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Abstract

This paper proposes a new evaluation approach for the class of small-scale �hybrid�New Keynesian

Dynamic Stochastic General Equilibrium (NK-DSGE) models typically used in monetary policy and

business cycle analysis. The empirical assessment of the NK-DSGE model is based on a conditional

sequence of likelihood-based tests conducted in a Vector Autoregressive (VAR) system, in which both

the low and high frequency implications of the model are addressed in a coherent framework. If some

of the low frequency behavior of the original time series of the model can be approximated by non-

stationary processes, stationarity must be imposed by removing the stochastic trends. This gives rise

to a set of recoverable unit roots/cointegration restrictions, in addition to the short-run cross-equation

restrictions. The procedure is based on the sequence �LR1!LR2!LR3�, where LR1 is the cointegration

rank test, LR2 the cointegration matrix test and LR3 the cross-equation restrictions test: LR2 is computed

conditional on LR1 and LR3 is computed conditional on LR2. The type-I errors of the three tests are

set consistently with a pre-�xed overall nominal signi�cance level. A bootstrap analogue of the testing

strategy is proposed in small samples. We show that the information stemming from the individual tests

can be used constructively to uncover which features of the data are not captured by the theoretical model

and thus to rectify, when possible, the speci�cation. We investigate the empirical size properties of the

proposed testing strategy by a Monte Carlo experiment and show the empirical usefulness of our approach

by estimating and testing a monetary business cycle NK-DSGE model using U.S. quarterly data.
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1 Introduction

Dynamic stochastic general equilibrium (DSGE) models are dominating macroeconomics, in academic re-

search, as well as in economic policy making. Even though these models, by their very nature, cannot

provide a complete description of the business cycle and of any time series, such as in�ation, output and

the policy rate, they are widely used to evaluate macroeconomic scenarios and predict economic activity.

Assessing the correspondence between what these models imply and what the data tell us is therefore a

crucial step in the process of analyzing policy options and their e¤ects, especially if one takes the view that

the scienti�c validity of a model should not be exclusively based on its logical coherence or its intellectual

appeal, but also on its ability to make empirical predictions that are not rejected by the data; see e.g.

De Grauwe (2010) and Pesaran and Smith (2011).

There are several methods which can used to evaluate the empirical performance of DSGE models,

depending on the speci�c objectives of the analysis. Most common methods include economic reliabil-

ity, statistical �t, and forecasting accuracy; see, e.g., Schorfheide (2000), An and Schorfheide (2007) and

Schorfheide (2011). Each evaluation method is based on a �metric� and di¤erent �metrics�may lead to

di¤erent conclusions. Our �metric�will be based on testing the restrictions on the data implied by DSGE

models. This approach is by no means new, but dates back to the early literature on the econometrics of

rational expectations models; see Hansen and Sargent (1980), Hansen and Sargent (1981), Wallis (1980) and

Johansen and Swensen (1999).

It is often claimed that Bayesian techniques are preferable to standard likelihood-based methods because

DSGE models typically represent a false description of the Data Generating Process (DGP) and misspeci�-

cation can be important in estimation; see e.g. Canova and Ferroni (2012). Schorfheide (2000) suggests using

a loss function to assess the discrepancy between DSGE model predictions and overall posterior distribution

of the population characteristics that the researcher is trying to match. Del Negro et al. (2007) develop

a set of tools within the Bayesian approach that can be used for assessing the time series �t of a DSGE

model based on a systematic relaxation of the set of cross-equation restrictions (CER) that the structural

model implies on the Vector Autoregressive (VAR) representation of the data. Their method, known as

the �DSGE-VAR�approach, provides the investigator with a Bayesian �metric�through which he/she can

evaluate how far/close the DSGE model is from a VAR approximation of the data. While misspeci�cation

in DSGE models is a concrete possibility, we do not think it represents a strong argument against the idea

of confronting these models with data by frequentist (classical) methods. The knowledge that the DSGE

model is �misspeci�ed�in some directions may help the investigator understand what features of the data the

model is missing, how important these features are, and, possibly, how to improve the original speci�cation.
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We propose a frequentist evaluation approach for a class of small-scale DSGE models grounded in the

New Keynesian tradition and relevant for economic policy analysis, henceforth denoted with the acronym

�NK-DSGE�models. These models are investigated in, among many others, Clarida et al. (2000), Lubik

and Schorfheide (2004), Ireland (2004), Christiano et al. (2005), Smets and Wouters (2007), DeJong and

Dave (2011), Carlstrom et al. (2009), Benati and Surico (2009) and more generally, in Woodford (2003)

and Galí (2008) They feature both macroeconomic and monetary policy shocks and typically include a

forward-looking aggregate demand equation, a Phillips curve, and a monetary policy reaction function.

They can also accommodate the monetary/�scal policy mix (e.g. Bianchi (2012)) and/or �nancial frictions

e.g. Castelnuovo and Nisticò (2010).

In principle, there are two types of restrictions that can be tested in NK-DSGE models. First, there

are the long-run cointegration/common-trend restrictions stemming from the observation that there are

generally more variables to be modelled than there are independent integrated forcing processes; see e.g.

Canova et al. (1994), Söderlind and Vredin (1996), Fukaµc and Pagan (2010) and Juselius (2011). Importantly,

these restrictions hold regardless of the uniqueness/multiplicity of the model solution; see Broze et al. (1990)

and Binder and Pesaran (1995). Hence the restrictions are invariant to the speci�cation of the transient

dynamics of the system. Second, there are the short-run CER which apply to the system conditional on the

common trends. The long-run and short-run properties of NK-DSGE models are generally interdependent

and therefore they should be examined jointly. Our method is based on testing both types of restrictions

in a coherent framework. We propose a sequential procedure computed in three steps using likelihood ratio

(LR) tests. We �rst test whether the cointegration rank (the number of stochastic common trends) is

consistent with the predictions of the NK-DSGE model, using a �nite order VAR model. Next, we test the

implied overidentifying cointegrating restrictions, conditional on the chosen rank. Finally, we test the CER

the NK-DSGE model places on the VAR system, conditional on the cointegrating restrictions. Overall, the

suggested method involves computing a sequence of LR tests, called LR1 (LR cointegration rank test), LR2

(LR cointegration matrix test) and LR3 (LR test for CER). The test LR2 is run conditional upon LR1

not rejecting the cointegration rank and LR3 is run if LR2 does not reject the overidentifying cointegration

restrictions. To our knowledge, King et al. (1991), Canova et al. (1994) and Söderlind and Vredin (1996) are

early examples of the use of the test LR1 in related contexts. Juselius (2011) is a recent example of the use

of the test LR2 in the NK-DSGE models, while Guerron-Quintana et al. (2013) propose the inversion of a

test like LR3 to build con�dence sets for structural parameters that will be robust to identi�cation failure.

For ease of exposition, we denote our testing strategy with the symbol �LR1! LR2! LR3�. The novelty

of the �LR1 ! LR2 ! LR3�procedure is that the empirical evaluation of the NK-DSGE model is treated
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as a multiple hypothesis testing approach. This is one of the contributions of our approach, as we will show

in the rest of the paper.

Under the null of the NK-DSGE model, the tests LR1, LR2 and LR3, individually considered, are cor-

rectly sized in the sense that their asymptotic size is equal to the pre-�xed nominal type I error. Accordingly,

using simple Bonferroni arguments, we can prove that the overall asymptotic size of the testing strategy

does not exceed the sum of the type I errors pre-�xed for each test. If a practitioner wishes to test the

NK-DSGE model at, say, the 5% nominal level of signi�cance, the critical values of the tests LR1, LR2

and LR3 can be chosen such that the sum of the individual type I errors is 5%. The size of the overall

testing strategy can be kept under strict control in small samples by referring to the bootstrap analogue

of the �LR1 ! LR2 ! LR3�procedure. In this case, the bootstrap version of the test LR1 is computed

following Cavaliere et al. (2012), and the bootstrap counterpart of the test LR2 is computed as in Boswijk

et al. (2013), while the bootstrap analogue of the test LR3 can be computed as in, e.g., Cho and Moreno

(2006) or Fanelli and Palomba (2011).

A discrepancy is often found between what the data tell and what theory implies when long-run restric-

tions are tested in structural forward-looking models. For instance, the balanced-growth-path property of

the standard neoclassical growth model implies that hours worked are stationary. This, however, appears

to be at odds with the persistent movements of per capita hours in the data. Similarly, NK-DSGE models

typically maintain that in�ation is a stationary process. In small samples, however, we typically observe

high in�ation persistence. The possible failures of the common-trend/cointegration restrictions using the

tests LR1 and LR2 are generally the hardest features to interpret because of the lack of indications about

how to modify the model. Chang et al. (2007) illustrate how the speci�cation of a real business cycle DSGE

model can be modi�ed to incorporate non-stationary labor supply shocks which generate permanent shifts

in hours worked. Similarly, Juselius (2011) provides a detailed interpretation of monetary business cycle

NK-DSGE models under di¤erent scenarios re�ecting the common trends that might be found in the data.

As we show below, proper modi�cations to the probabilistic structure of the exogenous shocks that generate

�uctuations in NK-DSGE models can be used to generalize trend structures and close the gap between

theory and data. Likewise, when the short-run CER implied by the NK-DSGE model are rejected by the

LR3 test, one should think of alternative structural frameworks to capture the dynamic features of the

data or the omitted transmission mechanisms of the shocks. For example, dynamically rich, distributed-lag

small scale monetary models have been employed by, e.g., Estrella and Fuhrer (2002, 2003) and Fuhrer and

Rudebusch (2004), among others, while medium-scale systems which involve a relatively larger number of

variables are considered in Christiano et al. (2005) and Smets and Wouters (2007). Thus, we go beyond using
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the �LR1! LR2! LR3�testing strategy as an �accept-reject�proposition. We show that the outcomes of

the individual tests can be used constructively to uncover what features of the data are not captured by the

theoretical model and to rectify, when possible, the speci�cation of the NK-DSGE model.

We evaluate the empirical performance of the �LR1 ! LR2 ! LR3�testing strategy by a small Monte

Carlo experiment whose data generating process (DGP) belongs to the monetary business cycle NK-DSGE

model discussed in Benati and Surico (2009), which is the leading example used in our paper. We further

show the empirical usefulness of our approach by estimating and testing the NK-DSGE model of Benati and

Surico (2009) using U.S. quarterly data.

Our paper has several connections with the existing literature. Canova et al. (1994) and Söderlind and

Vredin (1996) propose a method to evaluate real business cycle models by eliciting the (highly) restricted

VAR representation underlying them and comparing it with an unrestricted VAR for the data. They

recognize that the driving forces in these models may be integrated, and hence account for the implied

set of cointegration restrictions, as well as considering what Canova et al. (1994) call �non-cointegrating

restrictions�. Our approach di¤ers from Canova et al. (1994) and Söderlind and Vredin (1996) in the way

the �LR1 ! LR2 ! LR3� testing strategy is designed. Fukaµc and Pagan (2010) propose an evaluation

approach to NK-DSGE models in which both the long and short-run behavior of the data are taken into

account by modelling the common stochastic trends in an error-correction framework. While Fukaµc and

Pagan (2010) put forth a �limited information�approach, our analysis is developed in a �full information�

maximum likelihood (ML) framework. Also, Juselius (2011) applies a �full information�ML approach, but

he limits his attention to the steady-state implications of NK-DSGE models, leaving the CER untested.

Gorodnichenko and Ng (2010) propose robust estimators for the parameters of DSGE models that do not

require researchers to take a stand on whether shocks have permanent or transitory e¤ects, while ��ltering�

is implicitly obtained in our framework by a proper transformation of the model through the cointegration

restrictions. The approach of Gorodnichenko and Ng (2010) is therefore suitable when the exact underlying

cointegrating relationships are not known. Moreover, Gorodnichenko and Ng (2010) are not concerned with

assessing how far/close is the estimated model from/to the data. One advantage of our method is that if the

NK-DSGE model is not rejected by the data, it automatically delivers the ML estimates of the structural

parameters, while the extension of Gorodnichenko and Ng�s (2010) method to the case of ML estimation is

not always practical.

Finally, apart from the Bayesian approach, we have many points in common with the �DSGE-VAR�

approach of Del Negro et al. (2007). These authors also use a cointegrated VAR in error-correction form

as the statistical model for the data, but they impose the common-trend restrictions without testing. The
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prior distribution for the VAR parameters in Del Negro et al. (2007) is centered on the CER implied by

the DSGE model and has dispersion governed by a scalar (hyper)parameter, denoted �, such that small

values of � indicate that the VAR is far from the theoretical model, while large values of � indicate that the

theoretical model is supported by the data. A cuto¤ value for � is not provided, as noticed by Christiano

(2007). In our testing strategy, the test LR3 plays a role similar to � in Del Negro et al. (2007). However,

we have by construction a cut-o¤ value for LR3 which depends on pre-�xed nominal type-I error: values of

LR3 smaller than the cuto¤ value indicate that the VAR is �close�to the NK-DSGE model, and vice versa.

The paper is organized as follows. We introduce the baseline NK-DSGE model and its assumptions in

Section 2 and discuss a set of testable restrictions, which are usually ignored in the literature, in Section 3.

We present our testing strategy in Section 4 and investigate its empirical size performance by a simulation

experiment in Section 5. We present an empirical illustration in which our reference NK-DSGE model is

evaluated on U.S. quarterly data in Section 6. Section 7 concludes the paper. The Appendix discusses the

asymptotic size of the testing strategy. Additional details about the ML estimation algorithm for the struc-

tural parameters necessary to compute the test LR3, as well as the interpretation of the estimates obtained

in the simulation experiment and in the empirical illustration, are reported in a Technical Supplement; see

Bårdsen and Fanelli (2013).

2 Model and assumptions

Our starting point is the structural representation of a typical NK-DSGE model that aims at capturing

the stylized features of the business cycle. The model is in the form of a system resulting from the log-

linearization around steady-state values of the equations that describe the behavior of economic agents.

Let Wt be the p-dimensional vector collecting all the variables of the model of interest. A typical

structural monetary NK-DSGE model takes the form of the linearized rational expectations model:

AW0 Wt = AWf EtWt+1 +A
W
b Wt�1 + �

W
t ; (1)

where AW0 , A
W
f and AWb are p � p matrices whose elements depend on the structural parameters collected

in the vector �, and �Wt is a mean zero vector of structural disturbances. The term EtWt+1 = E(Wt j Ft)

denotes conditional expectations, where Ft is the available stochastic information set at time t and is such

that �(Wt;Wt�1;:::;W1) � Ft, and �(Wt;Wt�1;:::;W1) is the sigma �eld generated by the variables. As is

standard in the literature, we posit that the structural disturbance term �Wt obeys a vector autoregressive
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processes of order one, i.e.,

�Wt = RW �Wt�1 + u
W
t , uWt �WN(0p�1;�W;u) (2)

where RW is a diagonal stable matrix (i.e. with eigenvalues lying inside the unit disk) and uWt is a White

Noise term with covariance matrix �W;u. Hereafter, uWt will be denoted the vector of structural or �fun-

damental� shocks, and it will be assumed that dim(uWt )=dim(Wt) = p, preventing the occurrence of the

�stochastic singularity� issue; see e.g. Ireland (2004) and DeJong and Dave (2011). In general, theory

does not provide information about the correlation of the structural disturbances across equations; if cross-

equation correlations are assumed for the structural disturbances, these can be captured by specifying a

non-diagonal covariance matrix �W;u. In our setup, the non-zero elements of RW and of vech(�W;u) belong

to the vector of structural parameters �. All meaningful values of � belong to the �theoretically admissible�

(compact) parameter space, denoted P:

A solution of model (1)-(2) is any stochastic process fW �
t g
1
t=0 , W

�
t = W �

t (�), such that, for � 2 P,

EtW
�
t+1 = E(W �

t+1 j Ft) exists and if W �
t , is substituted for Wt into the structural equations, and the model

is veri�ed for each t, for �xed initial conditions. A reduced form solution is a member of the solution set

whose time series representation is such that Wt depends on uWt , lags of Wt and uWt (and, possibly, other

arbitrary martingale di¤erence sequences (MDS) with respect to Ft independent of uWt , called �sunspot

shocks�).

We con�ne the class of reduced-form solutions associated with the NK-DSGE model to a known family

of linear models by the assumption that follows.

Assumption 1 [Determinacy] The �true�value �0 of � is an interior point of P�, where P� � P is such

that, for each � 2 P�, the NK-DSGE model (1)-(2) has a unique and asymptotically stationary (stable)

reduced-form solution.

Assumption 1 can be interpreted as the null hypothesis that the DGP belongs to the unique stable

solution of system (1)-(2). This assumption is standard in the literature on NK-DSGE models and hinges

on the idea that the time series upon which model (1) is built and estimated are typically constructed (or

conceptualized) as stationary deviations from steady-state values.

Under Assumption 1, the unique stable solution of the model (1)-(2) can be represented as the asymp-

totically stationary VAR system

Wt = ~F1Wt�1 + ~F2Wt�2 + "
W
t , "Wt = ~Qu

W
t (3)
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where ~F1 = F1(�), ~F2 = F2(�) and ~Q = Q(�) are p � p matrices that depend nonlinearly on � through the

implicit set of nonlinear CER:

(AWR
0 �AWf ~F1) ~F1 �AWf ( ~F2) +AWb;1 = 0p�p (4)

(AWR
0 �AWf ~F1) ~F2 �AWb;2 = 0p�p (5)

~�W;" = ~Q �W;u ~Q
0: (6)

In Eqs. (4)-(6), AWR
0 = (AW0 + RWA

W
f ), A

W
b;1 = (AWb + RWA

W
0 ), A

W
b;2 = �RWAWb , ~Q = Q(�) =�

AW0 �AWf ~F1

��1
, and ~�W;" is the constrained covariance matrix of "Wt , see Binder and Pesaran (1995),

Uhlig (1999), Kapetanios et al. (2007) and Fanelli (2012).

In general, the NK-DSGE model represented in Eq.s (1)-(2) reads as a �partial equilibrium�model, in

the sense that it does not specify how any unobservable components of Wt, denoted W u
t , are generated. For

instance, in the examples we discuss below, the NK-DSGE model speci�ed in the form (1)-(2) is based on

the output gap and takes as given the process generating the natural level of output.

Let W o
t be the sub-vector of Wt that contains the observable variables. Given the n-dimensional �com-

plete�vector Zt = (W o0
t ;W

u
t )
0, n � p, which collects, without any loss of generality, the observed (�rst) and

unobserved variables (last), one can interpret the (stationary) vector Wt in systems (1) and (3) as obtained

from the linear combination

Wt=�
0Zt (7)

where � is a known n� p matrix of full column-rank p that combines the observed and unobserved variables

and/or picks out the stationary elements of Zt that enter the structural model. A further step toward the

�complete�speci�cation of the NK-DSGE model is provided by Assumption 2.

Assumption 2 [Unobserved processes are integrated of order one] The sub-vectorW u
t is such that

�W u
t is covariance stationary.

Assumption 2 simply states that W u
t is integrated of order one, denoted W

u
t � I(1). It does not provide

a detailed speci�cation of the process generating the unobserved variables, but it can be further specialized

according to the speci�c features of the model under investigation, as shown in the next sub-sections.

Given the scope of the present paper, approximating the unobserved components with I(1) processes meets

two requirements. First, Assumption 2 formalizes that the NK-DSGE model features stochastic trends.

Second, the I(1) assumption may represent a reasonable and interpretable choice for the typical unobservable
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components which characterize the class of small-scale NK-DSGE models used in monetary policy and

business cycle analysis, i.e., the natural level of output (potential output) and/or the in�ation target (or

trend in�ation), as suggested by Bekaert et al. (2010), Fukaµc and Pagan (2010) and Section 2.1 below.

Given Assumptions 1-2 and a detailed speci�cation of the process generating W u
t , the �complete�(fully-

speci�ed) NK-DSGE model can be given the structural representation

AZ0 Zt = AZf EtZt+1 +A
Z
b Zt�1 + �

Z
t (8)

�Zt = RZ�
Z
t�1 + u

Z
t , uZt �WN(0n�1;�u;Z), (9)

where the matrices AZ0 , A
Z
f , A

Z
b and �u;Z not only depend on �, but also on a set of additional parameters,

denoted with �a, that are associated with the processes speci�ed forW u
t . The �extended�vector of structural

parameters is therefore given by �e = (�0; �a0)0. Compared to the formulation (1)-(2) of the NK-DSGE model,

the system represented in Eqs. (8)-(9) incorporates the unit-root implication of Assumption 2. We will refer

to the representation in Eqs. (8)-(9) as the �complete�representation of the NK-DSGE model. It is worth

remarking that, albeit Wt in Eq. (7) reads as a sub-vector of Zt, Wt has the �nite-order VAR representation

in Eq.s (3)-(6) under Assumption 1.

The next sub-section provides a detailed example about the relationship between the representation in

Eq.s (1)-(2) and (8)-(9) of the NK-DSGE model.

2.1 An example model

We use an example based on Benati and Surico (2009). The model consists of the following equations:

~yt = 
Et~yt+1 + (1� 
)~yt�1 � �(it � Et�t+1) + �~y;t (10)

�t =
%

1 + %{
Et�t+1 +

{
1 + %{

�t�1 + �~yt + ��;t (11)

it = �it�1 + (1� �)('��t + 'y~yt) + �i;t (12)

�a;t = �a�a;t�1 + ua;t , ua;t �WN
�
0; �2a

�
, a = ~y; �; i (13)

hence Wt = (~yt; �t; it)
0, p = 3, �Wt = (�~y;t; ��;t; �i;t)

0 and uWt = (u~y;t; u�;t; ui;t)
0 : In this model, ~yt = (yt � ypt )

is the output gap, where yt is the log of output and y
p
t the natural rate of output; �t is the in�ation rate and

it is the nominal interest rate; �~y;t, ��;t and �i;t are stochastic disturbances autocorrelated of order one, while
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u~y;t, u�;t and ui;t can be interpreted as demand, supply and monetary shocks, respectively. The structural

parameters are collected in the vector � = (
, �, %, {, �; �, '�, 'y, �~y, ��, �i, �2~y ; �
2
�; �

2
i )
0 and their economic

interpretation may be found in Benati and Surico (2009).

The model (1)-(2) is �incomplete�according to our de�nition, because it does not specify the process for

the natural level of output ypt . One way to �complete�the model is to specialize Assumption 2 as follows:

Assumption 2�[Potential output is a Random Walk]

ypt = ypt�1 + �yp;t , �yp;t �WN(0; �2yp). (14)

In addition to the non-stationarity hypothesis, Assumption 2�provides a simple DGP for ypt consistent

with the representation in Eq.s (8)-(9), see below. The usual interpretation of Assumption 2�is that the

�exible price level of output ypt is driven by a combination of a stationary demand shock and a non-stationary

technology shock, as in Ireland (2004). In this framework, the vector Wt = (~yt; �t; it)
0 can be thought of as

being obtained through the linear combination in Eq. (7), which here quali�es in the expression

Wt=

0BBBB@
1 0 0 �1

0 1 0 0

0 0 1 0

1CCCCA
�0

0BBBBBBB@

yt

�t

it

ypt

1CCCCCCCA
Zt

: (15)

The vector Zt = (W o0
t ;W

u0
t )

0 accommodates both the observed W o
t = Zot = (yt; �t; it)

0 and the unobserved

W u
t = ypt variables. Given the relationship in Eq. (15), the Eq.s (10)-(13) jointly with Eq. (14) imply the

following con�guration of the matrices A0, Af and Ab:

AZ0 =

0BBBBBBB@

1 0 � �1

�� 1 0 �

� (1� �)'y � (1� �)'� 1 0

0 0 0 1

1CCCCCCCA
, AZf =

0BBBBBBB@


 � 0 �


0 !f 0 0

0 0 0 0

0 0 0 0

1CCCCCCCA
, AZb =

0BBBBBBB@

(1� 
) 0 0 � (1� 
)

0 !b 0 0

0 0 � 0

0 0 0 1

1CCCCCCCA
where !f = %=(1 + %{) and !b = {=(1 + %{): The �extended�vector of parameters is �e = (�0; �a)0, where

�a = �2yp :
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3 Testable restrictions

The relationships between Wt and Zt de�ned by Eq. (7) and the representation in Eq.s (8)-(9) of the

NK-DSGE model can conveniently be used to analyze the whole set of testable restrictions at low and

high frequencies. Under Assumptions 1-2, Zt s I(1), and all cointegration/common-trend restrictions of

the system are subsumed in the vector Zt. The model which captures the CER after factoring out the

cointegrating relations from the system is given by the �nite-order VAR representation for Wt in Eq.s (3)-

(6). In this section, we explore the set of testable implications related to the vector Zt, while in the next

section we exploit these implications of the NK-DSGE model to de�ne a coherent testing strategy.

We consider the n-dimensional vector of transformed variables

Yt=

0B@ �00

� 0(1� L)

1CAZt = G(�0; �; 1� L)Zt, det(� 0�0?) 6= 0; (16)

where �0 is the n � r identi�ed cointegration matrix, and � is a (n� r) � r selection matrix, which is

restricted so that it is not orthogonal to �0?. The role of � is to pick out a proper set of variables in �rst

di¤erences from the vector (1� L)Zt = �Zt, where L is the lag operator (LjZt = Zt�j). The choice of

� in Eq. (16) is not necessarily unique, however. The case discussed below shows that, despite the many

possible choices of � , not all of them are consistent with the theoretical features of the NK-DSGE model.

In principle, �0 may temporarily depend on some �additional�parameters that we collect in the vector �,

and which are not necessarily related to �. We write �0 = �0(�) to make clear such a dependence. Under

the null hypothesis that the NK-DSGE model is valid, and with all constraints implied by the NK-DSGE

model imposed on the system for Zt, the joint restriction

r = p , �0 = �b0 = � (17)

must hold, where the symbol �b0 denotes the counterpart of the identi�ed cointegration matrix �0 that leads

to what we shall de�ne below as a �balanced�(error-correction) representation of the NK-DSGE model. Eq.

(17) maintains that, under the null hypothesis that the NK-DSGE model is �true�, the identi�ed cointegration

matrix �b0 must be equal to the selection matrix � of Eq. (7) and, accordingly, must not depend on any

parameter. Hence, the dependence of �0 on � is suppressed in Eq. (17). We observe that the transformation

in Eq. (16) mimics the one used by Campbell and Shiller (1987) to address the analysis of present value

models.
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Under the restriction (17), we can recover Wt from Yt as follows:

Yt=

0B@ �00

� 0(1� L)

1CAZt = G(�b0; �; 1� L)Zt

=

0B@ � 0

� 0(1� L)

1CAZt =

0B@ � 0Zt

� 0�Zt

1CA =

0B@ Wt

� 0�Zt

1CA
hence it is seen that the vector Wt is part of Yt. Because the G(�0; �; 1 � L) (or G(�b0; �; 1 � L)) matrix in

system (16) is non-singular by construction, the mapping in Eq. (16) can be used in the model (8) to obtain

AZ0G(�0; �; 1� L)�1Yt = AZf G(�0; �; 1� L)�1EtYt+1 +AZb G(�0; �; 1� L)�1Yt�1 + �Zt : (18)

The appealing feature of the representation in Eq. (18) is that, other than involving stationary variables

(i.e. those in Yt), the (inverse of the) di¤erence operator (1 � L) cancels out from the equations if one

restricts �0, as in Eq. (17), and imposes a proper set of restrictions on �, such that the transformed model is

�balanced�. With the term �balanced,�we mean that G(�0; �; 1�L)�1 is replaced with G(�b0; �; 1�L)�1 and

some restrictions are placed on the elements of �, so all left-hand and right-hand side variables appearing in

system (17) variables are stationary. The nature of these restrictions will be demonstrated in the examples

that follow.

Hereafter we use the representation

AY0 Yt = AYf EtYt+1 +A
Y
b Yt�1 + �

Y
t (19)

�Yt = RY �
Y
t�1 + u

Y
t (20)

to denote the �balanced�counterpart of system (18). The system (19)-(20) can be regarded as an error-

correction representation of the NK-DSGE model.

The structural parameters in the matrices AY0 , A
Y
f , A

Y
b , R

Y and �Y;u = E
�
uYt u

Y 0
t

�
are collected in

the vector �Y , where �Y is obtained from �e by imposing the restrictions that map system (18) into the

transformed representation in (19)-(20). In general, dim(�Y ) = dim(�e) � c, where c is the total number

of restrictions on �e necessary for balancing. Under Assumptions 1-2 (and the other minor assumptions in

Section 2), if the unique stable solution of the NK-DSGE model (19)-(20) exists, it can be represented in

12



the form

Yt = ~�1Yt�1 + ~�2Yt�2 + "
Y
t , "Yt = ~	uYt (21)

where ~�1 = �1(�
Y ), ~�2 = �2(�

Y ) and ~	 = 	(�Y ) = (AY;R0 � AYf
~�1)

�1 are n � n matrices that depend

nonlinearly on �Y through the set of nonlinear CER:

(AY;R0 �AYf ~�1)~�1 �AYf ~�2 +A
Y;R
b;1 = 0n�n (22)

(AY;R0 �AYf ~�)~�2 �A
Y;R
b;2 = 0n�n (23)

~�Y;" = ~	 �Y;u ~	
0 (24)

where AY;R0 = (AY0 + RYA
Y
f ), A

Y;R
b;1 = (AYb + RYA

Y
0 ), A

Y;R
b;2 = �RYAYb , and ~�Y;" is the covariance matrix

of the reduced form disturbances "Yt under the constraints, see Section 2. The constraints in Eq.s (22)-(24)

mimic those derived in Eq.s (4)-(6) for the �original�speci�cation of the NK-DSGE model, but here refer to

the �complete�speci�cation based on Assumption 2.

We now come back to our leading example, analyzed in Sub-section 2.1, to discuss some situations which

clarify the essence of the transformations from Zt to Yt and the resulting set of testable restrictions. In

particular, Sub-section 3.1 deals with the �desirable�situation in which the number of common stochastic

trends found in the data, n� r, lines up with the number predicted by the theory, n� p, and the identi�ed

cointegration relationships match perfectly the structure in Eq. (17). Sub-section 3.2 deals, instead, with

the situation where the inferred number of common trends, n � r, is larger than n � p (r < p), hence the

structure of the cointegration relationships in Eq. (17) is no longer valid. We argue that, in these cases, it is

generally possible to rectify the speci�cation of the structural equations to feature the �additional�stochastic

trends, provided these trends can be given a sensible economic interpretation. This process, however, may

give rise to extra (testable) restrictions in other parts of the model. Finally, Sub-section 3.3 deals with the

case in which it is necessary to think about alternative speci�cations of the transmission mechanisms of

the shocks. This situation may arise when the CER in Eq.s (22)-(24) (or in Eq.s (4)-(6) if the �complete�

speci�cation is investigated) are not valid.

3.1 Example 1: the case of a single stochastic trend

Consider the NK-DSGE model in Eqs. (10)-(13) and Assumption 2�. Suppose that given Zt = (yt; �t; it; y
p
t )
0,

the selected cointegration rank r and the identi�ed cointegration relationships �0 perfectly match the re-
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quirements in Eq. (17), i.e.

r = 3, �00Zt = �b00 Zt = � 0Zt =

0BBBB@
1 0 0 �1

0 1 0 0

0 0 1 0

1CCCCA

0BBBBBBB@

yt

�t

it

ypt

1CCCCCCCA
=Wt: (25)

In this case, the output gap, in�ation and the short term interest rate are jointly stationary and there is a

single stochastic trend in Zt. The cointegration relationships in Eq. (25) are consistent with the hypothesis

that the system is driven by a non-stationary technology shock; see, e.g., Ireland (2004) and DeJong and

Dave (2011).

The vector Yt in Eq. (16) is given by

Yt = G(�b0; �; 1� L)Zt =

0B@ �b00

� 0 (1� L)

1CAZt =

0B@ �b00

(1� L) 0 0 0

1CA
0BBBBBBB@

yt

�t

it

ypt

1CCCCCCCA
= (W 0

t ;�yt)
0; (26)

where it can be noticed that � = (1; 0; 0; 0)0, �0? = (1; 0; 0; 1)0, hence det(� 0�0?) = det(1) 6= 0. Using

G(�b0; �; 1� L)�1 in Eq. (18) generates the system

~yt = 
Et~yt+1 � �(it � Et�t+1) + (1� 
)~yt�1 + �~y;t

�t = !fEt�t+1 + !b�t�1 + �~yt + ��;t

it = �it�1 + (1� �)('��t + 'y~yt) + �i;t

�~yt + (1� L)�1(1� L)yt = �~yt�1 + (1� L)�1(1� L)yt�1 + �yp;t;

where we have left the operator (1� L)�1 in the �nal equation to highlight the point about balancing. To

see that (1 � L)�1 cancels out from the former equation, it is su¢ cient to rewrite it in the form (using

Assumption 2�)

~yt = ~yt�1 +�yt + �
�
yp;t (27)

where ��yp;t = ��yp;t. It is worth emphasizing that Eq. (27) is a reparametrization of the Random Walk

model assumed for ypt in Eq. (14). A similar representation obtains if the chosen � in G(�
b
0; �; 1�L) is given

by � = (0; 0; 0; 1)0.
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In this case, �Y = �e and the matrices AY0 , A
Y
f and A

Y
b , as well as the vector �

Y
t in the representation

in Eq. (19), can easily be derived and are equal to

AY0 =

0BBBBBBB@

1 0 � 0

�� 1 0 0

�(1� �)'y �(1� �)'� 1 0

1 0 0 �1

1CCCCCCCA
AYf =

0BBBBBBB@


 �� 0 0

0 !f 0 0

0 0 0 0

0 0 0 0

1CCCCCCCA
AYb =

0BBBBBBB@

1� 
 0 0 0

0 !b 0 0

0 0 � 0

1 0 0 0

1CCCCCCCA
and �Yt = (�~y;t; ��;t; �i;t; �

�
yp;t)

0. The testable cointegration restrictions relative to the strictly observable time

series in Zt, Zot = (yt; �t; it)
0 =W o

t � I(1) are

ro = 2 ,

0B@0 1 0

0 0 1

1CAZot � stationary (28)

where ro is the cointegration rank associated with Zot .

3.2 Example 2: the case of two stochastic trends

Consider the NK-DSGE model in Eqs. (10)-(14). Imagine that, given Zt = (yt; �t; it; y
p
t )
0, the selected

cointegration rank is r = 2 6= p, implying the existence of n � r = 4 � 2 = 2 stochastic trends, one more

than the technology trend predicted by the baseline version of the model. We discuss in detail two possible

scenarios which can be used to nest a setup like this, denoted Hypothesis 1 and Hypothesis 2, respectively.

Hypothesis 1: stochastic in�ation target

In�ation is typically a highly persistent process, which can sometimes be approximated reasonably well

by I(1) processes. If the quantity %
1+%{ +

{
1+%{ in the NKPC in Eq. (11) is close to 1, the I(1) approximation

for �t is sensible in small samples. While it is implicitly assumed that trend in�ation is zero in the system

(10)-(13), it may be the case that trend in�ation is determined by the long-run target of the central bank�s

policy rule. A drift in trend in�ation could therefore be attributed to shifts in that target. Consider, for

instance, the small monetary NK-DSGE model investigated by Bekaert et al. (2010). Their model di¤ers

from our leading example only in the speci�cation of the policy rule, which in their framework is given by

it = �it�1 + (1� �)'�(Et�t+1 � ��t ) + (1� �)'y~yt + �i;t (29)
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where ��t is a stochastic in�ation target generated by the equation

��t =
%

1 + %$
Et�

�
t+1 +

$

1 + %$
��t�1 + (1�

%

1 + %$
� $

1 + %$
)�t + ���;t: (30)

���;t in Eq. (30) is an exogenous shift in the policy stance regarding the long term rate of in�ation, assumed

to be i.i.d., and the parameter$ measures the extent to which the monetary authority smoothes the in�ation

target in anchoring its in�ation target to a properly de�ned measure of the �long-run in�ation expectations�,

�LR = (1� %)
P1

j=0 %
jEt�t+j , see Eq. (9) in Bekaert et al. (2010). Therefore, with $ = 0, the target

��t equals long-run in�ation expectations in the absence of exogenous shifts, while, for values of $ close

or equal to unity, Eq. (30) collapses to the Random Walk model: ��t = ��t�1 + ���;t: If this model can

be taken as a reasonable description of the evolution of ��t from the modelled sample, �t and ��t must be

cointegrated with cointegration vector (1,-1) for the monetary policy rule in Eq. (29) to be balanced (note

that, if �t-��t is stationary, (Et�t+1���t ) also will be stationary). Under this DGP, the investigator will �nd

two stochastic trends in Zt = (yt; �t; it; y
p
t )
0 and the source of the cointegration rank failure ( i.e. r < p) will

be the omitted stochastic in�ation target. A necessary condition for this hypothesis to be valid is that it

holds the restriction

�00Zt = �b00 Zt =

0B@1 0 0 �1

0 0 1 0

1CA
0BBBBBBB@

yt

�t

it

ypt

1CCCCCCCA
=

0B@ yt � ypt
it

1CA � stationary. (31)

The speci�cation in Eq. (31) implies that ypt and �t are I(1) and yt� y
p
t and it are stationary. The testable

cointegration restrictions relative to the strictly observable time series Zot = (yt; �t; it)
0 =W o

t collapse to

ro = 1 , (0; 0; 1; 0)Zot � stationary. (32)

Hypothesis 2: stationary real (ex-post) interest rate

Suppose that the two cointegration relationships identi�ed from the data are given by

�00Zt = �00(�)Zt =

0B@1 0 0 �1

0 �� 1 0

1CA
0BBBBBBB@

yt

�t

it

ypt

1CCCCCCCA
=

0B@ yt � ypt
it � ��t

1CA � stationary (33)
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where � is a cointegration parameter not related to the structural parameters �e. The two cointegrating

vectors in Eq. (33) are the output gap and a linear combination of it and �t with cointegration vector

(1, ��). For values of the parameter � close to one, the stationary linear combination (it � ��t) can be

interpreted as a measure of the ex-post real interest rate. Hence, other than the technology trend, we can

think about a real interest rate trend (or Fisher parity relationship). The mapping from Zt to Yt is in this

case given by

Yt =

0BBBBBBB@

1 0 0 �1

0 �� 1 0

0 (1� L) 0 0

(1� L) 0 0 0

1CCCCCCCA

0BBBBBBB@

yt

�t

it

ypt

1CCCCCCCA
=

0BBBBBBB@

~yt

it � ��t

(1� L)�t

(1� L)yt

1CCCCCCCA
� stationary

and by imposing this transformation on the system (10)-(13), the analogue of the system (18) is given by

~yt = ��(it � ��t)�
�

��

1� L

�
��t + 
Et~yt+1 +

�
�

1� L

�
Et��t+1 + (1� 
)~yt�1 + �~y;t�

1

1� L

�
��t =

%

1 + %{

�
1

1� L

�
�Et�t+1 +

{
1 + %{

�
1

1� L

�
��t�1 + �~yt + ��;t

(it � ��t) = (1� �)'y~yt �
�
� � (1� �)'�

1� L

�
��t +

��

(1� L)��t�1 + �(it�1 � ��t�1) + �i;t

~yt = ~yt�1 +�yt + �
�
yp;t:

In order to make only the stationary variables in Yt enter the model, we need to eliminate the operator

(1 � L)�1 from the equations above. This is achieved by imposing the following additional parameter

restrictions: � = '� = 1; { = 1, which, after some algebraic manipulations, lead to the equations

~yt = 
Et~yt+1 + (1� 
)~yt�1 + �Et��t+1 � �(it � �t) + �~y;t (34)

��t = %Et��t+1 +

�
�

1 + %

�
~yt + (1 + %)��;t (35)

(it � �t) = (1� �)'y~yt � ���t + �(it�1 � �t�1) + �i;t (36)

�~yt = �yt + �
�
yp;t (or �ypt = �yp;t). (37)

This new system is the counterpart of the error-correction representation of the NK-DSGE system (19)-(20).

It is balanced because it does not involve variables other those in Yt. The vector of structural parameters

is �Y = (
, �, %, �, 'y, �~y, ��, �i, �2~y ; �
2
�; �

2
i , �

2
yp)

0, and is obtained from the �complete�vector �e = (�0; �a)0

(�a = �2yp) by imposing the constraints � = '� = 1; { = 1. Note that dim(�Y )=dim(�e)-2, where 2

is the number of restrictions required for balancing. The interpretation of the transformed system is not
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trivial. The policy rule in Eq. (36) is now expressed such that the �operational/implementation target�

is the real interest rate, while the decision variables are the output gap and the change in in�ation (the

so-called �acceleration rate�). The condition '� = 1 maintains that the long-run response of the Central

Bank to in�ation is equal to one, which stands in sharp contrasts with a widely shared view about the

conquest of the U.S. in�ation during the �Great Moderation�era; see e.g. Clarida et al. (2000) and Lubik

and Schorfheide (2004). The restriction { = 1 implies �full indexation�and the Phillips curve in Eq. (35)

is expressed as a �purely forward-looking�model for ��t: In this case, the testable cointegration restrictions

relative to the strictly observable time series Zot = (yt; �t; it)
0 =W o

t correspond to

ro = 1, (0;��; 1; 0)Zot � stationary, with � = 1: (38)

One can evaluate Hypothesis 1 versus Hypothesis 2 by testing whether, for r = 2 (ro = 1), the cointe-

gration relationship is better described by the structure in Eq. (31) (Eq. (32)), or the structure in Eq. (33)

(Eq. (38)), using the testing strategy we introduce in the next section.

3.3 Example 3: the cost channel

Consider again the leading example model in Eq.s (10)-(14) but suppose now that the short-run CER implied

by this system, summarized in Eq.s (4)-(6) (Eq.s (22)-(23)), are not valid for the sample period used to

evaluate the model. One might conjecture, for instance, that this occurs because the baseline speci�cation

does not account for a cost-channel which might be at work in the economy. In short, a share of �rms in

the economy might need to borrow resources to pay workers�wages before the �nal goods market opens.

According to this theory, see Christiano et al. (2005) and Ravenna and Walsh (2006), the policy rate also

should enter �rms�marginal costs as a proxy of the interest rate paid on their loans, leading to the system

~yt = 
Et~yt+1 � �(it � Et�t+1) + (1� 
)~yt�1 + �~y;t

�t = !fEt�t+1 + !b�t�1 + �~yt + �i�it + ��;t

it = �it�1 + (1� �)('��t + 'y~yt) + �i;t

�~yt = �yt + �
�
yp;t:

In this model, the parameter 0� �i < 1 captures the share of �rms acceding the �nancial markets. The

implied set of CER obtained with 0<�i<1 are di¤erent in the absence of a cost channel based on �i = 0.
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4 The test sequence

We consider the NK-DSGE model introduced in Section 2, Assumptions 1-2, and focus on the following

hypotheses

H0: the DGP belongs to system (21)-(24) ; H1: the DGP does not belong to system (21)-(24) (39)

The null in Eq. (39) will also be referred to as the null with respect to the hypothesis that �the NK-DSGE

model is valid�. H0 implicitly maintains that the cointegration/common-trend restrictions subsumed in Eq.

(17) are ful�lled, hence it is possible to map Zt into Yt. Thus, any testing strategy for H0 against H1 is a

conditional decision rule.

To simplify the exposition without altering the logic of our method, we assume temporarily that all

variables in Zt (and hence in Yt) can be observed. We turn to the role of unobservables later. Consider the

VAR model for Zt :

Zt =
X̀
j=1

PjZt�j + �dt + �t , �t �WN(0n�1;��) (40)

where Pj , j = 1; :::; ` are n�nmatrices of parameters, ` is the lag order, dt is a vector including deterministic

variables (constant, linear trend dummies, etc.) with associated matrix of coe¢ cients, �, and �t is a White

Noise disturbance. Consider also the corresponding error-correction representation

�Zt = ��0Zt�1 +
`�1X
j=1

�j�Zt�1 + �dt + �t , �t �WN(0n�1;��) (41)

where ��0 = (
X̀
j=1

Pj � In), � is the n � r matrix of adjustment coe¢ cients, � is the n � r cointegration

matrix and �j = �
X̀
h=j+1

Ph, j = 1; :::; `�1. Suppose that the VAR lag order, `, is determined from the data

and that the vector of deterministic components, dt, is selected in accordance with the time series features

observed for the variables in Zt. Our procedure is based on the following steps:

LR1 [Cointegration rank test] We estimate the VAR system (40) and test for the hypothesis that the

cointegration rank is r = p, corresponding to n � p common stochastic trends driving the system,

against the alternative r = n, corresponding to a stationary system. We suggest using either the

�one-shot�version of the LR Trace test (Johansen, 1996), henceforth denoted LR1, or its �sequential�

version, denoted LR1seq. The LR1seq test involves starting with r = 0 (n stochastic trends), testing

in turn the hypothesis �the cointegration rank is r�against �the VAR is stationary�for r = 0; :::; n� 1,
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until, for a given value of r = r̂, the asymptotic p-value associated with the test statistics exceeds the

chosen signi�cance level. The bootstrap versions of these tests discussed in Cavaliere et al. (2012) can

be applied in small samples. If the hypothesis r = p is not rejected, we consider the next step. If instead

the hypothesis r = p is rejected, we suggest proceeding by thinking about an alternative speci�cation

which embodies, when possible, the stochastic trends not featured by the original speci�cation of the

NK-DSGE model; see as an example the cases discussed in Sub-section 3.2.

LR2 [Overidenti�cation cointegration restrictions test] Given r = p, we move to the vector error-

correction counterpart of the cointegrated VAR in Eq. (41), and �x the (identi�ed) cointegration

matrix � at the structure implied by the theoretical model, i.e., � = �b0 = � as in Eq. (17). Then we

compute a LR test, henceforth denoted with LR2, for the implied set of over-identifying restrictions;

see Johansen (1996). The bootstrap versions of the test LR2 discussed in, e.g., Boswijk et al. (2013)

can be used to improve the small sample performance. If the LR2 test does not reject the over-

identifying restrictions, we build the transformed vector Yt in Eq. (16) by keeping � = �b0 = � �xed at

the non-rejected structure, and consider the next step. If instead the LR2 test rejects the restrictions,

one can proceed similarly to the case in which the LR1 (LR1seq) test rejects the predicted number of

stochastic trends.

LR3 [Test for CER] We estimate the �nite-order VAR system in Eq. (21) unrestrictedly, i.e., leaving

the matrices �1, �2 and �Y;" unconstrained, and imposing the CER in Eq.s (22)-(24), using the

ML algorithm summarized in the Technical Supplement. We thus compute a LR test for the CER,

henceforth denoted LR3, and obtain the ML estimate of the structural parameters. The LR3 test can

also be constructed by referring to the �partial equilibrium�representation of the NK-DSGE model for

Wt, given by the system in Eq.s (3)-(6). When computationally feasible, bootstrap versions of the test

LR3 discussed in, e.g., Cho and Moreno (2006) and Fanelli and Palomba (2011) can be used in small

samples.

The �LR1 ! LR2 ! LR3� testing strategy is a novel approach in the literature. From a statistical

viewpoint, H0 in Eq. (39) is rejected in favour of H1 if one of the three tests rejects, while it is accepted if

all three tests pass. However, the �LR1 ! LR2 ! LR3�testing strategy need not be applied mechanically

as an �accept-reject�proposition. The information, stemming from the tests LR1 (LR1seq), LR2 and LR3,

can potentially be used to uncover which features of the data or transmission mechanisms of the shocks are

not captured by the theoretical model, so that the model may be improved; see, e.g., the scenarios discussed

in Sub-sections 3.2-3.3. In principle, it is possible to follow the alternative strategy based on imposing
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(without testing) the restrictions in Eq. (17) on the VAR, testing the CER alone. While such a strategy

is advantageous when the restrictions imposed are �true�, one of its perils is that insisting that a root very

close to unity is a stationary root, for example, may lead to large size distortions and power losses in tests

for the CER in rational expectations models; see Johansen (2006) and Li (2007).

The �LR1! LR2! LR3�testing strategy discussed so far maintains that the econometrician observes

all components of Zt (and hence of Yt). When it is not possible to proxy all variables, the testing strategy

can be adapted. In these cases, the testable cointegration/common-trend implications of the NK-DSGE

model re�ect on the sub-vector Zot = W o
t of Zt. For instance, considering the examples discussed in Sub-

sections 3.1 and 3.2, the relevant log run testable restrictions are given in Eq. (28), Eq. (32) and Eq. (38),

respectively. In this case, W o
t has a state-space (VARMA-type) representation under the null H0 in Eq. (39)

(see the Technical Supplement), and a �nite-order VAR forW o
t can provide, with quali�cations, a reasonable

approximation of its actual time series properties. The procedure is based on the following testing steps:

LR1 [Cointegration rank test: the case of unobservables] We specify a VAR for W o
t similar to sys-

tem (40) with a relatively �large�`, and use the test(s) LR1 and/or LR1seq to select the cointegration

rank ro.

LR2 [Overidenti�cation cointegration restrictions test: the case of unobservables] We use the vec-

tor error-correction counterpart of the cointegrated VAR similar to system (41) and, �xing ro, we

compute the LR2 test by considering the over-identifying cointegration restrictions.

LR3 [Test for CER: the case of unobservables] We compute the LR3 test by evaluating the likelihood

function associated with the �minimal state-space representation�corresponding to the VAR for Yt in

Eq. (21) under the CER in Eq.s (22)-(24) (or to the VAR for Wt in Eq. (3) under the CER in Eq.s

(4)-(6)) with the Kalman �lter; see, e.g., Ruge-Murcia (2007) and Fukaµc and Pagan (2010). We refer

to Komunjer and Ng (2011) and Guerron-Quintana et al. (2013) for practical examples where the

�minimal state-space representation�is derived from the set of observationally equivalent non-minimal

state-space representations. An alternative to the test LR3 based on the indirect inference approach

may be found in the Technical Supplement.

Under the null H0 in Eq. (39), the asymptotic properties of each of the three tests comprising the

�LR1!LR2 !LR3�testing strategy are known. The asymptotic properties of the tests LR1 (LR1seq) and

LR2 may be found in Johansen (1996), while the asymptotic properties of their bootstrap counterparts are

discussed in Cavaliere et al. (2012) and Boswijk et al. (2013). The asymptotic properties of the test LR3

are standard (including its bootstrap analogue) under standard regularity conditions. We have postponed
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a detailed derivation of the asymptotic size properties of the �LR1 ! LR2 ! LR3� testing strategy to

the Appendix. Because the three tests are asymptotically correctly sized under the null, if the test for H0

against H1 in Eq. (39) is conducted by �xing the overall signi�cance level at, e.g., the 5% level, the type-I

errors (and hence the critical values) of the tests LR1 (LR1seq), LR2 and LR3 must be chosen accordingly,

e.g. 1% for LR1 (LR1seq), 2% for LR2 and 2% for LR3.

It is worth spending a few words on the tests LR1 and LR1seq. In our framework, the use of the �one-shot�

cointegration rank test LR1 re�ects the idea that the number of common trends driving the variables are

given and equal to n� r0 = n� p under the null of the NK-DSGE model, where r0 is the true cointegration

rank. By construction, the LR1 test rules out all alternatives in which the number of common trends is,

e.g., larger than n � p, and in which its asymptotic distribution is unknown, if, for instance, r0 < p. The

LR1 test must be applied, therefore, when one is con�dent that there are no more than n � p stochastic

trends in the data. Instead, the LR1seq test has power asymptotically against the alternative of a number

of stochastic trends di¤erent from n � p. Nevertheless, its �nite sample performance may be poor, as our

simulation experiment in the next section will document, and therefore it should be applied and interpreted

with caution. When the empirical evaluation of the NK-DSGE model is based on the W o
t = Zot sub-vector,

it is also possible to apply a number of alternative tests to LR1 and LR1seq. These are reviewed in, e.g.,

Lütkepohl and Claessen (1997), which do not require estimating a fully identi�ed VARMA-type model; see

also Stock and Watson (1988).

5 Simulation experiment

To evaluate the �nite sample size performance of the �LR1 ! LR2 ! LR3�testing strategy, we conduct a

small Monte Carlo experiment based on the determinate solution of the model summarized in Eq.s (10)-(14).

We �x the discount rate % at the value % = 0:99, and consider the estimation of !f = %=(1+ %{) and derive

that of { indirectly. Hence the vector of �free�structural parameters is given by � = (
, �, !f , �, '�, 'y,

�~y, ��, �i, �2~y ; �
2
�; �

2
i )
0 and the �extended�vector is �e = (�0, �a)0, where �a = �2yp (�yp;t = uyp;t). The vector

of fundamental shocks uZt = (u~y;t; u�;t; ui;t; uyp;t)
0 is assumed White Noise with Gaussian distribution and

diagonal covariance matrix �u;Z . The parameter vector � is calibrated to the empirical estimates of Benati

and Surico (2009); see, in particular, the last column of their Table 1 (�After the Volcker stabilization�).

The variance of the natural rate of output �2yp is �xed at a value considered reasonable. Recall that, in this

setup, �Y = �e. The calibrated values of �e are reported in the �rst column of Table 1, Panel 2. In line with

the developments in the empirical illustration of Section 6, we assume that the econometrician can observe

the natural rate of output, ypt .
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[Table 1 about here.]

We generate time series of size T=100, 200 and 500, and compute the test sequence �LR1! LR2! LR3�

M = 5000 times. The overall nominal level of signi�cance is �xed at 5% ( = 0:05), and the nominal type-I

errors of the three tests are 1% for the LR1 test ( 1 = 0:01), 2% for the test LR2 ( 2 = 0:02) and 2% for

the test LR3 ( 3 = 0:02). The (asymptotic) critical values are chosen accordingly.

The results are summarized in Table 1, Panel 1. For samples of size T = 100 and 200 we also compute

the (i.i.d.) bootstrap versions of the tests. The implementation of the bootstrap version of the LR1 test

follows Cavaliere et al. (2012), while the (i.i.d.) bootstrap version of the LR2 test is discussed in Boswijk

et al. (2013). The bootstrap version of the LR3 test is computed by adapting to the (i.i.d.) non-parametric

setup the procedure discussed in Fanelli and Palomba (2011).

We �rst focus on the empirical size of the components of the test sequence. The null hypothesis of the

test LR1 is a single stochastic trend in the system (r = p = 3) and its empirical size is reported in the �rst

row of Panel 1, labeled �LR1 1=0:01 (r = 3)�. We notice that, unexpectedly, this test is slightly under-sized

in samples of size T = 100. One would expect over-rejection but the �nite sample performance of the

LR1 test may well depend on the structure of the short-run dynamics of the system, which in our setup

is �special�, i.e., highly restricted by the CER. The bootstrap-corrected version of the test produces similar

results. LR2 tests the over-identi�cation restrictions on the cointegration matrix �0 implied by Eq. (25)

and is asymptotically chi-square distributed with 3 degrees of freedom under the null. Its empirical size is

reported in the second row of Panel 1, labeled �LR2 2=0:02 (�0 = � j LR1)�. The test tends to be over-sized.

For a sample size of T = 100, the empirical size is 7:2% as opposed to the 2% nominal size. However,

the bootstrap version of the test guarantees a good size coverage, bringing the rejection frequency down to

2:2% for both T = 100 and T = 200. Finally, the empirical size of the test LR3 for the CER is reported

in the third row of Panel 1, labeled �LR3 3=0:02 (CER j LR2)�. To compute this test, we maximized the

likelihood of the VAR system (21) under the constraints in Eq.s (22)-(24), using the iterative ML algorithm

discussed in the Technical Supplement. The ML estimates of �e are discussed below. Under the null, LR3

is asymptotically chi-square with 28 degrees of freedom, where 28 is the di¤erence between the number of

unrestricted parameters in the VAR (32+10) and the structural parameters (dim (�e) = 14). The empirical

size is reasonably good in this case although the bootstrap counterpart of the test is under-sized in samples

of T = 100.

The overall empirical rejection frequency associated with the �LR1 ! LR2 ! LR3�testing strategy is

summarized in the seventh row of Panel 1. It can be noticed that, considering asymptotic critical values,

it ranges from 10:6% (T = 100), via 7:1% (T = 200) to 5% (T = 500), with a nominal level of 5%. The
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bootstrap version of the testing strategy ensures a strict size control in small samples.

Table 1, Panel 2, reports the Monte Carlo means of the structural parameters with the Monte Carlo

standard errors in parentheses. The structural parameters are recovered with surprising precision, the

only exceptions being, in samples of size T=100, the parameters of the policy rule 'y and '�, although

estimation precision increases with the sample size. This lack of precision, which is usually ascribed to

�weak identi�cation� issues, is a common �nding and source of misunderstandings in the literature. The

discussion of these issues goes beyond the scope of the present paper. We suggest an interpretation in the

Technical Supplement.

[Table 2 about here.]

As observed in Section 4, the �rst test of the testing strategy can also be the �sequential�cointegration

rank test, LR1seq. The results in Table 2 summarize the marginal acceptance frequencies of the hypotheses

r = r̂, r̂ = 0; 1; 2; 3; 4, considering samples of size T = 100 and T = 200. We also include the acceptance

frequencies corrected with the bootstrap version of the LR1seq test. We notice that, in samples of size

T = 200, the LR1seq test performs as expected, selecting the �true� cointegration rank, r̂ = r0 = 3, in

71:2% of the simulations. Instead, results are less clear-cut in samples of size T = 100. We notice that the

�wrong�cointegration ranks 1 and 2 are selected in around 90% of the simulations, compared to the �true�

cointegration rank in only 9:4% of the simulations. This phenomenon re�ects a well-known small sample

(power) issue of the sequential cointegration rank test, and, in this case, the bootstrap correction does not

seem to keep the risk of a wrong choice under control. The results of our Monte Carlo experiment suggest

using LR1seq with caution in small samples, especially in the absence of a clear alternative about the number

of stochastic trends.

Keeping these results in mind, we next turn to an empirical application of our testing strategy.

6 An estimated NK-DSGE model of the U.S. economy

In this section, we apply the �LR1 ! LR2 ! LR3�testing strategy to evaluate the NK-DSGE monetary

model summarized in Eq.s (10)-(13), using U.S. quarterly data. Unlike Benati and Surico (2009), we do not

force the covariance matrix of the structural disturbances to be diagonal, see, e.g., Kapetanios et al. (2007)

Dufour et al. (2013) and Castelnuovo and Fanelli (2013) for similar choices. We �x the discount rate at the

value %=0.99 and split the vector of structural parameters � as � = (�0s; �
0
�)
0, where �s = (
, �, {, �, �, '�,

'y, �~y, ��, �i)0 and �� = vech(�W;u). The natural rate of output is approximated with the o¢ cial measure

provided by the Congressional Budget O¢ ce (CBO) estimation, following, e.g., Cho and Moreno (2006) and
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Castelnuovo and Surico (2010) (see also Table 1 in Gorodnichenko and Ng (2010)). Approximating ypt with

the CBO time series allows us to treat the �complete�vector Zt = (yt, �t, it, y
p
t )
0 (n = 4) as observable. The

other variables are the real GDP yt; the in�ation rate �t, which is the quarterly growth rate of the GDP

de�ator; and the short-term nominal interest rate it, measured by the e¤ective federal funds rate expressed

in quarterly terms (averages of monthly values). The data source is the web site of the Federal Reserve

Bank of St. Louis.

Our data cover the �Great Moderation�period, 1985q1-2008q3, hence we have T = 95 observations (not

including initial lags). The choice of the sample is motivated in our Technical Supplement in detail. We �x

the overall nominal level of signi�cance at the 5% level, and the type-I errors of the tests LR1, LR2 and

LR3 at the 1%, 2% and 2% levels, respectively. The empirical analysis starts with the estimation of an

unrestricted VAR system for Zt as speci�ed in Eq. (40). We include a constant in the equations (i.e., dt = 1

and � is a n� 1 constant) because the variables in Zt are not demeaned prior to estimation. As discussed

in Sub-sections 2.1 and 3.1, the system should be driven by a single stochastic trend under the null of the

NK-DSGE model, and the cointegration relationships should match the speci�cation of �0 = �b0 = � in Eq.

(25). In other words, the variables ~yt = (yt � ypt ), �t and it should be jointly stationary.

The LR1 (LR1seq), LR2 and LR3 tests are reported in Table 3, Panel 1. We complement the asymptotic

p-values of the tests with their bootstrap analogues. Results indicate that the evidence in favour of a single

stochastic trend is not clear-cut, but defendable. While the test LR1 provides ample support for the

hypothesis r = 3 = p (n � r = 1) at the 1% level, considering both asymptotic and bootstrap p-values, a

di¤erent picture emerges from the test LR1seq, which selects r = r̂ = 1 at the 1% level, irrespective of whether

asymptotic or bootstrap p-values are considered. The outcome r = r̂ = 1 would lead us to conclude that

there are three common stochastic trends in the data, two more than expected, and it would be di¢ cult

to reconcile such an evidence with a substantial body of work on the drivers of the �Great Moderation�.

Actually, the test LR1seq has a poor small sample (power) performance, as we have documented in Section

5; hence, it is reasonable to conjecture that the high persistence characterizing the time series �t and it in

the period 1985q1-2008q3 induces the test to select two unit roots instead of two stationary roots. Hence,

we do not have su¢ cient evidence to refute the result of the �one-shot�cointegration test LR1. This �nding

strongly supports the case r = 3 (n � r = 1). The LR2 test provides another piece of evidence in favour

of this hypothesis. Indeed, while the asymptotic p-value associated with the LR2 test statistic implies

rejection, its bootstrap counterpart is equal to 0:04 and does not lead us to reject the structure in Eq. (25)

at the 2% level. We therefore consider the last step of the �LR1! LR2! LR3�testing strategy.

The last step requires testing the short-run CER. We take the �partial equilibrium��nite-order VAR
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representation for Wt = (~yt, �t, it)0 in Eq.s (3)-(6) directly to the data. To compute the LR3 test, the

VAR system (3) is estimated unrestrictedly and under the CER in Eqs. (4)-(6), using the ML algorithm

summarized in the Technical Supplement. We split �s as �s = (�0g, �
0
ng)

0; where �g = (�, {, �, '�, 'y)0 and

�ng = (
, �, �~y, ��, �i)0, and combine a grid-search approach for the elements of �g, which are notoriously

di¢ cult to estimate through non-Bayesian techniques, with a numerical Newton-type estimation approach

for the elements of �ng. The ML estimate of �� is obtained indirectly, given the estimate of �s. Estimation

results are summarized in Table 3, Panel 2.

[Table 3 about here.]

The p-value associated with the LR3 test is equal to 0:022, while its bootstrap analogue is 0:80; hence, we

do not reject the CER implied by the NK-DSGE model at the 2% level. The point estimates of the structural

parameters turn out to be quite similar to those found in a variety of contributions in the literature, hence

we do not discuss these results in detail. A note of caution is needed for the parameters of the policy

reaction function. As we have learned from the Monte Carlo experiment, it is extremely di¢ cult to estimate

these parameters precisely in small samples. Weak identi�cation of the parameters might be an important

concern; see Mavroeidis (2010), Castelnuovo and Fanelli (2013) and the Technical Supplement. As is well

known, weak identi�cation issues may a¤ect the asymptotic (and bootstrap) distribution of the estimators

and tests commonly used, hence the evidence stemming from the LR3 test should be taken with caution.

Overall, the �LR1 ! LR2 ! LR3�testing strategy does not lead to rejection of the NK-DSGE model

in Eq.s (10)-(13) at the 5% nominal level, during the �Great Moderation�period 1985q1-2008q3, with the

caveats discussed above.

7 Concluding remarks

DSGE models are interpreted as inherently misspeci�ed systems, hence it is often claimed that testing their

implied restrictions is an exercise which is inevitably destined to fail. According to this interpretation,

only Bayesian methods are meaningful and can successfully be applied in empirical work. Our paper has

shown that a �frequentist�VAR-based evaluation approach can provide interesting insights with small-scale

NK-DSGE models. We have proposed the �LR1! LR2! LR3�testing strategy as a conditional sequence

of likelihood-ratio tests which evaluates the long-run and short-run restrictions implied by the NK-DSGE

model jointly through a multiple hypothesis testing exercise.

We derive three main lessons from our analysis. First, if the information stemming from the individual

tests is used constructively, our approach can be exploited to rectify/modify the structural equations when
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misspeci�cation is detected. Second, an important cause of rejection may be the poor performance of the

tests in small samples. The risk of falsely rejecting the structural model in applied work can be reduced

considerably by considering the bootstrap counterpart of the �LR1 ! LR2 ! LR3� procedure. Third,

in samples of the size typically available to practitioners, the weak identi�cation phenomenon of some of

the structural parameters is a concrete possibility that deserves attention. However, despite the highly

constrained nature of the model, a properly conducted testing approach is not necessarily destined to lead

one to reject the model, but will most likely lead to better models and better understanding of the macro

economy.
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Appendix A Size properties of the testing strategy

In this Appendix we discuss the asymptotic size of the �LR1!LR2 !LR3�testing strategy. Denote with

LRi;T , i = 1; 2; 3, the three LR test statistics of the sequence, and let  i be the nominal signi�cance level

(type-I error) pre-�xed for the i-th test; moreover, let  i;T = PH0i;T (LRi;T � cr ii;T ) be the exact size of the

i-th test based on a sample of size T , where PH0i;T (�) is the probability measure associated with the (marginal)

null distribution of LRi;T and cr
 i
i;T is the corresponding critical value at nominal level  i. Under the null

H0 in Eq. (11), the three tests, individually considered, are correctly sized; in particular, they satisfy the

condition  i;1 =lim sup  i;T =  i, i = 1; 2; 3, where  i;1 is the asymptotic size of the i-th test and �lim sup�

is intended for T ! 1. Let PH01;2;T (� ; �) and P
H0
2;3;T (� ; �) be the (joint) probability measures associated

with the null distributions of the test statistics LR1;T and LR2;T and the test statistics LR2;T and LR3;T ,

respectively. It turns out that the overall asymptotic size of the testing strategy is given by  1 =lim sup T ,

where

 T = PH01;T (LR1;T � cr 11;T ) + P
H0
1;2;T (LR1;T < cr 11;T ; LR2;T � cr 22;T )

+ PH02;3;T (LR2;T < cr 22;T ; LR3;T � cr 33;T ). (A42)

The �rst addend of Eq. (A42) captures the probability that the test LR1 incorrectly rejects the cointegration

rank in a sample of size T ; the second addend captures the joint probability that the LR2 test incorrectly

rejects the structure of the cointegration matrix; the LR1 test correctly selects the cointegration rank in a

sample of size T ; and, �nally, the last addend captures the joint probability that the LR3 test incorrectly

rejects the CER and the LR2 correctly rejects the structure of the cointegration matrix in a sample of

size T: By using the inequalities PH01;2;T (LR1;T < cr 11;T ;LR2;T � cr 22;T ) �  2;T and PH02;3;T (LR2;T < cr 22;T ;

LR3;T � cr 33;T ) �  3;T ; the asymptotic size  1 is such that

 1 �  1;1 +  2;1 +  3;1 =  1 +  2 +  3: (A43)

This result suggests that, in empirical analyses, it is convenient to �x the overall nominal signi�cance level

of the procedure at the level  =( 1 +  2 +  3).
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Table 1: Monte Carlo results: size of the testing strategy and ML estimates of the structural parameters.

Panel 1: Empirical size of the �LR1! LR2! LR3�testing strategy
Tests T = 100 T = 200 T = 500

Asymptotic Bootstrap Asymptotic Bootstrap Asymptotic
LR1 1=0:01 (r = 3) 0:006 0:006 0:009 0:009 0:012

LR2 2=0:02 (�0 = � j LR1) 0:072 0:022 0:043 0:022 0:022

LR3 3=0:02 (CER j LR2) 0:028 0:008 0:019 0:019 0:016

Overall rejection:  ̂ =
P3

i=1  ̂i 0:106 0:036 0:071 0:050 0:050

Panel 2: ML estimates and s.e. of structural parameters: ÊMC

�
�̂i

�
(s:e:MC

�
�̂i

�
)

True parameters T = 100 T = 200 T = 500

� = 0:044 0:095
(0:111)

0:067
(0:058)

0:049
(0:029)

� = 0:124 0:149
(0:082)

0:136
(0:053)

0:129
(0:032)


 = 0:744 0:740
(0:079)

0:745
(0:053)

0:744
(0:033)

!f = 0:935 0:955
(0:180)

0:932
(0:148)

0:912
(0:122)

� = 0:834 0:826
(0:085)

0:832
(0:060)

0:832
(0:037)

'y = 1:146 1:440
(1:197)

1:356
(0:841)

1:207
(0:390)

'� = 1:749 2:436
(1:680)

2:155
(1:206)

1:859
(0:592)

�y = 0:796 0:768
(0:141)

0:784
(0:079)

0:789
(0:043)

�� = 0:418 0:404
(0:205)

0:380
(0:079)

0:362
(0:157)

�i = 0:404 0:394
(0:135)

0:402
(0:098)

0:404
(0:062)

�2~y = 0:055 0:072
(0:041)

0:062
(0:024)

0:058
(0:013)

�2� = 0:391 0:450
(0:181)

0:429
(0:108)

0:421
(0:079)

�2i = 0:492 0:515
(0:164)

0:508
(0:106)

0:496
(0:053)

�2yp = 0:020 0:020
(0:003)

0:020
(0:002)

0:020
(0:001)

NOTES: Results are obtained using M = 5000 Monte Carlo replications generated under the null of the NK-DSGE
model in Eq.s (10)-(14). Given the initial conditions, the observations Y1; :::; YT are generated from the VAR system
(21)-(24) and then transformed into Z1; :::; ZT using the restriction �0 = �b0 = � from Eq. (25) and the mapping
Zt = G

�
�b0, � , 1� L

��1
Yt. For each replication, a sample of T + 200 observations is generated and the �rst 200

observations are then discarded. PANEL 1: empirical rejection frequencies (erf) of the tests LR1, LR2 and LR3
and of the overall �LR1 ! LR2 ! LR3� testing strategy; the column �Asymptotic� reports the erf computed using
the asymptotic critical values taken from Doornik (1998); the column �Bootstrap�reports the erf computed using the
bootstrap p-values associated with the tests; the �one-shot�cointegration rank test LR1 evaluates the null of a single
stochastic trend versus the alternative of stationary VAR and is computed from a VAR system for Zt as in Eq. (40)
with ` = 2 and no deterministic components; the (iid) bootstrap counterpart of the test LR1 is computed using the
method discussed in Cavaliere et al. (2012) with B = 399 replications; the over-identi�ed cointegrating restrictions
test LR2 is computed from the error-correction system as in Eq. (21) with ` = 2 and no deterministic components
and evaluates whether �0 has the structure in Eq. (25) and has 12 � 9 = 3 degrees of freedom; the (iid) bootstrap
counterpart of the test LR2 is computed using the method discussed in Boswijk et al. (2013) with B = 399 replications;
the test LR3 is computed by estimating a VAR system for Yt as in Eq. (21) unrestrictedly and under the CER in Eq.s
(22)-(24) by the ML algorithm summarized in the Technical Supplement, and has 42� 14 = 28 degrees of freedom; the
bootstrap p-value for the test LR3 is computed with B = 99 replications and using the non-parametric analogue of the
procedure discussed in Fanelli and Palomba (2011, Section 3), case t = T . PANEL 2: Averages of the ML estimates
of the structural parameters and Monte Carlo standard errors in parentheses; averages are computed considering only
DGPs for which the �LR1 ! LR2 ! LR3�testing strategy does not lead to rejection; ML estimates are obtained by
maximizing the Gaussian log-likelihood of the VAR system for Yt, see system Eq. (21), unrestrictedly and under the
CER in Eq.s (22)-(24); see Technical Supplement.
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Table 2: Simulated and bootstrapped marginal acceptance frequencies of LR1seq and rejection
frequencies of the �LR1seq ! LR2! LR3�testing strategy of the NK-DSGE model.

Panel 1: Empirical acceptance frequencies of the LR1seq test
Tests T = 100 T = 200

Asymptotic Bootstrap Asymptotic Bootstrap
LR1seq r = 0 0:010 0:036 0:000 0:000

r = 1 0:353 0:445 0:000 0:001

r = 2 0:539 0:437 0:276 0:326

r = 3 0:094 0:078 0:712 0:663

r = 4 0:004 0:004 0:012 0:010

Panel 2: Empirical size of the �LR1seq ! LR2! LR3�testing strategy
LR1seq 1=0:01 (r = 3) 0:004 0:004 0:012 0:010

LR2 2=0:02 (�0 = � j LR1seq) 0:140 0:059 0:044 0:022

LR3 3=0:02 (CER j LR2) 0:049 0:014 0:022 0:011

Overall rejection:  ̂ =
P3

i=1  ̂i 0:193 0:077 0:078 0:043

NOTES: Results are obtained using M = 5000 Monte Carlo replications generated as detailed in the
notes of Table 1. Panel 1: The column �Asymptotic�reports the empirical acceptance frequencies (eaf )
computed using the asymptotic critical values; the column �Bootstrap�reports the eaf computed using
the bootstrap p-values associated with the tests; the (iid) bootstrap counterpart of the test LR1seq is
computed following Cavaliere et al. (2012) using B = 399 replications. Panel 2: Empirical rejection
frequencies of the tests LR1seq, LR2 and LR3 and of the overall �LR1seq ! LR2 ! LR3� testing
strategy. The tests LR2 and LR3, including their bootstrap counterparts, are computed as detailed in
the notes to Table 1.
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Table 3: The tests LR1seq, LR1, LR2 and LR3, �LR1seq ! LR2! LR3�testing strategy and ML estimates
of the structural parameters of the NK-DSGE system on U.S. quarterly data, 1985q1-2008q3.

Panel 1: tests of NK-DSGE model
Tests Trace Asymptotic Bootstrap
LR1seq : r = 0 107:10 0:000 0:000

r = 1 32:33 0:024 0:071
r = 2 15:07 0:056 0:248

LR1 1=0:01 (r = 3) r = 3 2:43 0:119 0:491

LR2 2=0:02 (�0 = � j LR1) 11:665 0:009 0:040

LR3 3=0:02 (CER j LR2) 17:94 0:022 0:80

Panel 2: ML estimates of structural parameters
Parameters �s: Interpretation ML


 AD, forward look. term 0.777
(0.025)

� AD, inverse elasticity of sub. 0.030
(0.006)

{ NKPC, indexation 0.014
(0.015)

implied value of !f =
0:99

1+0:99{ NKPC, forward-looking 0.977
(0.034)

� NKPC, slope 0.083
(0.022)

� Policy rule, smoothing term 0.573
(0.358)

'ey Policy rule, react. to out. gap 0.073
(1.145)

'� Policy rule, react. to in�ation 5.37
(2.47)

�ey AD, disturbance persist. 0.935
(0.010)

�� NKPC, disturbance persist. 0.875
(0.011)

�i Policy rule, disturbance persist. 0.810
(0.451)

Parameters �� : �̂W;u=

0BBB@
0:0145
(0:0002)

�0:0019
(0:0003)

�0:0008
(0:0018)

0:0051
(0:0007)

�0:0223
(0:0041)

0:222
(0:032)

1CCCA
NOTES: Results are obtained from a VAR system for Zt = (yt, �t, it, y

p
t )
0 as speci�ed in Eq. (40) with ` = 2, dt = 1

and � unrestricted. PANEL 1: The column �Trace�reports the LR cointegration rank Trace statistic; the column

�Asymptotic� reports the p-values of the test computed with asymptotic critical values from Doornik (1998); the

column �Bootstrap�reports the p-values of the test computed with the bootstrap; the �one-shot�cointegration rank

test LR1 evaluates the null of a single stochastic trend versus the alternative of a stationary VAR and is highlighted

in the fourth row; the bootstrap p-values for the tests LR1 and LR1seq are computed using the method discussed

in Cavaliere et al. (2012) with B = 399 replications; the test LR2 evaluates the over-identi�cation cointegration

restrictions in Eq. (25) and has 3 degrees of freedom; the (iid) bootstrap counterpart of the test LR2 is computed

using the method discussed in Boswijk et al. (2013), with B = 399 replications; the test LR3 evaluates the CER

implied by the NK-DSGE model and has 8 degrees of freedom; the bootstrap p-value for the test LR3 is computed

with B = 99 replications and using the non-parametric analogue of the procedure discussed in Fanelli and Palomba

(2011, Section 3), case t = T . PANEL 2: ML estimates have been obtained from the �nite-order VAR for W o
t =

(yt � ypt ; �t; it)0 in Eq. (3) by maximizing the Gaussian log-likelihood under the CER in Eq.s (4)-(6) by combining
the BFGS method for 
, �, �~y, �� and �i with a grid search for � (range [0:01; 0:20]), { (range [0:01; 0:10]), �

(range [0:01; 0:10]), '~y (range [0:05; 1:50]) and '� (range [0:5; 5:50]) (see Technical Supplement); the covariance

matrix �W;u is not diagonal and its elements are estimated indirectly (see Technical Supplement); the variables in

W o
t have been preliminarily demeaned; ML estimates are robust to di¤erent choices of the initial values used for 
,

�, �~y, �� and �i; asymptotic standard errors are reported in parentheses below estimates; �AD�stands for aggregate

demand; �NKPC�stands for New Keynesian Phillips curve.
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