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Abstract

We construct a theoretical model that encompasses both firms’ and
sectors’ network structure by considering a lower-dimension economic
unit, that is, sector-specific establishments of multi-sectoral firms. The
model suggests a reduced-form relation where aggregate production is
a function of all the establishment-specific idiosyncratic shocks filtered
by the network structure of the economy. We show that aggregate fluc-
tuations depend on the geometry and magnitude of cross-effects across
establishments, which is measured by the eigenvalues and eigenvectors
of the network matrix. Moreover, the equilibrium levels and their dis-
persion depend on the Bonacich centrality of establishments within the
network structure of the economy. Different network structures entail
different aggregate volatilities due to the fact that the presence of
direct relations averages out the idiosyncrasies across establishments.
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1 Introduction

The standard diversification argument claims that independent sectoral shocks
tend to average out as the level of disaggregation increases, as well as idiosyn-
cratic shocks to firms average out as the number of firms increases.1 In this
perspective, the existence of aggregate fluctuations is only or at least mainly
due to shocks that affect contemporaneously all the grains of the economy,
such as fluctuations in intrinsically macroeconomic variables, e.g., the infla-
tion rate, financial turmoils, or policy shocks.

A recent stream of literature tries to provide a microfoundation for the
existence of aggregate shocks. We will refer to this stream as the granular
hypothesis (GH) literature. The GH suggests two possible types of “grains”
from which aggregate fluctuations might originate, that is, firms or sectors.
For example, Gabaix [16] notices that the empirical size distribution of firms
is fat-tailed. Hence, the baseline assumption of the diversification argument,
that is, the finite variance of the distribution from which firms are drawn, is
not supported empirically. For example, a power law for the size-distribution
of firms allows for a relevant impact of idiosyncratic shocks on aggregate
fluctuations. As a consequence, the variability in sales of the 100 top US
firms can explain as much as 1/3 of aggregate variability. Other studies
that look at firms to at least partially explain aggregate fluctuations are,
among others, Jovanovic [24], Durlauf [15], Bak et al. [2], and Nirei [31].
In the case of sectoral shocks, the seminal paper of Long and Plosser [26]
has been followed by several works, namely, Horvath [21] and [22], Conley
and Dupor [9], Dupor [14], Shea [33], the same Bak et al. [2], Scheinkman
and Woodford [32], Carvalho [7], Acemoglu, Ozdaglar, and Tahbaz-Salehi [1],
and Carvalho and Gabaix [8]. In particular, Carvalho [7] applies the tools
of network theory to the input-output tables, linking aggregate variability
to the network structure of intersectoral trade. The presence of sectors that
work as hubs to the economy make idiosyncratic shocks that would normally
be irrelevant propagate to the aggregate level.

These two explanations may be overlapping. On the one hand, aggregate
fluctuations can be originated through idiosyncratic shocks to sectors. On the
other hand, the existence of big firms allows for the transmission of micro-
level shocks to macro-level variables. Aggregate fluctuations are therefore
either alternatively or jointly facilitated by idiosyncratic shocks to sectors
and firms. In this paper we consider the two features, that is, sector- and
firm-specific variability, as the two faces of the same phenomenon, which
jointly contribute to the propagation of idiosyncratic shocks to the aggregate.

1See, e.g., Lucas [27] and, more recently, the irrelevance theorem of Dupor [14].

2



The baseline intuition of our model is that big firms are not sector-specific. In
other words, we can view firms as an intersectoral network of sector-specific
business units. From now on, we will refer to the networks of business units
with the term “conglomerates,” and we will call each atomistic business unit
a “firm.” Each firm produces a sector-specific commodity, and it can be
part of a conglomerate. We make shocks originate at the firm level, so that
conglomerate- or sector-wide fluctuations result as aggregations of multiple
firm-specific shocks.

We present a static economy with multiple sectors. A continuum of house-
holds consumes a combination of good types according to their respective
complementarity. Each good type is produced in a sector, where sector-
specific firms compete à la Cournot among them. Each firm can have links
with other firms in other sectors. If a link exists, then the two linked firms
are part of the same conglomerate. The marginal cost of each firm depends
on the production of the other firms linked to it, that is, on the production
of the conglomerate. In network theory terminology, firms represent the ver-
tices of a graph where we can note different components, that is, distinct
path-connected subnetworks of firms. The network structure of conglomer-
ates overlaps independently with the distribution of firms among sectors. We
take the network structure as given and we explore the equilibrium output
given the network.

We model peer effects among firms in a way similar to Ballester et al.
[3], where the profit of each agent-firm is concave with respect to its own
production and linear with respect to other firms’ actions. This leads to
a very tractable linear structure of the equilibrium solution and therefore
permits a matrix representation. The basic result of this literature is that
each agent’s action is a function of its network centrality, a concept origi-
nally borrowed from the sociological literature. For example, see Bonacich
[5]. The novelty of our model with respect to this stream of literature is
the presence of multiple interrelated markets.2 This permits the existence of
intersectoral spillovers and transmission mechanisms that can be reduced to
their peer-effects nature. A negative shock to firm i in sector s transmits not
only as a positive shock to other competitor firms in the same sector but also
as a negative shock to firms in other sectors both directly, if they are part
of the same multisectoral conglomerate, and indirectly, through the comple-
mentarities on the demand side across commodities. Thus, the diffusion of
idiosyncratic shocks from one firm to another depends on the existence of a

2İlkılıç [23] shares with our model the same logic and assumes profit maximization to
be taken at the conglomerate level. This is game-theoretically more sophisticated but less
tractable once we analyze aggregate volatility and we try to bring the model to the data.
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transmission path that connects the two firms. This transmission path does
not coincide with the network path of a conglomerate. It is instead a mix of
network components and existence of markets for more or less related goods.

The multisectoral models à la Long and Plosser permit the transmission to
the aggregate level of idiosyncratic sectoral shocks. The use of input-output
tables permits to track the transmission mechanism of shocks across sectors.
This explains partially the micro-foundation of aggregate fluctuations and
intersectoral comovement as a product of sector-specific technological fluc-
tuations in the style of RBC models. Nevertheless, it is not clear what a
sector-specific shock is, in the sense that a sectoral shock is likely to be the
aggregation of lower-dimensional “granular” shocks. Similarly, Gabaix [16]
considers firm-specific shocks, even accounting for the industrial specializa-
tion of the core business of each firm. Nevertheless, it is not clear in this
case either what a firm-specific shock is, being firm-specific production the
complex aggregation of contract relations, internal organization, and so on.
We partially overcome this ambiguities by considering establishment-specific
shocks. Given the high level of disaggregation, we are more likely to char-
acterize the idiosyncratic shocks as a product of chance, like mistakes in
accounting, strikes, mismatches in the logistics procedures, or simply tem-
porary bad luck in production. In our framework, sector- and firm-specific
shocks result as aggregations at the sectoral and firm level of establishment-
specific volatility. We would like to contribute to this literature by showing
how the transmission of idiosyncratic shocks can account for a greater part
of aggregate fluctuations once we take into account not only shocks to sec-
tors or to firms separately, but considering the joint structure of intersectoral
linkages and conglomerate relationships.

The paper is organized as follows. Section 2 maps the data on inter-
sectoral linkages and conglomerates into graph-theoretic language. Section
3 presents the set-up for the model and derives the equilibrium solution.
Section 4 expresses the equilibrium solution in terms of Bonacich centrality
measures. Section 5 shows the effects of the network structure on aggre-
gate volatility and performs some counterfactual exercises using both data
from US Census Bureau and BEA and simulated random networks. Section
6 draws the final conclusions and suggests future lines of research. Proofs,
figures, and tables are provided in the Appendix.

2 The Network Structure of the Economy

In this section we use Detailed Benchmark Input-Output data compiled by
the Bureau of Economic Analysis to describe intersectoral linkages and the
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County Business Patterns by the US Census Bureau to describe some features
of the conglomerate relations. We consider 2002 data.

2.1 The Network Structure of Intersectoral Linkages

Let S ≡ {1, · · · , S} be the set of sectors ordered by the N.A.I.C.S. code at a
certain digit level, where S is the total number of sectors. In the commodity-
by-commodity direct requirements tables the typical (s, s′) entry gives the
input share evaluated at producers’ prices of (row) commodity s as an in-
termediate input in the production of (column) commodity s′. In order to
interpret the data, we assume that each commodity s is produced only in sec-
tor s. This is an approximation of what we can extract from the input-output
tables, where each commodity can be produced by several sectors. Neverthe-
less, we can always assign for each commodity a typical sector that produces
the great majority of the quantity of a specific commodity. This simplifica-
tion does not entail qualitative problems and can be seen more as an abuse of
notation. We use the requirements tables as a proxy for (aggregate) comple-
mentarity across sectors. If commodity s is used as an intermediate input in
the production of commodity s′ with a share β̃ss′, then we say that commod-
ity s is complementary to commodity s′ and β̃ss′ parameterizes the degree
of complementarity. From a theoretical point of view, the complementarity
between sectors can be technological or related to preferences, and can relate
to both intermediate and final products. In this sense, the data in the direct
requirements tables are an equilibrium product of the interaction between
technological and consumption complementarities across sectors and at dif-
ferent levels of intermediation. From an aggregative perspective, if we treat
the direct requirements as an exogenous endowment of the economy, then
interpreting them as consumption or production complementarities does not
yield different implications qualitatively and the problem becomes a matter
of analytical tractability, as we see in the model below. According to this
interpretation, the requirements tables tell us that, while commodity s is
a complement of commodity s′ with a certain degree β̃ss′, commodity s′ is
a complement of commodity s with degree β̃s′s, where β̃ss is generally not
equal to β̃s′s. Shocks to the production of a certain commodity can affect the
production of other commodities either downstream, that is, from a sector
that supplies the commodity to other sectors that demand the commodity,
or upstream, that is, from a sector that demands the commodity to other
sectors that supply the commodity. In order to analyze the transmission
of shocks both downstream and upstream, we can construct a symmetric
version of the input-output matrix that accounts for both downstream and
upstream complementarity across sectors. Hence, we map the asymmetric
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input-output matrix into a symmetric complementarity matrix by adding
the two corresponding entries for each pair of sectors (s, s′) and normalizing
them in the interval [0, 1/(S − 1)], that is,

βss′ = βs′s =
1

S − 1

β̃ss′ + β̃s′s

max{β̃ss′ + β̃s′s}
,

for every s 6= s′ in S . This transformation dismisses part the information
contained in the input-output table but it is necessary for analytical tractabil-
ity later on. Moreover, we ignore for the moment the complementarity of each
commodity with respect to itself.

We use the elements of the set S of sectors as labels for the vertex set
V (S ), that is, V (S ) ≡ {v1, · · · , vS}.
Definition 1. The edge set of intersectoral linkages The edge set E(S ) of
intersectoral linkages is a subset of [V (S )]2 such that

E(S ) ≡ {{vs, vs′} ∈ V (S )2 |s is a complement of s′, with s 6= s′}.

In other words, E(S ) is defined by the link between elements of the set
V (S ) of all nodes-sectors. Note that according to our definition of E(S ) a
sector cannot be complementary to itself. The direct requirement of sector s
of intermediate inputs from sector s itself does not enter the edge set, so that
there are no self-links. The maximal consumption of commodity s, which is
given by αs/βss, captures this feature of the input-output tables. The link
that defines E(S ) is undirected, that is, if {vs, vs′} belongs to E, then also
{vs′, vs} belongs to E. We define also the weight function W as a real-valued
function from E(S ) to [0, 1/(S − 1)] that assigns to each element {vs, vs′}
in E(S ) a weight equal to WS({vs, vs′}) = βss′.

3

Definition 2 (The network of intersectoral linkages). The network g(S ) ≡
(V (S ), E(S ),WS) of intersectoral linkages is a network of vertex set V (S ),
edge set E(S ), and weight function WS, where every element of E(S ) is
an undirected link between two distinct elements vs and vs′ of V (S ) with
associated weight WS({vs, vs′}) = βss′.

For example, we represent graphically the network structure of intersec-
toral linkages in Figure 3.4 The relative central position of the nodes reflects

3We could use the term vertex instead of the term node. Similarly, we could use the
terms adjacency relation, edge, or arc instead of the term link, the term link strength
instead of weight, and the term graph instead of network. The literature uses this termi-
nology interchangeably.

4For the representations of graphs we use the software UCINET 6 by Borgatti, Everett,
and Freeman, distributed by Analytic Technologies.
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the weights associated to the links. Central sectors have strong links with the
other sectors, that is, they are more complementary to the other sectors, while
peripheral nodes have weak links. The central sectors for the US economy
are “manufacturing” (node 5), “professional and business services” (node
10), and “educational services, health care, and social assistance” (node 11).
The centrality of these sectors is clearer in Figure 4, where we dichotomize
the network by constructing a new edge set where there is a link between
two nodes only if the original link is greater than the threshold level of 0.01,
and there is no link otherwise. The alternative weight function assigns the
weight 1 to all links in the new edge set.

The adjacency matrix is a particular representation of weighted networks,
which reproduces which pairs of nodes are linked together and with which
weight.

Definition 3 (The network matrix of intersectoral linkages). The network
matrix B of intersectoral linkages is the adjacency matrix of the network
g(S ). In other words, B is a real-valued symmetric S × S matrix with
typical element Bss′ = βss′ ∈ [0, 1/(S − 1)] if {vs, v′s} belong to E(S ) and
WS({vs, vs′}) = βss′, and Bss′ = 0 if {vs, v′s} does not belong to E(S ).

We reproduce in Table 3 in the Appendix the matrix of intersectoral
linkages for the case S = 17, derived from BEA’s commodity-by-commodity
direct requirements tables for 2002.

2.2 The Network Structure of Conglomerates

An establishment is a single physical location at which business is conducted
or services are provided. Each establishment is classified on the basis of its
major activity, that is, each establishment is characterized by a sector of spe-
cialization. An establishment is not necessarily identical with a company or
an enterprise, which may consist of one establishment or more. It constitutes
the very “grains” of organized economic activity, in the sense that no matter
what conceptual framework we employ we can always express any corpo-
ration, division, subsidiary, company, and so on, as a differently organized
combination of a certain number of establishments. For example, a conglom-
erate is a collection of corporations involving a parent company and one or
more subsidiaries. Each subsidiary can have its own subsidiaries itself. Each
company of the conglomerate, be it a parent company or a subsidiary, can be
decomposed into one or more establishments, connected to one another by
one or more legal, accounting, or economic ties. From now on, we call each
establishment a firm and any collection of establishments a conglomerate.
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Let F be the set of establishments/firms and F be the total number of
firms. Each firm is sector-specific, so the set of sectors defines a partition PS

of the set of firms. Let PS ≡ {F1, · · · ,FS} be a set of subsets of F such
that

⋃

s∈S
Fs = F and Fs ∩ Fs′ = ∅ if Fs and Fs′ belong to PS, for every

s 6= s′ in S . For every sector s in S , we call ns the cardinality of Fs, that
is, ns ≡ #(Fs). By construction,

∑

s∈S
ns = F . We order the firms in F

by their sector of activity, that is,

F = {1, · · · , n1, n1 + 1, · · · , n1 + n2, · · · , F}, (1)

where ns is the number of establishments in sector s, for all s in S .5

We use the elements of the set S of firms as labels for the vertex set
V (F ), that is, V (F ) ≡ {v1, · · · , vF}.

Definition 4 (The edge set of linked firms). The edge set Ẽ(F ) of linked
firms is a subset of [V (F )]2 such that

Ẽ(F ) ≡ {{vi, vj} ∈ V (F )2 |i’s output depends on j’s output, with i 6= j}.

In other words, Ẽ(F ) is defined by the link between elements of the set
V (F ) of all nodes-firms. Note that there are no self-links, that is, a firm’s
performance cannot depend on its own performance. The links that define
E(F ) are undirected, that is, if {vi, vj} belongs to E, then also {vj, vi}
belongs to E.

Definition 5 (The network of linked firms). The network g̃(F ) ≡ (V (F ), Ẽ(F ))
of linked firms is an undirected network of vertex set V (F ) and edge set
Ẽ(F ), where every element of Ẽ(F ) is an undirected link between two dis-
tinct elements vi and vj of V (F ).

A path from i to j of length l is a sequence of l ∈ N links that indirectly
connects node vi to node vj . For example, there may be no direct link between
i and j, that is, {vi, vj} may not belong to the edge set Ẽ(F ). Nevertheless,
if there exists a node vk such that both {vi, vk} and {vk, vj} belong to Ẽ(F ),
then there is path of length 2 from i to j. A component C(Ẽ) of vertex set
V (F ) and edge set Ẽ(F ) is a subset of the vertex set V (F ) such that for
each pair of nodes vi and vj in the component C it is possible to find a path
of some length l in Ẽ(F ) between vi and vj . There may be one or more

5According to the County Business Patterns of the US Census Bureau, there were
around 5.5 million employer establishments in the US in 2002. The number of estab-
lishments and their dimension, measured in terms of average number of employees per
establishment, are distributed unevenly across sectors and change over time.
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components in the vertex set. The set of components constitutes a partition
of the vertex set V (F ).

In the model we assume that a firm does not compete with firms within
the same conglomerate. This is not necessarily true in practice but it is
a necessary assumption for analytical tractability.6 Hence, we construct a
network that respects this limitation. Let V (Fs) be the vertex set of the
firms that belong to sector s in S . By construction, vi ∈ V (Fs) if and
only if i ∈ Fs. Moreover, if vi ∈ V (Fs) and vj ∈ V (Fs′) with s 6= s′, then
necessarily i 6= j.

Definition 6 (The edge set of conglomerates). The edge set E(S ) of con-
glomerates is a subset of Ẽ(F ) such that

E(F ) ≡ {{vi, vj} ∈ V (Fs)× V (Fs′) |if vi, vj ∈ C(Ẽ),

then ∄vk ∈ C(Ẽ) \ {vi, vj} such that vk ∈ Fs ∪ Fs′}.

In other words, the edge set of conglomerates is a subset of the edge set where
each path can only include nodes that belong to different sectors.

For every component C(E) in V (F ) that we obtain from the edge set
E(F ) and for every sector s in S , we can find at most one node vi in
C(E) such that firm i belongs to Fs. This leads us to the definition of
conglomerate.

Definition 7 (Conglomerate). A conglomerate C(E) is a component of the
vertex set V (F ) and edge set E(F ).

The conglomerates are multisectoral components of V (F ). For each firm
i whose node vi belongs to the component C(E), we say that firm i is part of
conglomerate C(E). A conglomerate cannot have more than one firm in each
sector, and each sector can have at most one firm that belong to a certain
conglomerate. We call C (E) the set of all components C(E) of the vertex set
V (F ) through the edge set E(F ). By construction, C (E) is a partition of
the vertex set V (F ), and for every C(E) in C (E) and every s in S we have
that #(C(E) ∩ V (Fs)) ≤ 1. The cardinality of each conglomerate measures
its sectoral diversification.

We define also the weight function WF as a real-valued function from
E(F ) to [0, 1] that assigns to each element {vi, vj} in E(F ) a weight, or link
strength, equal to WF ({vi, vj}) = ǫ, where ǫ ∈ [0, 1].

6In reality a parent company and a subsidiary can be competitors in the same market
and this may be an important source - or lack thereof - of comovement across firms.
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Definition 8 (The network of conglomerates). The network g(F ) ≡ (V (F ), E(F ),WF )
of conglomerates is an undirected network of vertex set V (F ), edge set
E(F ), and weight function WF , where every element of E(F ) is an undi-
rected link between two distinct elements vi and vj of V (F ) with associated
weight W ({vi, vj}) = ǫ ∈ [0, 1].

We present in Figure 5 a simulated random network of conglomerations
with F = 100 and S = 20. Each node is a firm, and each group of linked
nodes is a conglomerate. Each conglomerate is characterized by a different
shape of its nodes. On the upper left side there is a group of one-firm con-
glomerates, while the rest of the firms are distributed among conglomerates
of different sizes. Since each firm belongs to a different sector within the
same component, the size of the components reflects the diversification of
each conglomerate. A random network that satisfies the properties of Def-
inition 8 tends generate a size distribution of conglomerates, as we can see
in Figure 6. This resembles the empirical sectoral diversification of large
conglomerates, which we reproduce in Figure 7.

We can define the adjacency matrix of the conglomerations, that repro-
duces which of nodes of the vertex set of firms V (F ) are linked according to
E(F ) and with which weight.

Definition 9 (The network matrix of conglomerations). The network matrix
Γ of conglomerations is the adjacency matrix of the network g(F ). In other
words, Γ is a real-valued symmetric F ×F matrix with typical element γij =
ǫ ∈ [0, 1] if {vi, vj} belong to E(F ) and W ({vi, vj}) = ǫ, and γij = 0 if
{vi, vj} does not belong to E(F ).

Given the ordering of F in (1) and Definition 8, if the number F of
firms is enough greater than the number S of sectors, then the matrix Γ of
conglomerations is a rather sparse matrix, with several zero entries and just
a few non-nil entries.

3 The Model

Consider a multisector economy. There is a continuum of mass 1 of identical
households whose utility depends on the consumption cs of different com-
modities. There are S ∈ N commodities, where s ∈ S = {1, · · · , S}. There
are S productive sectors, each of them producing a different sector-specific
commodity.7 Each sector s is populated by ns firms, and each firm i within

7We use the term commodity and sector interchangeably because we assume that only
sector s produces commodity s.
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sector s produces an undifferentiated quantity qi of good s competing à la
Cournot with the other firms within the same sector. Each firm may have
a link with firms in other sectors, and the more productive the linked firms,
the lower the marginal production cost.

On the preference side, each household owns a symmetric share of the
profits realized on the production side, and employs these resources to con-
sume different good types. We omit an index for the generic household,
though we bear in mind that each control variable on the preference side
should have it. The utility function of the household is linear-quadratic, that
is,

U(c1, · · · , cS) =
∑

s∈S

αscs −
1

2

∑

s∈S

βssc
2
s +

∑

s∈S

∑

s′ 6=s

βss′cscs′,

with αs ≥ 0, βss > βss′, and βss′ ∈ [0, 1/(S − 1)] for all s and s′ in S .
The value of

∑S

s=1 αs measures the absolute size of the economy, that
is, αs is high enough so that the utility function is strictly increasing and
strictly concave separately with respect to the consumption of each com-
modity cs. The intuition is the following: suppose that αs =

∑S

s′=1 αs′ , that
is, the household only consumes the good of type s. The marginal utility is
always decreasing but positive only up to cs < αs/βss. Hence, αs represents
the upper bound for the values of cs such that the utility function shows the
standard properties of strictly positive, strictly decreasing marginal utility.
Below this level, consumption is compatible with the standard properties of
utility functions. The parameter βss measures the concavity of the utility
function separately with respect to each good, and βss′ parameterizes in-
stead the degree of complementarity between different consumption goods.
If βss′ = 0, the goods are independent. If 0 < βss′ ≤ 1/(S−1), the goods are
complements at different degrees. The upper bound on the possible values of
βss′ avoids increasing returns in the model. For a similar version of this util-
ity function, see Bloch [4]. In order to rule out the possibility of nil demand
of any good type, we may assume that αs > 0 for every s. For simplicity, we
also assume that βss′ = βs′s, that is, the relation of complementarity between
two good types is reciprocal.8

8Since the model does not incorporate any input-use mechanism on the production side,
this is a fair approximation of the aggregate technological relation between two sectors.
An alternative modeling strategy is to consider a unique final good consumed by the
households and produced using the S intermediate commodities through an aggregative
equation that takes into account the technological complementarities among commodities.
Since this would not change the structure of the aggregate equilibrium, we choose the
simplest formulation.

11



The household maximizes its utility subject to the budget constraint

S
∑

s=1

pscs =
S
∑

s=1

Πs,

where ps is the price of each good s and

Πs ≡
∑

i∈Fs

πs
i (2)

represents the share of the household in the profits realized by each firm i
operating in sector s. The set Fs is the set of firms that operate in sector
s and πs

i is the profit of the i-th firm in Fs. Since there is a continuum of
households of mass 1 and shares are equal across households, each dividend
coincides analytically with total profits. The maximization problem is

max
{cs}s∈S

∑

s∈S

αscs −
1

2

∑

s∈S

βssc
2
s +

∑

s∈S

∑

s′ 6=s

βss′cscs′

subject to
∑

s∈S

pscs =

S
∑

s=1

Πs.

(3)

The first order condition (FOC) yields a linear inverse demand function for
each commodity,

ps = αs − βsscs +
∑

s′ 6=s

βss′cs′. (4)

For a discussion of the parameter values for which we have positive prices
and quantities, see Bloch [4].

On the production side, there are ns firms in each sector s. They com-
pete à la Cournot and share the sector-specific demand expressed by the
households. The maximization problem for firm i in sector s is

max
qi

πs
i ≡ psqi −miqi, (5)

where mi is the marginal cost of producing one unit of good s. We assume
that the marginal cost is invariant across good types. Moreover, we suppose
that the marginal cost is linearly increasing in the firm i’s own production
and decreasing in the production of any other firm that has a link with firm
i. Definition 8 implies that the maximum degree of any firm i is S − 1, that
is, the number of sectors other than its own. The marginal cost mi of firm i
is

mi =
δ

2
qi −

∑

j∈F

j 6=i

γijqj − ξi, (6)
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where δ > 0 parameterizes the concavity of each firm’s profits in own pro-
duction. The idiosyncratic component ξi is an iid random variable with
mean µ and finite variance σ2. The element −∑j∈F

j 6=i

γijqj represents how

the marginal cost of a firm decreases with the production of the firms that
are linked to it. According to Definition 8, γij can be either 0 if i does not
share a link with j or ǫ if i does share a link with j. The conjecture behind
lies on a similar way of thinking as Goyal and Joshi [17], where the marginal
cost is linearly decreasing in the number of links that a firm has. We provide
hereafter two examples in which the marginal cost of production is connected
to the production of the linked firms. For a similar argument, see Bloch [4].

Example 1 (Common use of a facility.). Firms in the same conglomerate
have to pay a fixed amount ε for every produced unit in order to construct a
common warehouse, independently of the good type produced. We can treat
this portion as a proportional taxation that every firm in the conglomerate
agrees to pay. The rationale for this commitment is that the cost of each
produced unit decreases with the size of the common warehouse, a sort of a
public good for the firms that are part of the conglomerate. Firm i in con-
glomerate κi has therefore a unitary cost that is composed of δ̃qi for contract-
ing its own workers, −ξ̃i for some idiosyncratic technological endowment, ε
as the compulsory proportional contribution to the common warehouse, and
−ε
∑

j∈κi
qj as the unit cost of operating the warehouse which decreases with

the size of the warehouse. Hence, the marginal cost is

mi = δ̃qi − ξ̃i + ε− ε
∑

j∈κi

qj = (δ̃ − ε)qi −
∑

j∈κi

j 6=i

εqj + ε− ξ̃i,

which has the same form as (6), once we impose δ ≡ 2(δ̃ − ε), ξ̃i distributed
iid with mean ε and finite variance σ, and γij ≡ Ijiε, where Iji = 1 if j ∈ κi

and Iji = 0 otherwise.

Example 2 (Common R&D production.). Every firm within a conglomerate
produces a technology which is nonrival for the members of the conglomer-
ate. As in Goyal and Moraga [18] for example, we characterize production as
an innovation effort. Technology produced in one sector by a firm of the con-
glomerate can be applied in another sector with an adaptation cost, (1− ε),
that we can treat as an iceberg cost on the original technology. In order to
be sold in the market, that is, outside the borders of the conglomerate, the
product must be patented and therefore the complementarity or the substi-
tutability on the demand side depend on the legal rather than technological
compatibility between one good and another. The costs of each firms are
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convex in the firm’s own innovation effort and depend on the effort exerted
by the other firms in the same conglomerate, whereas the marginal cost is
equal across firms of the same conglomerate up to a scaling constant ξi. The
resulting expression for mi is the same as in (6).

Remember that Definition 8 implies that γij = 0 if i and j produce the
same good type s, that is, two firms that belong to the same conglomerate
cannot compete with one another. Moreover, γij = 0 also if there exists a
path between i and j in g(F ) such that a firm k on that path belongs to
either the sector of firm i or the sector of firm j. The structure of the marginal
costs we assume basically implies that the correlation of produced quantities
between two firms that share a link should be higher than the correlation
between two firms that do not share a link, which is at the origin of our
concept of linkage between two firms. The share of each unit i within sector
s depends on the conglomerate to which i belongs, and more specifically on
the conglomerate’s dimension and the dimension of the sectors in which the
conglomerate has a firm.

There is a market clearing condition for each sector that guarantees that
at equilibrium the demand for good s expressed on the preference side is
equal to the supply provided by the production side, i.e.,

cs ≤
∑

i∈Fs

qi, (7)

for every s in S . This means that the households can consume only up to the
total production provided by all the firms that operate in sector s. Another
market clearing condition refers to the financial market, that is, all the profits
realized by the firms are distributed among the households in equal shares,
as (2) states.

Definition 10 (Equilibrium). An equilibrium for the economy is a set of
household decisions {cs}s∈S , firms decisions {qi}i∈F , dividends {Πs}s∈S ,
profits {πi}i∈F , and prices {ps}s∈S such that {cs}s∈S solves (3) given {ps}s∈S

and {Πs}s∈S , {qi}i∈F solves (5) given (4), and the market clearing conditions
(7) and (2) hold for every s ∈ S .

Let us consider the FOC of (5) and the market clearing condition (7). If
we substitute for cs′ =

∑

j∈F
s′
qj in (4), we obtain

ps = αs − βss

∑

j∈Fs

qj +
∑

s′ 6=s

βss′





∑

j∈F
s′

qj



 ,
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for every s in S . We can plug this inverse demand function and the ex-
pression for the marginal cost (6) inside the i-th firm’s problem (5). The
resulting firm i’s problem is

max
qi



αs − βss

∑

j∈Fs

qj +
∑

s′ 6=s

βss′





∑

j∈F
s′

qj







 qi −









δ

2
qi −

∑

j∈F

j 6=i

γijqj − ξi









qi,

whose FOC with respect to qi yields

αs − βssqi − βss

∑

j∈Fs

qj +
∑

s′ 6=s

βss′





∑

j∈F
s′

qj



− δqi +
∑

j∈F

j 6=i

γijqj + ξi = 0.

Thus, the equilibrium solution satisfies

(δ + βss)qi + βss

∑

j∈Fs

qj −
∑

s′ 6=s

βss′





∑

j∈F
s′

qj



−
∑

j∈F

j 6=i

γijqj = αs + ξi, (8)

for every s in S and every i in Fs. The FOC (8) identifies three aspects that
characterize a firm’s optimal production choice. First, the width of the sector
in which it operates, parameterized by αs. Second, its idiosyncratic level of
technology, identified by ξi, which affects the cost-efficiency of production.
Third, the position of the firm within the network structure of production,
that is, some centrality measure relative to the network of conglomerates
Γ and its interaction with the sectoral composition of the economy B. We
assume for simplicity that the concavity of the utility function with respect
to the consumption of each commodity alone is the same across good types.
This does not affect relevantly the results.

Assumption 1. The concavity of the utility function with respect to each
good’s consumption is the same across all good types, that is, βss = β for all
s in S .

We use Definition 3 and Definition 9 to express the equilibrium solution
in matrix form. Let ξ̄ ≡ [ξ1, · · · , ξN ]′ be the vector of length F of the idiosyn-
cratic shocks to all firms grouped by sector. Similarly, let q̄ ≡ [q1, · · · , qN ]′ be
the vector of optimal quantities. We define ᾱ ≡ [α1, · · · , α1, · · · , αS, · · · , αS]

′

as the vector of length F of the sectors’ shares within the overall size of the
economy, where each sector share αs is repeated ns times, where ns is the
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number of firms within sector s. Let IS be the S×S identity matrix and Us

be the ns×ns matrix of ones. If we compute B−β ∗IS, we can construct the
F × F block matrix B̄, where each block is the expansion of B − β ∗ IS by
Us. In order to represent the equilibrium in matrix form, we need a matrix
that accounts for both the network of intersectoral linkages and the network
of conglomerates.

Definition 11 (The interaction matrix of the economy). The interaction
matrix Θ of the economy is the real-valued symmetric F × F matrix given
by Θ ≡ B̄+ Γ.

The matrix Θ summarizes both the network of intersectoral linkages and
the network of conglomerates. The typical element θij of Θ is either θij =
βss′ + γij if s 6= s′, or θij = −β if s = s′, where firm i operates in sector s and
firm j operates in sector s′. Let IF be the F ×F identity matrix. Hence, the
necessary condition (8) for the equilibrium solution consists of the matrix
equation

Ψq̄ = ᾱ+ ξ̄, (9)

where Ψ is
Ψ ≡ [(δ + β)IF −Θ] . (10)

We call q̄∗ the solution of the matrix equation (9).

Proposition 1. The matrix equation (9) has a unique generic solution q̄∗,
and

q̄∗ = Ψ−1
[

ᾱ + ξ̄
]

, (11)

where Ψ−1 is the inverse of Ψ.

The equilibrium production is a function of the relative dimensions of
the sectors composing the economy and the idiosyncratic productivities of
all the firms in the economy filtered by the network matrix of the economy.
The existence and uniqueness of the equilibrium solution does not mean that
q∗i ≥ 0 for every i in F . This depends on the interaction between Ψ−1 and
ᾱ + ξ̄, which may contain negative elements.

4 Equilibrium and Bonacich Centrality

We need to characterize the equilibrium solution to obtain sufficient condi-
tions for which q̄∗ ≧ 0. Let θ ≡ min{θij |i 6= j} and θ ≡ max{θij |i 6= j}.
Since γij ≥ 0 for every i and j in F and βss > βss′ ≥ 0 for every s 6= s′ in
S , then θ = −β < 0 and θ ≥ 0. In order to obtain sufficient conditions for
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which q̄∗ ≧ 0 we need to decompose Ψ. Since Ψ = [(δ + β)IF −Θ] according
to (10), we have to reformulate Θ. First, we isolate the positive cross-effects
of Θ and we normalize them by the highest cross-effect θ.

Definition 12 (The network matrix of the economy). The network matrix
G of the economy is the F ×F real-valued matrix where the typical element
is

gij ≡
θij + β

θ + β

for i 6= j and gii = 0 otherwise.

Note that θ+β > 0 since β > 0. By construction, gij ∈ [0, 1] for all i and
j in F .

We can decompose the matrix Ψ into three components of cross-effects
between firms,

Ψ = −
[

−(δ + β)IF − βUF +
(

θ + β
)

G
]

, (12)

where UF is the F × F matrix of ones. The component −(δ + β)IF reflects
the concavity of firms’ profits in own production, the component −βUF

mirrors the competition in homogeneous quantities within the same sector
and uses this uniform substitutability as a benchmark value for all the firms,
and the component

(

θ + β
)

G represents the complementarity of production
decisions between firms within the same conglomerate, measured from the
benchmark value of the competition à la Cournot.

Note that we can treat the network matrix of the economy as the adja-
cency matrix of a weighted network, which we call network of the economy,
that accounts for both the network of intersectoral linkages and the network
of conglomerates. In order to define the network of the economy, we need a
vertex set, an edge set, and a weight function.

Definition 13. The edge set of the economy The edge set E of the economy
is a subset of [V (F )]2 such that

E ≡ {{vi, vj} ∈ [V (F )]2 |{vi, vj} ∈ E(F ) or {vs, vs′} ∈ E(S )},

where i ∈ Fs and j ∈ Fs′ .

The weight function W is a real-valued function from V (F )2 to [0, 1].

Definition 14 (The network of the economy). The network g ≡ (V (F ), E,W )
of the economy is an undirected network of vertex set V (F ) and edge set E,
where every element of E is an undirected link between two distinct elements
vi and vj of V (F ), with associated weight W ({vi, vj}) = gij ∈ [0, 1].
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As an example, we report in Figure 8 the representation of the network
matrix G for the US economy, where we can see the blocks of intersectoral
linkages at different complementarity levels and the conglomerate relations
across the sectors.

Let λmax(G) be the highest eigenvalue of G. This value is crucial for the
characterization of the equilibrium solution.

Assumption 2. The network matrix G satisfies

λmax(G) <
δ + β

θ + β
.

The intuition behind Assumption 2 is that the concavity of own pro-
duction, measured by δ + β, must be higher than the maximal comple-
mentarity between own production and other firms’ choices, measured by
(θ + β)λmax(G).

Proposition 2 (Debreu and Herstein, 1953).
[

IF − (θ + β)/(δ + β)G
]−1

≧

0 if and only if Assumption 2 holds.

Let λmin(G) be the lowest eigenvalue of G. Moreover, we call ρ(G) ≡
max (|λmin(G)|, |λmax(G)|) the spectral radius of G. Since G is square
and symmetric, λmax(G) ≥ 0 and λmin(G) ≤ 0. Moreover, λmax(G) ≥
−λmin(G).9 Hence, Assumption (2) implies that

λmin(G) > −δ + β

θ + β
, (13)

and therefore the spectral radius ρ(Θ) ≡ max{|λmax(G)|, |λmin(G)|} < (δ +
β)/(θ + β). The weaker condition in (13) is sufficient for Ψ−1 ≧ 0, and
it is necessary if G describes a regular network, that is, a network without
loops and multiple edges where each node has the same number of neighbors.
See Bramoullé, Kranton, and D’Amours [6, Corollary 1].10 As the highest
eigenvalue represents the population-wide pattern and level of positive cross-
effects, the lowest eigenvalue represents another important feature of the
network. The lower it is, the higher the number of links that connect distinct
sets of firms, and the greater the impact of each firm’s production decision
on other firms’ production.

9See Cvetković et al. [10, Theorem 0.13].
10In our framework, the network structure of the economy would be a regular network

if all the conglomerates had the same number of firms distributed in the same collection
of sectors and each firm within a conglomerate was connected to each other.
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Note that
UF q̄

∗ = q∗1̄F ,

where q∗ ≡∑i∈F
qi. Using (12), we can rewrite (9) as

[

(δ + β)IF −
(

θ + β
)

G
]

q̄∗ = −βq∗1̄F + ᾱ + ξ̄,

that is,

(δ + β)

[

IF − θ + β

δ + β
G

]

q̄∗ = −βq∗1̄F + ᾱ + ξ̄.

If Assumption 2 holds, the matrix
[

IF − (θ + β)/(δ + β)G
]

is invertible.11

If it is invertible and (θ + β)/(δ + β) is small enough, then we can express
[

IF − (θ + β)/(δ + β)G
]

by a Newman series, that is,

[

IF − θ + β

δ + β
G

]−1

=
+∞
∑

k=0

(

θ + β

δ + β

)k

Gk,

where Gk as the k-th power of G. We call g
[k]
ij the typical element of Gk,

where k is a positive integer. The iterations of G for k ∈ {2, 3, · · · } keep
track of the indirect connections in the network of both conglomerates and
sectors. The entry g

[k]
ij yields the number of paths of length k necessary to

pass from i to j in the network g of Definition 14. Hence, the typical element
of

(

θ + β

δ + β

)k

Gk

measures the number of paths number of paths of length k necessary to pass
from any firm to any other firm in g weighted by (θ+β)/(δ+β). Thus, from
(9) we derive

(δ + β)q̄∗ =

+∞
∑

k=0

(

θ + β

δ + β

)k

Gk
[

−βq∗1̄F + ᾱ + ξ̄
]

.

Our framework of establishment-level production mixes the network of con-
glomerates with the network of intersectoral linkages. A change in one firm’s
production does not only affect the production of the firms that are connected
to it through the conglomerate network, but also the production in the sector
in which the firm operates. This increases or decreases the demand for other
good types, depending on whether these other goods are complementary to

11The Frobenius theory of nonnegative matrices implies that Assumption 2 holds if
(θ + β)/(δ + β) is bounded above by the largest column sum of G.
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the firm’s good. Hence, the production in other sectors is affected as well.
For example, let us take the first iteration of G. If we want to see the direct
effect of a shock from i to j, we can look at g

[1]
ij = (γij + βss′ + β)/(θ + β),

where i belongs to s and j belongs to s′. The conglomerate effect is measured
by γij , while the intersectoral relation through the demand side is measured
by βss′. The rest of the elements simply rescale the effect with respect to
the substitutability among homogeneous goods β. Even if the firms are not
part of the same conglomerate, a shock to i has an effect on the demand
for the good type produced by j. Let us now take the second iteration of
G, so as to see the indirect effect of a shock from i to j. By indirect ef-
fect we mean the effect of a shock to i on j through the impact on all the
firms m that are directly connected both to i and to j. We can look at
g
[2]
ij =

∑F

m=1(γim+βss′′)(γmj +βs′′s′), where i ∈ Fs, j ∈ Fs′ , and m ∈ Fs′′, for

every m and every s′′. The element g
[2]
ij sums up all the possible firms m’s

and sectors s′′’s that could be the conduit of propagation of a shock from i
to j. Higher powers of G yield weaker levels of intermediation, and the sum
of Gk for every k ≥ 0 accounts for the whole stream of intermediate degrees,
that is, for any path length k from 0 to ∞. The decay factor (θ+ β)/(δ+ β)
assures that there exists always a level of intermediation such that the impact
is negligible.

Definition 15 (Weighted Bonacich Centrality). Consider a network g with
adjacency matrixG, a scalar a such that [IF − aG]−1 is well defined and non-
negative, and a vector x̄ ∈ RF . The vector of weighted Bonacich centralities
of parameter a in g and weights x̄ is

b̄(g, a, x̄) ≡ [IF − aG]−1 x̄.

The weighted Bonacich centrality of firm i is bi(g, a, x̄) =
∑

j∈F
xjmij(g, a),

where xj is the j-th element of the vector x̄ of weights and mij(g, a) is the
typical element of [IF − aG]−1. This centrality measure is the sum of all the
weighted loops ximii(g, a, x̄) from firm i to itself and of all the other paths
∑

j 6=i xjmij(g, a, x̄) from i to every other firm j. In our framework, we set

a = (θ+β)/(δ+β) and we refer to b̄(g, (θ+β)/(δ+β), x̄) as b̄(x̄) for simplicity.
We report in Figure 1 the unweighted Bonacich centrality for the 558 firms
that mirrors the distribution across sectors of the 5.6 million establishments
of the County Business Patterns. In other words, on the horizontal axis there
are all the firms in F , ordered by sector as in (1), while on the vertical axis
there are the Bonacich centralities bi(1̄F ) of each firm i in F . The different
segments of Bonacich centrality correspond to firms that belong to different
sectors.
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Figure 1: Unweighted Bonacich centrality for 558 firms in 14 sectors. The
different segments corresponds to different sectors.

Proposition 3 (The Equilibrium Solution). Suppose Assumption 2 holds.
Then, the unique interior equilibrium solution is

q̄∗ =
1

δ + β

[

b̄(ᾱ) + b̄(ξ̄)
]

− β
(

b(ᾱ) + b(ξ̄)
)

(δ + β)(δ + β + βb(1̄F ))
b̄(1̄F ). (14)

Note that if αs = α̃ for all s in S and ξi = 0 for all i in F , then
b̄(ᾱ) = αb̄(1̄F ), b̄(ξ̄) = 0̄F , and the solution boils down to

q̄∗ =
α̃

δ + β + βb(1̄F )
b̄(1̄F ),

which is the equilibrium solution of Ballester et al. [3, Theorem 1]. Hence,
our model can be seen as a generalization of that result to case of S sectors
and idiosyncratic shocks. Our general result shares with the special case
the dependence of each firm’s production on the - in our case weighted -
centrality degree of the firm. The weights are the dimensions of the sectors
in which the firms operate and the idiosyncratic productivities. The source
of heterogeneity for equilibrium production is the position of each firm with
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respect to the complex nexus of intersectoral relations, conglomerates among
sectors, and the whole list of technological idiosyncrasies of all the firms in
the economy. The production of each firm depends positively on how path-
central that firm is in the network structure g.

Let us call αmin ≡ mins{αs}, ξmin ≡ mini{ξi}, and ξmax ≡ maxi{ξi}.
Note that since mij > 0 for every i and j in F , bi(x̄) > 0 for every i in F

and every vector x̄ of strictly positive weights.

Proposition 4. If the condition

αmin >
β

δ + β
b(1̄F )(ξmax − ξmin)− ξmin

holds, then q∗i > 0 for every i in F .

If the smallest sector of the economy is large enough with respect to the
magnitude of the idiosyncratic shocks, then the production of any firm is al-
ways positive. If the fundamental uncertainty coming from the idiosyncratic
shocks is too wide, that is, if the firm-specific productivities vary too much
across firms, then there is the possibility that some firms do not produce pos-
itive quantities. Take the case where ξi follows a uniform distribution over
the interval [0, 1]. Then, ξmax ≤ 1, ξmin ≥ 0, and ξmax − ξmin ≤ 1. Hence,
the condition of Proposition 4 holds if

αmin >
β

δ + β
b(1̄F ).

Remark 1. The symmetry of G is not relevant for Proposition 3. In case
of asymmetry of G, we can substitute Assumption 2 with the condition
(θ+ β)ρ(G) < δ+ β, where ρ(G) is the spectral radius of G, and the rest of
the results follow.

Remark 2. We impose ns = n for all s in S without any loss of generality.
Letting αs to vary across sectors simply complicates the notation but does
not affect the conditions behind Proposition 3.

5 Network structure and aggregate volatility

Now we will study how aggregate volatility, that is, the variance of the pro-
duction choices vector, depends on the network structure of the economy.
The standard diversification argument maintains that a series of idiosyn-
cratic shocks to the grains of the economy, which in our case are the single
firms, average out at the aggregate level due to the law of large numbers.
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In particular, we can apply a variation of the Central Limit Theorem (CLT)
to argue that the variance of aggregate production, that is, σGDP , decays at
rate 1/

√
F as the number of grains pertubed by iid shocks, F , increases.12

In our model, we expect the variance of our aggregate production measure
to decrease at a lower rate then 1/

√
F as F increases. This is due to the

fact that equilibrium production choices are connected through the network
structure of the economy. A similar argument was presented in Jovanovic
[24], where the author easily provides examples where the endogenous data
do not obey the law of large numbers, albeit the exogenous data do. For
even earlier contributions, see Diamond [13] and Mortensen [29].

We can express b̄(x̄) as

b̄(x̄) =

[

IF − θ + β

δ + β
G

]−1

x̄ =

+∞
∑

k=0

(

θ + β

δ + β

)k

Gkx̄.

Proposition 5 (Finite dimensional spectral theorem). Let G in R be sym-
metric. Then, G has F linearly independent real eigenvectors. Moreover,
these eigenvectors can be chosen such that they are orthogonal to each other
and have norm one.

According to Theorem 5 and given that G is symmetric by construction,
there exists a real orthonormal matrix V such that

Λ = VTGV

is a diagonal matrix with elements Λii = λi(G), where λi(G) is the i-th
eigenvalue of G. Remember that a matrix V is orthonormal if its transpose
is equal to its inverse, that is, V−1 = VT .

Proposition 6. Suppose Assumption 2 holds. Then,

1

δ + β

[

IF − θ + β

δ + β
G

]−1

= VΛ̃V−1,

where Λ̃ is a diagonal matrix whose generic diagonal element is

λ̃i(G) ≡ 1

δ + β − (θ + β)λi(G)
, (15)

and V is an orthonormal matrix of eigenvectors of G.

12See for example Gabaix [16] for the aggregation of firms’ production into a unique
final good, and Dupor [14] for the aggregation of sector-specific productions through a
standard dynamic multisector model à la Long and Plosser [26].
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Proposition 6 tells us that the equilibrium production levels depend on the
eigenvalues and the eigenvectors of the network matrix G, where Λ̃ contains
the eigenvalues and V contains the eigenvectors. The eigenvalues measure
the cross-effects of each firm, while the eigenvectors account for the particular
position of each firm within the network. The more the positive cross-effects
across firms, the higher the eigenvalues and therefore the higher the pro-
duction. Let vim be the row i-column m element of V and v−1

mj be the row
m-column j element of V−1.

In order to study the volatility of our economy, we can look at the
variance-covariance matrix of the equilibrium production. Since we deal with
a static model, we will use the concepts of variance and volatility interchange-
ably.

Definition 16 (The variance-covariance matrix). The variance-covariance
matrix Σ(G) is the F × F real-valued matrix given by

Σ(G) ≡ E
[

(q̄∗ − E [q̄∗]) (q̄∗ −E [q̄∗])T
]

,

where the expectation operator E [·] is defined over the probability distribu-
tion of ξ̄.

The diagonal entries of variance-covariance matrix account for the volatil-
ity of each firm, while the off-diagonal entries account for the comovement
between different firms. Since there exist links between firms, both in the
network of intersectoral linkages and in the network of conglomerates, there
exists covariance in equilibrium production across firms although the idiosyn-
cratic shocks ξ̄ are independently distributed. Hence, the variance-covariance
matrix depends on the network structure of the economy.

Proposition 7. The variance-covariance matrix of the equilibrium produc-
tion can be decomposed into three components, that is,

Σ(G) = σ2 [IF + ΣU + ΣG] , (16)

where

ΣU ≡ D2F

(

∑

i∈F

∑

m∈F

∑

j∈F

vimλ̃m(G)v−1
mj

)2
∑

i∈F

∑

m∈F

∑

j∈F

(

vimλ̃m(G)v−1
mj

)2

UF ,

ΣG ≡ DVΛ̃V−1
V VΛ̃V−1,

D ≡ −β(δ + β)

δ + β + βb(1̄F )
,
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and the typical element of V is

Vjk =
∑

i∈F

∑

m∈F

(

vimλ̃m(G)
)2
(

(v−1
mj)

2 + (v−1
mk)

2
)

.

We can also derive a measure of aggregate volatility that is compara-
ble with the one used in Horvath [21], Dupor [14], and Carvalho [7]. This
formulation is a simplified measure of the actual aggregate variance, whose
properties are best described by the variance-covariance matrix Σ(G).

Definition 17 (Aggregate volatility). The aggregate volatility σ2
Y (G) is a

scalar given by

σ2
Y (G) ≡ E





(

1

F

F
∑

i=1

(qi − E [qi])

)2


 .

The advantage of σ2
Y (G) is that it shuts down the covariance between

firms and focuses on the aggregate variance. In fact, σ2
Y (G) corresponds to a

transformation of the diagonal elements of Σ(G). Consequently, it depends
on the network structure of the economy.

Proposition 8. Suppose Assumption 2 holds. Then, the aggregate volatility
is a function of the eigenvalues of the network matrix, that is,

σ2
Y (G) =

σ2

F 2

(

δ + β

δ + β + βb(1̄F )

)2
∑

i∈F

∑

j∈F

∑

m∈F

(

vimλ̃m(G)v−1
mj

)2

, (17)

where vim is the row i-column m element of V, vmj is the row m-column j
element of V−1, and λ̃m(G) is defined in (15).

The elements vim and vmj account for the presence of a path from i to
j that involves m as an intermediary node, so as the number of links grows
their values will become non-nil. Hence, if the number of links grows at the
same rate as F , then the aggregate volatility will decline at a rate lower than
F , and if the link rate is even higher than F , then aggregate volatility may
not decline at all. See Acemoglu, Ozdaglar, and Tahbaz-Salehi [1] for the
limiting distributions of aggregate volatility in presence of cross-effects.

Equations (16) and (17) relate the aggregate variance and covariance to
the absolute value of the network matrix’ eigenvalues. Hence, the typical el-
ement of the variance-covariance matrix Σ(G) increases if the absolute value
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of any eigenvalue of G increases, that is, if the high and positive eigenvalues
increase and the low and negative eigenvalues decrease. In other words, the
variance-covariance matrix shrinks if the most path-central elements of the
economy lose some weight and the least path-central gain some weight.13

The heterogeneity in the path-centrality degrees of firms is directly related
to the heterogeneity of the equilibrium production levels and, since firms
are path-connected, to the covariance of equilibrium quantities. The higher
the difference in the path-centrality degrees the higher the dispersion of the
production levels.

We run some simulations of our model to understand the relationship
between the network structure g of the economy and aggregate volatility.
We derive the matrix B of intersectoral linkages from the direct requirements
tables of the BEA for 2002, as in Table 3. We assign to each sector s a certain
number of firms ns and a certain dimension αs. We take the ns’s from the
County Business Patterns of the US Census Bureau for 2002 and the αs’s from
the Gross Ouput by Industry accounts of the BEA for 2002. We report the
summary of the data in Table 2. We construct a matrix Γ̂ of conglomerations
using an algorithm that generates a random network that satisfies Definition
9. We use B and Γ̂ to derive the network matrix Ĝ of the economy as in
Definition 12. Moreover, we consider T = 100 periods. For each period t, we
make a different draw ξ̄t of ξ̄. For each draw, we derive q̄t holding the rest of
the parameters and the network structure Ĝ constant. We define real GDP
at time t as follows,

GDPt ≡
∑

i∈F

qit. (18)

Figure 2 represents how the real GDP fluctuates across time due to idiosyn-
cratic shocks, given a fixed network matrix Ĝ determining aggregate volatil-
ity σ2

Y (Ĝ).
We make different counterfactual exercises to analyze the effect of the

network structure on aggregate volatility. We keep the number of firms across
sectors taken from the County Business Patterns constant across cases. In
Case 1, we suppose that there are no idiosyncrasies across sectors and firms,
except that the number of firms across sectors is different. The sectors have
the same size αs = α/S for every s in S and the firms have the same
productivity ξi = 0 for every i in F . In Case 2, we introduce idiosyncratic
productivities across firms that follow a normal distribution of mean 0 and
standard deviation 1. In Case 3, we introduce different sector shares that
mirror the distribution of industry shares in the US economy. In Case 4,

13See Bramoullé, Kranton, and D’Amours [6] for an interpretation of the extreme eigen-
values of a network matrix.
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Figure 2: Aggregate fluctuations over time given a fixed network structure.

we introduce intersectoral linkages that mirror the complementarity across
sectors derived from the inpu-output tables in the US economy. In Case 5,
we introduce conglomerate relations simulated through a random algorithm
that respects Definition 8. In Case 6, we increase by 20% the number of
links in the conglomerate network. Table 1 reports the results about different
aggregate statistics, that is, the aggregate volatility according to Definition
17 normalized to the value of Case 1, the standard deviation of output levels
(STD), and the GDP as defined in (18).14

Cases σ2
Y (G) STD(q) GDP/F

1) No idiosyncrasies 1 0.1099 6.8628
2) Shocks to firms 1 0.1103 6.8622
3) Shocks to sectors 1 5.6490 8.4396
4) Network of sectors 0.9087 5.7793 9.3927
5) Network of firms 0.9053 5.7771 9.4222
6) Bigger firms 0.9046 5.7766 9.4278

Table 1: Numerical exercises. Sources: BEA. Year: 2002. Simulation algo-
rithms available upon request.

14We include the standard deviation of outputs in order to make our results comparable
with Acemoglu, Ozdaglar, Tahbaz-Salehi [1].
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Cases 1, 2, and 3 confirm the theory of Proposition 7 and Proposition
17, that is, aggregate volatility changes only if we change the network struc-
ture Ĝ. The aggregate volatility does not decrease because we introduce
changes in Ĝ only from Case 4. The standard deviation instead increases
with the introduction of the idiosyncrasies in firm-specific productivities and
sector shares of Cases 2 and 3. The inclusion of the network of intersec-
toral linkages in Case 4 decreases the volatility by around 10%. The reason
is that the idiosyncrasies introduced by the different sector shares in Case
3 are smoothed out partially by the intersectoral linkages, which make the
production in a sector have positive feedbacks into the production of another
sector. The standard deviation increases in Case 4 simply because of the
different number of firms across sectors. The existence of the conglomerate
relations in Case 5 reduces even further aggregate volatility. The rationale
behind is the same: the idiosyncratic shocks to the single firms are smoothed
out across firms within the same conglomerate. The magnitude of the drop
in volatility from Case 4 to Case 5 is smaller than from Case 3 to Case 4
because of the sparseness of the network matrix of conglomerate relations.
For example, in the numerical exercise of Table 1, Case 5 introduces 171 links
to the overall network matrix g out of the 558 ∗ 557/2 possible links. The
standard deviation decreases as well from Case 4 to Case 5 for the same rea-
son as the aggregate volatility. As a control, in Case 6 we introduce around
20% more links with respect to the benchmark of Case 5. The volatility and
the standard deviation decrease accordingly. The new links are randomly
assigned to the network of conglomerates in Case 5. Note that the aggregate
product, measured by the average of our definition of GDP in (18), increases
along the different cases. This is due to the positive spillovers on the produc-
tion side across firms and on the demand side across sectors/commodities.
In fact, the most relevant shifts in aggregate production are due to the in-
troduction of the intersectoral linkages in Case 4 and of the conglomerate
relations in Case 5. We can measure these increases by the increases in the
(average) Bonacich centralities of the network.15 These centrality measures
crucially depend on the eigenvalues and eigenvectors of the network matrix,
as Proposition 6 suggests.

6 Conclusion

We explain the transmission of idiosyncratic shocks to the aggregate level
by considering intersectoral linkages and conglomerate relations across dif-

15See Ballester et al. [3, Theorem 2] for an early characterization of the dependence of
equilibrium outcome on the Bonacich centrality.
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ferent firms. We express aggregate output as a reduced-form function of the
idiosyncratic shocks filtered by the network structure of the economy. The
aggregate volatility depends on the network structure of the economy. In
particular, we can express the dispersion in production levels as a function
of the eigenvalues and eigenvectors of the network matrix.

The model helps us to understand how the network structure influences
aggregate volatility. We show that the more connected the economy, the
more the law of large numbers smooths out the idiosyncrasies across sectors
and firms. Our counterfactual exercises in Section 6 show that the introduc-
tion of intersectoral linkages and conglomerates decreases aggregate volatil-
ity. There are three extensions that future research might explore. First,
it remains to understand which types of network structure favor aggregate
volatility and which others temper it, other things equal. We could com-
pare two extreme cases. On the one hand, a certain set of conglomerates
with a certain size distribution consists of complete components of firms,
that is, components where each node is connected to each other. On the
other hand, the same conglomerates with the same size distribution consist
of star-like components, with one central node and two or more peripheral
nodes. The aggregate volatility might change if we pass from one case to the
other. Moreover, we could simulate the transition between the two extreme
cases by parameterizing the intermediate network structures with some key
variables. Following Newman, Strogatz, and Watts [30], we could derive
the average component size in a random network from the moments of the
degree distribution. Hence, different average component sizes correspond,
other things equal, to different levels of, say, the average degree. We could
generate a family of random networks for each chosen average component
size. For example, a high average component size would mean an economy
characterized by big firms. With the same logic, we could derive families
of network structures that would adhere to some stylized facts that we may
want to examine, for example, the intersectoral diffusion of conglomerates,
the concentration ratios within each sector, and so on. If we analyze the
intermediate cases, the volatility might not change monotonically from one
extreme to the other.

Second, future research could explore a framework of network formation
using the payoff structure introduced in this paper. We could set up a two-
stage game where the model presented so far would represent the second
stage, being the first stage devoted to network formation. There would be
a trade-off between the cost of forming a link and the benefits of belong-
ing to a component. Firms would act strategically and decide with whom
to share a link depending on the potential equilibrium outcomes in the sec-
ond stage. Another possibility is dynamic network formation model as in
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König, Tessone, and Zenou [25], where the timing of the two stages is in-
verted. First, the agents realize their equilibrium production given previous
period’s network. Second, given the equilibrium result they choose which
other agents to share a link with. Different network structures arise and it is
possible to identify stationary network structures that follow the properties
of nested split graphs.16 These networks are also known as “interlink stars”
in Goyal and Joshi [17] and Goyal et al. [19]. The main property of these net-
works is the core-periphery structure, which reminds the stylized structure
of the conglomerates, that is, central parent companies that specialize the
conglomerate into a core business and peripheral subsidiaries that diversify
the production to smooth out sector-specific fluctuations.

Third, the model has also several policy implications. For instance, future
work might analyze the application of our framework to model discretionary
policy interventions. In times of crisis, there may be interventions aimed at
stabilizing aggregate output. Each intervention entails a public cost, so a
key question is which economic agent we should stabilize first in order to de-
crease aggregate volatility the most with the least public cost. Suppose that
a given set of firms is subject to idiosyncratic shocks such as demand shifts,
strikes, productivity fluctuations, or simply bad luck. The law of large num-
bers reduces the scope of public intervention since the random idiosyncratic
happenings in different directions would compensate each other if the set of
firms is large enough. Nevertheless, this argument does not hold if there ex-
ist direct connections between firms, for example financial liability relations.
Hence, idiosyncratic shocks can transmit to the aggregate level and can gen-
erate aggregate fluctuations in presence of a network structure of inter-firm
relations. Discretionary policy in this sense plays a key role in stabilizing
output: as much as - negative - idiosyncratic shocks transmit from one agent
to the other up to the aggregate level, so does the stabilization policy of the
public authority. If the public authority bails out a troubled firm, it stabilizes
the performance of all the firms directly or indirectly connected to it by a
path of inter-firm financial ties. My model suggests that the firm that should
be stabilized in order to obtain the most substantial aggregate effect is the
most path-central firm of the economy, considering both intersectoral link-
ages and conglomerate relations. Moreover, the reduced-form of the model
suggests a practical way of identifying the key firm(s), that is, by deriving the
eigenvalues of the network matrix, isolating the highest, and deducing which
is the most path-central firm. This method has important analogies with
the static Principal Component Analysis (PCA), where my model identifies
the common components with the bundled up cross-effects among different

16See, for example, Mahadev and Peled [28, Chapter 5].
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agents. Future research could explore further the link between centrality
measures and PCA in networks.
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Appendix A: Proofs

Proof of Proposition 1. The set of parameters β, δ, and ε for which det(Ψ) =
0 has Lebesgue measure zero in R3. Hence, the matrix of cross-effects Ψ is
generally nonsingular. Hence, Ψ is generically nonsingular, so it is invertible
and we call its inverse Ψ−1.

Proof of Proposition 2. See Theorem III* in Debreu and Herstein [12, p.
601].

Proof of Proposition 3. We can express q̄∗ in terms of weighted Bonacich
centralities, that is,

(δ + β)q̄∗ = −βq∗b̄(1̄F ) + b̄(ᾱ) + b̄(ξ̄). (19)

The individual firm’s production is

(δ + β)q∗i = −βq∗bi(1̄F ) + bi(ᾱ) + bi(ξ̄),

which we can sum up over all i’s in F and obtain

(δ + β)q∗ = (δ + β)
∑

i∈F

q∗i = −βq∗b(1̄F ) + b(ᾱ) + b(ξ̄),

where b(x̄) ≡∑i∈F
bi(x̄) for any x̄ ∈ RF . Thus,

q∗ =
b(ᾱ) + b(ξ̄)

δ + β + βb(1̄F )
, (20)

which we substitute in (19).

Proof of Proposition 4. If αs = αmin for every s in S , then b̄(ᾱ) = αminb̄(1̄F ).
Since αmin ≡ mins{αs} > 0 by construction and bi(x̄) > 0 for every i in F

and every vector x̄ of strictly positive weights, we have that b̄(ᾱ) ≥ αminb̄(1̄F ).
Similarly, b̄(ξ̄) ≥ ξminb̄(1̄F ) and b̄(ξ̄) ≤ ξmaxb̄(1̄F ). Substituting these values
in the equilibrium expression of Proposition 3 we obtain the condition for q̄∗

being a vector of strictly positive entries of Proposition 4.

Proof of Proposition 5. See, for example, Halmos [20, Chapter 79].

Proof of Proposition 6. We perform the eigendecomposition of G and obtain

(δ + β)q̄∗ =
+∞
∑

k=0

(

θ + β

δ + β

)k

(VΛV−1)k
[

−βq∗b̄(1̄F ) + ᾱ + ξ̄
]

,
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that is,

(δ + β)q̄∗ = V

+∞
∑

k=0

(

θ + β

δ + β

)k

ΛkV−1
[

−βq∗b̄(1̄F ) + ᾱ + ξ̄
]

.

If Assumption 2 holds, then (δ + β)/(θ + β) > λmax(G) ≥ λi(G) for every i
in F , that is,

θ + β

δ + β
λi(G) < 1,

for every i in F . Hence,

+∞
∑

k=0

(

θ + β

δ + β
λi(G)

)k

=
δ + β

δ + β − (θ + β)λi(G)

for every i in F .

Proof of Proposition 8. According to Proposition 6, if Assumption 2 holds
we can express the equilibrium production as

q̄∗ = VΛ̃V−1
[

−βq∗1̄F + ᾱ+ ξ̄
]

.

According to Definition 15,

b̄(x̄) =

[

IF − θ + β

δ + β
G

]−1

x̄ = (δ + β)VΛ̃V−1x̄,

and
b(x̄) = (δ + β)1̄TFVΛ̃V−1x̄. (21)

Hence,

q̄∗ = − β

δ + β
q∗b̄(1̄F ) +VΛ̃V−1

[

ᾱ + ξ̄
]

,

which given (20) is equivalent to

q̄∗ = − β

δ + β

b(ᾱ) + b(ξ̄)

δ + β + βb(1̄F )
b̄(1̄F ) +VΛ̃V−1

[

ᾱ + ξ̄
]

,

which given (21) gives us

q̄∗ = −β1̄TFVΛ̃V−1
[

ᾱ + ξ̄
]

δ + β + βb(1̄F )
b̄(1̄F ) +VΛ̃V−1

[

ᾱ + ξ̄
]

. (22)
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Since there is a source of uncertainty in (22) given by the stochastic ξ, let us
compute the expected value of q̄∗,

E [q̄∗] = − β1̄TFVΛ̃V−1ᾱ

δ + β + βb(1̄F )
b̄(1̄F ) +VΛ̃V−1ᾱ (23)

We look at the deviation from the expected production of firm i,

q∗i −E [q∗i ] = − β1̄TFVΛ̃V−1ξ̄

δ + β + βb(1̄F )
bi(1̄F ) +

[

VΛ̃V−1ξ̄
]

i
,

that is,

q∗i−E [q∗i ] = −
β
∑

i∈F

∑

m∈F

∑

j∈F
vimλ̃mv

−1
mjξj

δ + β + βb(1̄F )
bi(1̄F )+

∑

m∈F

∑

j∈F

vimλ̃mv
−1
mjξj,

where vim is the row i-column m element of V and v−1
mj is the row m-column

j element of V−1. Thus,

1

F

F
∑

i=1

(q∗i −E [q∗i ]) =
1

F

(

1− βb(1̄F )

δ + β + βb(1̄F )

)

∑

i∈F

∑

m∈F

∑

j∈F

vimλ̃mv
−1
mjξj,

from which we obtain

σ2
Y =

1

F 2

(

δ + β

δ + β + βb(1̄F )

)2

E





(

∑

i∈F

∑

m∈F

∑

j∈F

vimλ̃mv
−1
mjξj

)2


 .

The idiosyncratic shocks are independently and identically distributed across
firms, so

E





(

∑

i∈F

∑

m∈F

∑

j∈F

vimλ̃mv
−1
mjξj

)2


 =
∑

i∈F

∑

m∈F

∑

j∈F

(

vimλ̃mv
−1
mj

)2

E
[

ξ2j
]

,

where E
[

ξ2j
]

= σ2 for every j in F .

Proof of Proposition 7. Given (23) and (22), we have that

q̄∗ − E [q̄∗] = − β1̄TFVΛ̃V−1ξ̄

δ + β + βb(1̄F )
b̄(1̄F ) +VΛ̃V−1ξ̄.
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Moreover, given (21), we know that

b̄(1̄F ) = (δ + β)VΛ̃V−11̄F .

Hence, we obtain that

q̄∗ − E [q̄∗] = VΛ̃V−1

[ −β(δ + β)

δ + β + βb(1̄F )
1̄TFVΛ̃V−1ξ̄1̄F + ξ̄

]

.

Since ξi is identically and independently distributed for every i in F with
mean 0 and variance σ2, we can decompose the variance-covariance matrix
of equilibrium production into the three components IF , ΣU , and ΣG.
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Appendix B: Figures and Tables

Figure 3: The network structure of intersectoral linkages.
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Figure 4: The dichotomized network structure of intersectoral linkages.
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Figure 5: An example of the network structure of conglomerations.
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Figure 6: An example of diversification distribution of conglomerates gener-
ated according to Definition 7.
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Figure 7: Frequency distribution of diversification: Fortune 500. Source:
Davis, Diekman, and Tinsley [11, Figure 2].
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Figure 8: A representation of the network matrix G of the economy. Data
sources: BEA’s direct requirements tables for intersectoral linkages, number
of establishments per sector from the US Census Bureau’s County Business
Patterns. Year: 2002. On the horizontal and vertical axis there are 558 firms
ordered by sector of activity. These represent the 5524784 establishments
distributed across the 14 sectors of the US economy, expressed in tens of
thousands and rounded up within each sector. Elements in the matrix repre-
sent whether there is a connection or not. The different shading represent the
different degree of complementarity, from low complementarity (darker) to
high complementarity (lighter). The blocks represent the 14 different sectors.
A dark block means that between block s’s sector and block s′’s sector there
is low complementarity, a light block that there is high complementarity.
The white dots correspond to the existence of a conglomerate relation be-
tween column i’s firm and row j’s firm. These dots are almost white because
the intensity of the link between two firms within the same conglomerate is
much higher with respect to any other pair of firms that do not share a link.
The most important feature of this representation is that it highlights the
sparseness of the matrix of conglomerations Γ with respect to the matrix of
intersectoral linkages B̄.
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IO code Sector Gross Output Employer establishments Companies

1 Agriculture, forestry, fishing, and hunting 240.8 29250 249290
2 Mining 188.7 19324 102029
3 Utilities 320.4 6223 18896
4 Construction 970.6 729842 2780323
5 Manufacturing 3848.3 310821 601181
6 Wholesale trade 894 347319 711083
7 Retail trade 1030.9 745872 2584689
8 Transportation and warehousing 579.2 167865 976826
9 Information 959.6 76443 309117
10 Finance, insurance, real estate, rental, and leasing 3438.4 507281 3047522
11 Professional and business services 1780.6 1061706 4877023
12 Educational services, health care, and social assistance 1295.7 629550 2430839
13 Arts, entertainment, recreation, accommodation, and food services 704.9 538265 1645857
14 Other services, except government 464 392656 2677613

Total 16716.1 5524784 22974655

Table 2: Gross output (in billions of dollars), number of employer establishments, and number of nonemployer
companies by industry. Year: 2002. Sources: BEA (accounts), US Census Bureau (County Business Patterns and
Survey of Business Owners). We report the number of nonemployer companies only for illustrative purposes. In
fact, these companies constitute three quarters of all establishments in the economy but account for only around
3% of total sales and receipts data. Hence, we consider only employer establishments in the analysis. We do not
consider the residual category “Industries not classified” in the list of industries because it is not present in the list
of industries used by the BEA.
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IO code 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

1 0 560 722 567 6250 1156 137 1008 336 3279 1716 223 444 360 219 612 096
2 560 0 3032 1033 3891 519 180 759 379 2953 3018 166 358 302 263 546 147
3 722 3032 0 706 2427 430 317 1399 454 1486 2114 328 721 402 375 403 116
4 567 1033 706 0 6187 867 840 788 518 1734 2760 143 313 476 396 276 082
5 6250 3891 2427 6187 0 2529 1243 4127 2447 2230 4787 2492 3481 3239 2832 5245 173
6 1156 519 430 867 2529 0 309 1084 575 1403 2557 409 685 617 559 779 170
7 137 180 317 840 1243 309 0 662 352 2179 2078 081 228 317 163 059 060
8 1008 759 1399 788 4127 1084 662 0 790 2297 2995 335 658 725 850 642 485
9 336 379 454 518 2447 575 352 790 0 1843 3658 451 851 706 736 552 248
10 3279 2953 1486 1734 2230 1403 2179 2297 1843 0 3257 2288 2122 3076 1170 1378 126
11 1716 3018 2114 2760 4787 2557 2078 2995 3658 3257 0 2413 3118 2530 2804 3028 116
12 223 166 328 143 2492 409 081 335 451 2288 2413 0 276 274 237 077 071
13 444 358 721 313 3481 685 228 658 851 2122 3118 276 0 536 449 281 074
14 360 302 402 476 3239 617 317 725 706 3076 2530 274 536 0 374 305 070
15 219 263 375 396 2832 559 163 850 736 1170 2804 237 449 374 0 094 173
16 612 546 403 276 5245 779 059 642 552 1378 3028 077 281 305 094 0 166
17 096 147 116 082 173 170 060 485 248 126 116 071 074 070 173 166 0
Mean 1040 1065 908 1040 3152 862 542 1153 876 1931 2526 604 859 842 688 850 140
Std 1557 1273 878 1486 1815 724 677 1046 931 961 1155 866 1033 1032 854 1341 106

Table 3: Complementarity matrix. All the entries are in 10−5. Year: 2002. Source: BEA commodity-by-commodity
direct requirements tables. We do not consider in the simulation exercises the following categories: “Government”
(15), “Scrap, used and secondhand goods” (16), and “Other inputs” (17). The reason is that they are not reported
in the list of industries of US Census Bureau’s County Business Patterns.
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