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Abstract

As recent events attest, modern economies may have trouble enforcing Say’s Law.

An economy with decentralized markets and trades between goods and a liquid asset,

money, has two equilibria. In full-employment, output is determined by supply. But a

higher demand for liquidity is self-fulfilling and precipitates the economy to an equilib-

rium where output is determined by demand: the increase of the private uncertainty

about the ability to sell goods generates the higher demand for liquidity. That state

may be a trap: a reverse shift from pessimism to optimism may not be sufficient,

without policy intervention, to restore full-employment.
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1 Introduction

In the current crisis, the demand for precautionary saving and the reduction of con-

sumption is playing an important contribution. Uncertainty about employment and

income raises the motive for saving and the lower demand for goods feeds into the

uncertainty. The mechanism, which has some relation with the paradox of thrift, is

analyzed here in a model of general equilibrium with money as the medium of exchange.

These issues have been raised by Leijonhufvud (1968), following Keynes (1936), who

argued that in an economy where goods are traded with money, Say’s law may not

hold. The present paper proves the point in the context of general equilibrium, rational

decision making and expectations formations.

In any contemporary economy, exchanges are between goods and money. Money is

liquid as it can be used to trade any good. Agents increase their money balances

through sales and use these balances to buy consumption goods. Both inflows and

outflows of money are subject to random micro-shocks but in a “standard” regime

of economic activity, these shocks can assumed to be relatively small and agents can

afford to keep a relatively low level of money inventories. Such a regime depends on

individual expectations. If agents expect that opportunities for sales are subject to

a larger uncertainty, they reduce their consumption to accumulate more money as a

precaution. But the reduction of consumption by some agents may increase the sale

uncertainty of others and raise the demand for money. The higher demand for money

(liquidity) may be self-fulfilling.

In this paper, the sudden increase of the demand for money shifts the economy from an

equilibrium with a regime of high consumption to another equilibrium with a regime

of low consumption where agents attempt to accumulate higher money balances and

there is insufficient aggregate demand and output.

Money is valuable because agents are spatially separated. The spatial separation of

agents has been the foundation of models of money since Samuelson (1958) where

agents cannot enter in bilateral credit agreements because they are temporally sepa-

rated in different generations and meet only once. That important property has been

embodied by Townsend (1980) in a setting with infinitely lived agents who are paired
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along the two opposite lanes of a “turnpike”, each selling and consuming with his vis

à vis on alternate days and carrying money from a day of production to the next day

for consumption. Any two agents are paired at most once. That property is preserved

here in an adaptation of the Townsend model in which agents are in a continuum of

mass one and matched pairwise in each period with two other agents, one customer

for the produced good and one supplier of the consumption good.

As shown in these models, the essential property of money is to enable transactions in

separate, non-centralized markets. Recent literature has linked the holding of money

with search, beginning with the moneyless model with search and exchange of “co-

conuts” by Diamond (1982), and continuing with the money model of Diamond (1984),

and Diamond and Yellin (1990). There is no search in the present model. In a search

model, a higher quantity of money holding facilitates the search and is positively re-

lated to the level of activity. In the present model, a high level of activity reduces the

need to save for future transactions because agents expect a high inflow of cash in the

future. When business is expected to be slow, agents attempt to save more in money

and the reduction of demand slows down the business. The structure of the model

intuitively generates multiple equilibria.

In the full-employment equilibrium, there is not more than one period between a sale

and a consumption. Money is necessary for consumption but because a stable and

high inflow of cash is expected, a relatively low level of money balance is sufficient to

maintain a high level of consumption. No agent is cash constrained for consumption

and producers can always sell.

In an equilibrium with unemployment, a producing agent cannot sell when he is

matched with an agent who has no money. Because of the probability of no sale,

agents attempt to accumulate money. But the higher balances for some agents must

result in a smaller or no balance for others because the endogenous money price of

goods is the same in the two equilibria and the total quantity of money is not affected

by the regime of activity.

When the economy is in a full-employment stationary equilibrium, a negative shock of

expectations is sufficient to push the economy to an equilibrium with unemployment:

the fear of smaller opportunities for sale induces agent to keep money: if they do not

have an urgent need to consume they choose to save, but this act of saving reduces

the opportunity of another agent to sell his production. The two equilibria with

and without full employment are not symmetric: in the stationary equilibrium with

2



unemployment a jump of optimism may not be sufficient to nudge the economy into a

recovery: in full-employment, all agents who don’t have a high need for consumption

can shift to saving. In the economy with unemployment, agents who are liquidity-

constrained cannot jump to consumption even if they become optimistic about the

future.

The paper owes an intellectual debt to Green and Zhou (1998, 2002) and Zhou (1999).

These papers focus on the existence of an equilibrium where agents with identical

preferences meet according to an exogenous Poisson process. They emphasize that

there is a continuum of the equilibrium value of the price level. In the present paper,

the emphasis is on the multiple equilibria with and without full-employment and on

the dynamics that are generated by the heterogeneity of preferences.

The paper differs from Guerrieri and Lorenzoni (2009) who analyze the unique equilib-

rium of a model similar to Lagos and Wright (2005) where a centralized market in the

last part of each period enables agents to reconstitute their money balances. Because

of the linear utility at the end of a period, the equilibrium is effectively a sequence of

three periods equilibria. An illiquid asset is introduced that cannot be traded in the

decentralized market of the second part of a period during which agents need money

to buy goods. In the present paper, there is no centralized market and the equilibrium

in any period depends on all the future periods.

The model is presented in Section 2. In order to simplify the analysis, agents are

constrained in the maximum of cash they can hold, by assumption. Since the higher

demand for cash is what generates an inefficient equilibrium, the restriction should

not limit the validity of the properties. The assumption is relaxed later in the paper.

The stationary equilibrium with full employment and low demand for money is pre-

sented in Section 3. The dynamics of the two regimes of high and low consumption

are first analyzed in Section 4. In the following section, these two regimes are shown

to be equilibria under suitable parameter conditions. Section 6 shows that the steady

state of the low regime with unemployment may be a trap out of which no optimism

about the future can lift the economy. Section 7 shows that the properties are robust

when there is no exogenous upper-bound on money holding, and when the consump-

tion indivisibility is replaced by a utility function that is continuous for any positive

consumption.
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2 The model

There is a continuum of infinitely lived agents, indexed by i ∈ [0, 1). The utility of

agent i in period t is u(xit, θit), where θit ∈ {0, 1} are i.i.d. random variables that

represent shocks to the utility of consumption. When θit = 1, agent i has a higher

need to consume in period t than when θit = 0. If θit = 0, the agent is, in period t, of

the low type, and if θit = 1, the agent is of the high type. The probability of the high

type is exogenous and equal to α, (0 < α < 1), which is known by all agents.

To simplify the exposition, we assume that

u(x, θ) =


1, if x ≥ 1,

−θc, if x < 1.
(1)

The assumption of indivisibility that is embodied in (1) is taken as a first step and

will be relaxed in Section 7.3. The welfare of agent i in any period, say period 0, is

the discounted expected sum of the utilities of consumption in the future periods:

Ui = E
[∑
t≥0

βtu(xit, θit)
]
, with β =

1

1 + ρ
< 1. (2)

Agents produce goods which they sell, and consume goods produced by others. Goods

are not storable. In each period, an agent meets two other agents, one buyer and one

seller, according to a process of random matching that is defined by the function

φt(i) =


i+ ξt, if i+ ξt < 1,

i+ ξt − 1, if i+ ξt ≥ 1.
(3)

Any agent i can sell his product to agent j = φt(i) and consume the good produced

by agent φ−1t (i).

The variables ξt ∈ (0, 1) are random, i.i.d., with a uniform density. The process

embodies the absence of a double coincidence of wants and implies that an agent has

a zero probability to find the same match in a future period1. The present setup with

no centralized market is similar to Townsend’s turnpike that fits a circle of infinite

1One could use other matching functions φt provided that they satisfy the property that for any

subset H of [0, 1), µ(H) = µ

(
φt(H)

)
, where µ is the Lebesgue-measure on [0, 1). The property is

required for a uniform random matching of all agents.
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diameter with random pairing of atomistic agents between the two lanes (Townsend,

1980).

In order to simplify the demand for money, it is assumed that each agent is like a

two-headed household: at the beginning of period t, say a day, one head of household

i can go out with some cash (if there is any in the household) to buy a consumption

good from a randomly matched supplier φ−1t (i). The second head stays at home to

service the customer φt(i): if that customer buys, he produces and sells one unit of the

good, at no cost. The two heads meet at the end of the day to consume if a purchase

has been made. A setup with a single person who buys and sells with a random order

during the day would probably generate the same essential properties but the analysis

would be more complicated.

To summarize, in each period t, events proceed in the following sequence:

1. Each agent i first learns his type, i.e. the value of θi,t. The probability of the

high type (θi,t = 1) is equal to α.

2. Each agent decides to carry a quantity of money m “to the market” (which is

not centralized). The decision about m has to take place at the beginning of the

day, before the eventual production and sale during the day.

3. For each agent, the seller produces either 0 or 1 (since agents demand 0 or 1 in

the utility function). The production is cost-free. The seller posts a price p and

there is no bargaining. One can assume that the seller produces instantly after

he knows whether he has a buyer.

We will consider symmetric equilibria where in any period, all sellers post the same

price, p. That price does not have to be constant over time, but in equilibrium it

will be constant. The price p is publicly known in a rational expectation equilibrium.

Suppose an agent decides to consume in a given period: he carries an amount of money

m̃ to the market. To carry m̃ < p would mean no consumption. Hence, for a posted

seller’s price p, buying agents bring each m̃ ≥ p to the market. Since all sellers sell

at the same price p, the agent does not gain a strict benefit by bringing a quantity

m̃ > p to the market.

Given the price p posted by all sellers and known to buyers who bring a quantity of

money m̃ ≥ p, a seller will post a price p̃. Since any buying customer brings m̃ ≥ p,

a value p̃ < p is sub-optimal for the seller. If the seller deviates and posts a price

p̃ > p he will sell only to the customers who bring m̃ > p. The profitability for the
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seller of posting a price p̃ > p depends on the distribution of customers who bring

to the market m̃ > p. But remember that a customer is indifferent between m̃ = p

and m̃ > p. (The customer has ex ante a probability zero of meeting the seller who

deviates by posting p̃ > p). In this context, as no buyer has a strict incentive to

deviate from m̃ = p and no seller has a strict incentive to deviate from p̃ = p, it is

reasonable to assume that agents will coordinate on the outcome where all sellers post

the price p and agents bring the quantity of money m = p to the market. Any other

equilibrium would imply a distribution of prices for the sellers and a distribution of the

money balances carried to the market. Such an equilibrium, if it exists, would require

remarkable coordination power from the agents, to put it mildly, and its stability

properties would not be straightforward. In the present context, such an equilibrium,

if feasible, is not realistic2.

Lemma 1

In an equilibrium where all sellers post a price p in a given period, all agents who

consume in that period carry to the market an amount of money m = p to buy goods.

No buyer has a strict incentive to deviate by bringing a different quantity of money to

the market. A seller who deviates from posting p gets a strictly smaller payoff.

3 First properties

3.1 Steady state equilibrium with full-employment

In a full-employment equilibrium by definition, all agents produce and sell, (and hence

consume). When some agents do not sell (and others do not consume), there is un-

employment.

Assume that each agent has a quantity of money at least equal to m̄ at the beginning

of the period and that sellers post a price p < m̄. If all agents carry an amount of

money m̃ = p to their matched seller, all agents consume and sell in the period. Each

agent has the same amount of cash at the end of the period. No consumer has an

incentive to deviate by hoarding: he would just miss the utility of consumption in the

period. From Lemma 1, no seller has an incentive to deviate. We have the following

result.

2That outcome could also be reinforced by the assumption of a vanishing cost of carrying money

for buyers, in which case a deviation from m̃ = p is strictly sub-optimal. However, such an assumption

of a small cost turns out to be superfluous.
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Proposition 1 Assume that the quantity of money of each agent is bounded below by

m̄ > 0. Then any price p ≤ m̄ that is constant over time determines a steady state

equilibrium with full employment.

There is a continuum of equilibrium price levels. The continuum of price equilibria is

of no special interest here. The main property is that for all these prices there is full

employment. All the full-employment equilibria with different p have the same real

allocation of resources which is the socially optimal allocation.

In a full employment equilibrium, money is indispensable for transactions, but there

is no precautionary motive since agents are sure that they will be able to sell and

replenish their cash at the end of each period.

Using Lemma 1, we will consider only equilibria with a price that is constant over time.

That price will be normalized to 1. All money holdings in the interval Ik = [k, k+ 1),

with k a non-negative integer, generate the same opportunities for trade. An agent

with an amount of money m ∈ Ik at the beginning of a period will be defined to be

in state k. In state 0, an agent is liquidity constrained and cannot consume. We first

make the technical assumption that money holdings are bounded: there is N arbitrary

such that the quantity of money held by any agent is strictly smaller than N + 1.

Lemma 2

There exists N such that in any equilibrium and in any period, any agent with money

greater than N at the beginning of any period consumes one unit.

Lemma 3

Assume that the support of the initial distribution of money is bounded by N0. Then in

any equilibrium, the support of the distribution of money is bounded by Max(N0, N).

Definition

• Let πt by the probability of not making a sale.

• Deterministic path: π̃t = {πs, ...}s≥t.
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• Evolution of the cash balance of agent i
mi,t+1 = mi,t + 1− xi,t with probability 1− πt,

mi,t+1 = mi,t − xi,t with probability πt.
(4)

1− πt =

∫
xi,tdi.

• xi,t = x∗(mi,t, θi,t, π̃t) maximizes

Equilibrium

An equilibrium is defined by an initial distribution of money, a path π̃0 with perfect

foresight and a consumption function xt = x∗(mt, θt, π̃t) that maximizes the utility

E[
∑
t≥0

βtu(xt, θt)],

and a sequence of Γt of distribution of money that satisfies (1)

A(Mt) = MaxE(u(xt, θt) + βA(Mt+1)

Assumption 1 The aggregate quantity of money M is such that M < N .

The assumption eliminates the degenerate case where all agents hold the maximum

quantity of money that is allowed.

Let Γ(t) be the vector of the distribution of agents at the beginning of period t across

states

Γ(t) = (γ0(t), γ1(t), . . . , γN (t))′,

where γk(t) is the mass of agents in state k. Any distribution of money must have a

total mass of 1 and a mean equal to the aggregate money supply M :

N∑
0

γk(t) = 1,

N∑
k=1

kγk(t) = M. (5)

3.2 The consumption of the high type agents

In general, the demand for money should depend on the type of the agent (high or low)

and the opportunities of future sales as determined by the path of the probabilities of
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making a sale in future periods. The behavior of the high type agents is not ambiguous

however. As shown in the next result, they consume whenever they can.

Proposition 2

In an equilibrium, any high-type agent consumes unless he is liquidity-constrained.

The property is intuitive. For a high-type agent, saving today entails a penalty c. The

best use of the additional money is to consume it in the future when he is also a high

type. Because of the discounting, the value of avoiding that future penalty is smaller

than the penalty today. The agent is better off by not saving. The formal argument

follows the intuition and is presented in the Appendix.

4 Dynamics in two regimes

Given Proposition 2, we can focus for the rest of the paper, on the consumption

function of the low-type agents. One can anticipate that these agents save if and only

if their money balances is below some target level. We are therefore led to consider two

types of consumption functions. We will show in Section 5 that each of this functions

is optimal for an individual in the relevant equilibrium. Each of the two consumption

functions determine the evolution of the distribution of money balances in the economy

and therefore a regime of the economy. In the high regime, low-type agents consume

whenever they can, that is when they have at least one unit of money. In the low

regime, they save unless they reach a maximum (or targeted) level of money. That

value is fixed and equal to N here, but will be endogenized later3.

4.1 The high regime

At the beginning of the first period, period 0, the distribution of money, Γ(0), is given.

Since all agents except those in state 0 consume, and the matching is independent of

the money balance, each agent faces the same probability π(t) of not making a sale in

period t and being unemployed. The probability π(t) is equal to the fraction of agents

in state 0, γ0(t). The evolution of the distribution of money is given by

Γ(t+ 1) = H(πt).Γ(t), with πt = γ0(t), (6)

3When there is no exogenous upper-bound on individual money holding, if the low type have a

consumption function such that in a steady state, they consume when their balance reaches N , that

value of N is also the (endogenous) upper-bound of the distribution of money.
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and the transition matrix

H(π) =



π π 0 0 . . . 0
1− π 1− π π 0 . . . 0

0 0 1− π π 0
...

...
...

. . .
. . .

. . .
...

... . . . 0 0 1− π π
0 . . . 0 0 0 1− π


. (7)

For example, in the first line, the agents who are in state 0 at the end of period t are

in that state either (i) because they met another agent in state 0, with probability

π, and that determines H11, or (ii) because they were in state 1 at the beginning of

period t, consumed but met with a buyer with no cash and therefore got no inflow of

cash which determines A12 = π. Likewise for the other elements of the matrix H.

Given the normalized price p = 1, Proposition 1 showed that if individual money bal-

ances are bounded below by 1, the high regime has a steady state with full-employment

that is also an equilibrium. The next result (proven in the Appendix) shows that un-

der the condition that the aggregate quantity of money, M , is at least equal to one,

the high regime converges to that steady state with full-employment.

Proposition 3

In the high regime (where all agents who are not liquidity-constrained consume), the

distribution of money Γ(t) converges to a limit. Let M be the aggregate quantity of

money.

• If M ≥ 1, for any initial distribution of money, the rate of unemployment con-

verges to zero. At the limit, no agent is liquidity-constrained.

• If M < 1, the rate of unemployment converges to π∗ = 1−M . The distribution

of money converges such that γ∗0 = π∗, γ∗1 = 1− γ∗0 , and γ∗k = 0 for k ≥ 2.

In the case where M ≥ 1, the economy may have liquidity-constrained agents at the

beginning of time. But a diffusion process of money takes places that reduces gradually

the mass of constrained agents to zero. The real economy at the limit is invariant to the

initial distribution of money: it has full employment. The limit distribution of money,

which has no incidence on the real economy, does depend on the initial distribution

of money. As a particular case, any distribution with full employment and γ0 = 0 is

invariant through time.
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(M<1)

(M≥1)

γ(t+1)

0
γ(t)

0
γ*

When M < 1, the economy converges to a steady state with unemployment and the

fraction γ0 of liquidity constrained agents tends to a positive value. When M > 1, the
economy converges to full-employment with no liquidity constrained agents in the limit.

Figure 1: Dynamics of the liquidity constrained agent in the regime of high consump-
tion (three states).

The case with three states

When there are three states, the quantity of money is bounded by 2. Using the

equations of the quantity of agents and of money,
∑2

k=1 γk = 1 and
∑2

k=1 kγk = M ,

to eliminate γ1(t) and γ2(t), the distribution of money has one degree of freedom. Its

dynamics can be expressed in function of γ0(t):

γ0(t+ 1) = γ0(t)(γ0(t) + γ1(t)),

which is equivalent to

γ0(t+ 1) = γ0(t)
(

2−M − γ0(t)
)
. (8)

The evolution of γ0(t) is represented in Figure 1 for the cases M ≥ 1 and M < 1.

When 1 ≤M < 2, at the limit, γ∗0 = π∗ = 0 and the distribution of money in states 1

and 2, (γ∗1 , γ
∗
2) is determined uniquely by the unit mass of agents and the quantity of

money. When M increases, γ∗1 decreases and γ∗2 increases.

4.2 The low regime

In the low regime, consumption is generated by the fraction α of the high-type agents

in states 1 to N − 1, and all agents in state N . As the fraction of agents who consume
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is 1− πt,

π(t) = 1− α
N−1∑
k=1

γk(t)− γN (t), (9)

which can be written as

π(t) = 1− α(1− γ0(t))− (1− α)γN (t). (10)

The value of π(t) is equal to zero if and only if γ0(t) = 0 and γN (t) = 1 which is

possible only if γN (t) = 1 and M = N . (All individuals are in the highest state). We

have the following result.

Proposition 4

In the low regime, with M < N , there is unemployment in all periods: π(t) > 0 for all

t ≥ 1.

The evolution of the distribution of money is now given by

Γ(t+ 1) = L(πt).Γ(t), with πt given in (9), (11)

where the transition matrix L(π) takes a form that depends on N .

For N = 2,

L(π) =


π απ 0

1− π (1− α)π + α(1− π) π

0 (1− π)(1− α) 1− π

 . (12)

For example in the first line, the mass of liquidity constrained agents γ0(t+ 1) comes

from the constrained agents (not consuming) who do not make a sale, with probability

π, and that defines L11, and the agents in state 1 of the high type who do not make

a sale, with probability απ, which defines L12. Likewise for the other elements of the

matrix L.

For N ≥ 3,

L(π) =



π απ 0 0 . . . 0
1− π a απ 0 . . . 0

0 b a απ . . . 0
...

. . .
. . .

. . .
. . .

...
0 . . . b a απ 0
0 . . . 0 b a π
0 0 0 . . . b 1− π


, (13)
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with 
a = (1− α)π + α(1− π),

b = (1− π)(1− α),

and where the middle lines are omitted for N = 3.

The dynamics of the economy are completely specified by equation (10) where the

matrix L(π) is given in (11) or (12), and πt in (8).

The stationary economy

Let e be the row-vector with N+1 components equal to 1. One verifies that e.L(π) = e

for any π. (For any distribution of money, the transition matrix L keeps the total

quantity of money invariant). Fix a value of π. The matrix L(π) has an eigenvalue

equal to 1 and that eigenvalue is of order 1 (Lemma 2 in the Appendix). There is

a unique vector Γ∗ such that B(π).Γ∗ = Γ∗ and e.Γ∗ = 1. The vector Γ∗ defines a

stationary distribution of money holdings that depends on the probability π and can

be written as a function of π: Γ∗ = (γ∗0(π), . . . , γ∗N (π)) . We can then compute the

total amount of money of the distribution Γ∗(π), which by an abuse of notation is

equal to

M(π) =

N∑
k=1

kγ∗k(π).

The next result shows that this function is invertible and that the level of aggregate

money M determines, in a decreasing function, the unemployment rate in the steady

state. (The lenghty proof is given in the Appendix).

Proposition 5

The low regime with money balances bounded by N has a unique steady state. In that

steady state, the rate of unemployment is a function of the aggregate quantity of money

M that is strictly decreasing from 1 to 0 when M increases from 0 to N .

Proposition 5 is illustrated in Figure 2 for two values of N , N = 2 and N = 3, and in

each case for two values of the share of high-types, α = 0.25 and α = 0.75. One can

observe that for a given quantity of money, the rate of unemployment rises with N .

When N rises, low-type agents save more (up to a higher value of money balances).

That depresses the demand and raises the unemployment rate. The points A and B

correspond to the same quantity of money for N = 2 and N = 3. The unemployment

rate at B is higher. It will be shown in Section 7 that both the stationary distributions
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Figure 2: Money and unemployment in the stationary economy under the low regime
for N = 2 and N = 3. (If M ≥ N , the unemployment rate is 0). For each value of N ,
two cases are presented with low (α = 0.25) and high (α = 0.75) consumption. For
a quantity of money equal to 1.7944, the unemployment rate is equal to 0.15 when
N = 2 and to 0.6105 when N = 3. The impact of money on unemployment is smaller
in the state B with the higher unemployment rate than in state A.

associated at the points A and B are equilibria, for the same quantity of money. At

the point B for example, the unemployment rate is higher because agents save more.

But the higher saving is the optimal strategy when the unemployment rate is higher.

The case with three states

As for the high regime, we consider the case of three states with N = 2 that has only

one degree of freedom and we characterize the evolution of γ0(t). Let S = 2 −M .

From the constraints on the distribution of money Γ(t) = (γ0(t), γ1(t), γ2(t)), we have

−2γ0(t) + S = γ1(t) ≥ 0. Hence, any initial value of the fraction of agents in state 0,

γ0(0), must satisfy the condition

γ0(0) ≤ S/2. (14)
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γ0(t) = xt, S = 2−M .

Figure 3: Dynamics of the fraction of liquidity-constrained agents in the low regime

The analysis which are presented in the Appendix, shows that for t ≥ 0,

γ0(t+ 1) = P (γ0(t)), with

P (x) = −(1− 2α)2x2 + (1− 2α)2Sx+ α(1− α)S2.
(15)

The polynomial P (x) has its maximum at x = S/2. One verifies4 that P (S/2) < S/2.

Since P (x) is increasing on the interval [0, S/2], there is for x > 0 a unique value x∗

such that P (x∗) = x∗ and x∗ < S/2. For any admissible value of x0 which must be in

the interval [0, S/2] by (13), the sequence xt+1 = P (xt) converges to x∗ monotonically.

The evolution of xt is represented in Figure 3.

During the transition, the mass of liquidity-constrained agents, γ0(t), varies mono-

tonically towards its steady state. The unemployment rate is a linear function of

γ0(t):

π(t) = −(1− 2α)γ0(t) + (1− α)S, (16)

and converges to the limit π∗ that is determined by the equation

M = ψ(π∗) = 2−
π∗

(
1− π∗(1− 2α)

)

1− α− π∗(1− 2α)
. (17)

4P (S/2) =

(
(1− 2α)2

4
+ α(1− α)

)
S2. Since S < 1, this expression is strictly smaller than S/2.
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The function ψ(π) has a negative derivative and is strictly decreasing, as shown already

in Proposition 5. Let φ be its inverse function with π = φ(M). One verifies that

φ(0) = 1, φ(2) = 0, φ(1.5− α) = 0.5. (18)

Proposition 6

In a low regime, with N = 2 and M < 2, the distribution of money converges to a

stationary distribution and the unemployment rate converges to a limit π∗ that is a

decreasing function φ(M) such that φ(0) = 1, φ(1) = π∗1 > 0, and φ(2) = 0.

(i) On the dynamic path, the mass of liquidity-constrained agents, γ0(t), is a monotone

function of time. The unemployment rate, π(t), is an increasing (decreasing) function

of γ0(t) when α > 1/2 , (α < 1/2).

(ii) In the special case where α = 1/2, the distribution of money and the unemployment

rate are constant for all periods with γ0 = (S/2)2.

The property in (i) has an intuitive interpretation. For example, assume that the

economy is initially at full-employment with γ0(0) = 0. In the low regime, γ0(t)

increases over time. The evolution of the unemployment rate depends on the share

of high-type agents, α. If α is small, the shift to the low regime makes most agents

shift to saving: demand drops by a large amount and the unemployment rate shoots

up. Gradually, as more agents accumulate large money balances (at N), they consume

and the unemployment rate decreases. The direction of the evolution is inverse when

α is large.

From Proposition 2, if N = 2, there are only two possible consumption functions:

agents in state 1 and of the low type either consume (and that is the high regime),

or save (which generates the low regime). For simplicity, the restriction N = 2 is

maintained in the next two sections. It is removed in Section 7.

5 Optimal consumption functions

So far, we have considered how the distribution of money and the unemployment rate

depends on the consumption function. We now determine which consumption function

is optimal. We assume that there are 3 states (N = 2). Let Uk(t) be the expected

utility of an agent in period t from future consumption when he holds an amount of

money k, after his consumption decision in period t. That utility does not depend on
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his consumption in period t. Since an agent with money holding 2 at the beginning

of a period consumes 1, we define Uk(t) for k = 0, 1. The values of U0(t) and U1(t)

are determined by straightforward backward induction and depend on the regime. For

N = 2, each of the two regimes is determined by the behavior of a low-type in state

1. We begin with the low regime.

5.1 Equilibrium in the low regime

The consumption function in the low regime is defined such that an agent saves if

and only of the low-type and in state 1. If the agent saves, his utility is U1(t). If he

consumes, his utility is 1 + U0(t). The necessary and sufficient condition for the low

regime to be an equilibrium is that for any t,

U1(t)− U0(t) ≥ 1. (19)

An agent in period t with a balance 1 after his consumption decision will make a

sale in period t with probability 1 − πt, in which case he will have a balance of 2

at the beginning of next period. He then consumes in that period, get a utility of

consumption of 1 and be left with a balance 1 that provides a utility U1(t + 1) from

the consumptions after period t + 1. So summarize, the expected utility in period t

from making a sale is that period is β(1− πt)(1 + U1(t+ 1)).

If the agent does not make a sale, his balance at the beginning of period t+ 1 is equal

to 1. In that period, if he is of the high type, with probability α, he consumes that

balance and has a utility 1 +U0(t+ 1). If is of the low type, he does not consume and

keeps his balance of 1 that provides him with a utility U1(t+ 1). The expected utility

of not making a sale is therefore βπt(α(1 + U0(t+ 1) + (1− α)U1(t+ 1)).

Combining the two possible sale outcomes,

U1(t) = β
(
πtαU0(t) + (1− πtα)U1(t) + 1− πt(1− α)

)
.

Using the same argument for an agent with no money after the consumption decision,

and the notation U(t)′ = (U0(t), U1(t)), we have in matricial form

U(t) = βAtU(t+ 1) + βBt, with

At =

πt + α(1− πt) (1− πt)(1− α)

πtα 1− πtα

 , B =

α(1− πt(1 + c))

1− πt(1− α)

 .

(20)
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Define Xt = U1(t)−U0(t). From the previous equations, using at = α(1−πt)+πt(1−α)

in (12),

Xt = βatXt+1 + β(1− at + πtαc). (21)

The stationary solution X∗ of this equation is

X∗ = β
1 + π∗αc− a∗

1− βa∗
,

where π∗ and a∗ are the steady state value of π and a. Simple algebra shows that the

inequality X∗ ≥ 1 is equivalent to π∗αc/ρ ≥ 1 which leads to the next result.

Proposition 7

When N = 2, the low regime steady state is an equilibrium if and only if π∗αc/ρ ≥ 1,

where π∗ is the rate of unemployment as described in Proposition 6.

The result has a simple interpretation: the discounted expected value of the cost of

unemployment measured as the product of the probability of the high type and the

penalty for not consuming in the high type must be greater than one.

For the dynamic path, we have sufficient conditions that are established in the Ap-

pendix using the difference equation (20).

Proposition 8

When N = 2, the low regime is an equilibrium for any period t under either the

following sufficient conditions:

• π∗αc > ρ with α ≤ 1
2 and γ0(0) < γ∗0 , or α > 1/2 and γ0(0) > γ∗0 , where γ0 is

the initial mass of agents in state 0 and π∗, γ∗0 are values in the steady state of

the low regime.

• for values of α and γ0(0) that do not satisfy one of the previous conditions,

π(0)αc > ρ, with π(0) = −(1− 2α)γ0(0) + (1− α)(2−M).

In the second item of the proposition, the unemployment rate rises on the dynamic

path and the condition π(0)αc > ρ implies the inequality of Proposition 7 in the steady

state.

The most interesting case to consider is when the economy is initially at full employ-
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ment with γ0(0) = 0. The previous sufficient conditions are simpler
if α ≤ 1

2
, π∗αc > ρ,

if α >
1

2
, π(0)αc > ρ, with π(0) = (1− α)(2−M).

(22)

5.2 Equilibrium in the high regime

We assume that M > 1 which is the most interesting case. The consumption function

of the high regime is optimal in period t if an agent in state 1 and of the low type

prefers to consume rather than save, that is if Xt = U2(t)−U1(t) ≤ 1. The analysis of

the low regime can be used here if we replace α by 1 in the previous equations. The

difference equation (20) takes now the form

Xt = β(1− πt)Xt+1 + βπt(1 + c). (23)

The stationary solution is equal to βπ∗(1 + c)/(1 − β(1 − π∗)), and since π∗ = 0

(Proposition 3), it is equal to 0. The consumption function is trivially optimal near the

steady state. Since the high regime converges to the steady state with full employment

(Proposition 3), there is T such that if t > T , Xt < 1. Using (22), if Xt+1 < 1, a

sufficient condition for Xt < 1 is that c < ρ. By induction, for any t, Xt < 1.

Proposition 9

When N = 2, if M > 1 and c < ρ, for any initial distribution of money, the high

regime is an equilibrium.

Note the condition c < ρ in the proposition is sufficient and the result holds for

any distribution of money. The high regime could be an equilibrium under a weaker

assumption for particular distributions of money in the first period. For example,

if M ≥ 1 with a uniform distribution, the full employment stationary state is an

equilibrium, for any value of c (Proposition 3). By continuity, if the initial money

distribution is not too different from a full-employment distribution, the high regime

defines an equilibrium that converges to full employment.

6 Unemployment Trap

Suppose that the economy is a stationary equilibrium with full employment. There

exists a value c̄1 such that if c > c̄1, one of the inequalities in (21) is satisfied and
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by Proposition 8, the low regime path is also an equilibrium: an exogenous shift of

(perfect foresight) expectations towards pessimism can push the economy on the path

with an employment rate that converges to a positive value. The switch to the low

regime is self-fulfilling.

Suppose now that the economy is in the stationary equilibrium of the low regime with

π∗αc > ρ (Proposition 7). Can an exogenous change of animal spirits lift the economy

out of that state and set the economy on a path back to full employment?

Let period 0 be the first period in which some low-type in state 1 switch to consump-

tion. In that period, we must have X0 ≤ 1. We now show that if c is sufficiently large,

this inequality cannot be satisfied.

Using (20) with α = 1 and X1 ≥ 0, (more money is better), X0 ≥ βπ(0)(1 + c), where

π(0) is the unemployment rate in period 0. If α = 1, the only agents who do not

consume are the liquidity-constrained in state 0. Hence π(0) = γ∗0 , where γ∗0 is the

mass of liquidity-constrained agents in the steady state of the low regime and depends

only on M , (Proposition 6). X0 cannot be smaller than 1 if βγ∗0(1 + c) > 1, which is

equivalent to

γ∗0(1 + c) > 1 + ρ. (24)

If c is sufficiently large (to satisfy π∗αc > ρ and (23)), then X1 > 1 and there is no

first period in which agents in state 1 with a low type shift to consumption instead

of saving. The stationary equilibrium in the low regime is the only equilibrium. We

have proven the next result.

Proposition 10

When N = 2, there exists a value c̄ such that if c > c̄,

(i) if the economy is at or near the full-employment stationary equilibrium in the high

regime, in any period a shift of expectations can push the economy to a low regime

path with an unemployment rate that converges to a strictly positive value;

(ii) if the economy is at the stationary equilibrium of the low regime with positive

unemployment, that is the unique equilibrium.

The previous result shows the existence of a liquidity trap equilibrium. In that equi-

librium, agents attempt to accumulate money balances because of the uncertainty of

future exchanges. There is an asymmetry between the high regime with full employ-

ment and the low regime that leads to a liquidity trap. In any period, a switch from
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the high to the low regime can occur, but if the economy has been sufficiently long

in a low regime, the economy may not switch back to a path toward full employment

and the low regime with a permanent positive unemployment rate may be the only

equilibrium. The non-symmetry arises because individuals are never constrained on

their saving, but liquidity-constrained individuals are, by definition, constrained on

their consumption.

7 Properties

This section examines the robustness of the previous properties. We separately remove

the exogenous upper-bound on money balances and the indivisibilities in consumption.

7.1 Endogenously bounded distributions and multiple unemployment
equilibria

We begin by the intuitive result that the accumulation of money for any agent is finite.

When all agents consume above some level of money, the distribution of money will

be bounded.

Proposition 11

In any period and any equilibrium, there exists a finite Nt such that any agent with a

balance m ≥ Nt consumes.

A steady state with a high regime and M > 1 has full-employment (Proposition

3). In that steady state, the value Nt in Proposition 11 is equal to 1. All agents

consume. The distribution of money matters only because it is bounded below by 1.

That distribution may be bounded or unbounded. The interesting case will be the low

regime that generates unemployment.

To simplify the argument, and without loss of generality, we assume that the ini-

tial distribution of money is bounded. There is no restriction after the first period.

The following result follows immediately from the mechanics of the evolution of the

distribution of money.
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Proposition 12

Consider an arbitrary equilibrium and let nt be the maximum of the upper-bound of

the support of the distribution of money and the integer Nt of Proposition 11. Assume

that the initial distribution is bounded: n0 is finite. Then in that equilibrium, for any

t, nt+1 ≤ nt.

From the previous Lemma, if the initial distribution of money is bounded and the

economy tends in equilibrium to a steady state, the support of the distribution is

bounded in that steady state.

In a low regime steady state, if an agent has a consumption function such that he

consumes in state k, then the upper-bound of his balance in the steady state will

be not strictly greater than k: because of the probability of not making a sale while

being of the high-type, the set {0, . . . , k} is a sink for evolution of the distribution of

the agent’s balance. Hence in the steady state, the consumption function for states

strictly higher than k is irrelevant. We can therefore restrict an optimal consumption

to be monotone in the following sense: We will say that a low-type agent has a k-

consumption function if he consumes only when his balance is at least equal to k.

Proposition 13

In the steady state of an equilibrium with a low regime, low-type agents consume if

and only if their balance is equal to some finite N , where N is the upper-bound of the

support of the distribution of money. Furthermore,

N ≤ N̄ = 1 +
1 + αc

ρ
.

From the previous discussion, we can now characterize all low regime equilibria in a

steady state. The distribution of money with upper-bound N is the eigenvector of the

matrix L(π) in equation (12) or dimension N , where π is determined by (9), and the

total quantity of money is equal to M .

The utility of holding money in such a steady state is determined as in Section 5.

Extending (19) to the vector of dimension N : UN (t) = (UN
0 (t), . . . , UN

N−1(t))
′, by the

same recursive argument as in Section 5,

UN (t) = βAN (πt)U(t+ 1) + βBN (πt), (25)
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where the square matrix AN of dimension N and the N × 1 matrix BN are defined by

AN (π) =



α(1− π) + π b 0 . . . . . . 0
πα a b 0 . . . 0
0 πα a b . . . 0
...

...
. . .

. . .
. . .

...
0 . . . 0 πα a b
0 . . . 0 0 πα 1− πα

 , BN (π) =


α− πα(1 + c)

α
...
α

1− π(1− α)

 .

(26)

The steady state with a low regime is an equilibrium if and only if the N -consumption

function is optimal and the N + 1 consumption function is not. We have therefore the

necessary conditions 
UN
k − UN

k−1 ≥ 1 for 1 ≤ k ≤ N − 1,

UN+1
N − UN+1

N−1 ≤ 1.
(27)

Note that in the second equation, all the values UN+1
k have to be computed by (24)

using the matrices AN+1(π) and BN+1(π) that are associated to theN+1-consumption

function and with the same unemployment rate that is used for the matrices AN (π)

and BN (π).

Proposition 14

For a given quantity of money, a steady state of an equilibrium with a low regime is

characterized by the following necessary and sufficient conditions:

(i) The upper-bound of the distribution of money and the consumption function of the

low-type are described by Proposition 13 for some value N .

(ii) The distribution of money and the unemployment rate are unique as characterized

by Proposition 5.

(iii) The levels of utility of an agent after his consumption decision are given by (24)

and (25). They satisfy the conditions (26).

(iv) There is no other value of N ≤ N̄ such that the conditions (26) are satisfied.

The result indicates that all steady state equilibria in the low regime can be found

after a finite number of computations. The last condition (iv) is introduced because

we could not rely in this paper on the standard concavity property of the utility of

money balances as the optimization problem is over integers. However, as a practical

method, using intuition, if there is a steady state equilibrium with an N -consumption
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function, it is sufficient to verify that (26) does not hold for N + 1 and that the

N + 1-consumption function is not optimal. The next section provides an illustration.

7.2 Multiple equilibrium unemployment rates

Recall that in Figure 2, for a given quantity of money (equal to 1.7944), there are

two steady states of the low regime with N -consumption functions where N = 2 and

N = 3, unemployment rates π2 = 0.15 and π3 = 0.6105, respectively (points A and B).

We now apply Proposition 14 to show that each steady state is an equilibrium. The

cost of not consuming for a high type is set at c = 4 and the discount factor is equal

to β = 0.9. The intuition for the multiplicity is straightforward. If agents attempt to

accumulate more balances, demand is lower, the unemployment rate is higher which

provides the incentive for more accumulation.

1 2 3 4 5 6

Max m= 2 Max m=3

Balance Distribution Utility Difference Utility Difference
of balances “mid-day” “mid-day”

0 0.0083 6.5838 5.9111

1 0.1889 7.6333 1.0495 6.8434 0.9322

2 0.8028 7.6988 0.8554

Table 1: Utilities for two consumption functions in the stationary equilibrium with
unemployment rate π = 0.15. The equilibrium is represented by the point A in Figure
2. Additional structural parameters: β = 0.9, c = 4.

The equilibrium with the low unemployment rate π2 = 0.15 is described in Table 1.

The distribution of money is reported in Column 2. Less than 1% of the agents are

liquidity-constrained while the unemployment rate is 15%. The lack of demand is

generated by the fear of being liquidity constrained with a high type. Hence only 85%

of the agents consume whereas more than 99% could consume.

The vector U as determined by (24) and (25) is reported in Column 3. The first part of

condition (26) is shown to be true in Column 4, with a difference U1−U0 that is greater

than 1. Column 4 presents the vector of utilities (for the same unemployment rate π2)

of a low-type individual who choose the 3-consumption function, that is consumes if

and only if his balance is equal to 3. The second part of the condition (26) is verified

in Column 6 with U2−U1 < 1. Note that in this case, the value of U1−U0 is no longer

greater than one.
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1 2 3 4 5 6

Max m= 3 Max m=4

Balance Distribution Utility Difference Utility Difference
of balances “mid-day” “mid-day”

0 0.0928 0.4486 0.2599

1 0.2369 2.3757 1.9271 2.1152 1.8554

2 0.4534 3.4304 1.0547 3.0333 0.9181

3 0.2169 3.8110 0.777

Table 2: Utilities for two consumption functions in the stationary equilibrium with
unemployment rate π = 0.6105. The equilibrium is represented by the point B in
Figure 2. Same structural parameters as in Table 1.

The second steady state equilibrium with the high unemployment rate π3 = 0.6105

is represented in Table 2. Agents now accumulate balances up to 3. The fraction of

liquidity constrained agents, 0.093 is also much lower than the unemployment rate.

The conditions (26) are verified in Columns 4 and 6.

7.3 Continuous utility function

Assume that the utility function in (1) is replaced by

u(xt, θt) = Max(xt + θtc(xt − 1), 1), (28)

where x is a positive real number. The utility functions of the two types, high and

low, are represented in Figure (4). Both are stylized expressions of a concave functions

with declining marginal utilities. The “saturation point” is the same for both types

with a consumption of 1, and for a consumption smaller than 1, the marginal utility is

higher for the high type. The rest of the model is unchanged. Producers can sell any

quantity of their produced good with a zero cost of production, but given the utility

function of the buyer, they will never sell more than one unit.

We now show that the main property of the discrete model, multiple equilibrium

steady states with an without unemployment, is preserved when the utility function

with indivisibilities in (1) is replaced by a utility of the type in (27). Under that util-

ity function, there is a general equilibrium with full-employment. The distribution of

money is not unique under full-employment but this non uniqueness does not matter

for the real allocation and we have seen it already in the discrete model. Furthermore,

the discrete distribution of money (over integers) that supports the steady state equi-

librium with unemployment is stable: after a perturbation of that distribution to a

25



( θ = 0 )

( θ = 1 )

Figure 4: Utility functions for the high type (θ = 1) and the low type (θ = 0).

continuous distribution, the distribution of money in the general equilibrium reverts

over time to the initial discrete distribution. A full algebraic analysis is beyond the

scope of this paper, and some arguments will be intuitive. Given the stability of the

discreteness property of the distribution of money (which is due to the kink in the

utility function), one may presume that the dynamic properties are also maintained

for the continuous utility function (27).

Lemma 1 will hold in this extension of the model, as will be discussed later. We

therefore assume that the price of real goods in money is equal to 1. We consider the

following consumption function

c(m, θ) =


Min(m, 1) if θ = 1,

Min(m− k, 1) if θ = 0, for some integer k.
(29)

We take k = 1 but the method presented here could be used for any k: a high-type

consumes as much as possible up to 1 and a low-type consumes any “surplus” over 1 up

to a maximum of 1. We also assume that the aggregate quantity of money is strictly

smaller than 2. (Otherwise, for k = 1, there is no equilibrium with unemployment).

Recall that the state of an agent is defined by the interval Ii = [i, i + 1), with i an

integer i ≥ 0. Under the present consumption function, no sale is greater than 1 and

therefore in a stationary state, the balance of an agent must be in one of the intervals

Ii, 0 ≤ i ≤ 2.
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We consider only a steady state equilibrium. Assume first that the distribution of

money is the same as the stationary distribution of Proposition 6: its support is

discrete with atoms at the points (0, 1, 2). That assumption will be re-examined

below. This distribution is also stationary under the continuous consumption function

in (28) and it generates the same unemployment rate. It remains to show that the

consumption function (28) is optimal in that environment.

The main task is to prove that a low type agent in state I1 does not have a balance

strictly smaller than 1 after his consumption. Let v0 and v1 the marginal utilities of

money for an agent with a balance in Ii = [i, i + 1), net of his consumption in the

period. By induction, we have the equations
v1 = β

(
(1− π)v1 + π((1− α)v1 + αv0)

)
,

v0 = β
(

(1− π)(((1− α)v1 + αv0) + π((1− α)v0 + α(1 + c))
)
.

(30)

For example, on the first line consider an agent who is in I1 after his consumption and

has a small increment of money dm. His utility increase is v1dm. He makes a sale with

probability 1− π in which case he is in I2 in the next period, consumes 1 and is back

to I1 after his consumption in that period. His money dm is carried over to the next

period with a utility gain v1dm in that period. If he makes no sale, with probability π,

his post-consumption position is in I1 if he is of the low type, with probability 1− α,

or in the interval I0 if he is of the high type and consumes one unit. By backward

induction, we get the first equation. Note that the only time when agent consumes

the “extra” dm is when he is liquidity constrained and of the high type. In that case,

the marginal utility of consumption is 1 + c.

The solution (v0, v1) in the linear system (29) depends on the parameters β, α, π and

on c.

v = βGv + βH.

with

G =

α(1− π) + π(1− α) (1− π)(1− α)

πα 1− πα

 , H =

πα(1 + c)

0

 .

It follows that

v0 − v1 =
πα

1− a
(1 + c− v0), with a = α(1− π) + π(1− α) < 1.

The marginal utility of money when the agent is in I0 after his consumption, v0,

depends on the future consumption when the agent is of the high type and has a
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marginal utility of consumption 1 + c. Because of the discounting and the probability

of a high type is less than 1, v0 < 1 + c. Hence

v0 > v1. (31)

We have verified the intuitive property that for an individual, the marginal utility of

money decreases with the level of his balance.

For given parameters β, α and π, the value of v0 is a linear function of c, and increasing.

If c = 0, v0(0) < 1 because of the discounting argument that was used in the previous

paragraph. Now increase the value of c gradually. There is c∗ such that v0(c
∗) = 1.

For that value c∗, because of (30), v1(c
∗) < 1. By continuity, there exists a value c∗∗

such that if c ∈ (c∗, c∗∗),

v1(c) < 1 < v0(c). (32)

Under these inequalities, the consumption function (28) is optimal.

Establishing the equations (29) required that an agent sales are equal to 0 or 1 and

therefore that the support of the distribution of money is discrete at integer points.

We now argue intuitively that the equilibrium is robust to some perturbation of the

money distribution. Assume some value of c such that v1(c) < 1 < v0(c) and consider

a perturbation of the money distribution, from an initial distribution over integers.

The marginal utility of the money in a given interval Ii may not be constant anymore.

By an abuse of notation, let v0(m) and v1(m) the marginal utility of money (after a

possible consumption) in the intervals I0 and I1. By continuity, when the perturbation

is sufficiently small, for any m ∈ I0 and m′ ∈ I1,

v1(m) < 1 < v0(m).

The consumption function (28) is still optimal.

Take any perturbation in the distribution of money, if agents have the consumption

function (28), then the distribution of money converges to a discrete distribution on the

support {0, 1, 2}. We provide here only an intuitive argument. Project the distribution

of money on the interval [0, 1) by the congruence operator with modulus 1.

Assume that agent A has a balance 0 (mod. 1) at the beginning of the period. After

his consumption decision, his balance is still 0 (mod. 1) and his consumption does not

change the balance of the agent he buys from (mod. 1). He then meets a customer B in

the second part of the period who has m. An examination of the various possible types

and states shows that at the end of the period, either the two agents have switched
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their balance (mod. 1) or they have the same balance. The match of these agents

does not change the distribution of money. To summarize, there is no attrition of the

mass of agent with balance 0 at the beginning of a period. (The name attached on

that balance may change).

We now show that the mass of agents with balance 0 increases if the mass of balances

in (0, 1) is strictly positive. Consider an agent with balance m ∈ (0, 1). If he consumes

0 (mod. 1), his purchase does not change the distribution of money, as shown in the

previous paragraph). The other possible case is that he consumes m. Let m′ be the

balance of his seller (after the consumption decision of the seller). If m′ = 0 we are

back to the previous case and there is no impact on the distribution of balances. If

m′ ∈ (0, 1), then the balance of his supplier increases to m + m′ (mod. 1). The

interesting case is m + m′ = 0. In that case, neither of the two agents had a balance

equal to 0 before the match and both of them have a balance equal to 0 after the

exchange. That match increases the mass of agents with a balance 0. Such a match

occurs with a strictly positive probability as long as the mass of agents with a balance

m ∈ (0, 1) is strictly positive5

Although there is no indivisibility in consumption, the distribution of money in the

steady state is still discrete (because of the strong curvature of the consumption at the

point 1). The driving force toward the discrete distribution is the (infinitely) strong

concavity of the continuous utility function at the point 1.

To conclude, reconsider the pricing policy of sellers and assume that the distribution

of money holdings is discrete. If all sellers have a price p, no seller has an incentive

to deviate from that price and the argument that let to Lemma 1 still applies. If the

distribution of money holding is a perturbation of a discrete distribution, the argument

also applies.

8 Conclusion and policy

The multiple equilibria are not due to the properties of the production technology

but originate exclusively in the self-fulfilling expectations of consumers’ expectations

5This is a point where one relies on intuition. To be more formal, one can either discretize the

interval [0, 1) in an arbitrarily large number K of sub-intervals, or one can assume a density function

ft(m) of the distribution of m and show that after an exchange, the density at the point 0 increases

by
∫ 1

0
ft(mt)ft(1−mt)dt, which is strictly positive as long as ft(m) is not identical to 0.
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about their future opportunities to sell. The multiplicity of equilibrium output is thus

driven by the demand. The properties of the model refute Say’s law.

The most effective policy to get an economy out of an unemployment trap may be a

subsidy of consumption that changes the return to saving. Such a policy may induce

all agents who are not liquidity-constrained to consume and thus generate the high

regime, which converges to full-employment (Proposition 3, assuming the non-trivial

case M > 1). Note that under such a policy, the high regime is the only equilibrium.

Such a subsidy could be financed by issuing money.

A uniform lump-sum distribution of money can make the switch to a high regime

possible, but it cannot force the economy into the high regime. If expectations remain

of a low regime, that regime may still be an equilibrium. The policy has some effect

however because the rate of unemployment in the stationary equilibrium of the low

regime is inversely related to the money supply (Proposition 5). Only a very large

increase of the quantity of money can eliminate the unemployment.

The reduction of the price level by policy to a new value that is still an equilibrium

value has the same effect as an expansion of money in this model. That effect is sim-

ilar to the Pigou effect. It is well known however, that such a deflation may have a

negative impact on demand when agents have nominal debts (Fisher, 1933). In the

model presented here there is no financial intermediation. In a model with financial

intermediation, agents would accumulate some debt. The possibility of negative bal-

ances would not alter the properties of the model: agents would still face an (negative)

lower-bound on their balances and agents at that lower-bound would be the liquidity

constrained agents.

Financial intermediation may actually make matters worse because the maximum of

the credit line they grant is endogenous. In a high regime, financial intermediation

is useless (in the present model6). If the economy switches to a low regime, finan-

cial institutions probably would toughen the credit requirement and thus amplify the

shock. Such an effect seems to have been observed in the most recent financial crisis

and recession.

6The only risk that agent face here is that of demand since we focus on this issue. Hence, there is

no risk in the high regime. In general, there should also be a production shocks in which case financial

intermediation would be useful in the high regime. But the issue of the endogenous upper-bound on

individual debts remains when a shock to aggregate demand occurs.
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APPENDIX: Proofs

Proposition 2

For an argument more formal than in the text, assume that an agent, called agent A,

has at least one unit of money in period 0 and is of the high type. If he consumes, he

has m1 money holding at the end of the period (which depends on the random sale

in the period). Let {mt}, t ≥ 2, his optimal path of money holding from period t = 2

on. That random path depends on the consumption decisions and the trading path of

the agent (which is independent of the path of types).

Assume now that the agent saves in period 0. We call him agent B. That agent has

the same random sequence of trading opportunities and types as agent A. His holding

of money at the end of period 1, is therefore m′1 = m1 + 1. For the same random

events at agent A, agent B cannot have for all t ≥ 1, m′t ≥ mT + 1: that strategy

would generate a welfare smaller by −c compared to that of agent A. (Remember

that the agent has a high-type in period 0). Let T be the smallest value such that

m′T+1 = mT+1. Assume that T ≥ 2. Since an agent consumes at most one unit,

by definition of T , in periods t with 1 ≤ t ≤ T − 1, agent B and A have the same

consumption, in period T agent A does not consume and agent B consumes. At the

end of period T , the two agents have the same money holding mT+1 and therefore the

same expected utility for the future. Given the realizations of trade opportunities and

types until period T , the utilities of agents A and B for the given history of trades

and types in periods t with 0 ≤ t ≤ T , ŨA and ŨB, satisfy the inequality

ŨB ≤ ŨA − c+ βT c = −c(1− βT ).

Since T ≥ 1,

ŨB ≤ ŨA − c(1− β).

Adding up over the disjoints events {m′T+1 = mT+1} for some T , with total probabil-

ities not greater than 1, the expected utilities of agents A and B in period 0 satisfy

the inequality

UB ≤ UA − c(1− β).

Saving for an agent of the high type who can consume is not optimal. �
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Proposition 3

Let Sk(t) =
∑N

j=k γj(t). Given the matrix H(π), for any n with 2 ≤ n ≤ N ,

Sk(t+ 1) = Sk(t)− π(t)γk(t) ≤ Sk(t).

Any such sequence Sk(t) is monotone decreasing, bounded below by 0 and therefore

converges. (The distribution of money evolves over time by increasing first-order

stochastic dominance).

Since, γN (t) = SN (t) and for 2 ≤ k ≤ N − 1, γk(t) = Sk(t)− Sk+1(t), γk(t) converges

for any 2 ≤ k ≤ N .

Because γ1(t) = M −
∑N

k=2 kγk(t) and γ0(t) = 1 −
∑N

k=1 γk(t), γ1(t) and γ0(t) also

converge. Let γ∗0 be the limit of γ0(t).

If γ∗0 > 0, since π(t) = γ0(t), we must have, by induction from k = N , and using the

expression of the matrix H, γ∗k = 0 for k ≥ 2. In this case, M = γ∗1 = 1 − γ∗0 < 1. If

M ≥ 1, then γ∗0 = 0. �

To prove Proposition 5, we first establish some Lemmata.

Lemma 2

For any π ∈ (0, 1), the matrix L(π), defined in (12) has an eigenvalue equal to 1 that

is of order 1.

Recall that the matrix L(π) is square and of dimension N + 1. Call e the row-vector

of ones and of dimension N + 1. Any distribution Γ has the sum of its components

equal to 1. Since the matrix L(π) is a function in the set of distributions of dimension

N + 1, e.L(π) = 1 (which can also be verified directly). Hence, 1 is an eigenvector of

the matrix L(π). To show that it is of order 1, consider the matrix

L(π)− I =



π − 1 απ 0 0 . . . 0
1− π a− 1 απ 0 . . . 0

0 b a− 1 απ . . . 0
...

. . .
. . .

. . .
. . .

...
0 . . . b a− 1 απ 0
0 . . . 0 b a− 1 π
0 0 0 . . . b −π


, (33)

where I is the identity matrix of dimension N + 1. Let ∆j be the determinant for the

first j rows and columns of this matrix. Replacing the last row of ∆N by the sum of
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all rows of ∆N and using a + b − 1 = −απ, ∆N = −b∆N−1 with b = (1 − α)(1 − π).

By induction, ∆N = (−b)N−1(π − 1) 6= 0. The unit eigenvalue is of order 1.

Lemma 3

For any π ∈ (0, 1), and Γ such that
∑

k γk = 1, Lt(π)Γ tends to the eigenvector with

sum of the components equal to one that is associated to the unit eigenvalue of L(π)

as t tends to infinity.

We will replace L(π) by L in the proof. Since the sum of the elements of L in each

column is equal to 1, for any vector v, |Lv| = |
∑

ij Lijvj | = |
∑

j vj | ≤
∑

j |vj |. The

matrix L is contracting. Furthermore, if there are two non identical distributions

v 6= w with
∑
vj =

∑
wj = 1, then |L.(v − w)| = |

∑
j(vj − wj)| <

∑
j |vj − wj |.

The sequence Γt = LtΓ has at least one accumulation point, Γ̃, because it belongs to

a compact. Let Γ∗ be the eigenvector associated to the unit eigenvalue of L(π) such

that
∑

k γ
∗
k = 1. Using the definition of Γ̃, the difference Γ̃− Γ∗ can be approximated

arbitrarily closely by LkΓ̃ − LkΓ∗ = Lk−1L.(Γ̃ − Γ∗). If Γ̃ 6= Γ∗, by the previous

paragraph, |Γ̃−Γ∗| ≤ |L.(Γ̃−Γ∗)|, a contradiction. Therefore, the sequence Γt = LtΓ

has the limit Γ∗. �

We denote by� the ordering according to first-order stochastic dominance. Comparing

to distributions Γ and Γ̃,

Γ′ � Γ if and only if for any K < N ,
k=K∑
k=0

γ′k ≥
k=K∑
k=0

γk.

Lemma 4

For any distribution of money Γ, let Γ̃(π) = L(π)Γ, where L(π) is the transition matrix

given in (12). If π′ ≥ π, then Γ̃(π′) � Γ̃(π).

The case N = 2 is trivial. Assume N ≥ 3. For K = 1, the inequality is verified

because γ0 > 0. For K = 2, using the expression of L(π) in (12),

γ̃0(π) + γ̃1(π) = γ0 +
(
π(1− α) + α

)
γ1 + απγ2,

which is non-decreasing in π.
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Likewise, for K ≤ N − 1,

K∑
k=0

γ̃k(π) =

K−1∑
k=0

γk(π) +
(
π(1− α) + α

)
γK + ζKπγK+1, (34)

with ζK = α if K ≤ N − 2, and ζK = 1 if K = N − 1.

The right-hand side in (33) is non-decreasing in π. �

The result has an intuitive interpretation. When π increases, the aggregate demand

falls which shifts distribution of money “to the left”.

Lemma 5

Let there be two distributions Γ2 and Γ1 such that Γ2 � Γ1. For any π ∈ (0, 1),

L(π)Γ2 � L(π)Γ1.

To prove that the first component of L(π)Γ2 is at least equal to that of L(π)Γ1, use

γ20 + γ21 ≥ γ10 + γ11 and take the difference

πγ20 + απγ21 − πγ10 − απγ21 = π(γ20 − γ10) + απ(γ21 − γ11)

≥ (1− πα)(γ20 − γ10),

which is non negative because γ20 ≥ γ10 .

A similar argument is applied for the sum of the first two components of L(π)Γj , j=1,2.

In general, the difference between the sum of the first k components, 3 ≤ k ≤ N − 1 is∑k−1
j=0(γ2j − γ1j ) + ((1− α)π + α)(γ2k − γ1k) + απ(γ2k+1 − γ1k+1)

≥ (1− απ)
∑k−1

j=0(γ2j − γ1j ) + ((1− α)π + α− απ)(γ2k − γ1k)

≥ (1− α− (1− α)π)
∑k−1

j=0(γ2j − γ1j ) = (1− α)(1− π)
∑k−1

j=0(γ2j − γ1j ),

which is non negative. �

The proof of the following result is left as an exercise.

Lemma 6

If Γ2 � Γ1, then the quantity of money in the distribution Γ2 is not strictly greater

than in the distribution Γ1.

34



We can now prove Proposition 5.

Proposition 5

Define Γ∗(π) as the steady state distribution associated to π. For any t, L(π)tΓ∗ = Γ∗.

Take π′ > π and define the sequence Γt = L(π′)tΓ∗. By Lemma 4,

Γ1 = L(π′)Γ∗ � L(π)Γ∗ = Γ∗ = Γ0.

By Lemma 5, if Γt � Γt−1,

Γt+1 = L(π′)Γt � L(π′)Γt−1 = Γt.

The sequence Γt defines an increasing sequence of distribution in the sense of first-

order stochastic dominance. By Lemma 3, it converges to the eigenvector of L(π′)

and defines the distribution of money in the steady state associated to L(π′). By

Lemma 6, the quantity of money in that distribution is not strictly smaller than in the

distribution Γ∗(π). The quantity of money in the distribution Γ∗(π) is a continuous

function of π because Γ∗(π) is continuous. The proof is concluded by taking the limits

for π → 0 and π → 1. �

The low regime with N = 2

For any t, the quantity of money is M = 2(1− γ0(t)− γ1(t)) + γ1,

γ1(t) = −2γ0(t) + S, with S = 2−M,

and the rate of unemployment, π(t), is equal to γ0(t) + (1− α)γ1(t). Hence,

π(t) = −(1− 2α)γ0(t) + (1− α)S.

Using the transition matrix L for the case N = 2 in (11),

γ0(t+ 1) = π(t)
(
γ0(t) + α(−2γ0(t) + S

)
,

= −(1− 2α)2γ0(t)
2 + (1− 2α)2Sγ0(t) + α(1− α)S2 = P (γ0(t)).

Proposition 8

Assume that π∗αc > ρ which is equivalent to X∗ > 1. On the path of the low regime

that converges to the steady state, Xt > 1 for t sufficiently large.
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Suppose that Xt+1 > 1. Then using the equation of backward induction (20), a

sufficient condition for Xt > 1 is

πtαc > ρ. (35)

From Proposition 6, πt varies monotonically on the transition path. It decreases with

time if α < 1/2 and γ0(0) < γ∗0 , or α > 1/2 and γ0(0) > γ∗0 . If πt is decreasing, then

Xt > 1 for all t.

In the other parametric cases, πt is increasing and if π0αc > ρ, then (34) is satisfied

for all t and since for some T , Xt > 1 for t > T , by backward induction, Xt > 1 for

all t. In this case, the steady state condition X∗ > 1 holds.

If α = 1/2, the economy is stationary for all periods and the necessary and sufficient

condition for the optimality of consumption is π∗αc > ρ. �

Proposition 11

Let us extend the definition of Uk that was given at the beginning of Section 5. We

consider an equilibrium that may not be a steady state and define Uk as the utility

of an agent after his consumption holding a balance k, k ≥ 0 after his consumption

decision, excluding the utility of any consumption in the period. We omit the time

subscript which is not necessary for the argument.

Let n be an integer, n ≥ 1. The value of Un is bounded above by β/(1− β) which is

the utility of an agent who consumes in every period. Likewise, U0 is bounded below

by −αcβ/(1− β) which is the utility of an agent who never consumes. Hence,

n∑
k=1

(Uk − Uk−1) ≤
1 + αc

ρ
. (36)

Recall that a low-type agent saves if and only his balance k is such that Uk−Uk−1 ≥ 1.

Since for any k ≥ 0, Uk ≥ Uk−1 ≥ 0, there are at most n1 values of k such that

Uk − Uk−1 ≥ 1 and n1 ≤ (1 + αc)/ρ. Hence there exists N such that Uk − Uk−1 < 1

for any k ≥ N . �

Proposition 12

Let N be the upper-bound of the money distribution. We prove by contradiction that

in a low regime, if a low type agent holds a balance m < N , he saves. (Recall that

all high-type agents consume when possible). Suppose that for some n < N all agents

holding n consume. Then the set {0, 1, . . . ,m} forms a sink in the evolution of the
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distribution of money. By definition of the upper-bound N , we would have N ≤ n

which is a contradiction. We have then for any k with 1 ≤ k ≤ N − 1,

Uk − Uk−1 ≥ 1.

Using the upper-bound in (35),

N − 1 ≤ 1 + αc

ρ
.

�
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