Statistics for Student Characteristics in ELS2002

Variable % Imputed Mean Std. Dev.

Student Demographics

1(Female) 0.00 .506 .500
1(Black) 0.00 137 344
1(Hispanic) 0.00 152 .359
1(Asian) 0.00 .037 189
I(Immigrant) 10.78 .082 256

Student Ability

Std. Math Score 0.00 .038 1.01
Std. Reading Score 0.00 .036 1.01

Student Behavior

Parent checks HW 14.43 .345 440
# Weekly HW Hours 3.72 10.49 8.80
# Weekly Reading Hours 4.06 2.81 4.10
# Weekly Computer Hours 3.92 2.19 1.69
# Weekly TV Hours 4.01 23.21 11.98
1(Often Missing Pencil) 1.71 172 374
1(Fought at School) 0.85 137 342

Family Background Characteristics

SES Index 0.00 014 .997
Number of Siblings 17.22 2.34 1.39
1(Both Parents Present) 10.44 571 471
1(Mother, Male Guardian) 10.44 131 320
1(Mother Only Present) 10.44 185 367
1(Father Only Present) 10.44 071 235
Father’s Years of Educ. 9.24 13.61 2.53
Mother’s Years of Educ. 0.00 13.47 2.26
1(Mother’s Ed. Missing) 0.00 .034 182
Avg. Grandparents’ Educ. 23.77 12.15 1.64
Log(Family Income) 21.01 10.87 894
1(Eng. Spoken at Home) 13.32 .895 286
1(Moth. Is Immigrant) 11.38 176 363
1(Fath. Is Immigrant) 12.33 176 363
1(Parents Married) 10.85 723 423
1(No Religion) 18.55 .033 161
1(Eastern Religion) 18.55 .064 215
1(Jewish) 18.55 011 091
1(Catholic) 18.55 334 437
1(Oth. Christian Relig.) 18.55 .199 .363
1(Home Environ. Index) 13.35 -.095 1.38
1(Fath. Occ.: Service) 30.74 116 259
1(Fath. Occ.: Security/Military) 30.74 .050 177
1(Fath. Occ.: Farmer/Laborer) 30.74 285 377
1(Fath. Occ.: Craftsman/Technician) 30.74 202 328
1(Fath. Occ.: Dentist/Lawyer/Etc.) 30.74 .038 197
1(Fath. Occ.: Accountant/Nurse/Etc.) 30.74 103 289
1(Fath. Occ.: Manager) 30.74 149 306
1(Fath. Occ.: Owner) 30.74 051 192
1(Fath. Occ.: Other) 30.74 .004 047
: S 21.10 .047 187

21.10 .158 318

21.10 181 342

1(Moth. Occ.: Teacher) 21.10 .070 239
1(Moth. Occ.: Accountant etc.) 21.10 148 333
1(Moth. Occ.: Other) 21.10 248 378
Parental Sch. Engage. Index 20.71 -.141 1.34

Parental Beliefs/Desires

Moth. Desired Educ. for Child 15.90 16.55 221

Fath. Desired Educ. for Child 23.04 16.48 2.20
Outcomes

1(High School Graduate) 0.00 897 305

1(Enrolled at a 4-Yr. Coll.) 0.00 365 481

‘The summary statistics reported above incorporate sample weights. See Appendix A9 for further details about
these weights.
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Table A16: Summary Statistics for School Characteristics in EL.S2002

Variable % Imputed  Mean Std. Dev.

School Characteristics (Treated as elements of Xg)*

% Minority Students 1.53 338 .303
% Limited English Proficient 4.71 .047 .085
% Receiving Free/Reduced Price Lunch 7.68 255 234
% in Special Ed. 5.98 .104 .074
% in Remedial Reading 17.81 .049 .073
% in Remedial Math 19.24 .065 .089
Admin’s Perceived Sch. Problems Index 15.74 3.46 768

School Characteristics (Treated as elements of Zjg)*

1(Catholic School) 1.23 .044 205

1(Private School) 1.84 .032 175

% of Teachers with Masters’ Deg. 33.72 450 182
Teacher Turnover Rate 28.01 .056 .049
Total School Enrollment 0.34 1408 830

Student-to-Teacher Ratio 2.67 17.1 3.99
% of Minority Teachers 37.99 137 174
Log(Minimum Teacher Salary) 20.01 10.26 155

% of Teachers with Certification 3.35 95.37 12.82
Teacher Evaluation Policy Index 14.42 -.141 941

Teacher Incentive Pay Index (1) 13.25 .023 1.34
Teacher Incentive Pay Index (2) 13.25 -.086 1.06
Teaching Technology Index 16.29 .190 1.47
1(High Stakes Competency Exam) 0.00 994 077
Observed Sch. Cleanliness/Disorder Index (1) 29.85 .021 1.78
Observed Sch. Cleanliness/Disorder Index (2) 29.85 .030 1.18
Security Policy Implementation Index (1) 8.56 .073 1.34
Security Policy Implementation Index (2) 8.56 -.152 934
Admin.’s Reported Security. Policies Index (1) 15.78 157 1.48
Admin.’s Reported Security. Policies Index (2) 15.78 -.257 1.09
Admin.’s Impression of Fac. Quality Index (1) 19.31 187 2.20
Admin.’s Impression of Fac. Quality Index (2) 19.31 .025 1.03

Neighborhood Characteristics

1(Rural within MSA) 0.24 .108 310
1(Small Town) 0.24 .103 304
1(Large Town) 0.24 .014 118
1(Suburb of Medium City) 0.24 .091 288
1(Suburb of Large City) 0.24 .286 452
1(Medium City) 0.24 .163 .369
1(Large City) 0.24 133 .340
1(South Region) 0.00 .345 476
1(Midwest Region) 0.00 252 434
1(West Region) 0.00 220 414
Admin. Perception of N-Hood Crime 12.24 2.93 .595

*School characteristics treated as elements of Xg are included to reduce measurement error in school sample
averages of student characteristics. They do not contribute to the estimated lower bound on contributions of
schools/neighborhoods.

The summary statistics reported above incorporate sample weights. See Appendix A9 for further details about
these weights.
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Table A17: Summary Statistics for Student Characteristics in North Carolina Administrative Data

Variable % Imputed Mean Std. Dev.

Student Demographics

1(Female) 0.00 505 .500
1(Black) 0.00 276 447
1(Hispanic) 0.00 .059 236
1(Asian) 0.00 .023 .149
Student Ability
Std. Math Score (Grade 8) 13.0 .059 .990
Std. Reading Score (Grade 8) 13.0 .054 979
Std. Math Score (Grade 7) 15.9 .061 985
Std. Reading Score (Grade 7) 16.0 .057 971
1(Gifted in Math) 15.8 136 .343
1(Gifted in Reading) 15.8 133 .339

Student Behavior

1(Daily HW Hours < 1) 17.3 267 442
1(Daily HW Hours >= 1 and < 3) 17.2 463 499
1(Daily HW Hours >= 3) 17.3 239 426
1(Ignore Homework) 17.3 013 114
1(Daily TV Hours < 1) 17.3 226 418
1(Daily TV Hours ~ 2) 17.3 270 444
1(Daily TV Hours ~ 3) 17.3 222 416
1(Daily TV Hours >= 4 and <= 5) 17.3 .160 367
1(Daily TV Hours >= 6) 17.3 .091 287
1(Daily Free Reading Hours <= 1/2) 17.2 489 .500
1(Daily Free Reading Hours ~ 1) 17.2 215 411
1(Daily Free Reading Hours > 1 and <= 2) 17.2 110 313
1(Daily Free Reading Hours >=2) 17.2 .055 227

Family Background Characteristics

1(Highest Parent Education = HS Graduate) 0.00 221 415
1(Highest Parent Education = Some College) 0.00 131 337
1(Highest Parent Education = Community College) 0.00 163 .370
1(Highest Parent Education = 4-Yr College Graduate) 0.00 223 417
1(Highest Parent Education = Graduate School) 0.00 .104 .306
1(Free/Reduced Price Lunch Eligible) 0.00 .596 491
1(Limited English Proficiency) 0.54 .027 161
1(Ever Limited English Proficient) 0.00 .062 242

Parental Beliefs/Desires

[None]

Outcomes

1(High School Graduate) 0.00 760 427
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Table A18: Summary Statistics for School Characteristics in North Carolina Administrative Data

Variable 9% Imputed Mean Std. Dev.

School Characteristics (Treated as elements of Zy)

# of Books Per Student 0.41 10.85 6.74
1(Magnet School) 0.00 .064 244
1(Charter School) 0.00 .007 .083
% of Teachers with Advanced Degrees 0.79 .249 .079
% of Classrooms Taught by “High Quality” Teachers 0.03 956 .060
Teacher Turnover Rate 0.87 214 .081
Total School Enrollment 0.03 1323 581
Student-to-Teacher Ratio 0.03 15.5 2.02

Neighborhood Characteristics

1(Remote Rural) 0.00 .028 .166
1(Distant Rural) 0.00 .160 .366
1(Fringe Rural) 0.00 284 451
1(Remote Town) 0.00 .006 .078
1(Distant Town) 0.00 .075 263
1(Fringe Town) 0.00 .050 218
1(Small Suburb) 0.00 .006 .076
1(Mid-Sized Suburb) 0.00 .049 216
1(Large Suburb) 0.00 .096 .295
1(Small City) 0.00 .072 259
1(Midsize City) 0.00 .086 281
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Table A19: Decomposition of Variance in Latent Index Determining High School Graduation from
the NC, NELS88, and ELLS2002 Datasets (Baseline and Full Specifications)

NC NELSS88 gr8 ELS2002
Fraction of Variance Baseline Full Baseline Full Baseline Full
Within School:
Total 0.915 0.919 0.830 0.836 0.874 0.881
Var(Y; —Y;) (0.014) (0.013) (0.018) (0.016) (0.016) (0.016)
Observable Student-Level (Within): 0.124 0.213 0.162 0.292 0.134 0.221
Var((Xj —Xs)B) (0.004) (0.006) (0.013) (0.015) (0.040) (0.042)

Unobservable Student-Level (Within) 0.791 0.706 0.668 0.543 0.740 0.660
Var(vsi — vs) 0.013) 0.011) (0.019) 0.017) (0.037) 0.037)

Between School:

Total 0.085 0.081 0.170 0.164 0.126 0.119
Var(Ys) (0.014) (0.013) (0.018) (0.016) (0.016) (0.016)
Observable Student-Level: 0.018 0.033 0.073 0.109 0.037 0.060
Var(XsB) (0.002) (0.002) (0.010) (0.011) (0.006) (0.008)

Student-Level/
School-Level Covariance 0.016 0.010 0.025 0.007 0.025 0.006
2 Cov(XsB,XsG1 + Z325G3) (0.003) (0.005) (0.018) (0.019) (0.009) (0.012)

School-Avg. Student-Level/

School Char. Covariance -0.017 -0.008 0.007 0.004 0.001 -0.002
2% Cov(XsG1,Z2sG2) (0.007) (0.005) (0.008) (0.006) 0.013) (0.013)
School-Avg. Student-Level 0.018 0.009 0.037 0.029 0.028 0.029
Var(XsGq) (0.005) (0.004) (0.010) (0.009) (0.013) (0.012)
School Char. 0.018 0.012 0.011 0.006 0.025 0.024
Var(Z,5G3) (0.008) (0.005) (0.006) (0.005) (0.010) (0.010)
Unobservable School-Level 0.031 0.026 0.017 0.010 0.010 0.001
Var(vy) (0.006) (0.005) (0.007) (0.004) (0.002) (0.000)

The table reports fractions of the total variance of the latent index that determines high school gradua-
tion.

The rows labels indicate the variance component.

Bootstrap standard errors based on resampling at the school level are in parentheses.

Online Appendices A6 and A7 discuss estimation of model parameters and the variance decomposi-
tions.

The columns headed NC refers to a variance decomposition that uses the 9th grade school as the group
variable for schools in North Carolina.

NELSS88 gr8 is based on the NELS88 sample and refers to a decomposition that uses the 8th grade
school as the group variable.

ELS2002 is based on the ELS2002 sample and refers to a decomposition that uses the 10th grade
school as the group variable.

For each data set the variables in the baseline model and the full model are specified in Table 1
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Table A20: Decomposition of Variance in Latent Index Determining Enrollment in a Four-Year
College from the NLS72, NELS88, and ELS2002 Datasets (Baseline and Full Specifications)

NLS72 NELSS88 gr8 ELS2002
Fraction of Variance Baseline Full Baseline Full Baseline Full
Within School:
Total 0.857 0.857 0.776 0.774 0.785 0.791
Var(Yis —Ys) (0.018) 0.012) 0.016) 0.016) 0.016) (0.015)
Observable Student-Level (Within): 0.176 0.354 0.192 0.316 0.184 0.330
Var((Xsi — Xs)B) (0.082) (0.017) (0.010) (0.013) (0.031) (0.024)

Unobservable Student-Level (Within) 0.681 0.503 0.584 0.458 0.600 0.461
Var(vs —vs) (0.070) 0.015) 0.016) 0.014) (0.026) (0.019)

Between School:

Total 0.143 0.143 0.224 0.226 0.215 0.209
Var(Yy) (0.018) (0.012) (0.016) (0.016) (0.016) (0.015)
Observable Student-Level: 0.042 0.062 0.010 0.143 0.079 0.127
Var(XsB) (0.006) (0.006) (0.010) (0.012) (0.007) (0.010)

Student-Level/
School-Level Covariance 0.037 0.032 0.057 0.027 0.071 0.039
2% Cov(XsB,XsG1 + Z25G3) (0.008) (0.008) 0.011) (0.014) (0.009) (0.012)

School-Avg. Student-Level/

School Char. Covariance 0.000 -0.002 0.004 0.005 -.003 -0.002
2% Cov(XsG1,Z25G2) (0.005) (0.004) (0.005) (0.004) (0.008) (0.006)
School-Avg. Student-Level 0.026 0.020 0.023 0.021 0.022 0.015
Var(XsGy) (0.006) (0.005) (0.005) (0.005) (0.007) (0.005)
School Char. 0.026 0.019 0.018 0.015 0.024 0.018
Var(Z,5G3) (0.006) (0.004) (0.006) (0.005) (0.007) (0.006)
Unobservable School-Level 0.012 0.013 0.021 0.014 0.022 0.013
Var(vy) (0.005) (0.005) (0.006) (0.004) (0.005) (0.003)

The table reports fractions of the total variance of the latent index that determines enrollment in a
4-year college two years after high school graduation.

The rows labels indicate the variance component.
Bootstrap standard errors based on resampling at the school level are in parentheses.

NLS72 refers to a variance decomposition that employs NLS72 data and uses the 12th grade school as
the group variable.

See the note to Online Appendix Table A19 for additional details.
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Table A21: Decomposition of Variance in Years of Post-Secondary Education and Adult Log
Wages using NLS72 (Baseline and Full Specifications)

Perm. Wages Perm. Wages

Yrs. Postsec. Ed. No Post-sec Ed. w/ Post-sec Ed.

Fraction of Variance Baseline Full Baseline Full Baseline Full
Within School:
Total 0.904 0.904 0.837 0.834 0.829 0.829
Var(Yis —Yy) (0.008) (0.008) (0.020) (0.019) (0.020) (0.019)
Observable Student-Level (Within): 0.154 0.280 0.140 0.174 0.212 0.224
Var((Xs — Xs)B) (0.007) (0.008) 0.014) (0.016) (0.016) (0.016)

Unobservable Student-Level (Within) 0.749 0.624 0.697 0.660 0.617 0.605
Var(vg — vs) (0.009) (0.008) (0.022) (0.022) (0.022) (0.022)

Between School:

Total 0.096 0.096 0.163 0.166 0.171 0.171
Var(Yy) (0.008) (0.008) (0.020) (0.019) (0.020) (0.019)
Observable Student-Level: 0.041 0.058 0.045 0.055 0.061 0.065
Var(XsB) (0.004) (0.004) (0.008) (0.008) (0.008) (0.008)

Student-Level/
School-Level Covariance 0.031 0.023 0.033 0.028 0.033 0.029
2xCov(XsB,XsG1 +Z2G2) (0.006) (0.006) (0.020) 0.010) 0.011) (0.009)

School-Avg. Student-Level/

School Char. Covariance 0.001 0.002 -0.002 0.001 -0.003 0.000
2xCov(XsG1,Z2sG2) (0.002) (0.004) (0.012) 0.011) (0.012) 0.011)
School-Avg. Student-Level 0.012 0.008 0.033 0.029 0.029 0.028
Var(XsG1) (0.003) (0.002) (0.010) (0.009) (0.010) (0.009)
School Char. 0.005 0.002 0.039 0.041 0.039 0.040
Var(Z5G3) (0.002) (0.002) (0.012) (0.011) (0.012) (0.012)
Unobservable School-Level 0.005 0.004 0.014 0.011 0.011 0.009
Var(vs) (0.002) (0.002) (0.012) (0.011) (0.011) (0.011)

The table reports fractions of the total variance of years of postsecondary education, permanent wages
controlling for year of post secondary education, and permanent wages not controlling for years of
post secondary education.

Bootstrap standard errors based on re-sampling at the school level are in parentheses.
See the note to Online Appendix Table A19 for additional details.
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