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Since the classic work of Breeden and Litzenberger (1978) it has been clear that option prices contain

valuable information on investors’ forward looking state price density function. It has been less clear,

however, if this information is in any way linked to macroeconomic fundamentals that should affect

agents’ state prices. While it is intuitive that corporate stock and options prices react to corporate news,

there is also substantive evidence that they react to monetary policy shocks.1 This empirical evidence

though spurs fundamental questions such as: What is the relation between option prices, corporate

fundamentals, and the action of the central bank? Can option prices help us identify investors’ and

central bank’s beliefs about future economic growth and inflation? In this paper we provide an equilib-

rium model that links option prices to both fundamentals and monetary policy and provide a dynamic

and time consistent methodology to extract investors’ beliefs on the regime of the macroeconomy and

central bank policy.

Before describing the model and its implications, it is useful to present some empirical relations

between option prices, the state of the economy, and monetary policy. Our analysis focuses on two

popularly quoted measures constructed from options prices. The first is the implied volatility of at-

the-money (ATMIV) options, which was originally created by Whaley (1993), and it has been trading

on the Chicago Board Options Exchange under the ticker VIX since 1993.2 The CBOE describes this

index eloquently as:

One of the most interesting features of VIX, and the reason it has been called the “investor

fear guage,” is that, historically, VIX hits its highest levels during times of financial turmoil

and investor fear. [CBOE Bulletin on VIX, 2003].
1For example, Bernanke and Kuttner (2005) report that monetary policy surprises affect the stock market, while Rigobon
and Sack (2003) show that the monetary policy responds to stock returns with a greater reaction during times of higher
volatility, and more recently Bekaert, Hoerova, and Duca (2010) find a significant reaction of options prices to lead and
lag measures of monetary policy.

2In September 2003, the CBOE changed the computation method for the VIX index using a new methodology that does
not involve the Black and Scholes formula. The two measures are highly correlated and we will compare their two time
series in an online appendix, which is to be made available to readers.
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The second measure is the ratio of implied volatilities of out-of-the-money put to call options (P/C),

which is a direct market assessment of downside relative to upside risk. This measure has also been

studied extensively since the work of Bates (1991) to guage investors’ worries about a market decline.

Quarterly time series plots of these variables for options with three months to maturity are shown

in Figure 1 for the 23-year period 1986 - 2008. Comparing the two panels in Figure 1, we see that,

surprisingly perhaps, ATMIV and the P/C are negatively related, with the ATMIV (P/C) being generally

counter (pro) cyclical. While it is intuitive that implied volatility ATMIV is high during downturns, it

is less obvious why the downside-risk index P/C is high during booms and low during recessions. Our

model explains why by tying this variation to monetary policy dynamics.

Indeed, it is revealing to see how monetary policy relates to the two options’ indices. By way of

motivation, we estimate pairwise Vector Auto Regressions (VAR) with the options’ indices and mon-

etary policy variables. The left panels of Figure 2 report resulting impulse responses for the historical

series over the options subsample of 1986:Q2 – 2008. The results are striking and all in one direction:

shocks to both ATMIV and P/C lead to sustained impacts on future monetary policy. In contrast, we

do not find that monetary policy measures have any sustained impacts on the two options measures

(results not shown). Moreover, and more interestingly, the first panel shows that the 3-month Treasury

rate decreases for up to eight quarters in response to a shock to ATMIV.3 Even more interestingly, a

shock to the downside-risk index P/C induces the 3-month Treasury rate to increase for up to eight

quarters in the future. Under the interpretation of Bates (1991), the latter result implies that when in-

vestors become more worried about a stock market decline, future short-term rates increase. What is

the economic mechanism generating this empirical observation? 4

To further our understanding and link the two options’ indices to a policy-relevant fundamental vari-

able, the bottom two panels of Figure 2 show that indeed we obtain the same directional impulses for
3In our empirical analysis, we use the 3-month T-bill rate as our short-term rate, rather than the Federal Funds rate, as the
latter is affected by banks’ default premium, which is absent in our model. The 3-month T-bill rate and the Fed Funds
rate are very highly correlated.

4Interestingly, we find that the put-to-call ratio P/C strongly predicts future interest rates, while we do not find such
relation with other measures of crash risk, such as the difference in implied volatility of out-of-the-money puts versus
at-the-money puts. Our fitted model is consistent also with this evidence.
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ATMIV and P/C shocks on capacity utilization (CU), an important determinant in the Federal Reserve

monetary policy rule. That is, positive shocks to ATMIV (P/C) lead to a decrease (increase) in CU. In

contrast, the impulse responses of CU on the options’ indices are statistically insignificant (results not

shown). Taken together, these results suggest intriguing dynamics between the information captured

by option prices, and the actions of the central bank. Our model aims at capturing these dynamics.

We provide a dynamic equilibrium model of learning that links options to investors’ and central

banks’ uncertainty about fundamentals. In order to have a model amenable to the empirical investiga-

tion, we follow the recent macro-finance term-structure literature (e.g. Ang and Piazzesi (2003) and

Ang, Piazzesi, and Wei (2006)) and posit a structural econometric model for the equilibrium dynamics

of fundamental variables along with the specification of a forward looking Taylor rule, which directly

links macroeconomic variables to target interest rates set by the Federal Reserve.5 We ensure that no-

arbitrage restrictions hold in our economy by also positing the equilibrium dynamics for the state price

density, which we use to price all traded assets in the economy – namely, stocks, Treasury bonds, and

options – from the fundamental variables, endogenous investors’ beliefs about the economy, and the

Taylor-rule-based riskless rate.

We generalize the Taylor rule by introducing three key features, which we provide evidence for:

First, we specify an unobserved regime switching model with composite regimes of macroeconomic

and policy fundamental variables. The composite regime formulation explicitly recognizes that the

econometrician observes fundamental transitions only in the presence of policy intervention. Second,

we specify a learning-based Taylor rule, in which neither the central bank nor investors observe the

true trend growths of nominal as well as real variables. Agents in the economy (investors and the

central bank) are econometricians in the sense of Hansen (2007), that is, they attempt to learn about the

drift regimes of fundamentals from the observation of past and current fundamentals. Their Bayesian

learning dynamics about the regime of the economy are the key driver of our results, as explained
5The New Keynesian Economics approach shows the optimality of such rules in settings where price stickiness implies
deviations from short run full employment and capacity utilization [see, e.g. Woodford (2003)]. Gallmeyer, Hollifield,
and Zin (2005), Gallmeyer, Hollifield, Palomino, and Zin (2007), and Bekaert, Cho, and Moreno (2010) build term-
structure models using policy variables.
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below. Finally, to extend the current understanding of the effects of monetary aggregates on the stock

market we follow the suggestions in Lucas (2007) to allow real money growth to affects transitions

between fundamental drift regimes.6 The observations of money growth affect investors’ beliefs about

future fundamental regimes, which the econometrician can extract from fundamentals and price data.

Our model sheds light on the compelling dynamic one-way relation between options’ ATMIV and

P/C and monetary policy, discussed earlier in Figure 2. The strong evidence that these option-based

indices lead policy variables, but not the reverse, is not driven by differences in information between

investors and the central bank, as our model assumes they observe the same data and have the same

information. Instead, our analysis points to a compelling real effect of uncertainty. In fact, our model

shows that a higher ATMIV occurs when uncertainty about the current regime is high, because from

Bayes’ formula high uncertainty leads to faster revision of beliefs to news and thus higher return volatil-

ity. Consistent with the real options literature, high uncertainty predicts declines in future capacity

utilization as firms delay the costly abandonment of plants and factories but instead operate below full

capacity. Facing the same fundamental uncertainty and hence predicting lower CU, the central bank

reacts by lowering the cost of capital.

Similarly, our model shows why increases in the P/C ratio predict future increases in short rates.

A direct implication of Bayesian learning is that investors downwardly revise their beliefs in response

to bad news by a larger amount in good times than in bad times. Therefore, in good times investors’
6Lucas (2007) complains about the lack of use of monetary aggregates in recent models of monetary policy and recom-
mends their use in information extraction:

One source of this concern is the increasing reliance of central bank research on New-Keynesian modeling.
New-Keynesian models define monetary policy in terms of a choice of money market rate and so make
direct contact with central banking practice. Money supply measures play no role in their estimation,
testing or policy simulation. A role for money in the long run is sometimes verbally acknowledged, but
the models themselves are formulated in terms of deviation from trends that are themselves somewhere
off stage. It seems likely that these models could be reformulated to give a unified account of trends,
including trends in monetary aggregates, and deviations about trend but so far they have not been. This
remains an unresolved issue on the frontier of monetary theory. Until it is resolved, monetary information
should continue to be used as a kind of add-on or cross-check, just as it is in the ECB policy formulation
today.

Coenen, Levin, and Wieland (2005) and Beck and Wieland (2008) show that money growth can help predict real activity
when the real output and real money are economically linked but the central bank, which partially controls money growth,
receives noisy information on the former.
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perceive greater downside risk in stocks, or a more conditionally strongly negatively skewed return

distribution. The negatively skewed distribution raises the price of put options relative to call options

(P/C). However, the strong fundamental growth in good times also encourages firms to run their pro-

duction processes at full capacity, raising inflation fears. Once again, the central bank with the same

information of investors, responds to forecasts of tightening capacity utilization (CU) by raising the

risk-free rate. These effects also explain why ATMIV and the P/C are negatively correlated (see Figure

1) since in periods of strong growth with stable policy variables, investors’ overall belief volatility is

generally low, so that the ATMIV is low.

Our dynamic model highlights the non-linear nature of the relation between macro-economic funda-

mentals, monetary policy variables, and option indices. Indeed, consistent with the existing empirical

evidence, we find that linear regressions of ATMIV and P/C on a set of relevant macroeconomic vari-

ables lead to a smallR2, indicating a limited ability of macro-variables to explain the variation of option

indices. In contrast, our model which endogenously generates strong non-linearities between funda-

mentals and asset prices through the learning mechanism, explains about 50 percent of the variation in

the two options measures and explains their negative relation.

How can our model help understand these non-linearities? Essentially in our model, inflation is a

key signal of future real activity. Corporate earnings growth is stable at moderate levels of inflation but

it is expected to decline when inflation expectations are either too high or too low. This “Goldilocks”

relationship between expected inflation and growth implies that the sign of the conditional reaction of

the stock market to CPI fluctuations can vary over time. This time variation is a key mechanism for

understanding several of the time-varying phenomena we see in the options market, and their relation to

monetary policy. Indeed, we show that the central bank’s efforts to stabilize growth and inflation implies

that ATMIV (P/C) have a V-shape (inverse V-shape) relation with respect to the key policy variables,

industrial capacity utilization and money growth. In particular, high ATMIV occurs both when capacity

utilization is very low or very high. Indeed, high ATMIV correlates with lower capacity utilization as

firms slow down their activity in the face of high uncertainty, which lowers inflationary pressures in
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the economy below regular levels. However, high ATMIV also occurs when capacity utilization is very

high, as investors now fear a future slowdown of the economy. Similarly, ATMIV (P/C) has also a

V-shape (inverse V-shape) relation with respect to money supply growth. In particular, ATMIV is high

in those recessionary periods characterized by a strong money growth, as the Federal Reserve attempts

to stimulate the economy. However, ATMIV is also high in a high-inflation recessionary period, when

the Federal Reserve tightens money growth to rein in inflation. Because P/C is negatively related to

ATMIV, it follows that the relations between the P/C and the policy variables are inverse V-shaped.

We find support for these nonmonotonic relations between policy variables and the options’ indices

ATMIV and P/C in the data, although it is useful to note that for the post-1986 subsample of our data

for which options prices are available, there were few periods of very high capacity utilization.

We fit the parameters of our structural model with an overidentified Simulated Method of Moments

(SMM) procedure, which uses the likelihood of observing the fundamentals as well as stock, Treasury

bond, and options prices to extract investor’s beliefs. It is important to note that our estimation method-

ology ensures that the extracted beliefs are time-consistent and respect Bayes formula over the whole

sample period. This implies that the estimated dynamics of uncertainty is also time consistent and is an

outcome of the realization of fundamentals. This distinguishes our work from related work on options

with learning that resets the model uncertainty in each period to some proxy of uncertainty in the data

and focuses on conditional reactions in options prices.7

While our estimation method explicitly uses ATMIV and P/C as overidentifying moments, the un-

certainty process of the model has additional implications for other options- related statistics. Because

such statistics were not used in the estimation, their comparison with their model-implied counterparts
7 For example Guidolin and Timmermann (2005) and Buraschi and Jiltsov (2006) study option prices and volume in models

with learning about fundamentals. Dubinsky and Johannes (2006) study the reaction of options prices on individual stocks
to news about earnings. Benzoni, Collin-Dufresne, and Goldstein (2011) show that the increase in investors’ perception
about the average jump size of stock prices led to a steepening of the implied volatility smirk after the stock market crash
of 1987, but do not study its time variation in subsequent years. In a paper related to ours, Shaliastovich (2009) models
investors’ non-Bayesian (behavioral) learning about the long run drift of consumption to generate the smile, but does not
study its time series fit to data series.
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offer additional evidence in support of the model. The first statistic is the strong positive relation be-

tween ATMIV and absolute changes in ATMIV, which is incompatible with the Heston (1993) stochas-

tic volatility model, and it is believed that it requires an explosive volatility process (one which violates

certain regularity conditions, see Jones (2003)). Our model volatility process is instead nonexplosive

but thanks to Bayes’ law, displays the positive correlation: in periods of greater uncertainty (and hence

volatility), investors also update their beliefs faster, creating the positive relation between volatility and

its absolute changes.

The second statistic that we take our model implications to is the implied volatility premium, which

is the difference between implied volatility and the expectation of volatility under the objective mea-

sure. The volatility premium is currently one of the most actively researched statistics in empirical op-

tion pricing, and we show that our model volatility premium explains economically significant amounts

of variation in the historical volatility premium. We use our fitted model to show that the risk premium

component of the implied volatility premium is very highly correlated with the volatility of volatility,

which is consistent with volatility being a systematic factor with a negative beta [see e.g. Buraschi and

Jackwerth (2001) and Bakshi and Kapadia (2003)].

Related Literature

Besides the literature on option prices with learning in Footnote 7, this paper contributes to a small

set of papers that provides economic explanations of the implied volatility curve for options.8 Bollen

and Whaley (2004) and Garleanu, Pederson, and Poteshman (2008) find that net buying pressure affects

the prices of options for several days as market makers fail to provide options at no-arbitrage prices, but
8 There is also a large literature that explains the volatility smile by assuming exogenous processes for stock prices, volatil-

ities, and jumps. Indeed, since the classic work of Black and Scholes (1977) the major innovations have been the addition
of stochastic volatility [see, e.g., Hull and White (1987) and Heston (1993)], jumps in prices [see e.g. Bates (1996) and
Bates (2000), and Pan (2002)], and jumps in volatility [see, e.g. Eraker, Johannes, and Polson (2003)]. A tremendous
amount of empirical work has been done on these extensions of the BS formula that has enriched our understanding of
stock price dynamics, and of options returns. Bakshi, Cao, and Chen (1997) provides a specification analysis of some of
these models. Among more recent innovations, Christoffersen, Jacobs, Ornthanalai, and Wang (2008) build multi-factor
stochastic volatility models, and somewhat related to our paper, Polson, Johannes, and Stroud (2008) price options when
exogenously specified volatility follows an unobserved process that investors learn about. Constantinides, Jackwerth, and
Perrakis (2008) find that several exogenously specified volatility models, such as GARCH, can be rejected as possible
data generating processes for S&P 500 index options.
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charge for the residual risk due to the limits to arbitrage. In addition to focus on lower frequency data

and explaining the entire time series of options prices, we do not depart from the no-arbitrage frame-

work. Among theoretical explanations for smirks, Liu, Pan, and Wang (2005) study the implications

for ambiguity about rare event risk that raise the prices of puts relative to calls. Drechsler (2008) and

Du (2010) provide calibrated models with time-varying ambiguity and with jumps with habit formation

preferences, respectively, to generate the left skewed implied volatility smile, but neither paper studies

the time series properties of the smile, nor their interaction with monetary policy.

Our work also complements the papers constructing structural models of options prices to under-

stand the volatility premium. Bollerslev, Tauchen, and Zhou (2009), Drechsler and Yaron (2010) and

Eraker (2008) construct equilibrium models with “long run risks” in the consumption process to un-

derstand the size of the IVP and some of its unconditional moments. In work related to ours, Bekaert

and Engstrom (2010) model the time variation in higher order moments of fundamentals to generate a

volatility premium. This paper uses habit preferences to generate time variations in the price of risk.

Unlike these papers, we shut off both the fundamental heteroskedasticity and time varying risk aversion

channels in generating the volatility risk premium, and instead explicitly incorporate a role for mone-

tary policy. As we will show, most of the time variation in the volatility premium in our model arises

from variations in two fundamental uncertainties, which affect the speed of revision of beliefs and the

volatility of stock market volatility. In particular, the volatility premium and hence the richness of op-

tion prices, is driven most strongly by investors’ uncertainty about firms’ earnings, and the uncertainty

about money growth, which is an important signal for the stability of economic growth.

The layout of the paper is as follows. In section 1, we provide the structure of the model and derive

some key pricing results. In section 2 we estimate the parameters of our model using an overidentified

simulated method of moments procedure. In section 3, we study the ability of our model to explain

the two fear indices, and in section 4, we study its ability to understand the volatility of stock market

volatility and the volatility premium. Section 5 concludes. Two technical appendices provides proofs

of technical results and the estimation methodology, respectively. In addition, an online appendix to
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be made available to readers contains a 10-year out-of-sample forecasting exercise, some additional

robustness issues, and a more detailed analysis of some time series properties of the model.

1. Structure of the Model

Our main assumption throughout the paper is the drift rates of the fundamental processes are driven by

an N−regime, continuous time, hidden Markov chain process. It is useful to describe this process first.

We denote by st the regime at time t, where st ∈ {s1, .., sN}, and we let Λ denote the Markov chain

infinitesimal generator matrix. That is, over the infinitesimal time interval of length dt

λijdt = prob
(
st+dt = sj|st = si

)
, for i 6= j, λii = −

∑

j 6=i

λij.

We assume that all agents in our economy, both investors and the central bank, do not observe

the realizations of st but learn about it from the observation of numerous signals, including realized

fundamental variables. Given an information filtration {Ft} generated by such signals, we denote the

agents’ common beliefs at time t about regime si as

πit = prob(st = si|Ft), i = 1, ..., N (1)

Lemma 1 below characterizes the dynamics of the vector πt = {π1t, ..., πNt}, but before we introduce

the learning result, we need to introduce the rest of the model.

There is a single homogeneous good in the economy whose price, Qt, follows:

dQt

Qt
= β(st) dt + σQ dWt, (2)

where Wt = (W1t,W2t,W3t,W4t,W5t)
′ is a 5-dimensional vector of independent Weiner processes,

inflation volatilities are summarized in 1 × 5 constant vector σQ, and the drift rate β(st) depends on

the realization of the (hidden) regime st.
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The main real corporate fundamental in the economy is the process of real earnings, Et, which

follows the jump-diffusion process

dEt

Et
= (θ(st) − κ ξ1) dt + σE dWt, +(eY1t − 1) dLt (3)

where fundamental volatilities, σE , are constant over time, the drift rate θ(st) depends on the realization

of the regime st, Lt is the counter of a Poisson process with constant intensity κ, i.e. Prob(dLt = 1) =

κ dt, the jump size Y1t is i.i.d. normal with mean µ1 and volatility σ1, and ξ1 = eµ1+0.5σ2
1 − 1. The

regime process, st, the Brownian Motions, Wt, and the jump process Lt are all independent of each

other. Under the assumption of continuous observation of fundamentals, and hence their quadratic

variation processes, investors can perfectly observe jumps. In our model, jumps to earnings play three

important roles: First, their inclusion permits a better estimation of the earnings process, which we

will see has some large negative outcomes in our sample. Second, negative mean jumps will be shown

to increase the average put-call implied volatility ratio (P/C), and, third, they increase the average

volatility premium priced in options in our sample. It is important to note however that we model i.i.d.

jump sizes and constant jump intensity so that the modeled jumps in themselves are unable to explain

the time series variation in either the P/C or the volatility premium, which is the subject of our paper.

The next important fundamental in the economy is de-meaned industrial capacity utilization (CU),

Kt which follows the process

dKt = ρ(st) dt + σK dWt, (4)

where the volatilities σK are constant and assumed known by investors and the drift ρ(st) depends on

the realization of of the regime st. Note that unlike the other state variables, CU is stated in levels, and

hence can become negative. The use of CU improves the term structure fit of our model.

The final state variable in our model is aggregate real money in the economy, Ht, which follows

dHt

Ht
= ω(st) dt + σH dWt, (5)
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where the volatilities σH are once again constant and the drift ω(st) depends on the regime st. We

emphasize that Ht is the equilibrium quantity of real money in the economy determined both by its

demand and supply. It is also useful to note that while ours is not a full structural model in which

the quantity of money is endogenously determined, the statistical properties of dHt/Ht affect agents’

beliefs’ dynamics, and thus equilibrium prices.

1.1 The Central Bank Policy Rule

We assume that all agents, investors and central bank, observe the same data and thus have the same

information about the regime of the economy. Thus, the regime probabilities πit defined in (1) are

common across all agents. We assume that the central bank sets the real rate of the economy φ̄t by

using a forward looking Taylor rule, namely

φ̄t = α0 + αβ

�
[βt|Ft] + αρ

�
[ρt|Ft] . (6)

where the expectations are taken with respect to all of the information available at time t, Ft.9 The

second and third terms of the real rate capture the essential elements of the Taylor rule, which posits

that the central bank increases rates in response to increases in expected inflation and the expected real

slack in the economy [see Taylor (1993)]. Our policy rule is hence ‘forward-looking’ in the sense of

Clarida, Gali, and Gertler (2000), who suggested replacing current and/or lagged values of inflation

and the output gap by their forward-looking conditional expectations. A significant contribution of

our analysis is to jointly estimate the expectations from corporate earnings as well as regular macroe-

conomic variables, so that there is interaction between uncertainty in the corporate sector and central

bank policy. In addition, following the assumption in Rudebusch and Wu (2008) we use the industrial

capacity utilization series obtained from the Federal Reserve Board rather than the output gap, in the
9We allowed for a generalization the Taylor rule to let interest rates directly be impacted by money growth but did not
estimate a significant effect.
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original Taylor rule. This choice is in part based on the observation in Gordon (1989) that capacity

utilization is more closely related to inflation than the output gap.

We finally note that in standard Taylor rules, the central bank sets the nominal interest rate.10 In

our model, we will show that the inflation risk premium is constant, so the policy rule above can

equivalently be written as setting of the nominal rate by adding expected inflation and the inflation risk

premium on both sides of equation (6).

1.2 No Arbitrage Pricing

To build the policy rule of the central bank into a no-arbitrage framework, we follow Ang and Piazzesi

(2003) and Piazzesi (2005) in specifying a state price density to price all cash flows in our model. Let

Mt be the state price density at date t. As in the modern classic asset pricing theory (see, e.g. Cochrane

(2001)), a generic random real cash flow {Dt} is priced as

MtPt =
�
[∫ ∞

t

MsDs ds|Ft

]
. (7)

It is convenient to first write the process of the state price density in terms of the original hidden

Markov process st and Brownian motions Wt. We specify Mt taking the form

dMt

Mt
= (−φ(st) − κ ξ2)dt − σM dWt + (eY2t − 1) dLt, (8)

where φ(st) denotes the real rate conditional on observing the regime (see discussion below), σM is

a 1 × 5 constant vector of the market prices of risk, Lt is the same Poisson counter as in the earnings

process in (3), Y2t has an i.i.d. normal distribution with mean µ2 and volatility σ2 and perfectly corre-

lated with Y1t, and ξ2 = eµ2+0.5σ2
2 − 1. Note that the jumps in earnings are systematic since they are

correlated with the marginal utility of the representative investor in the economy. We note that constant
10The original Taylor rule [see Taylor (1993)] is it = πt + r∗t + aπ(πt −π∗

t ) + ay(yt − ȳt), where it is the target nominal
rate, πt is the realized rate of inflation, r∗

t is the assumed equilibrium real rate of interest, π∗

t is the desired inflation rate,
yt is the log of GDP, and ȳt is the log of potential GDP.
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prices of risk also arise in a simple Lucas (1978) economy with no government where the represen-

tative agent has constant relative risk aversion, and where the fundamental volatility of consumption

(dividends) is constant. This assumption along with the homoskedasticity of fundamentals ensure that

all fluctuations in volatilities and premiums in our model arise endogenously due to learning and not

from either time variation in risk aversion or built-in fundamental heteroskedasticity.

To ensure no-arbitrage, the expected drift rate of the state price density must equal the real rate φ̄t

in (6), so that we impose
�
[
dMt

Mt
|Ft

]
= −φ̄tdt

Since investors and the central bank have the same information, this no arbitrage restriction is naturally

obtained by requiring that regime by regime:11

φ(st) = α0 + αβ β(st) + αρ ρ(st).

1.3 Learning Dynamics

For notational convenience, we stack the fundamental processes (2), (3), (4), and (5) that are observed

by the econometrician as signals in a vector dYt =
(

dQt

Qt
, dEt

Et
, dKt,

dHt

Ht

)′
, so that

dYt = %(st) dt + Σ4 dWt + J4t dLt, (9)

where the drift vector process is %(st) = (β(st), θ(st) − κξ1, ρ(st), ω(st))
′, the volatility matrix is

Σ4 = (σ′Q, σ
′
E , σ

′
K , σ

′
H)′, and the vector of jump sizes is J4t = (0, eY1t − 1, 0, 0, ). In particular,

note that we assume the econometrician does not observe investors’ state price density Mt. Agents

in the economy, instead, observe both signals dYt and dMt and we denote the full set of signals as

dZt =
(
dY ′

t ,
dMt

Mt

)′
, which has the drift vector ν(st) = (%(st)

′,−φ(st) − κ ξ2)
′, volatility matrix

Σ = (Σ′
4, σ

′
M )′, and jump size of Jt = (J ′

4t, e
Y2t − 1)′.

11Indeed, from (8): − �
h

dMt

Mt
|Ft

i

= � [φ(st)|Ft] = α0 + αβ � [β(st)|Ft] + αρ � [ρ(st)|Ft], which yields (6).
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The following Lemma characterizes the dynamics of beliefs πit = prob(st = si|Ft). For notational

convenience, we denote the drift of the signal vector dZt in regime i by νi = ν(si).

Lemma 1. Given an initial condition π0 = π̂ with
∑N

i=1 π̂i = 1 and 0 ≤ π̂i ≤ 1 for all i, the

probabilities πit satisfy the N-dimensional system of stochastic differential equations:

dπit = µi(πt)dt+ σi(πt)dW̃t, (10)

in which µi(πt) = [πtΛ]i, σi(πt) = πit [ νi − ν(πt)]
′ Σ′−1

, (11)

ν(πt) =

N∑

i=1

πit ν
i =

�
t (dZt|Ft) , and

dW̃t = Σ−1[dZt − JtdLt − ν(πt)] = Σ−1 (νt − ν(πt))dt + dWt. (12)

Moreover, for every t > 0,
∑N

i=1 πt = 1.

This filtering result is a straightforward extension of the Wonham filter (see Wonham (1964)), which

characterizes the Bayesian learning about the hidden drift with Brownian noise.12 In the setup here,

the observed fundamental vector process has observable jumps in some elements, which do not affect

investors’ beliefs about the hidden drift. In particular, the high frequency variation in investors’ beliefs

is driven by investors’ inferred shocks, dW̃ , in equation (12) as opposed to the true shocks, dW, which

affect fundamentals. It is also possible to write the fundamental process vector dZt = νtdt+ ΣdW +

JtdLt = ν̄(πt)dt + ΣdW̃ + JtdLt. The right hand side of (12) also reveals that the inferred shocks

process dW̃ , does not depend on the jump parameters, since investors are able to observe jumps which

thus do not affect their inference about st.
12The first application of the Wonham filter in financial economics, as well as several properties of the filtering process,

are derived in David (1997). We find it useful to recall that a main advantage of this modeling strategy as opposed to
the more commonly used Kalman filter is that investors uncertainty (conditional variance of expectations about the drift
terms) fluctuates forever, while in the Kalman filter, this uncertainty converges to a constant. The fluctuating confidence
(inverse of the conditional variance) is the driver of the options’ indices that we seek to explain in this paper.
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1.4. Stock Prices and the Term Structure of Interest Rates

The following proposition provides expressions for the price-earnings (henceforth P/E) ratio and the

nominal bond price:

Proposition 1.

(a) The P/E ratio at time t is

Pt

Et
(πt) =

N∑

j=1

Cj πjt ≡ C · πt, (13)

where the vector C = (C1, .., CN ) satisfies C = A−1 · 1N ,

A = Diag(φ1 − θ1 +σM σ′E −κ(ξ3 − ξ1 − ξ2), · · · , φN − θN +σM σ′E −κ(ξ3 − ξ1 − ξ2)) − Λ. (14)

(b) The price of a nominal zero-coupon bond at time t with maturity τ is

Bt(πt, τ) =

N∑

i=1

πitBi(τ), (15)

where the N ×1 vector valued function B(τ) with element Bi(τ) = E
(

Mt+τ

Mt
· Qt

Qt+τ
|νt = νi

)
is given

by

B(τ) = Ω eω τ Ω−1 1N . (16)

In (16), Ω and ω denote the matrix of eigenvectors and the vector of eigenvalues, respectively, of the

matrix Λ̂ = Λ − Diag(r1, r2, · · · , rn), where each ri = ki + βi − σMσ
′
Q − σQσ

′
Q, is the nominal rate

that would obtain in the ith regime, were the regimes observable. In addition, eωτ denotes the diagonal

matrix with eωiτ in its (i, i) position.

The proof for stocks is in the appendix. The proof for bonds follows from a simple extension of the

proof in a similar setting in David and Veronesi (2009). The stock price formula has a similar form
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to that developed in the pure diffusion setup of David and Veronesi (2009) and further intuition on the

formula is provided there. The major difference here is the jump risk in earnings and kernel, which

is priced, and adds to the equity risk premium. The constant Ci is the P/E as in the Gordon growth

model. In contrast to stocks, bond prices do not jump since the belief processes are continuous and the

main bond fundamental, inflation, is continuous. It is useful to note that the actual dynamics of stock

and bond prices here are quite different from those in David and Veronesi (2009) since they are in part

determined by policy variables, not in their paper, and in addition, stock prices can jump.

Let P n
t = Pt ·Qt be the nominal value of stock, where Pt is the real value of stocks in Proposition

1. Using the dynamics of the inflation and earnings processes under the observed filtration, we now

formulate the nominal return processes for stocks and bonds.

Proposition 2.

(a) The nominal stock return process under the investor’s filtration is given by

dP n
t

P n
t

(πt) = (µn(πt) − δ(πt)) dt + σn(πt) dW̃t + (eY1t − 1) dLt,

where δ(π) = 1/(C ·πt) is the earnings yield, µn(π) = rn
t +σn(π) (σM +σQ) is the nominal expected

return, and the nominal stock price volatility is

σn(πt) = σE + σQ +

∑N
i=1 Ci πit (νi − ν(πt))

′(Σ′)−1

∑N
i=1 Ci πit

. (17)

The proof follows from a simple adaptation of the proof in Veronesi (2000) and an application of

Ito’s formula for jump-diffusions. Asset volatilities have exogenous as well as learning-based compo-

nents, which depends on the volatility of each regime probability πi. We will discuss these further in

the empirical sections of this paper.
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1.5 Return Volatility and its Dynamic Properties

A key variable for understanding a number of features of options prices is the volatility of stock vari-

ance. We develop its properties here. We start by introducing the following notation. Let

π◦i =
πiCi

ΣN
j=1πj Cj

(18)

As in Veronesi (2000), we call π◦ = (π◦1 , ..., π
◦
n) the value-weighted probabilities (notice that π◦

i ≥ 0

for each i and
∑N

i=1 π
◦
i = 1,). From now on, a “◦” denotes a quantity computed with respect to the

distribution π◦. For example, θ◦ denotes the mean of the drift vector θ computed using the distribution

π◦ (whereas e.g. θ̄ denotes the mean drift vector computed using the original distribution πt), and

σθβ =
N∑

i=1

πi(θi − θ)(βi − β); and σ◦θβ =
N∑

i=1

π◦i (θi − θ
◦
)(βi − β

◦
) (19)

are the covariances of the drift vectors θ and β computed using π and π◦, respectively. In addition we

denote σθν and σ◦θν to be the vectors of covariances of θ with each element of the vector ν using the

two sets of probabilities respectively. We then have:

Proposition 3 (a) Stock return variance is given by

V = σn(πt)σ
n′

(πt) = (σE+σQ)(σE+σQ)′+(ν̄◦−ν̄)′(ΣΣ′)−1(ν̄◦−ν̄)+2 [(θ
◦−θ)+(β

◦−β)] (20)

(b) Return variance V follows the process dV = µV dt + σV dW̃ , where σV =

2

[∑

i

(
[π◦i (νi − ν◦) − πiνi]

′(ΣΣ′)−1(ν̄◦ − ν̄)(νi − ν̄)′
)

+ (σ◦θν
− σθν

)′ + (σ◦βν
− σβν

)′

]
Σ

′−1

(21)

(c) The volatility of stock volatility is

σσ = 0.5
σV√
V

(22)
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The proposition implies that return variance is stochastic and so is the covariance between return

and variance, given by

Cov
(
dV,

dS

S

)
≡ σV σ

′
S dt, (23)

where stock volatility is in (17) and the volatility of variance in (22). We will see below in Section 3

that for our estimated model this covariance can change sign and magnitude leading to changes in the

slope of the implied volatility curve for options prices.

We finally show that the stock price process in our model satisfies important regularity conditions,

which guarantee the solutions to the option pricing partial differential equation as well as estimation of

the likelihood function. These conditions will be useful to compare the properties of our model with

standard option pricing models in Section 4.

Proposition 4 The stock price process, P n
t , in Proposition 2 satisfies global Lipschitz and growth

conditions.

1.6 Option Prices

To compute option prices we need to find the process for the stock index under the risk-neutral measure,

obtained next:

Proposition 5 The stock price under the risk-neutral measure follows:

dP n∗
t

P n∗
t

(π∗t ) = (µn(π∗t ) − δ(π∗t )) dt + σn(π∗t ) dW̃
∗
t + (eY

∗

1t − 1) dL∗
t ,

dπ∗t = (µ(π∗t ) − ϑ(π∗t )) dt+ σ(π∗t ) dW̃
∗
t ,

where dW̃ ∗
t = dW̃t + (σM + σQ)dt, L∗

t is the counter of a Poisson process with intensity κ∗ =

κ · eµ2+.5σ2
2 , and Y ∗

1t is distributed N(µ1 + σ1σ2, σ
2
1). Finally the market price of risk of the belief of
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regime i, which is the covariance of πi with the nominal pricing kernel is given by

ϑi(π
∗
t ) = π∗it

(
(βi − β̄(π∗t )) − (φi − φ̄(π∗t )

)
. (24)

The proof is in Appendix 1.

We appeal to the Feynman-Kac formula to use Monte-Carlo simulations to evaluate the expectation

f(t, πt, P
n
t ) =

� Q

[
exp

(
−
∫ T

s=t

r(πs)ds

)
g(P n

T , πT )

]
. (25)

We use some variance reduction techniques for efficiency. The advantage of the simulation method is

that it does not suffer from the curse of dimensionality, which would be the case if we directly attempted

to solve the fundamental PDE for derivatives prices. Details of the simulation procedure are provided

in Appendix 2.

2. Estimation

Ours is a regime switching model in which the regime st affects the drift rates of four different fun-

damental series. This feature of our model is important as it introduces an important low-frequency

comovement of fundamental variables in addition to the high frequency Brownian shocks. For exam-

ple, we will see that earnings growth is more stable in period of moderately low inflation and is unstable

when the inflation drift is either too high or too low. In addition, the persistence and transition between

regimes is partly determined by the central bank’s efforts to stabilize the economy, a feature captured

in our model by the joint specification of macroeconomic and policy variables regimes. An important

feature of our methodology is that asset prices in the model are functions of both macro and policy

variables and these are used by the econometrician to back out investors’ beliefs about these regimes.
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2.1 Estimation Methodology

It is important for the goal of this paper to extract investors’ beliefs in a dynamic, forward-looking, and

time-consistent manner. This is accomplished by using an overidentified Simulated Method of Mo-

ments (SMM) of the learning model, in which the structural parameters are constant over time, but the

arrival of new information leads investors to update their beliefs about the composite regimes of macro

and policy variables. We (the econometricians) estimate the model by using information in funda-

mentals (macro and policy), and market prices (stock, bond, and options). Fundamentals are included

since investors’ information sets clearly contain the history of all fundamental data. However, since

investors’ information sets are likely to be considerably richer than the history of fundamentals, we

attempt to extract their forward-looking beliefs embedded in asset prices at discrete (quarterly) points

of time. It is important to note that the SMM likelihood function of observing the fundamentals is

exactly identified by all the structural parameters. It follows that all asset prices used in the procedure

are overidentifying restrictions on the model, and lead to an omnibus test of the model. In fact, we use

the objective function to guide us on the number and specification of the composite regimes of funda-

mentals and essentially use a stopping rule when the model is no longer rejected. It is also worth noting

that we used the SMM objective function to restrict several of the elements of the variance covariance

matrix of fundamentals to be zero. The only non-diagonal element that made any improvement in the

objective function is the covariance between inflation and capacity utilization, and we will comment on

this further in Section 2.5 below. Details of the SMM procedure are available in Appendix 2.

2.2 Data Description

Our data sample runs from 1967 to 2008. The definitions of the fundamental series are as follows.

Aggregate quarterly earnings for the economy are approximated as the operating earnings of S&P 500

firms, and these data are obtained from Standard and Poor’s. Dividends for these firms, also obtained

from Standard and Poor’s, are used with the prices to compute returns. The other three fundamentals,

the Consumer Price Index (CPI), Industrial CU and money (M1) are obtained from the Federal Reserve
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Board. Of the monetary aggregates, we find the growth in M1 real balances (which we refer to as

money growth) to be most highly related with the other macroeconomic variables. A discussion of

some other variables is in Section 4 of the online appendix.

Stock prices are obtained from S&P and P/E ratio is estimated as the equity value of these firms

divided by their operating earnings. The time series of zero-coupon yields and returns on Treasury

bonds of different maturities are obtained from the Fama-Bliss data set available at the University of

Chicago. Options data are obtained from two sources. We obtain transactions data on S&P 500 index

options from 1986:Q2 to 1996:Q1 from the CBOE. These data are no longer available from 1996:Q1,

and therefore, we use data on these same options from Option Metrics from 1996:Q2 to 2008:Q3. It

is important to note that Option Metrics provide the average of bid and ask prices at the end of each

trading day, and not prices based on actual transactions. Prices at the beginning of each quarter are

fitted with fundamental data available at the end of the previous quarter.

2.3 Estimation Results for the Regime Switching Model

In this subsection, we briefly describe the results of the estimation of our model. The procedure in

the Appendix 2 finally settles on N = 8 regimes. Although eight regimes seems like a large number,

there are two important qualifications to be made: First, we should recall that we have four fundamen-

tal variables (inflation, real earnings, capacity utilization, and money growth). We estimate from the

individual quarterly time series of 42 years that each fundamental variable has four distinct regimes.

Had we assumed that these regimes were independent across variables, we would have ended up with

256 composite regimes. Our eight composite regimes accomplish our goal of inducing important low-

frequency comovement across these four variables, without sacrificing much the fit for each individual

series. Second, we use the entire time series of asset prices, namely the P/E ratio, short-term and long

term bonds, and option prices, to estimate these regimes and the transition matrix. This is important

as asset prices contain information on agents’ beliefs about regimes that could happen, but haven’t in
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the sample. As a simple example, a long deflationary period did happen in the 1930s, but its possi-

bility only emerged again in the last decade. Asset prices in the interim period crucially depend on

these unrealized regimes – a classic Peso Problem issue – and hence are informative of the number of

regimes.

The fundamental composite regimes that we estimate are provided below, and investors’ conditional

probabilities of these regimes are in Figure 3.

Regime s1: (β = 1.5%, θ = 6.1%, ρ = 1%, ω = 1.2%). This is the “regular boom” regime of the economy.

Inflation is low, earnings growth is strong, and the policy variables are just above their average

levels, which are all conditions for stability in future fundamentals. Investors believed on average

that this regime is the most likely to be in the sample period, and in particular during non-

recessionary periods as classified by the NBER.

Regime s2: (β = 6.5%, θ = −5.2%, ρ = 1%, ω = 5.3%). This is “regular recession” regime. Inflation is at

a medium level, earnings are shrinking, CU is above average, but money growth is very strong.

The strong money growth is consistent with stimulative efforts by the central bank, but also with

high demand for money that is pushing up goods prices. The filtered probability of this regime

was at its maximum in the 1982 recession, at about 50 percent. In the past three recessions, the

probability of this regime has been small.

Regime s3: (β = 6.5%, θ = 6.1%, ρ = 8.7%, ω = 1.2%). This is the “over-heating” regime. In this regime,

earnings growth is still strong, while the other fundamentals warn of impending trouble. Inflation

hits a medium level, CU is unusually tight, although money growth remains mild, likely as the

central bank has not decided to intervene yet. The filtered probabilities suggest that this has been

the second most likely regime in the sample, and fears of it have sporadically increased in most

boom periods in the sample.

Regime s4: (β = 9.1%, θ = −5.2%, ρ = −2.5%, ω = −5.7%). This is the “stagflation” regime. In this

regime, fundamentals are at about their worst shape, with high inflation, low profit growth, low
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CU and very low money growth. The low money growth is consistent with attempts by the central

bank to rein in inflation. Investors’ filtered probability of this regime peaked around the 1981

recession, and did not fully subside until the end of the following recession in 1983. Notably, the

belief of this regime increased to nearly 10 percent right before the 2008 financial crisis.

Regime s5: (β = 1.5%, θ = 7.7%, ρ = 1%, ω = −3.1%). This is the “new economy” regime. Earnings

growth is at its most rapid, inflation and capacity utilization are low, but money has tightened

likely a reflection of the central bank’s efforts to moderate growth. Investors’ probability of

this regime peaked at about 50% in the late 1990s, but crashed during the 2001 recession as

investors’ hopes of the new economy tanked. There was a mild increase of this probability in the

boom period in the 2000s, which again tanked in the 2008 recession.

Regime s6: (β = −0.2%, θ = −5.7%, ρ = −6.6%, ω = 5.3%). This is the “deflation” regime of the econ-

omy, in which earnings shrink at their most rapid rate in the cycle. CU is 6.6% below its historical

average, and money growth is very rapid as the central bank attempts to stimulate growth. In-

vestors’ deflation expectations have spiked in the recessions of the current millennium, but were

also high after the 1982 recession after the Fed’s efforts to tame strong inflation expectations.

Regime s7: (β = 6.5%, θ = −5.2%, ρ = −6.6%, ω = −3.1%). This is a “deep recession” regime, in which

inflation and earnings growth are similar to those in the mild recession (regime 2), but CU is

very low and money shrinks, which likely results as monetary policy is no longer effective in

stimulating the economy. Investors’ filtered probability of this regime was at its highest after the

oil price induced recession in 1973, but has also been as high as 30% in the current recession.

Combined with their high deflation probability in this period, investors’ inflation uncertainty has

been very high in this recession.

Regime s8: (β = 1.5%, θ = 6.1%, ρ = −6.6%, ω = 5.3%). We call this the “low capacity boom” regime of

the economy in which inflation and earnings growth are as in the regular boom regime (regime

1), however, the growth seems shaky since CU is very low and money growth is very strong
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likely as a result of very proactive stimulative efforts by the central bank. Investors’ probability

of this regime hit close to 30 percent in the recovery periods following recessions in the early

1970s and mid 1980s, and was even higher in 2000s prior to the most recent recession. The high

money growth in this period is consistent with the easy credit regime that is oft cited as the cause

of the increase in stock and house prices in this decade.

The uncertainty of investors is generated in large part by their estimations of transitions between

regimes, which we show in the top and middle panels of Table 2. In the top panels we see how inflation

interacts with earnings stability. In the boom regimes with low inflation (regimes 1,5 and 8), investors’

estimate only a 1.2 percent chance of a recession in the next year, while in regime 3, when earnings

are still booming, but inflation heats up to a medium level, the transition to a recession regime in the

following quarter rises to about 8.5 percent. The role of low CU in affecting transitions can be seen

by comparing the annual transitions in the regular (regime 2) and deep (regime 7) recession regimes

to the deflation regime. Indeed, the risk of entering deflation rises from about 0.5% from the regular

recession, to about 7.7 percent from a deep recession, when CU is extremely weak, which explains

the spike in deflation fears in the two recessions of the current millennium (see Figure 3). The middle

panel of the table, shows the 5-year transitions between regimes, which show the medium-term risks

to fundamentals. Notable among these transitions, is the large persistence of the new-economy growth

regime, which suggests that even after five years, investors expect to remain in that regime with a

probability exceeding 92 percent. It is also relevant to point out that the estimated persistence of the

deflation regime is the lowest among all regimes. This estimate likely arises from the fairly rapid

recovery of industrial CU from its troughs, which we have seen in our sample that began in 1967.

2.4 Estimation Results for the Taylor Rule and State Price Density

We next turn to the parameter estimates determining the pricing kernel. As shown in Table 1, the interest

rate rule parameters suggest that the real rate in the economy depends positively on both expected

inflation and expected change in CU, αβ = 0.362 and αρ = 0.257. These estimates are similar to
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estimates of the Taylor rule in many other papers and indeed Taylor’s own work suggested values of

each parameter of 0.5. It is useful to remember that in our model we use industrial CU rather than the

output gap used by Taylor, and the rates depend on the expected drifts of the variables rather than the

variable realizations themselves.

The next line in Table 1 shows the prices of risk. Most notably, the prices or risk of the earnings

shock, the CU shock, and kernel shock itself are all positive and large (around 0.3), however, the prices

of risk of the inflation and money growth shocks are small. As seen in our regime specification, neither

of these latter variables is consistently pro or countercyclical and the implied parameters suggest that

investors do not consistently associate these shocks with periods of high marginal utility.

2.5 Model Fit to the Data

Using the time series of investors’ regime probabilities in Figure 3 and the estimated parameters, we

generate time series of model-implied expected fundamental growth and stock and Treasury bond prices

in Figures 4 and 5. The fits of the model are reported in Table 3 (see Table 8 in the online appendix

for similar out-of-sample results). The model expected growth rate explains 62, 16, 75, and 37 percent

of the variation in the realized fundamental for inflation, earnings growth, capacity utilization, and

real money growth, respectively. We note that our SMM procedure, which maximizes the likelihood

of investors observing the historical fundamental processes, does not have an explicit prediction on

the fitted actual fundamentals in each period, but instead characterizes expected fundamental growth.

Therefore, these fits reflect not simply the accuracy of our model, but in addition, investors’ estimates on

the fraction of variation in fundamental growth that is related to shifts in trend growth rates as opposed

to purely idiosyncratic variation. So, for instance, earnings growth is the most volatile fundamental,

and the model explains the lowest amount of its variation, while CU is the smoothest, and the model

explains most of its variation. Also note that the regression coefficients in the expectations regressions

are between 1.3 and 2.2 so that actual fundamentals are more volatile than their expectations.
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Figure 4 shows some interesting comovements of real money growth with the business cycle, which

our model captures correctly. In the 1970s, money growth was tightened during recessions, while in

the recessions of the 2000s, money growth was very rapid. Therefore, a simplified view on the pro

or countercyclicality of money would be misleading, and is perhaps a source of some of the disillu-

sionment with monetary aggregates. The different policy response in these recessions is likely in part

determined by the different trends in CU in these recessions. In particular CU has the opposite trends

as money growth, very tight in the 1970s and weak in the 2000s. It is important to note though that the

model is not able to explain all the volatility in historical money growth in the 1979-1982 period when

the Federal Reserve experimented with targeting money growth.

The ability of the model to replicate the fluctuations in stock and Treasury bond prices is displayed

in Figure 5 and the fit statistics are reported in Table 3. The model explains most fluctuations in the

S&P500 P/E ratio, in particular the single digit P/Es in the late 1970s and early 1980s, the return to

high teens levels in the 1980s, the rapid rise to over 25 in the late 1990s. and the decline in the 2000s

again, overall explaining about 60 percent of the historical variation. The middle and bottom panel

shows that the model is also quite successful in explaining most of the variation in the short rate and

the slope of the term structure of Treasuries. The use of a Taylor-type rule is mostly instrumental in

explaining the sharp dips in short rates following most of the recessions, although notably, the model

short rate recovered more rapidly than the historical series in the early 1990s and the 2000s. In addition,

the historical slope was higher in these two episodes than our model can explain. Overall, our model

explains more than 50 percent of the variation in the short rate and slope. It is worth noting that our

model does not rely on ‘unobservable’ factors that are used in the exponential affine term structure

literature [see e.g. Dai and Singleton (2002)] to explain the fluctuations in these variables, but only on

beliefs πit which are fully tied down by the dynamics of fundamentals.

The final components of our SMM error term are the moments based on option prices that we

discuss separately in Section 3. Using the scores of the likelihood function and the errors of the price

and volatility variables, we evaluate the SMM objective function, which serves as an omnibus test
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statistic. The overall SMM objective function value, which has a chi-squared distribution with five

degrees of freedom, is 10.47, implying a p-value larger than 5%, so we fail to reject our model.

3 Options’ Indices and Monetary Policy

This section contains our main results: Before discussing the relation between options and monetary

policy, we first show that the model fits well the ATMIV and P/C indices, and elaborate on their relation

with several macro-economic control variables that have been used in the literature. We then turn to

the model implications for options and monetary variables. We extend our analysis by providing out-

of-sample results in the online appendix.

3.1 Explaining Time-Variation in ATM Implied Volatility

To guage the impact of fundamentals on ATMIV, the bottom panel of Table 2 computes the model’s

implied ATMIV when investors are 80 percent sure of being in each of the eight regimes respectively.13

It is immediately evident from the table that the model implies that implied volatility is generally coun-

tercyclical, being higher in regimes with negative earnings growth (regimes 2,4, 6, and 7). Its highest

levels occur during stagflation periods (regime 4) when investors’ beliefs are the most reactive to in-

flation news. However, implied volatility can be high in strong regimes of the economy as well. In

particular in the new economy regime (regime 5), ATMIV is close to that in some recession regimes. In

this regime, strong economic growth raises investors’ future earnings uncertainty causing high volatil-

ity. This observation is made in David and Veronesi (2009) for explaining the conditional positive

relation between P/E ratios and realized volatility in the late 1990s.

The historical and model-fitted ATMIV series are shown in the top panel of Figure 1 and some

regressions examining the fits are in Table 4. Our historical time series spans a long period of nearly

23 years that covers the recessions of 1991, 2001, and 2008, as well as unusual events such as the stock
13An important caveat to note is that the model ATMIV is not a linear function of beliefs but instead is more directly

associated with the uncertainty about the regimes. Therefore, the implications for intermediate beliefs should not be
approximated by interpolating the ATMIV at the regime beliefs in the table.
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market crash of 1987, the collapse of LTCM in 1998, and the bursting of the technology bubble in

2000. As seen in the figure, during each of these events implied volatility increased above 30 percent,

while its average over the sample is 18.5 percent. Our model implied volatility, which only builds in the

impact of macroeconomic uncertainty, follows closely the increase in data implied volatility during the

three recessions, and remains high in the post technology bubble period. Although the model is unable

to explain the surge in volatility during the 1987 crash or the LTCM episode, media commentary at or

around these episodes confirms that macro events were not the cause of these crises.14

It is also noteworthy that the model captures well the post-recession decline in implied volatility

from 1991 to 1996 and from 2001 to 2006 despite the fairly different macroeconomic conditions in

these recessions. While earnings growth rebounded after each recession, the 1991 recession had tight

CU and weak money growth, while the opposite conditions prevailed in the 2001 recession. In the

former recession, rising inflation was a concern, while in the latter, investors were concerned about

deflation. The unwinding of these conditions was therefore quite different in the two periods, but at the

end of these cathartic periods, investors’ beliefs of regime 1 (the regular boom) increased to over 60

percent (Figure 3) and implied volatility hit lows in the 10-13 percent range. The model is also quite

successful in explaining the spike in implied volatility in the current recession, which started with the

fear of an increase in inflation to a medium level and an increase investors’ probability of the economy

overheating (regime 3) and deep recession (regime 7), followed by the collapse of inflation and increase

in the fear of deflation in the second half of 2008. The model ATMIV hit about 50 percent at the end

of 2008, its highest level in the 23 year sample, although it was lower than the nearly 70 percent in the

data.15

14Microstructure issues have been attributed to each of these two crises. Trading problems arose due to the breakdown in
market mechanisms by the large trades of portfolio insurers in 1987, while the shutdown of several markets simultane-
ously led to the severe liquidity problems in 1998.

15Undoubtedly, the selling pressure from the collapse of Lehman Brothers and troubles at other financial institutions world-
wide had an impact of volatility in this period more than can be accounted for by our model. However, these failures
were endogenous, and our model does suggest that there were greater fundamental stresses in this period than any other
period in our sample.
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Table 4 contains formal statistics of the fit of our model for the data ATMIV series. Line 1 shows

that the R̄2 of the simple regression of the data ATMIV on the model ATMIV for the full sample is 53

percent, and the beta coefficient is 0.91, which is very close to 1. Excluding the fourth quarter of 1987

from the regression increases the R̄2 by another 5 percentage points (not reported). As well known in

the GARCH literature, most measures of volatility are persistent. Line 2 shows that the regression R̄2

of 32 percent of the data ATMIV series on its own lag. In line 3, we include both the model and the

lag, and find an R̄2 of 58 percent, or an increase of about 5 percentage points over our model.

We next provide regression results for the five macroeconomic variables that we found significant

individually in lines 4 through 8. These results show that ATMIV is a procyclical variable but none of

them is able to explain much of the variation of ATMIV. Indeed, line 9 shows that together all these

controls explain 36 percent of the variation in the ATMIV, significantly below that of our model. How-

ever, our model suggests, that while these variables are important determinants of implied volatility,

they affect it jointly and in a nonlinear way, which our model captures through the combination of the

expected discounted value of cash flows in our asset pricing formulae and the use of Bayes’ rule. In

addition, some variables, like inflation and money growth, are not significant in a linear regression,

but their effect is embedded in our model ATMIV, through the joint regime specification with real

fundamentals.

We finally consider the effects of combining the lags and the controls with our model ATMIV (line

10) and add the lagged data ATMIV (line 11). The R̄2 increase to 61% and 66% in the two cases,

respectively. The 8% increase in explanatory power in line 10 over line 1 (model only) is likely the

result of the highly parsimonious nature of our model, which nonetheless does explain most of the

variation in the joint specification. The further 5 percentage point increase over line 10 in line 11 tells

us that there are persistent economic forces that explain incremental amounts of variation in ATMIV,

which are not in our model or controls. The information in the lag likely includes trading disruptions,

which as mentioned above were particularly important at the time of the stock market crash and the

LTCM failure. It remains a challenge to include such information into a model that already builds in
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the macroeconomic effects as in our model specification, which as noted explain about 80% of the

predictable variation.

3.2 Explaining Time-Variation in the Put-Call Ratio

In this section we study the model’s ability to explain the put-call ratio (P/C), which we defined to be the

ratio of implied volatilities of 5 percent out-of-the money put and call options.16 To understand what

forces affect the P/C ratio, it is useful to first look at Figure 6 that shows the densities of stock returns

when investors are 80 percent certain of being in each of the eight regimes (the remaining regimes

each have equal probability). The top (bottom) panel shows the densities for the boom (recession)

regimes, which are regimes with expected positive (negative) earnings growth. As seen, the densities

are negatively (positively) skewed for the boom (recession) regimes. These shapes naturally imply that

the P/C is greater (smaller) than one for the boom (recession) regimes, the first step in understanding

the puzzling pro-cyclical nature of P/C.17

The conditional values of the put call ratio and higher moments of the stock return distribution

under the risk-neutral measure are given in the bottom panel of Table 2. The table also shows that the

densities at these eight beliefs are all highly non-Gaussian with skewness coefficients of between -3.3

and 1.4, and kurtosis coefficient of between 4.3 and 21.5. The non-Gaussianity partly stems from the

jumps in returns due to jumps in earnings, and partly from the continuous shifting of the instantaneous

moments of the return distribution. Indeed, because the jump intensity in earnings is constant, all the

time variation in the densities arises from the shifting moments. Its is also interesting to note that the

sign of the skewness in each of the regimes can be calculated quite easily by looking at the sign of

covariance between stock returns and stock variance in each regime from its closed-form expression in
16To ensure intertemporal consistency of put-call ratios we follow Bates (1991) and set Kput = Ste

(r−δ)τ/1.05 and
Kcall = Ste

(r−δ)τ × 1.05. In the online appendix, we compare this measure to a time series of the 10% OTM put-call
ratio.

17Notice from the filtered probabilities, that investors were never 80 percent certain of any of the regimes in our sample, so
that the model P/Cs were never as extreme as reported for these regimes. In particular the model P/C was almost always
positive in our sample. It is also important to note, that the P/C is not linear in the beliefs, and values for intermediate
beliefs will not be well approximated by interpolation. In particular we find that that the P/C at intermediate regimes is
outside of the range in Table 2.
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(23). As seen in Table 2, the sign of the conditional correlation mostly matches the sign of conditional

skewness in each regime.

The intuition is as follows: By Bayes’ Law, in the boom regimes, investors revise their beliefs more

rapidly when they receive negative shocks to earnings than positive shocks, leading to more volatility

with negative outcomes, which is a negative correlation between returns and variance. The higher

volatility with bad news gives a negative sloped implied volatility curve or a put call ratio larger than

one. The opposite holds true for the low earnings growth rate regimes.

The bottom panel of Figure 1 shows the data and model P/Cs. As can be seen, both series are

almost always greater than one (each is less than one only once in the sample) and the model P/C

tracks the data P/C quite closely. The figure shows that the P/C is procyclical, falling in each NBER-

dated recession. Comparing to the top panel, gives the surprising stylized fact that the ATMIV and the

P/C are negatively related. In particular, in 1995 when the ATMIV hovered around lows of near 10

percent, the P/C hovered above 1.6. Similarly, around 2006, when the ATMIV was again around 10

percent, the P/C ratio was again above 1.4. In and after the three recessions in the sample, when the

ATMIV rose above 30 percent, the P/C fell below 1.2. We return to the issue of negative correlation

between ATMIV and P/C below.

Line 1 of Table 5 provides the simple regressions of the data P/C on the model P/C. As seen, the fit

is very solid with a statistically insignificant alpha coefficient, a beta of 0.72 (not different statistically

from 1) and R̄2 of 45.4 percent. Line 2 reports that the lagged P/C explains a similar R̄2 of 45.8 percent,

but of course does not provide us intuition on the underlying economic forces driving the P/C. When

both model and lag are included, each of the variables is statistically significant, and the explanatory

power increases by 8 percentage points, implying that the lag has some information over and above that

of our model.

Line 4 to 8 provide regression results for the five the five macroeconomic variables that we found

significant for the ATMIV, and are inputs to our model. In addition, we also report in Line 9 and 10

results for two market sentiment measures advanced by Han (2008): The first, a“trader sentiment,”
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is the net long position of large speculators on S&P 500 index futures obtained from the Commodity

Futures Trading Commission’s Commitment of Traders Report. The second, an “investor sentiment”

is the bull-bear spread (proportion of traders bullish less bearish) in Investor’s Intelligence’s survey of

investment newsletter writers.18

Line 10 include all the macroeconomic controls and the sentiment variables in a joint regression in

line 11, and find an adjusted R2 of only about 21.9 percent, far below our model. This reinforces the

view that the macroeconomic variables affect the P/C nonlinearly. Finally, using all the variables along

with the model and lagged P/C, leads to a very small increase in explanatory power over using just the

model and lag.

3.3 Understanding the Relation between Options and Monetary Policy

As noted in the introduction, and shown in the left panels of Figure 2, shocks to both indices ATMIV

and P/C lead to a sustained impact on future monetary policy, while monetary policy measures do not

impact on the two indices. More specifically, a shock to ATMIV leads to a decrease in future interest

rates while a shock to the P/C leads to an increase in future interest rates. Is the model able to replicate

such results?

The right panels of Figure 2 show the analogous impulse responses when the same vector autore-

gression is computed on the model fitted ATIMIV and P/C indices and policy variables. Comparing to

the panels on the left, we find that our fitted model has exactly the same relationships as in the data:

Both fitted ATMIV and P/C lead to sustained effects for up to eight quarters on policy variables, while

the reverse impulses are statistically insignificant. Having a fully dynamic model that can replicate the

historical impulses is useful since it can rule out certain channels for the effects. In particular, in our

model the central bank and investors have exactly the same information. So, the reason why policy

follows variation in option prices is not due to differences in information of the two groups of agents.
18Both variables are measured within a week prior to the options trades. These measures are alternative measures of fear

in the market and are thus compelling control variables for our measures of downside risk obtained from asset prices. While
Han (2008) suggests that the significance of these measures supports a behavioral view of asset prices, we note that they could
be consistent with a rational model of heterogeneous learning about the regimes of fundamentals such as in David (2008a).
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What economic channel then explains the one-directional impulses? The bottom panels of Figure

2 suggest that the two option indices have a sustained effect on industrial CU. In particular, in our

model an increase in ATMIV occurs because of increases in the uncertainty about the current economic

regime. The impact of higher uncertainty on future industrial CU then easily follows from the real

options literature, whereby firms delay the abandonment of plants and factories in the face of higher

uncertainty, instead choosing to operate them at less than full capacity [see e.g. Bloom (2009)]. Be-

cause the central bank has the same information as the investors, the learning-based Taylor rule then

implies that shocks to uncertainty (ATMIV) have a sustained future impact on interest rates.

Our model also uncovers another basic economic mechanism that explains why a shock to the

downside-risk index P/C is correlated with a future increase in CU. The reason is that in our model, a

positive shock to P/C occurs when investors increase their beliefs to be in an expansionary phase of the

economy (see Figure 6). Because of symmetric information, such beliefs also affect the central bank’s

learning-based Taylor rule. Thus, the increase in P/C is correlated with an increase in expected future

CU, which then leads to a tightening of monetary policy through higher interest rates.

In Figure 2 we only report impulse responses options’ indices to interest rates and capacity utiliza-

tion. What about the relation between these indices and money growth? We did compute the impulse

responses for the effects of the two options’ indices on money growth and did not find significant

responses in either direction. This (negative) result is interesting as well. The next subsection fur-

ther develops the relation between option’s indices and monetary policy variables, and explains these

findings.

Before concluding this section we add two caveats to these results. First, the impulse response

functions are estimated for the options subsample, when the relationship between CU and these options’

indices happen to be monotonic. As we show next in Section 3.4, over the full sample, the relationship

is nonlinear and impulse responses may well have the opposite signs for the first part of our sample,

when tight CU lead to monetary policy tightening. Second, the impulses studied here are at a quarterly
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frequency, and we do not rule out that the central bank can have significant impulses at shorter horizons

in higher frequency data.

3.4 The Nonlinear Relations between Options’ Indices and Macro-Policy Variables

The results in Section 3.3 calls for further investigation of the relation between option prices and policy

variables. In this subsection, we document strong nonlinear relationships between macro-policy vari-

ables and option prices. In addition, we show that the money growth affects both ATMIV and P/C more

noticeably in periods when policy makers stimulate the economy.

The top panels of Figure 7 show the relationship between the ATMIV (left panel) and P/C (right

panel) and expected real money growth. The x-axis in these plots has the expected money growth of

investors which we have shown in Figure 4.19 As can be seen, the ATMIV has an V-shape, with its

minimum at close to 1.5 percent real money growth. The fitted curve shows a higher ATMIV when

money growth is tight (around 24 percent) as opposed to when its accommodative (around 20 percent),

and dips to around 16, when money growth is neutral. By comparing the estimated ATMIV and P/C

values in the different regimes in Table 2 we can see how our model generates the V-shape. Consider

regimes 2 and 4 for example, which have the highest ATMIV. Real money growth is strongly positive in

regime 2, and is strongly negative in regime 4. In regime 2, money growth is rapid as the central bank

attempts to stimulate the economy in the regular recession, and the conditional relationship between

money growth and ATMIV is negative. In regime 4, volatility is high even as the central bank attempts

to rein in high inflation even though real growth is weak and the conditional relationship is positive.

Similarly, in the new economy growth rate regime, the ATMIV is high as discussed, and money growth

is tight, as the central bank attempts to rein in lofty expectations of real growth. On the low end, in

the stable regime 1 with low inflation and high real growth, real money growth is one percent and the

ATMIV is the lowest.
19We plot this relationship rather than the one between the ATMIV and realized money growth, since the latter is fairly

noisy and provides a less precise relationship with a similar shape.
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The bottom panels of Figure 7 show the relationship between ATMIV (left panel) and P/C (right

panel) calculated from our model using the filtered beliefs in Figure 3 and realized CU (which is a fairly

smooth series). As seen, the ATMIV again has a V-shape relationship, while the P/C has an inverse V-

shape. We plot the relationship for the full sample for our model since de-meaned CU never rose above

3 percent in the 1986-2008 period, when we have options data. In this period, the relationship between

the data ATMIV and CU is negative, while that with the P/C is positive. In the period of the options

data, higher CU was taken as good news for fundamentals, which lowered uncertainty and the ATMIV

and raised the P/C. For the full sample, which includes periods with very high CU, the relationships

are non-monotonic as described above, since during periods of high CU, an increase in CU increased

uncertainty about future fundamentals and had the opposite effects on ATMIV and P/C. The estimated

model-implied ATMIV and P/C in the alternative regimes in Table 2 also show this relationship, as

high ATMIV can result in recessions with high CU (regime 3) or low CU (regime 7). Once again,

fundamentals’ uncertainty is negatively related to P/C so that it has an inverse V-shape relation with

CU (bottom right panel of Figure 7).

We end this discussion on the nonlinear relation between macro-finance variables and options in-

dices by studying their conditional relation during stimulative periods. We define stimulative periods

as those where the 3-month Treasury Bill Yield is below the annualized inflation (CPI) rate. In the

sub-sample where we have options data (1986:2 – 2008) there are 20 quarters that we characterize as

stimulative. These are periods of extreme stress in the market and it is of interest to study the response

of the stock markets to money growth in these times. The left panel of Figure 8 shows that in this

period ATMIV and money growth were negatively correlated. In the right panel we plot our model

ATMIV and expected money growth and find a negative correlation which is somewhat stronger. The

negative relation tell us that the actions of the central bank to boost money growth in such periods

lowered the uncertainty and volatility in stock market, and our regime-switching model captures well

this conditional relation. This role of monetary policy in reducing market uncertainty in stressful times
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is obviously not evident in simple linear regressions and could be the responsible for the general dis-

illusionment with monetary aggregates in the literature (see e.g. Volcker (1977) and the more recent

New-Keynesian literature cited in the introduction). Our results also provide direct evidence from the

options markets on the effectiveness of monetary policy during “stimulative” periods.

4 Additional Properties of ATMIV

In this section we discuss features of observed option prices that are not directly fitted by our empirical

methodology. The ability of our model to replicate these additional features provides further support for

the economic mechanism that determines option prices in our model. As we will see the key variable

in the model that enables it to explain these additional facts is the volatility of stock volatility, and we

will end the section by providing its determinants.

4.1 The Volatility of ATM Volatility

In the previous section we saw that our model ATMIV was able to explain about 53 percent of the

variation in the data ATMIV. In the model, the implied volatility is to a large part determined by the

endogenous volatility of stock prices, which increases during periods of greater investor and central

bank uncertainty. Looking again at the top panel of Figure 1, we see that during episodes of high

volatility around the three NBER dated recessions in the options subsample, ATMIV also fluctuated by

large amounts. The positive relation between volatility and the volatility of volatility is noted in Jones

(2003) who further notes that it cannot arise in the Heston (1993) stochastic volatility model, which has

been the workhorse of the option pricing literature. To obtain the level dependence of volatility, Jones

(2003) proposes a generalization of the Constant Elasticity of Variance (CEV) model of Chan, Karolyi,

Longstaff, and Sanders (1992). One drawback of the volatility processes in such models is that they do

not satisfy global growth and Lipschitz conditions, which are commonly used sufficient statistics for a

number of important results. In contrast, our model, which satisfies these two regularity conditions (see
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Proposition 4), is able to provide an economic explanation of the positive relation between volatility

and the volatility of volatility.

Indeed, the top panels of Figure 9 show the scatter plots of implied volatility and absolute changes in

implied volatility for the data and model series. Both show a positive association of similar magnitude

between these variables with correlations of 41 percent and 49 percent, respectively, and these correla-

tions are statistically significant. The economic explanation offered from the model can be readily seen

in (10). In particular, the Bayesian learning mechanism that drives volatility in our model implies that

investors revise their beliefs faster during periods of high uncertainty as they have low confidence in

their estimates of the current regime of the fundamentals.

If the mechanism implied by the model is correct, we should see a similar positive association

between implied volatility and absolute changes in the volatility of stock returns. We construct a time

series of the model’s volatility-of-volatility (VV) using expression (22) and evaluate it at each date

using the filtered beliefs in Figure 3. The scatter plot of absolute changes in implied volatility (data and

model) with this series are shown in the bottom panels. As seen, the model volatility of volatility is

highly correlated with both the data and model absolute changes in implied volatility with correlations

of 34 and 61 percent respectively. Note that the model series measures the ex-ante volatility of volatility

at each date and is compared to the ex-post realized absolute changes in ATMIV and our model predicts

a positive but not one-to-one association between these variables. This is highlighted by the fact that

the correlation between these variables is only about 61 percent correlation even when both variables

are generated by our model.

4.2 The Implied Volatility Premium

The volatility premium is an ex-ante measure of the stock market volatility forecast of investors’ priced

into options relative to a volatility forecast under the objective (P ) measure, and is currently one of the

most actively researched statistics in empirical option pricing. If volatility is systematically positively

related to investors’ pricing kernel (marginal utility of consumption), then as a priced factor it carries
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a negative risk premium, which leads to a higher forecast of volatility under the Q measure, or a

positive volatility premium. The strong evidence that volatility is countercyclical, which we have

already discussed in Section 3, suggests that the volatility premium should be positive.

The empirical finance literature now has more than one operational definition of this quantity. The

first, which we call the implied volatility premium (IVP) is defined as the difference between at-the-

money implied volatility and a forecast of future volatility to the maturity of the option under the

objective (P ) measure. The forecast under the P measure is constructed for specific volatility mod-

els. A second definition, which we call the forecast volatility risk premium (FVRP), simply takes the

difference in forecasts of future volatility with the same structural model but under the two measures.20

We now study the ability of our model to explains a significant amount of time variation in the IVP.

To construct a data based ex-ante IVP series we need forecasts of realized volatility, which we discuss

first. We construct two forecasts using well established results in the volatility forecasting literature,

which we discussed in Section 3.1. The specifications we use are similar to those in Drechsler and

Yaron (2010). The first specification for our sample from 1986:Q2 to 2008:Q4 is a regression of

realized volatility on its one-quarter lag, the lagged P/E ratio, and lagged returns on the S&P 500 index

in periods when they are negative, which we call Projection 1. The results of this regression are:

Vol(t+ 1) = 3.291 + 0.548 Vol(t) + 0.212 P/E(t) − 0.470 Ret−(t); R̄2 = 0.238 (26)

[1.170] [2.122]∗ [1.237] [−2.004]∗

where Vol(t+1) is the volatility realized in quarter t+1, which we define as the square root of the sum

of squared S&P 500 index returns in the quarter, P/E(t) is the S&P 500 price-to-operating earnings

ratio, and Ret−(t) is the return on the S&P 500 index in periods when it is negative. T-Statistics are

in parenthesis and are adjusted for heteroskedasticity and autocorrelation using the Newey and West
20In addition, Bollerslev, Tauchen, and Zhou (2009) use a measure of an ex-post volatility premium that takes the difference

between implied volatility and realized volatility to predict future stock returns. In early work on this issue, Canina
and Figlewski (1993) and Christensen and Prabhala (1998) first reported that implied volatility is a useful albeit biased
forecaster of future realized volatility.
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(1987) method. The regression R̄2 improves to 47 percent for the post-crash subsample starting in

1988:Q2.21 The second forecast is similar to that constructed in Drechsler and Yaron (2010), which

used the lagged implied volatility to forecast realized volatility and adjusts for the forecast bias, which

we call Projection 2. The results of this regression are:

Vol(t+ 1) = 2.334 + 0.019 Vol(t) + 0.709 I. Vol(t); R̄2 = 0.393 (27)

[1.659]∗ [0.165] [4.986]∗

The R̄2 of this regression improves to over 63 percent if the stock market crash is excluded. It is

important to note that for each projection we use non-overlapping data by constructing one-quarter

ahead volatility forecasts at the quarterly frequency so that the t-statistics are more reliable.

Using the difference between the implied volatility at the beginning of the quarter t and the expec-

tation of quarter t realized volatility based on data available at the end of quarter t − 1, we form the

ex-ante volatility premium series. Using the two alternative forecasts of realized volatility, we have two

measures of the ex-ante volatility premium, which we display in the top and middle panels of Figure

10. The two series have a correlation of 88 percent, and their means are very similar at 2.7 and 2.9

percent respectively.

We similarly construct a model based IVP series by taking the difference between the model implied

volatility analyzed in Section 3.1 and the model forecast of volatility under the P-measure using simu-

lation methods as described in equation (47) in Appendix 2. The model IVP, IVPM , is also displayed in

Figure 10. The mean of the IVPM is 4.4 percent, which is not statistically significantly different from

the empirical IPVs since their sample standard deviations are about 6 percent. However, our main goal

is to understand the time-variation in the volatility premium, which we discuss next.
21Most papers on volatility premium studies exclude the stock market crash from their samples. We find that the ability of

our model in explaining the time variation in the volatility premium is not sensitive to the exclusion of the crash.
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By regressing the volatility premium from projections 1 and 2, we get the following fits:

IVP1(t) = 1.091 + 0.691 IVPM (t); R̄2 = 0.163. (28)

[0.759] [3.228]∗

IVP2(t) = 1.158 + 0.571 IVPM (t); R̄2 = 0.122. (29)

[1.151] [2.958]∗

As can be seen, the intercept terms are small and statistically insignificant, and the betas of the

regression are instead strongly significant, and the model explains about 16 percent of the variation

in the data IVP from Projection 1, which is economically significant. As seen in the plot, both data

and model volatility premiums are countercyclical, and are higher in periods of higher volatility. We

emphasize that the fact that the model-IVP explains the measured IVP in the data is not hardwired in

our estimation procedure, in which filtered beliefs dynamics are determined only by fundamentals and

policy variables, and the model parameters were estimated to fit ATMIV and P/C. Thus, it is indeed

comforting to see that our model generates the proper dynamics of the IVP in this effectively out-of-

sample test of the model. The fit for the IVP from Projection 2 is similar, although the explanatory

power is lower at 12 percent. Looking at the middle panel, the qualitative feature of the model fit is

very similar though.

As is well known, the implied volatility premium is a measure of the overall value of the option,

which includes the risk premium for volatility fluctuations as well as other non-Gaussian aspects of the

stock return distribution. Our model can shed light on the source of variation of IVP. In particular, first,

we decompose the model-IVP into a premium for the forecasted future volatility variability (FVRP)

and a residual that is due to other non-Gaussian components. The FVRP is simply the difference in

the forecasts under the Q and the P measure, using the model.22 Constructing the series conditional on
22The Q forecast of our model is constructed using the same methodology as the P forecast and is shown in (46) in Appendix

2.
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beliefs for our full sample we find an average FVRP of 1.75 percent, so that the FVRP comprises about

40 percent of the total IVP. The model IVP and FVRP are plotted in the third panel of Figure 10, and

are highly correlated (correlation coefficient of 93.8 percent).

Second, we show in Section 5 of the online appendix that the model-IVP is largely explained by

the model’s volatility-of-volatility (VV). Therefore, in times when investors’ assess that volatility will

fluctuate more, the premium for volatility fluctuations is higher. We show further that the VV explains

nearly 50 percent of the variation in the FVRP and a much smaller amount of variation in the jump

component of the IVP.

4.3 What Drives the Volatility of Stock Volatility?

In Section 4.1 we show that VV explains the positive comovement of ATMIV and its absolute changes.

The online appendix also shows that VV explains the dynamics of the model IVP. We now relate the

VV to the fundamental uncertainties in our model.

The VV is endogenously generated by the learning process in our model and is a result of the

the nonlinear updating inherent in Bayes’ law. In periods where investors are more uncertain about

fundamentals, they put less weight on their current beliefs and more weight on incoming news so that

revisions to beliefs and hence stock market volatility are higher. This implies that the VV should be

directly related to measures of investors’ uncertainty.

To see the relationship explicitly, we define earnings uncertainty (and analogous definitions for the

other fundamentals) as

EU (t) =

√√√√
N∑

i=1

πi (t)
(
θi − θ (t)

)2
. (30)

We plot the time series of VV and the four fundamental uncertainties in Figure 11, and Table 6 provides

results on the simple OLS regressions of the VV on these variables for options subsample (1986:Q2

– 2008). While all four uncertainties are strongly countercyclical, we find that earnings uncertainty

has been the single most important driver of the VV explaining more than 70 percent of its variation.
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Money growth uncertainty also explains a significant amount of variation in the VV, while the other

two uncertainties have been of minor importance. As noted in Section 3.4, CU itself has an impact on

ATMIV and P/C, but as seen here, uncertainty about CU is not a significant driver of VV. This result

arises because CU is a fairly smooth process so that uncertainty about it does not drive major changes in

investors uncertainty. Money growth uncertainty turns out to be an important driver as investors likely

perceive changes in money as an important signal of the view of the central bank about the regime of

the economy.

Taken together the four fundamental uncertainties explain more than 80 percent of the variation in

VV. Relatedly, Beber and Brandt (2009) show that volatility in stock and bond markets declines faster

following periods of high macroeconomic uncertainty extracted from the economic derivative markets

over a shorter sample from 2002-2005.

5 Conclusion

Option prices provide key forward looking information on investors’ expectations, and market atten-

tion is often focused on two uncertainty measures from options, the at-the-money implied volatility

(ATMIV) and the ratio of implied volatilities of out-of-the-money puts and calls (P/C). The former

is measure of market turbulence, while the latter is a measure of downside risk. We show that both

measures are empirically relevant for monetary policy, but in opposite direction: a positive shock to

ATMIV leads to a decline in future rates, while the opposite is true for a positive shock to P/C.

Standard option pricing models use exogenous stock prices and their volatilities that are unrelated

to fundamentals, and are hence unable to identify specific economic factors that can explain the vari-

ation of options’ uncertainty measures and their impact on monetary policy. We instead provide a

model in which stock, bond, and option prices, are functions of investors’ beliefs of the joint states of

macroeconomic and policy fundamentals through a forward-looking Taylor rule. The model is able to

shed light on the counter (pro) cyclicality of the ATMIV (P/C), is able to explain about half their time
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series variation, and their compelling nonlinear relations with policy variables. In particular, the AT-

MIV (P/C) has a (inverse) V-shape with expected money growth and capacity utilization. The model’s

ability to explain the time-series properties of these options’ indices is based on its inherent Bayesian

learning framework in which volatility is high during periods of greater uncertainty, and bad news leads

to sharper downward revisions of beliefs in good times.

Our analysis also shows that investors’ uncertainty in the options market has real economic con-

sequences, which is tempered by the efforts of the central bank to smooth fluctuations. In particular,

these specific options’ measures are able to predict future movements in interest rates. The model also

explains that the relationship between the options’ indices and money growth is specially strong in

periods of extreme stress when the central bank follows a stimulative policy by keeping the short rate

below the inflation rate. Thus our reduced form model for equilibrium fundamental processes suggests

some further support for the Taylor type rules, but also some additional factors to be worked on in

future macro research such as the direct impact of uncertainty on interest rates and the role of money

in monetary policy, which has been conspicuously absent in recent modeling.

The fitted dynamic updating of investors’ beliefs have implications for the volatility of stock market

variance and additional properties of options prices. We use these additional predictions of the model,

which were not used in its estimation, to provide further support for our model. In particular, we show

our fitted model is able to explain the positive correlation between ATMIV and absolute changes in

ATMIV (a feature that is not consistent with standard option pricing models) and additionally is able

to explain an economically significant amount of variation in the implied volatility premium. The

model’s implied volatility premium is driven to a large extent by the risk premium for volatility shocks

and to a lesser extent by the fatness of tails created by the continuous shifting of moments of the return

distribution from the Bayesian updating.

An important caveat is that the model, which structurally estimates the impact of investors uncer-

tainty about the macroeconomy on options, is unable to explain some important surges in these indices

at times when microstructure liquidity issues have roiled markets,such as the crash of 1987 and the
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collapse of LTCM in 1998. It is relevant to note that our empirical methodology, which uses informa-

tion in fundamentals as well as prices, does not provide false alarms about macroeconomic problems

in these episodes that were clearly not macro related. It also mitigates concerns about overfitting all

observed variations in asset prices. Still, it remains a challenge to include microstructure information

into a model that already builds in the macroeconomic effects as in our model specification.
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Appendix 1

For proving Proposition 1 we will need the following lemma.

Lemma 2 Given the process of earnings in (3) and the SPD in (8), over a small interval of time ∆ we have

�
[
Mt+∆Et+∆

MtEt

|νt = νi

]
= e[θi−φi−σM σ′

E+κ(ξ3−ξ1−ξ2)]∆ + o(∆),

where ξ3 = eµ1+µ2+0.5 (σ1+σ2)2 − 1.
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Proof. From (3) and (8) we have

Es

Et

= exp



∫ s

t

[θu − κξ1 − 0.5σEσ
′
E ] du+ σE(Ws −Wt) +

Ls∑

j=Lt+1

Y1j




Ms

Mt

= exp



∫ s

t

[−φu − κξ2 − 0.5σMσ′
M ] du− σM (Ws −Wt) +

Ls∑

j=Lt+1

Y2j


 .

Multiplying the two equations we have

EsMs

EtMt

= exp

(∫ s

t

[θu − φs − σEσ
′
M − κ(ξ1 + ξ2) − 0.5 (σEσ

′
E + σMσ′

M )]du+ (σE − σM )(Ws −Wt)

)

× exp




Ls∑

j=Lt+1

Y1j + Y2j


 .

Now for a small interval of time ∆ and the fact that jumps in the drift processes and Lt are independent of each
other and each occurs with probability of order O(∆), we have

�
[
Et+∆Mt+∆

EtMt

|νt = νi] = e[θi−φi−σEσ′

M−κ(ξ1+ξ2)]∆ · �
[
e

PLt+∆

j=Lt+1
Y1j+Y2j

]

= [1 + (θi − φi − σEσ
′
M − κ(ξ1 + ξ2))∆][1 − κ∆ + κ∆(1 + ξ3)] + o(∆)

= 1 + [θi − φi − σEσ
′
M + κ(ξ3 − (ξ1 + ξ2))]∆ + o(∆)

= e[θi−φi−σM σ′

E+κ(ξ3−ξ1−ξ2)]∆ + o(∆),

as claimed. Note in the first equality above we have used the independence property of the drift process and the
jump process, while in the second we have used the definition of ex = 1 + x+ x2/2! · · ·. �

Proof of Proposition 1: The P/E ratio at time t satisfies

Pt

Et

=
�
[∫ ∞

t

MsEs

MtEt

ds|Ft

]

=

N∑

i=1

πit

�
[∫ ∞

t

MsEs

MtEt

ds|νt = νi

]
≡

N∑

i=1

πitVit.

Let θ̂i = θi − φi − σMσ′
E + κ(ξ3 − ξ1 − ξ2). Using Lemma 2 to evaluate the expectations over a time interval

∆, we have

Vi,t =
�
[∫ t+∆

t

MsEs

MtEt

ds|νt = νi

]
+

�
[
Mt+∆Et+∆

MtEt

∫ ∞

t+∆

MsEs

Mt+∆Et+∆
ds|νt = νi

]

=

∫ t+∆

t

eθ̂ids + eθ̂i∆
�
[∫ ∞

t+∆

MsEs

Mt+∆Et+∆
ds|νt = νi

]

=
eθ̂i∆ − 1

θ̂i

+ eθ̂i∆


(1 + λii∆)Vi,t+∆ +

∑

j 6=i

λij∆Vj,t+∆


 .
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Since Vi,t is time homogeneous, we have Vi,t = Vi,t+∆ = Ci. Now collecting terms and taking the limit as
∆ → 0, we get

Ci

1 − eθ̂i∆

∆
=

eθ̂i∆−1

θ̂i∆
+ eθ̂i∆


λiiCi +

∑

j 6=i

λijCj




−θ̂iCi = 1 +


λiiCi +

∑

j 6=i

λijCj


 .

In vector form we can write this equality as
(

Diag(−θ̂) − Λ
)
C = 1N ,

whose solution is C = A−1 · 1N , as in the statement of the proposition. �

For proving Proposition 3 we will use the algebraic result stated in the following lemma.

Lemma 3
∂θ

◦

∂πi

=
Ci

(
θi − θ

◦
)

(∑
j πjCj

) .

Proof of Lemma 3:

∂θ
◦

∂πi

=
∂
(P

j
πjCjθj

P

j
πjCj

)

∂πi

=
Ciθi

(∑
j πjCj

)
− Ci

(∑
j πjCjθj

)

(∑
j πjCj

)2

=
Ciθi(∑
j πjCj

) −
Ci

(∑
j πjCjθj

)

(∑
j πjCj

)2 =
Ciθi(∑
j πjCj

) − Ciθ
◦

(∑
j πjCj

)

=
Ci

(
θi − θ

◦
)

(∑
j πjCj

) ,

which completes the proof. �

Proof of Proposition 3: Let the second term in the variance equation be V2 = (ν̄◦− ν̄)′(ΣΣ′)−1(ν̄◦− ν̄). Then,
using Lemma 3 on each element of the drift vector ν we have

∂V2

∂πi

= 2

[
Ci(νi − ν◦)∑

j πjCj

− νi

]′
(ΣΣ′)−1(ν̄◦ − ν̄).

Then, using the volatilities of the beliefs process in equation (11), we have dV2 = µV,2dt+ σV,2, where

σV,2 =
∑

i

∂V2

∂πi

σi

= 2
∑

i

πi

[
Ci(νi − ν◦)∑

j πj Cj

− νi

]′
(ΣΣ′)−1(ν̄◦ − ν̄)(νi − ν̄)′ Σ

′−1
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= 2
∑

i

[π◦
i (νi − ν◦) − πiνi]

′(ΣΣ′)−1(ν̄◦ − ν̄)(νi − ν̄)′ Σ
′−1

.

Similarly, let the third term in the variance equation be V3 = 2 [(θ
◦ − θ) + (β

◦ − β)]. Then we have dV3 =
µV,3dt+ σV,3, where

σV,3 =
∑

i

∂V3

∂πi

σi = 2
∑

i

∂[(θ
◦ − θ) + (β

◦ − β)]

∂πi

σi

= 2
∑

i

πi

([
Ci(θi − θ

◦
)∑

j πjCj

− θi

]
+

[
Ci(βi − β

◦
)∑

j πjCj

− βi

])
(νi − ν̄)′Σ

′−1

= 2
[
(σ◦

θν
− σθν

)′ + (σ◦
βν

− σβν
)′
]

Σ
′−1

,

where the second equality follows from Lemma 3, the third the definition of π◦
i , and the fourth from the fact that

∑

j

π◦
j (θj − θ

◦
)(βj − β) =

∑

j

π◦
j θjβj − θ

◦
β
◦

= σ◦
θβ,

and analogous terms for the other elements of ν. Now summing σV,2 and σV,3 provides the statement of (b).

Proof of Proposition 4 Since ||σn(π)|| in (17) is a continuous function of π on the N dimensional simplex,
which is a compact set, it has a maximum and minimum, which we denote by ||σ̄n|| and ||σn||. Therefore,
||S1σ

n(π1) − S2σ
n(π2)|| ≤ (||σ̄n|| − ||σn||) · |S1 − S2| so that the Lipschitz condition is satisfied for the stock

price. Similarly, ||S σn(π)||2 ≤ ||σ̄n||2 S2 < (1 + ||σ̄n||2 S2), so that the growth condition holds as well.
Similarly the norm of the volatility of beliefs in (11) is bounded by ||σ̄i|| and ||σi|| and both conditions hold for
the beliefs processes, which completes the proof. �

Proof of Proposition 5: The change of measure with respect to the Brownian motions in the context of the
filtering setup has been derived in David (2008b). For brevity, we only provide the proof of the change of
measure for the jump component.

Lets show the change of measure for the jump.

κ
�

[
M+ −M

M

S+ − S

S
|Ft] = κ

∫ ∞

−∞

∫ ∞

−∞

eY1eY2f(Y1, Y2)dY2dY1

= κ

∫ ∞

−∞

eY1f(Y1)

∫ ∞

−∞

eY2f(Y2|Y1)dY2dY1

= κ

∫ ∞

−∞

eY1eµ2+
σ2
σ1

(Y1−µ1)f(Y1)dY1

= κeµ2−
σ2
σ1

µ1eµ1(1+
σ2
σ1

)+0.5(1+
σ2
σ1

)2σ2
1

= κeµ2+.5σ2
2eµ1+σ1σ2+0.5σ2

1

= κ∗
� ∗[eY1 ].

In the above, the second equality arises from the definition of a conditional expectation, the third because the
two jump processes are perfectly correlated, and the fourth from the moment generating function of a normal
distribution.

Appendix 2
1. SMM Estimation of the Regime Switching Jump-Diffusion Model
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We start by providing here the details of the SMM estimation procedure, which is used to estimate the model.
The procedure uses the SML methodology of Brandt and Santa-Clara (2002), which has already been extended
to to learning framework in the pure diffusion setting in David (2008b). We provide here the extension to the
case of observable jumps in the fundamental processes. Piazzesi (2005) has extended the procedure to a setting
with jump-diffusions.

Using the definition of the inferred shocks (12) we can write the variables observed by the econometrician in
(9) as perceived by the investors as dYt

Yt
= %(πt)dt + Σ4 dWt +J4tdLt. Similarly the pricing kernel in (8) under

investors’ filtration can be written as dMt/Mt = (−φ̄(πt)−κξ2)dt−σM dW̃t−(eY2t−1)dLt,where the real rate
in the economy, φ̄(πt), is the expected value of φt in (6) conditional on investors’ filtration. Since fundamentals
are stationary in growth rates, we start by defining logs of variables: yt = log(Yt), and mt = log(Mt). Using
these characterizations we can write

dyt = (%̄(πt) −
1

2
diag(Σ4Σ

′
4))dt+ Σ4 dW̃t + J4tdLt, (31)

dmt = (−φ̄(πt) − κξ2 −
1

2
σMσ′

M )dt − σM dW̃t − (eY2t − 1)dLt, (32)

where diag(x) is a column vector composed of the diagonal elements of a square matrix x. It is immediate that
investors’ beliefs πt completely capture the state of the system (yt,mt) for forecasting future growth rates. The
specification of the system is completed with the belief dynamics in (10).

The econometrician has data series {yt1 , yt2 , · · · , ytK
}. Let Ψ be the set of parameters of the model. Let

L(Ψ) ≡ p(yt1 , · · · , ytK
; Ψ) = p(πt0 ; Ψ)

K∏

k=1

p(ytk+1
− ytk

, tk+1|πtk
, tk; Ψ),

where p(ytk+1
− ytk

, tk+1|πtk
, tk; Ψ) is the marginal density of fundamentals at time tk+1 conditional on in-

vestors’ beliefs at time tk. Since {πtk
} for k = 1, · · · ,K is not observed by the econometrician, we maximize

E[L(Ψ)] =

∫
· · ·
∫

L(Ψ)f(πt1 , πt2 , · · · , πtK
)dπt1 , dπt2 , · · · , dπtK

, (33)

where the expectation is over all sample paths for the fundamentals, ỹt, such that ỹtk
= ytk

, k = 1, · · · ,K. In
general, along each path, the sequence of beliefs {πtk

} will be different.
As a first step, we need to calculate p(ytk+1

−ytk
, tk+1|πtk

, tk; Ψ). Following Brandt and Santa-Clara (2002),
we simulate paths of the state variables over smaller discrete units of time using the Euler discretization scheme
(see also Kloeden and Platen 1992):

ỹt+h − ỹt = (%̄(πt) −
1

2
(σQσ

′
Q, σEσ

′
E)′)h+ Σ2

√
hε̃2t + 1ũt<κhε̃2t, (34)

mt+h −mt = (−φ̄(πt) − κζ2 −
1

2
σM σ′

M )h− σM

√
hε̃1t + 1ũ<κhε̃2t, (35)

πt+h − πt = µ(πt)h+ σ(πt)
√
hε̃1t, (36)

where ε̃1t and ε̃2t are 5- and 1- dimensional standard normal variables, respectively, ũt is uniformly distributed,
and h = 1/M is the discretization interval. The Euler scheme implies that the marginal conditional density of
the 4 × 1 fundamental growth vector yt over h is 4-dimensional normal.

We approximate p(·|·) with the density pM (·|·), which obtains when the state variables are discretized over
M subintervals. Since the drift and volatility coefficients of the state variables in (10), and (31) to (32) are
infinitely differentiable, and ΣΣ′ is positive definite, Lemma 1 in Brandt and Santa-Clara (2002) implies that
pM (·|·) → p(·|·) as M → ∞. The Chapman-Kolmogorov equation implies that the density over the interval
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(tk, tk+1) with M subintervals satisfies pM (ytk+1
− ytk

, tk+1|πtk
, tk; Ψ) =

∫ ∫
φ
(
ytk+1

− y; ; Ψ
)
× pM (y − ytk

, π,m, tk + (M − 1)h|πtk
, tk) dπ dy, (37)

where φ(y;ψ), denotes the mixture-of-normals density given as:

φ(y;ψ) = N(%(πt)h,Σ4Σ
′
4h) with probability κh, (38)

= N(%(πt)h+ (0, 1, 0, 0)′µ1,Σ4Σ
′
4h+ i2σ

2
1) with probability 1 − κh, (39)

where i2 is the 4 × 4 square matrix with zero in all elements except the (2, 2) element, which is 1. Now pM (·|·)
can be approximated by simulatingL paths of the state variables in the interval (tk, tk+(M−1)h) and computing
the average

p̂M

(
ytk+1

− ytk
, tk+1|πtk

, tk; Ψ
)

=
1

L

L∑

l=1

φ
(
ytk+1

− y(l); Ψ
)
. (40)

The Strong Law of Large Numbers (SLLN) implies that p̂M → pM as L→ ∞.
To compute the expectation in (33), we simulate S paths of the system (34) to (36) “through” the full time

series of fundamentals. Each path is started with an initial belief, πt0 = π∗, the stationary beliefs implied by
the generator matrix Λ. In each time interval (tk, tk+1) we simulate (M-1) successive values of ỹ(s)

t using the
discrete scheme in (34), and set ỹ(s)

tk
= ytk

. The results in the paper use M = 90 for quarterly data, so that
shocks are approximated at roughly a daily frequency. The pricing kernel and beliefs along the entire path of the
sth simulation are obtained by iterating on (35) and (36). We approximate the expected likelihood as

L̂(S)(Ψ) =
1

S

S∑

s=1

K−1∏

k=0

p̂M (y
(s)
tk+1

− y
(s)
tk
, tk+1|π(s)

tk
, tk; Ψ), (41)

where p̂M (·|·) is the density approximated in (40). The SLLN implies that L̂(S)(Ψ) → E[L(Ψ)] as S → ∞. We
often report π̄tk

= 1/S
∑S

s=1 π
(s)
tk
, which is the econometrician’s expectation of investors’ belief at tk.

To extract investors’ beliefs from data on price levels and volatilities in addition to fundamentals we add
overidentifying moments to the SML method above. From Proposition 1, we can compute the time series of
model-implied price-earning ratios and bond yields at the discrete data points tk, k = 1, · · · ,K as

P̂/Etk
= C · π̄tk

, îtk
(τ) = −1

τ
log (B (τ) · π̄tk

) .

We note that the constants Cs and the functions B (τ) both depend on the parameters of the fundamental pro-
cesses, Ψ. Hence, we let the pricing errors be denoted

eP
tk

=
(

P̂/Etk
− P/Etk

, îtk
(0.25)− itk

(0.25) , (̂itk
(5) − îtk

(1)) − (itk
(5) − itk

(1))
)
.

We similarly formulate the errors from options prices as

eO
tk

=
(
V̂tk

− Vtk
, (̂P/C)tk

− (P/C)tk

)
,

where V is the ATMIV, and P/C is the put-call ratio as discussed. The model-implied options prices are calcu-
lated using Monte-Carlo simulations as described below.
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To estimate Ψ from data on fundamentals as well as financial variables, we form the overidentified SMM
objective function

c =

(
1

T

T∑

t=1

εt

)′

· Ω−1 ·
(

1

T

T∑

t=1

εt

)
. (42)

The moments used are the scores of the log likelihood function from fundamentals, and the pricing errors from
stock, Treasury bond, and options prices. Since the number of scores in ∂ log(L̂)

∂Ψ (tk) equals the number of
parameters driving the fundamental processes in Ψ, and the number of pricing errors is five, the statistic c in
(42) has a chi-squared distribution with five degrees of freedom. We correct the variance covariance matrix
for autocorrelation and heteroskedasticity using the Newey-West method [see, for example, Hamilton (1994)
equation 14.1.19] using a lag length of q = 12. A long lag length is chosen since interest rates and P/E ratios
used in the error terms are highly persistent processes.

We end the description of our estimation methodology with two important details. First, for determining the
number of specified regimes we do not use likelihood ratio tests, which are computationally extremely demanding
and beyond the scope of this paper (see Garcia (1998)). Instead, we follow the simpler and more practical
methodology of using the overidentified SMM objective to determine a stopping rule on the number of regimes
used in a number of papers modeling regimes shifts (e.g. Gray (1996), Bansal and Zhou (2002)). Second, to
reduce the number of parameters, we follow a two-step procedure. First we estimate an unrestricted generator
matrix and rank all its elements into 7 bins. All elements in the smallest bin (whose values we estimated to be
below 0.001) were set to zero. Elements in each of the remaining bins were constrained to be equal in our second
step estimation.

2. Options Prices

As for the likelihood function we formulate options prices as expected discounted values of their terminal
payoffs under the risk-neutral measure. Expectations are approximated using Monte Carlo simulation while
discretizing the dynamics of the state variables of our system along the sth sample path under the risk-neutral
measure as:

π
∗(s)
t+h − π

∗(s)
t =

(
µ(π

∗(s)
t ) − ρ(π

∗(s)
t )

)
h+ σ(π

∗(s)
t )

√
hε̃

∗(s)
t , (43)

P
n∗(s)
t+h = P

n∗(s)
t exp[

(
r(π

∗(s)
t ) − δ(π

∗(s)
t )

)
h+ σn(π

∗(s)
t )

√
hε̃

(s)∗
1t + 1ũt<κ∗hε̃

(s)∗
2t ], (44)

B
∗(s)
t+h = B

∗(s)
t exp[ −r(π∗(s)

t )h], (45)

where ε̃∗1t and ε̃∗2t are 5- and 1- dimensional standard normal variables, respectively, ũt is uniformly distributed,
and h = 1/M is the discretization interval. On each sample the process for the state variables is simulated
starting with π∗(s)

t = πt, the assumed beliefs of investors at time t. Then the value of a European call option at
time t when investors have beliefs πt that matures at t+ T is given by

CM ∗(t, T, πt) =
1

S

S∑

s=1

B
∗(s)
t+T max

[
P

n∗(s)
t+T −K, 0

]
.

We report option prices for M = 90. To reduce the time of computations we use three variance reduction
techniques: the first two, antithetic and control variate (with Black-Scholes prices), are well known. In addition,
we use the expected martingale simulation technique of Duan et. al. The volatility forecast under the Q-measure
is approximated from the path of forecasted beliefs under this measure as

σM∗(t, T, πt) =

√√√√ 1

S

(T−t) M∑

j=1

σn(π
∗(s)
t+j h)σn(π

∗(s)
t+j h)

′
h. (46)
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Similarly, using the discretized beliefs processes as in (36), volatility forecasts under the objective measure
are analogously constructed as

σn(t, T, πt) =

√√√√ 1

S

(T−t) M∑

j=1

σn(π
∗(s)
t+j h)σn(π

∗(s)
t+j h)

′
h. (47)



Table 1: Parameter Estimates of Regime Switching Model From SMM Procedure

Fundamental Drifts β1 β2 β3 β4 θ1 θ2 θ3 θ4

-0.002 0.015 0.065 0.091 -0.057 -0.052 0.061 0.077
(0.003) (0.008) (0.021) (.005) (0.002) (0.007) (.007) (0.012)

ρ1 ρ2 ρ3 ρ4 ω1 ω2 ω3 ω4

- 0.066 -0.025 0.01 0.086 -0.057 -0.031 0.012 0.052
(0.010) (0.008) (0.002) (0.007) (0.001) (0.015) (0.007) (.005)

Fundamental Volatilities: σQ,1 σE,2 σK,1 σK,4 σH,5

0.025 0.084 0.047 0.056 0.049
(0.012) (0.036) ( 0.017) (0.016) (0.021)

Interest Rate Rule: α0 αβ αρ

0.017 0.362 0.257
(0.008) (0.017) (0.003)

Prices of Risk: σM,1 σM,2 σM,3 σM,4 σM,5

0.045 0.421 0.300 0.3381 -0.045
(0.129) (0.201) (0.111) (0.149) (0.078)

Jump Parameters: κ µ1 σ1 µ2 σ2

0.432 -0.052 0.036 0.293 -0.790
(0.195) (0.027) (0.016) (0.133) (0.364)

Generator Elements: λ1 λ2 λ3 λ4 λ5 λ6

0.005 0.018 0.043 0.051 0.097 0.199
(0.002) (0.011) (0.007) (0.003) (0.023) (0.007)

SMM Error Value (χ2(7)): 10.470 P-Value: 0.063

The table reports SMM estimates of the following model for CPI, Qt, real earnings, Et, the real pricing kernel, Mt, de-meaned
capacity utilization, and real money growth:

dQt

Qt

= βt dt + σQ dWt,

dEt

Et

= (θt − κ ξ1) dt + σE dWt, + (eY1t − 1) dLt,

dMt

Mt

= (−φt − κ ξ2)dt − σM dWt + (eY2t − 1) dLt,

dKt = ρt dt + σK dWt,

dHt

Ht

= ωt dt + σH dWt.

Wt is a 5 × 1 vector of Standard Brownian Motions, Lt is the counter of a Poisson process with constant intensity κ, and Yit

i.i.d. N(µi, σi), i = 1, 2. The drift of the stacked state vector νt = (βt, θt − κ ξ1,−φt − κ ξ2, ρt, ωt)
′ , follows an eight-state

unobserved regime switching model over the composite states listed in the bottom panel of Table 2 with the following generator
matrix:

Λ =

0

B

B

B

B

B

B

B

B

B

B

B

@

−
P

j λ1j 0 λ6 0 λ2 λ1 0 0

0 −
P

j λ2j λ5 λ6 0 λ1 λ4 0

0 λ3 −
P

j λ3j 0 00 λ1 λ4 λ5

0 λ6 0 −
P

j λ4j 0 0 λ4 0

λ1 0 λ1 0 −
P

j λ5j λ1 0 0

λ5 λ3 0 λ3 0 −
P

j λ6j 0 λ5

λ5 0 0 0 0 λ5 −
P

j λ7j 0

λ3 0 λ5 0 0 0 0 −
P

j λ8j

1

C

C

C

C

C

C

C

C

C

C

C

A

.

The pricing kernel, Mt is observed by investors but not by the econometrician. Investors beliefs about the underlying drift states
follow the filtering equation in (10). Estimates are obtained from data on the fundamentals as well five price series listed in Table 3
using the SMM methodology described in Appendix 2. Standard errors are in parentheses.



Table 2: Model Implied Transition Probabilities, Stationary Probabilities, Stock and Bond Price Valu-
ations, Fear Indices, and Higher Moments in the Eight States

Implied Annual Quarterly Transition Probability (Percent) Matrix
1 2 3 4 5 6 7 8

1 80.1 0.3 16.2 0.0 1.6 0.5 0.4 0.8
2 0.2 71.9 7.5 14.9 0.0 0.6 4.5 0.4
3 0.4 3.3 82.8 0.3 0.0 0.6 4.3 8.2
4 0.2 14.9 0.8 79.4 0.0 0.3 4.5 0.0
5 0.5 0.0 0.5 0.0 98.4 0.4 0.0 0.0
6 7.7 3.5 1.3 3.6 0.0 75.7 0.2 7.9
7 8.2 0.2 0.8 0.2 0.1 7.7 82.4 0.4
8 3.6 0.2 8.6 0.0 0.0 0.0 0.2 87.4

Implied 5-Year Transition Probability (Percent) Matrix
1 2 3 4 5 6 7 8

1 34.7 3.6 37.8 1.3 5.2 2.0 5.1 10.3
2 3.7 30.1 16.8 27.0 0.1 3.5 13.6 5.0
3 5.2 7.3 46.1 3.5 0.2 3.3 11.4 23.0
4 3.4 27.0 8.3 42.2 0.1 3.1 14.0 1.9
5 2.0 0.33 2.6 0.22 92.3 1.5 0.3 0.9
6 16.4 8.9 14.9 9.6 1.0 25.6 3.5 20.0
7 21.4 2.6 11.4 2.3 1.2 15.5 39.3 6.2
8 9.7 2.2 26.7 0.7 0.6 0.8 3.2 56.1

Implied Stationary Probabilities, P/E Ratios, the Term Structure,
Option Prices, and Higher Order Moments

# β(%) θ (%) ρ(%) ω(%) π̄(%) P/E i0.25(%) S(%) ATM(%) P/C Skw Kur ρSV (%)
1 1.5 6.1 1.0 1.2 11.0 17.3 4.3 1.5 15.2 1.66 −1.9 9.4 −71.1
2 6.5 −5.2 1.0 5.3 7.6 8.9 10.9 −0.1 33.0 0.81 1.0 4.7 96.4
3 6.5 6.1 8.7 1.2 25.8 14.5 12.6 −1.9 16.3 1.19 −1.1 6.6 −78.3
4 9.1 −5.2 −2.5 −5.7 6.9 7.9 13.4 −1.1 41.6 0.76 1.4 5.1 99.1
5 1.5 7.7 1.0 −3.1 12.1 32.0 4.1 0.1 22.8 1.39 −2.3 10.8 −88.0
6 −0.2 −5.7 −6.6 5.3 4.8 12.9 0.1 2.3 21.5 0.90 −0.3 5.9 83.5
7 6.5 −5.2 −6.6 −3.1 10.5 11.4 8.7 −1.3 24.2 0.71 0.8 4.3 95.7
8 1.5 6.1 −6.6 5.3 21.2 19.7 2.3 1.3 17.5 1.65 −3.3 21.5 −92.2

The top and middle panels report the quarterly and 5-year implied transition probability matrix between the eight states implied
from the generator matrix elements displayed in Table 1. Rows may not sum to one due to rounding. The bottom panel report
the implied stationary probabilities and implied prices of the variables used in the SMM estimation procedure in the eight states.
π̄ is the stationary probability of each state; P/E the price-earnings ratio, and, i0.25, the 3-month Treasury yield, and S the 5-year
less 1-year Treasury yield; ATM is the at-the-money implied volatility (ATMIV); P/C is the ratio of 5% OTM put-to-call implied
volatilities; Skw and Kur are the skewness and kurtosis of the 3-month risk-neutral return distribution, respectively; ρSV is the
correlation between stock returns and stock variance calculated using (23). The P/E ratio and bond yields are computed as shown
in Proposition 1. Implied Volatility, Put-Call Ratio and the higher order moments are for options with three months to maturity as
calculated using Monte Carlo simulations as shown in Appendix 2.



Table 3: Model Fits for Expected Fundamentals, Stocks, Bonds, and Options Prices from SMM Proce-
dure

Variable α β R2

Inflation -0.009 1.638 0.623
[-1.538] [8.071]∗

Real Earnings Growth -0.045 2.099 0.159
[ -1.501] [3.617]∗

De-Meaned Capacity Utilization 0.002 1.353 0.751
[0.068] [13.540]∗

Real Money Growth -0.005 2.15 0.365
[-1.785] [5.957]∗

P/E Ratio -3.028 1.249 0.606
[ -1.915] [19.976]∗

3-Month Yield -0.002 0.970 0.535
[-0.246] [5.991]∗

5-Year Minus 1-Year Treasury Yield 0.003 0.857 0.502
[2.456]∗ [8.071]∗

ATM 0.004 0.913 0.502
[1.522] [5.539]∗

P/C 0.19 0.710 0.451
[1.645]∗ [8.212]∗

We display the fits of the variables used in our SMM procedure: the fundamentals, and the
five pricing variables, which are used to overidentify the model. For the four fundamentals
we provide the regression results for the equation x(t) = α + β � [x|Ft−1] + ε(t), where
x(t) is the realized growth and � [x|Ft] is investors’ conditional expected growth of the
fundamental under consideration. The conditional expected growth is obtained from the
filtered probabilities π(t) displayed in Figure 3, and for earnings, for example, is given
by

PN

i θi πi(t). For the price series, we present the regression results for the equation
p(t) = α + β p(π(t)) + ε(t), where p(t) and p(π(t)) are the realized and model price
conditional on investors’ beliefs at t, respectively. T-statistics are in parenthesis and are
adjusted for heteroskedasticity and autocorrelation.



Table 4: Explaining At-The-Money Implied Volatility of 3-Month S&P 500 Options (1986:Q2 – 2008)

No. Constant ATMIVM Lag P/E CU Earn NBER R−

t−1 R̄2

1 1.769 0.91 0.528
[0.454] [3.977]∗

2 10.211 0.415 0.323
[4.336]∗ [3.346]∗

3 −1.847 0.374 0.742 0.576
[−0.526] [3.444]∗ [2.781]∗

4 10.776 0.405 0.041
[3.308]∗ [2.989]∗

5 18.107 −0.655 0.045
[15.277]∗ [−1.719]

6 18.888 −0.616 0.114
[17.108]∗ [−2.552]∗

7 27.409 −0.102 0.168
[7.198]∗ [−2.547]∗

8 16.593 −2.562 0.269
[17.312]∗ [−4.462]∗

9 13.781 0.343 −0.035 −0.275 −0.035 −2.128 0.361
[2.618]∗ [2.159]∗ [−0.151] [−1.486] [−0.882] [−7.376]∗

10 −2.002 0.990 0.089 0.760 0.098 0.000 −1.238 0.609
[−0.518] [3.276]∗ [0.508] [2.754]∗ [0.4972] [0.020] [−3.065]∗

11 4.921 0.88 0.381 −0.058 0.742 0.1 0.01 −1.206 0.663
[1.458] [4.285]∗ [2.660]∗ [−0.373] [2.755]∗ [0.580] [0.550] [−3.169]∗

The table reports the quarterly time series regressions

ATMIV(t) = β0 + β1 ATMIVM (t − 1) + β2 ATMIV(t − 1) + +β3 P/E(t − 1) + β4 C.U.(t − 1)

+ β5 Earn(t − 1) + β6 NBER(t − 1) + β7 R−

t−1 + ε(t).

In different lines some of the βi are set to zero. ATM(t) is the at-the-money Black-Scholes implied volatility on S&P 500 index options
traded on the CBOE with approximately three months to maturity and trading at the beginning of the quarter. ATMM is the at-the-money
implied volatility implied by our model and calculated as shown in Appendix 2. The historical and model implied series are shown in the
top panel of Figure 1. The latter are calculated conditional on investors’ beliefs of fundamental drift states that are extracted and displayed
in Figure 3. P/E is the price to operating income ratio of S&P 500 firms, CU is the demeaned industrial capacity utilization in the United
States obtained from the Federal Reserve Board, Earn stands for the real operating earnings growth of S&P 500 firms, NBER is 100 times
the quarterly expansion indicator created by the NBER, and R− is percentage one quarter lagged returns in periods when it is negative on
the S&P 500 index. Besides options prices, all other variables are measured at the end of the previous quarter. T-Statistics are in parenthesis
and are adjusted for heteroskedasticity and autocorrelation using the Newey and West (1987) method. The symbol * indicates statistical
significance at the 5% level.



Table 5: Explaining the Ratio of Implied Volatilities of 5% Out-of-the-Money Puts to Calls for 3-Month S&P 500 Options (1986:Q2 – 2008)

No. Constant P/CM Lag P/E CU Earn NBER R−

t−1 COT II R̄2

1 0.385 0.717 0.454
[3.603]∗ [8.338]∗

2 0.394 0.693 0.458
[4.886]∗ [10.912]∗

3 0.237 0.42 0.406 0.538
[2.918]∗ [3.454]∗ [3.570]∗

4 1.466 −0.01 0.041
[9.536]∗ [−1.344]

5 1.297 0.015 0.048
[37.324]∗ [1.780]

6 1.279 0.013 0.092
[41.974]∗ [2.521]∗

7 1.176 0.001 0.039
[60.65]∗ [3.170]∗

8 1.31 0.029 0.057
[36.721]∗ [4.050]∗

9 1.267 −0.901 0.008
[27.522]∗ [−0.760]

10 53.99 −2.262 0.044
[30.724]∗ [−1.488]

11 1.499 −0.006 −0.004 0.01 0 0.041 0.357 −0.004 0.219
[10.53] [−1.145] [−0.453] [1.315] [0.047] [4.846]∗ [0.399] [−2.530]∗

12 0.441 0.682 −0.001 −0.014 0.002 0.001 0.022 0.654 −0.003 0.470
[2.128]∗ [6.086]∗ [−0.129] [−2.383]∗ [0.539] [1.089] [2.311]∗ [0.897] [−1.973]∗

13 0.264 0.412 0.392 −0.001 −0.012 0.005 0.001 0.014 0.681 −0.002 0.551
[1.783] [3.468]∗ [3.288]∗ [−0.351] [−2.420]∗ [0.126] [1.447] [1.952] [1.325] [−2.031]∗

The table reports the quarterly time series regressions

P/C(t) = β0 + β1 P/CM (t − 1) + β2 P/C(t − 1) + β3 P/E(t − 1) + β4 C.U.(t − 1)

+ β5 Earn(t − 1) + β6 NBER(t − 1) + β7 R−

t−1 + β8 COT(t) + +β8 II(t)ε(t).

In different lines some of the βi are set to zero. P/C(t) is the ratio of Black-Scholes implied volatilities of 5% out-of-the-money puts to calls for S&P 500 options with
about three months to maturity measured at the beginning of the quarter. P/EM is the analogous put-call ratio implied by our model and calculated as shown in Appendix
2. The historical and model implied series are shown in the top panel of Figure 1. The latter are calculated conditional on investors’ beliefs of fundamental drift states that
are extracted and displayed in Figure 3. P/E is the price to operating income ratio of S&P 500 500 firms; CU is the demeaned industrial capacity utilization in the United
States obtained from the Federal Reserve Board; Earn stands for the real operating earnings growth of S&P firms; NBER is 100 times the quarterly expansion indicator
created by the NBER; R−

t−1 is the one quarter lagged returns in periods when it is negative on the S&P 500 index; COT stands for the sentiment of traders measured as the
net long position of large speculators on S&P 500 index futures obtained from the Commodity Futures Trading Commission’s Commitment of Traders Report; II stands
for investor sentiment (bullish less bearish proportion) measured in Investor’s Intelligence’s survey of investment newsletter writers. Besides options prices and sentiment
variables, all other variables are measured at the end of the previous quarter. COT is measured on the day of the options trade, and the II on the Wednesday before the
options trade. T-Statistics are in parenthesis and are adjusted for heteroskedasticity and autocorrelation using the Newey and West (1987) method. The symbol * indicates
statistical significance at the 5% level.



Table 6: Model Volatility of Stock Volatility and Fundamental Uncertainties (1986:Q2 – 2008)

No. Constant Inf Unc Earn Unc CU Unc MG Unc R̄2

1. 2.046 0.646 0.054
(1.535) (1.817)

2. 0.933 0.346 0.725
(1.554) (8.347)∗

3. 1.767 0.677 0.037
(1.023) (1.729)

4. -0.226 1.952 0.234
(-0.143) (2.553)∗

5. 0.989 0.0313 0.353 -1.116 1.751 0.891
(1.032) (0.182) (14.295)∗ (-3.444)∗ (5.910)∗

The table reports the quarterly time series regressions

VV(t) = β0 + β1 IU(t) + β2 EU(t) + β3 CU(t) + β4 MG(t) + ε(t). (48)

In different lines some of the βi are set to zero. Inf Unc stands for inflation uncertainty, Earn Unc for
earnings uncertainty, CU Unc for Capacity Utilization uncertainty, and MG Unc for money growth
uncertainty. Uncertainty for each fundamental variable is measured using equation (30) and the mod-
els volatility of stock volatility is computed using (22). Time series of all variables are evaluated at the
filtered belief series in Figure 3. T-Statistics are in parenthesis and are adjusted for heteroskedasticity
and autocorrelation using the Newey and West (1987) method. The symbol * indicates statistical
significance at the 5% level.



Figure 1: Data and Model Fitted At-the-Money Implied Volatility (ATMIV) and 5% Out-of-the-Money
Put-Call Implied Volatility Ratio (P/C) from (1986:Q2-2008)
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The at-the-money implied volatility (ATMIV) and ratio of 5% OTM put-to-call implied volatilities (P/C) at about three
months to maturity are constructed at a quarterly frequency from S&P 500 index options prices as discussed in Section 2.2.
The legend “D” denotes the historical data series, while “M” denotes those from our model. The model series are calculated
using Monte Carlo simulations as shown in Appendix 2. The filtered beliefs series of investors used to generate the fitted
values are shown in Figure 3. Shaded areas represent NBER-dated recessions.



Figure 2: Impulse Responses of Short Rates and Industrial Capacity Utilization to Shocks to Fear
Measures (1986:Q2-2008)
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We report the generalized impulse response function (IRF) of Pesaran and Shin (1998) for the 1st order VAR system with the
two variables in each panel. The IRF using this definition is independent of the order of variables in the VAR. Two standard
error bands using bootstrap with 5000 repetitions are also displayed.



Figure 3: Conditional Probabilities of Eight Regimes (1967-2008)
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State 3 : Overheating Boom
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State 6 : Deflation
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State 8 : Low Capacity Boom

The regime definitions are in Table 2. β, θ, ρ, and ω are the drifts of inflation, earnings growth, de-meaned capacity
utilization, and real money growth, respectively. The filtered beliefs are obtained from the SMM procedure in Appendix 2.
The calibrated values of the parameters are shown in Table 1. Shaded areas represent NBER-dated recessions.



Figure 4: Fundamentals: Empirical and Model Fitted (1960-2008)
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Historical values of financial and fundamental variables series (D) are in solid lines and their fitted values (M) from the SMM
estimation procedure in Appendix B are in dashed lines. The calibrated values of the parameters are shown in Table 1. The
filtered beliefs series of investors used to generate the fitted values are shown in Figure 3. Shaded areas represent NBER-dated
recessions.



Figure 5: Stock and Bond Prices: Empirical and Model Fitted (1960-2008)
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Historical values of financial and fundamental variables series (D) are in solid lines and their fitted values (M) from the SMM
estimation procedure in the Appendix are in dashed lines. The estimated values of the parameters are shown in Table 1 and
the implied asset price valuations are in Table 2 The filtered beliefs series of investors used to generate the fitted values are
shown in Figure 3. Shaded areas represent NBER-dated recessions.



Figure 6: Strike-Adjusted 3-Month Densities of Stock Returns Under the Risk-Neutral Measures in the
Eight Regimes
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Stock return risk-neutral densities conditional on investors having 80 percent probability of each of the eight regimes (and
equal probabilities for the other regimes) are calculated using our estimated model parameters in Table 1 using Monte Carlo
simulations as shown in Appendix 2.



Figure 7: Relationship Between Fear Indices and Policy Variables From Kernel Regressions
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The fear indices (ATMIV and P/C) are shown in Figure 1. Data and model expected fundamentals are shown in Figure 4.
The solid lines are the mean fitted values from the nonparametric regressions are estimated with a Gaussian kernel. 95%
confidence bands are shown in dashed lines and are constructed as shown in Hardle (1990).



Figure 8: Relationship Between ATMIV and Money Growth During Stimulative Periods
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We define “Stimulative” periods as those where the 3-month Treasury Bill Yield is below the annualized inflation (CPI) rate.
In the sub-sample of our date where we have options data (1986:2 – 2008) there are 20 quarters that we characterize as
stimulative. The panels report the sample correlation and its t.statistic in parenthesis. The at-the-money implied volatility
(ATMIV) at about three months to maturity is constructed at a quarterly frequency from S&P 500 index options prices as
discussed in Section 2.2. The model series are calculated using Monte Carlo simulations as shown in Appendix 2. The filtered
beliefs series of investors used to generate the fitted values are shown in Figure 3.



Figure 9: Relationship Between ATM Implied Volatility and Absolute Changes in ATM Implied Volatil-
ity, (1986:Q2-2008)
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Data and model ATM implied volatility are shown in the top panel of Figure 1. The model volatility of volatility is computed
using (22) and the filtered belief series in Figure 3.



Figure 10: Volatility Premium (1986:Q2-2008)
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The first and second panels show the data implied volatility premiums (IVP), which are the difference between the ATMIV
in Figure 1 and the P-measure forecast of realized volatility from from Projection 1 (equation (26)) and Projection 2 (equation
(27)), respectively. The panels also show the analogous implied volatility premium from our model which is the difference
between the model implied volatility in Figure 1 and the model forecast of volatility under the P-measure using simulation
methods as described in equation (47) in Appendix 2. The third panel shows the IVP and the Forward Volatility Risk Premium
(FVRP) from our model. The FVRP is the difference in volatility forecasts under the Q- and P-measures respectively. The
fourth panel shows the model’s IVP and volatility of volatility series as computed using (22). All model variables are
computed using the filtered belief series in Figure 3.



Figure 11: Volatility of Stock Market Volatility and Fundamental Uncertainties (1986:Q2-2008)
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The model volatility of volatility is computed using (22) and fundamental RMSE uncertainties are computed using (30). All
variables are computed using the filtered belief series in Figure 3.




