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1 Introduction

This paper focuses on the distinct features of basic and applied research in the context of

macroeconomic growth. Basic research is defined by the NSF as a “systematic study to gain

more comprehensive knowledge or understanding of the subject under study without specific

applications in mind. Although basic research may not have specific applications as its goal,

it can be directed to fields of current or potential interest. This focus is often the case when

performed by industry or mission-driven federal agencies”. Applied research is, on the other

hand, defined as a “systematic study to gain knowledge or understanding to meet a specific,

recognized need. In industry, applied research includes investigations to discover new scientific

knowledge that has specific commercial objectives with respect to products, processes, or

services”.1 This distinction raises many policy-relevant questions.

What are the key roles of basic and applied research for productivity growth? What are

the incentives of private firms to do basic research? How does academic research contribute

to innovation and productivity growth? Given the distinct natures of academic and corporate

research, what are the appropriate government policies to promote economic growth through

technological progress? These questions have long been at the heart of industrial policy debates.

In many countries national funds allocated to basic research have been among the top items

in governments’ policy agenda. For instance, in a recent report by the US Congress Joint

Economic Committee, it is argued that despite its value to society as a whole, basic research

is underfunded by private firms precisely because it is performed with no specific commercial

applications in mind. The level of federal funding for basic research is “worrisome” and it

must be increased to overcome the underinvestment in basic research (JEC, 2010) . However

the report also complains about the lack of available studies on the subject to measure this

underinvestment and the lack of available data.2

Although the different characteristics of basic and applied research on the one hand and

academic and corporate research on the other hand have been widely recognized to be of

first-order importance by policymakers, these issues have received insufficient attention from

the economic literature on productivity and economic growth. In particular, the endogenous

growth literature pioneered by Romer (1986, 1990), Lucas (1988), Aghion and Howitt (1992),

Grossman and Helpman (1991) and Segerstrom, Anant and Dinopolous (1990) has mainly

considered a uniform type of (applied) research and with a few exceptions3 overlooked basic

1http://www.nsf.gov/statistics/seind10/c4/c4s.htm#sb2
2http://jec.senate.gov/public/?a=Files.Serve&File id=29aac456-fce3-4d69-956f-4add06f111c1
3Some paper have modeled public basic research by government institutions. See for example, Aghion Howitt
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research investment by private firms.

A satisfactory framework for the study of the above listed questions must allow for different

types of research investments and model the related incentives explicitly. We strongly believe

that firm-level studies would greatly contribute to our understanding of these questions. Our

goal in this project is to take a first step towards developing this theoretical framework, to

estimate it using micro-level data, and to discuss the effects of different research policies on

productivity and growth. To the best of our knowledge, this would be the first study to

model private investment into basic and applied research simultaneously as well as government

investment into basic research in an endogenous growth framework and the first study on basic

research that combines a structural model with micro-level evidence.

Our analysis proceeds in three steps. We first document some important empirical facts on

basic research. Second, motivated by those empirical facts we propose a simple multi-industry

framework with firms and an academic sector. Firms conduct both basic and applied research

whereas the academic sector mainly focuses on basic research.4 In our model, basic research

generates fundamental technological innovations and potential spillovers for subsequent applied

innovations.5 Applied research on the other hand, advances these new technologies further.

After characterizing the equilibrium of the model, we estimate the structural parameters.

Finally, we use the estimated model to (i) assess the extent of underinvestment in basic and

applied research, (ii) determine the contribution of innovations by the academic sector and

private firms to aggregate growth, and (iii) study the implications of several important R&D

policies.

Our analysis highlights the central role played by basic research in economic growth. Two

distinguishing features of basic research are that it generates significant advances in techno-

logical knowledge and it is likely to generate substantial externalities. Indeed the scientific

knowledge generated by basic research can potentially be of use in more than a single field

(Nelson, 1959; Rosenberg, 1990; Dasgupta and David, 1994). Ideally, in order to capture the

full return from this new scientific knowledge in industries where it could have an application

but in which the innovating firm is not present, the innovator must first patent and then license

or sell the innovation to other firms in those industries. However, the applications of basic sci-

entific advances are often not immediate and firms are often only able to transform them into

(2009), Morales, Gersbach et al (2008), Narin et al. 1997, Mansfield 1998, Martin 1998, Park (1998)
4Trajtenberg et al. (1992) show that academic research is more basic and less frequently patented.
5By fundamental innovation, we mean the major technological improvements that generate a much bigger

contribution to the aggregate knowledge stock in a society relative to the rest of innovations, and also have
long-lasting spillover effects on the quality of subsequent innovations within the same field.
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patentable applications in their own industries. This is the well-known approprability problem

of basic research which is initially discussed in Nelson (1959) and again in Rosenberg (1990)

and Dasgupta and David (1994). Hence, firms operating in more industries will have a greater

probability of being able to directly utilize more facets of a basic innovation. As Nelson (1959)

puts it,“It is for this reason that firms which support research toward the basic-science end of

the spectrum are firms that have fingers in many pies” (pp. 302). Note that the key concept

that we are emphasizing here is not firm size per se, but the diversity of its products, which

is also highly related to the width of its technological base. A broader range of industries

increases the potential share of the total benefit that the innovating firm can enjoy.

We provide empirical evidence consistent with Nelson’s hypothesis. In the theoretical

framework, we will explicitly allow for spillovers across industries. The range of industries a

firm is present in will be one of the crucial determinants of its basic research investment. In

our estimation, we find strong micro-level evidence of this pattern.

An important contribution of our study is to introduce academic basic research into a

structural growth model and quantify their contribution to the economic growth process. Our

results suggest that this effect is very sizable and around 25% of growth is attributable to

academic basic research.

Another important contribution is the analysis of different research policies that are com-

monly considered by policymakers. The first policy of interest is a research subsidy to private

firms. This policy has been analyzed by various studies (Aghion and Howitt, pp 487), yet the

findings have been mixed. These results come from models with a single type of research. Once

the distinction between basic and applied research is introduced, the results can differ greatly.

We show that in an economy with both types of research efforts, the major underinvestment

is in basic research due to its very sizable spillovers. In this environment subsidizing overall

private research is less effective since this policy would oversubsidize applied research which

is relatively less underinvested. Therefore the welfare improvement from a uniform subsidy is

limited unless the policymaker is able to discriminate between types of research projects at the

firm level, which is considered to be quite impractical.

Another policy that we consider in this paper is the provision of funding to academic

institutions. Although academic research could benefit society through other channels, our

focus in this project is its effect on new employment and product creation. This policy itself

improves the basic research level in the society yet does not promote applied research directly.

Therefore a policy that combines both private subsidy and public funds to academic research

can govern the distinct nature of basic and applied research. Our quantitative analysis shows
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that the decentralized economy achieves a 56% consumption equivalent to the social planner’s

optimum. Using only a uniform research subsidy, we can increase this number to 75%, and

through combining a uniform subsidy with an increased share of GDP allocated to academic

research funding we can further increase it to 96%.

Before we introduce our theoretical framework, we provide some empirical facts to motivate

our modeling approach.

2 Empirical Facts

Despite the vast literatures in industrial organization and endogenous growth focusing on ap-

plied research, the literature on firms’ basic research decisions has been very thin and empirical

studies are even rarer. Notable exceptions include Mansfield (1980, 1981), Griliches (1986) and

Link (1981) which empirically document the positive contribution of basic research to firms’

productivity. Existing studies on basic research have been mainly theoretical and devoted their

attention to academic/public research as the source of basic research and ignored the private

side of it (Segerstrom, 1998; Aghion and Howitt, 1996, Morales, 2004). We believe that part of

the reason for this outcome, as argued in one Congressional report (JEC 2010), has been the

lack of firm-level data on distinct types of private research. Our empirical evidence contributes

to the literature on innovating firms (eg. Klette and Kortum (2004) Lentz and Mortensen

(2008), Akcigit and Kerr (2010), Acemoglu and Cao (2010)), characterizing the innovation

and firm dynamics of R&D conducting firms.

In this paper we use unique data on the French economy combining information not only

on product markets and R&D characteristics of individual firms, but also on firm ownership

status for the period 2000-2006. R&D information comes from an annual survey conducted by

the French Ministry of Research that covers a large, representative cross-section of innovating

French firms. Details regarding data sources are provided in section 4.3.

The next section presents the main empirical facts emerging from this data.

2.1 Basic and Applied Research

First we document that private firms’ investment in basic research forms a non-negligible

fraction of both total private research spending and total basic research spending.6 Table 1

6Public statistics define basic research expenditures following the Frascati Manual: “Investment into basic
research is undertaken either for pure scientific interest or to bring a theoretical contribution to the resolution of
technical problems.” Alternatively: “The objective of applied research is to identify the potential applications
of results from fundamental research or to find new solutions to a precisely identified problem.”
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reports official statistics from the Ministry of Research on public investment in basic research

and private applied and basic research investments for the period 2000-2006 in France. Private

Table 1: Expenditures Into Basic R&D
Private Public Private Basic

Year Basic Applied Basic Basic
Applied

Private
Public

2000 802 7005 6425 .11 .13
2001 795 7748 6786 .1 .12
2002 959 8899 7037 .11 .14
2003 1092 8928 7133 .12 .15
2004 1175 9482 7338 .12 .16
2005 1227 9469 7331 .13 .17
2006 1213 10278 7755 .12 .16

Notes: Official R&D expenditures into basic R&D in Million of Euros
for the period 2000-2006. Source: Ministry of Research.

spending on basic research amounted to an average of 1 billion Euros per year as opposed

to 8.3 billion on applied research for the period 2000-2006. During the same period, public

expenditures on basic research represented an average of 7 billion Euros per year in France. This

implies that more than 11% of private research is spent on basic research. More importantly,

almost 15% of total basic research in the economy is undertaken by private entities.7

The picture that emerges therefore hints at a significant involvement of the private sector

in undertaking basic scientific research. Thus, ignoring the private incentives behind basic

research might prevent economists and policymakers from designing more effective policies for

productivity growth.

Table 2 documents the link between firm size, in terms of total employment, and uncon-

ditional basic research intensity using our sample of innovating firms from the R&D survey.8

Basic research intensity is defined as the ratio of total firm investment into basic research

divided by total firm investment into applied research.9

Except for the category of micro-firms we find a positive relationship between basic research

intensity and employment. Indeed, basic research intensity increases from an average of .056 for

small and medium-sized firms to .068 for large and .085 for very large firms. This means that

on average basic research represents 8.5% of applied research in very large firms.10 Micro-firms

7Similarly, Howitt (2003) using a NSF survey finds that around 22% of all basic research in the US during
the period 1993-1997 was performed by private enterprizes.”

8Firm total employment is defined as the aggregate employment of all the divisions and subsidiaries of a firm.
Similarly basic and applied research are defined as the total investment of all the divisions and subsidiaries into
basic and applied research respectively.

9Employment categories are constructed on the basis of firm classifications established by the Ministry of
Research (Dhont-Peltrault and Pfister, 2009).

10Note that figures computed on the basis of the R&D survey exclude observations falling outside of a multiple
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Table 2: Basic Research Intensity and Size
Total Employment (X)

X ≤ 10 10 < X ≤ 249 249 < X ≤ 4999 4999 < X

Basic Research Intensity .078 .056 .068 .085
(.22) (.18) (.2) (.2)

N [1835] [7185] [4091] [593]

Note: The table reports the mean of Basic Research Intensity as a function of Total employment. Total

Employment categories are constructed on the basis of a firm classification established by the Ministry of

Research (2009). Standard errors are reported in parenthesis and the number of observations in square

brackets.

constitute the exception to this pattern but are in many dimensions not directly comparable

to more established firms.11

One possible explanation for heterogeneous levels of basic research investment amongst

firms is the presence of certain unobservable characteristics that affect a firm’s return to basic

research. For instance, one might think that high profit margin firms are the ones that are

investing more heavily in basic research. In this scenario, firms with higher basic research

intensity would be observed to have higher profitability. However, this is not what we observe

in the data. Table 3 reports mean basic research intensity as a function of firm profitability.

Firm profitability is defined as an employment weighted mean of individual establishments

return on assets. Profitability categories are defined on the basis of quartiles of the distribution.

We find no clear relation between profitability and basic research intensity. On average the

Table 3: Basic Research Intensity And Profitability
Profitability - ROA

1st Quartile 2nd Quartile 3rd Quartile 4th Quartile

Basic Research Intensity .062 .064 .066 .064
(.18) (.19) (.19) (.2)
[3425] [3426] [3426] [3426]

Note: The table reports the mean of Basic Research Intensity as a function of a firms ROA. Standard errors

are reported in parenthesis and the number of observations in square brackets.

least profitable firms in our sample have a basic research intensity of .062. This ratio seems

only marginally lower when compared to the basic research intensity of the most profitable

firms. In addition, the increase in basic research intensity is non-monotonic in profitability

categories since firms in the third quartile have a basic research intensity of .066.

of five times the interquartile range in terms of total R&D to sales, total basic to total applied research investment
as well as return on assets.

11Amongst other reasons, because of special fiscal and administrative regulations applying to them. Moreover
total investment into basic research by micro-firms represents less than .5% of total private investment into
basic research.
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2.2 Basic R&D Intensity and Multi-Industry Presence

Next we focus on private incentives for basic research. More specifically, we test Nelson’s

hypothesis that the main basic research investors would be those firms that have fingers in

many pies. According to this argument, as the range of its products and industries gets more

diversified, a firm’s incentive for investing into basic research relative to applied research should

increase due to better appropriability of potential knowledge spillovers.

Figure 1 plots average basic research intensity against the total number of distinct 1 digit

SIC codes in which the firm is present together with a simple linear fit of the data.12

Figure 1: Basic Research Intensity and Number of Industries

As shown, a simple linear fit of the data suggests a positive and statistically significant rela-

tionship between the two variables.

In the appendix Table A1 provides further multivariate evidence about the relationship

between multi-industry presence and basic research intensity. Table A1 estimates a Tobit

model correlating a firm’s basic research intensity with its multi-industry presence.

[Table A1 Here]

To measure multi-industry presence, we count how many distinct SIC codes a firm is present in.

However, at the very disaggregate level of the SIC classification, we run the risk of counting

in the same way very diverse and very similar industries. Therefore we successively define

industries at 4,3,2 and 1 digit SIC levels but consider as our benchmark case distinct 1 digit

SIC codes. Other controls include the size of the firm as measured by its total employment,

nationality, profitability, and market share. In all alternative specifications basic research

12Note that thanks to the combination of the LIFI and EAE data we are able identify multiple SIC codes for
both business groups and multidivisional firms.
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intensity is increasing in the number of industries. According to the benchmark estimation,

presence in an additional industry increases a firms basic research intensity by 3 percentage

points on average.

Alternatively, the technological base of a firm can be proxied through the firm’s patent

portfolio since patents are closely related to technologies that firms use. Therefore, in Table A2

(see appendix) we alternate our proxy for the technological base by using patent classifications

instead of SICs.13

[Table A2 Here]

Again estimates are positive and statistically significant, a broader technological base being

associated with higher investment into basic research relative to applied research.

We thus find correlations that are supportive of Nelsons’ hypothesis about the link between

multi-industry presence and relative research incentives. We check in non-reported regressions

that these correlations are economically significant and robust to (i) alternative statistical

models and estimation methods, (ii) alternative specifications of both the dependent and right

hand side variables of interest, (iii) a variety of potential confounding factors. In addition we

also provide evidence suggesting that firm scope impacts basic research intensity, and not the

reverse.

2.3 Firm Size and Multi-Industry Distributions

Another stylized fact emerging from the data is the extent of multi-industry presence of French

firms. Figure 2 plots the empirical distribution of the number of distinct 1-digit SIC codes in

which firms operate. On average firms are present in 2 distinct industries as defined by 1-digit

Figure 2: Distribution of Firms by Number of Industries

13Note that patent information is only available for the period 2000-2003.
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SIC codes. Although nearly 44% of the firms are operating in only one industry, the remaining

firms occupy a large spectrum of industries.

Another moment that we would like to replicate for the French economy is the firm size dis-

tribution (FSD). An extensive literature has studied the FSD in the US and other economies.

Consistent with that literature, our data also documents a very highly skewed firm size dis-

tribution for French firms. Additionally, the relationship between number of industries and

firm size is of special interest in our study. We find a strong positive correlation between these

two variables. Figure 3 plots the FSD for the data from 2000-2006, while Figure 4 shows the

distribution of firm size broken down by the number of industries the firm operates in.

Figure 3: Firm Size Distribution Figure 4: Employment by # of Industries

Overall, we can summarize the above analysis into a list of stylized facts that highlight the

most salient features of the data:

Fact 1 A significant fraction of innovating firms invest in basic research (27%).

Fact 2 Private basic research investment forms a significant portion of total basic research

(>15%) and total private research (>10%).

Fact 3 Firm size is positively correlated with basic research intensity.

Fact 4 Firm profitability is not significantly correlated with basic research intensity.

Fact 5 A large fraction of firms operate in multiple industries (56%).

Fact 6 Nelson’s hypothesis is supported: basic research intensity is positively correlated with

multi-industry presence.
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Fact 7 Multi-industry presence is positively correlated with firm size.

Fact 8 The firm size distribution is highly skewed.

The next section uses the insights from the micro-data in order to construct a theoretical

framework to evaluate the impact of alternative innovation policies on aggregate growth and

welfare

The remainder of the paper is organized as follows. Section 3 introduces the theoretical

model, section 4 estimates the model, section 5 evaluates alternative R&D policies and section

6 concludes.

3 Model

This section introduces a theoretical framework that has three distinct features relative to

the standard endogenous growth models. First, the model distinguishes between basic and

applied research investment, the key difference being the spillover effects associated with the

former. Second, the model features a multi-industry framework that will allow us to discuss

the cross-industry spillover of basic research. Finally, we also introduce academic institutions

as another source of basic research in the economy. This last feature will allow us to discuss

the contribution of academia to economic growth. The proposed theoretical framework will

be consistent with the stylized facts described in the previous section. We will then use this

framework to evaluate alternative R&D policies.

3.1 Preferences

Consider the following continuous time economy. There is a representative household with

constant relative risk aversion preferences given by

U =

∫ ∞
0

exp (−δt) C
1−γ
t − 1

1− γ
dt (1)

where δ > 0 is the discount factor, γ ≥ 1 is the inverse of the intertemporal elasticity of

substitution or the coefficient of relative risk aversion, and Ct is the final good consumption at

time t. The household consists of individuals of measure 1 who supply their one unit of labor
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inelastically. The household’s objective is to maximize (1) subject to the following budget

constraint

Ct + Ȧt ≤ rtAt +Wt − Tt

where At, Wt and Tt are total asset holdings, labor income and lump-sum tax in terms of the

final good units and rt is the interest rate. For notational convenience, the time subscripts will

henceforth be suppressed.

Production is divided into three major components: Downstream, midstream and upstream

sectors. The household consumes the final good Z which is produced in the downstream sector

by infinitely many competitive firms that combine inputs from M different industries according

to the constant elasticity of substitution production function,

Z =

[
M∑
i=1

Y
ε−1
ε

i

] ε
ε−1

where Yi is the aggregate output from industry i ∈ I and I is the set of industries. To

map this structure to reality, the reader can think of each i as a different Standard Industrial

Classification (SIC) code. We normalize the price of the final good Pt to 1. Since there is

no capital and all costs are in terms of labor units, the resource constraint of the economy is

simply Z = C.

Next we turn to the midstream production of Yi. Each industry aggregate output Yi is

produced by a monopolist i that combines inputs from a continuum of product lines (quality

ladders) of measure 1. Let yij denote the production of intermediate good j in industry i.

Aggregate output in industry i is produced according to the following production function

lnYi =

∫ 1

0
ln

∑
f∈F

qijfyijf

 dj (2)

where qijf is the quality of intermediate good j ∈ [0, 1] and f is the patent holder for that

quality. This structure implies that the total measure of product lines in the economy is M .

In the upstream sector, firm f who owns the patent for qijf has the right to produce

yijf . The specification in (2) implies that in product line j of industry i, the quality-adjusted

products of any two firms f, f ′ ∈ F are perfect substitutes. Each intermediate good is produced

according to a linear production function

yijf = ϕlijf (3)

where ϕ > 0 is the labor productivity and lijf is production workers employed. Let us denote

the wage rate in the economy by w in terms of the final good. The above specification (3)
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implies that each product yijf has a constant marginal cost of production w/ϕ > 0, which is

proportional to the wage rate in the economy. Given these specifications, in any product line

j, the product that yields the highest quality per dollar will capture the market through limit

pricing at the previous leader’s marginal cost.

Firm f owns nf ∈ Z+ product lines in any given industry i. Therefore we will denote the

portfolio of firm f in industry i by a multiset14

qif = {qif (1), qif (2), ..., qif (n)} .

Similarly firm f can operate in multiple industries (mf ≥ 1). Let If and Fi denote the set of

industries in which firm f operates and set of firms that operate in industry i.

3.2 Research and Innovation

3.2.1 Private Firms

Firms innovate by investing in two types of research: basic and applied. In accordance with

Nelson’s (1959) description, significant advances in technological knowledge come through basic

innovation in our model.

Basic and Applied Research Technologies Innovation through basic research introduces

a new generation of technical knowledge. Let q̄ij (t) ≡ maxf∈F qijf (t) be the best quality of

product j at time t. When firm f produces a basic innovation that has a direct application in

industry i ∈ If and product line j, firm f utilizes this basic knowledge on a product in j and

patents this new high-value product. As a result, firm f improves q̄ij (t−∆t) by η

qijf (t) = (1 + η) · q̄ij (t−∆t) . (4)

and generates per-period profit of π (η) where η > 0. Moreover basic research features potential

spillovers: within-industry and cross-industry. Within-industry spillover will be explained in

the following paragraph and cross-industry spillover will be introduced in the next subsection.

Applied research, on the other hand, makes use of the within-industry spillover from basic

research and builds on the existing latest basic technological knowledge in the product line.

The contribution of each applied innovation to the technology stock is a function of how

depreciated the latest basic technology is. For instance, if the latest technology (say touchscreen

technology) is relatively new, then building on it through applied research (which results in

14A multiset is a generalization of a set which can contain more than one instances of the same member. For
instance, let j 6= j′. Then a multiset qif can contain qif (j) , qif (j′) ∈ qif and qif (j) = qif (j′).
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introducing iPhone, for instance) yields a higher per-period return than building on an old

technology.15 If the latest basic technology is undepreciated, a successful applied innovation

will benefit from it and improve the latest quality q̄ij (t−∆t) of the product line by η as in (4) .

If the latest basic technology of the product line is depreciated, a successful applied innovation

will improve the latest quality only by λ < η such that qijf (t) = (1 + λ) · q̄ij (t−∆t) . We

assume that a new basic technology depreciates at a Poisson rate ζ > 0. As a result, 1/ζ is

simply the intensity of the within-industry spillover. We will denote the share of product lines

with an undepreciated latest basic technology in industry i by Ψi ∈ [0, 1] .

Firm f with nif products in industry i chooses the arrival rate of applied (Aif ) and basic

(Bif ) research through employing researchers. Let

Ha (Aif , nif ) ≡ nifha (Aif/nif ) and Hb (Bif , nif ) ≡ nifhb (Bif/nif ) (5)

denote the number of researchers that firm f needs to hire in order to generate the Poisson

flow rates of Aif and Bif . The above specifications which are standard in this class of models

(See Klette and Kortum, 2004; Lentz and Mortensen, 2008, Acemoglu et.al., 2010) capture the

idea that a firm’s knowledge capital facilitates innovation.16 In (5), ha (·) : [0, amax]→ R+ and

hb (·) : [0, bmax]→ R+ are strictly increasing, convex, differentiable, continuous functions that

satisfy: ha (0) = h′a (0) = h′b (0) = 0, h′a (amax) = h′b (bmax) =∞ for some amax, bmax ∈ R+. Let

us define aif ≡ Aif/nif and bif ≡ Bif/nif as the applied and basic innovation intensities. In

addition, basic research features an instantaneous fixed cost hbf > 0 in terms of labor units that

firm f draws instantaneously from a distribution F(hb) each period before making its basic

research decision. This implies that firms that draw a cost above a certain threshold will not

invest in any basic research at that instant t.

As a result, we can summarize the cost of doing applied and basic research as,

Ca (aif , nif ) = wnifha (aif ) and Cb (bif , nif ) = wnif

[
hbf + hb (bif )

]
(6)

where w denotes the wage rate in the economy.

Both applied and basic research are directed towards particular industries but undirected

within those industries. In other words, once a firm chooses Aif and Bif , the realization of

innovations will take place within industry if .

15The reader can predict at this stage that there will be underinvestment in basic R&D due to the fact that
firms do not internalize their positive externality on subsequent innovators who use the same new technology.
This is part of the real-life reason why societies need universities to do basic research. Without them, the
equilibrium investment in basic R&D will not be socially optimal. We will introduce the academic sector below
in section 3.2.2.

16It also simplifies the analysis by making the problem proportional to the number of product lines.
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Cross-Industry Spillover from Basic Research In addition, basic research features an

additional element of uncertainty due to random spillovers into other industries. When basic

research by firm f in industry i is successful, the resulting new scientific knowledge will be

applied by firm f on a product to increment the productivity of a random product in the

target industry. The novel feature of basic research is that it is likely to generate substantial

externalities that would result in significant advances in other fields (Nelson, 1959). Therefore

we will assume that a basic innovation ηijf (t) that is produced by firm f at time t in indus-

try i applies to another industry with probability p ∈ (0, 1) which is simply the measure of

cross-industry spillover. Let 1i
′
ηijf

be an indicator function that takes a value of 1 if the basic

innovation in product line j by firm f in industry i has an application in industry i′ as well

and 0 otherwise. Then we have

Pr
(
1i
′
ηijf

= 1
)

=

{ p
M−1 if i′ 6= i

1 if i′ = i
. (7)

The spillover of basic research has the same implication in industry i′ and increases the inno-

vation size of a random product line j′ to η. This new innovation will be utilized by the same

firm f if it is already present in i′. Otherwise the production potential of this innovation will

be used by the incumbent firm in j′.17 We provide these details next.

When a firm generates basic knowledge, it can turn this into an immediate application only

in the sectors that it is present. Nelson (1959) observes that in order to capture the full return

from new basic scientific knowledge in industries where a firm is not present but the knowledge

could have an application, the innovating firm must first patent and then license or sell the

innovation to other firms in those industries. However, the applications of significant scientific

advances are often not immediate and firms can turn them into patentable applications mostly

in their own industries due to their expertise and experience in them. Analogous to this real-

life observation, the innovating firm f in our model will utilize the basic scientific knowledge

on a new product in industry i′ if 1i
′
ηijf

= 1 and i′ ∈ If . Otherwise if 1i
′
ηijf

= 1 and i′ /∈ If , the

new basic knowledge will be applied by a random firm f ′ in i′ on a new product j′ in order to

generate a profit of π (η) .

Let mf denote the number of industries in which firm f is present. Then the probability

of a utilized spillover for firm f is

ρmf ≡
p (mf − 1)

M − 1
∈ [0, 1)

17Firms investing into basic research face approprability problems because applications from this type of
research are often not immediate and firms are only able to transform them into patentable applications in their
own industries. The reader is referred to the discussion of Nelson’s hypothesis (1959) in the introduction.
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Note that this structure highlights the well-known appropriability problem of basic research.

There is a significant chance that the new basic knowledge will be relevant to multiple indus-

tries, but it is not always clear that a firm will be in a position to exploit all of these avenues

of production and patenting. However, firms operating in more industries will have a greater

probability of being able to directly utilize all facets of a basic innovation. As Nelson puts it,

firms that have fingers in many pies have a higher probability of utilizing the return to basic

research. A broad technological base increases the probability of benefiting from the basic

research outcome.

3.2.2 Academic Sector

One of the main tasks of the academic sector in an economy is to conduct the necessary research

to generate the basic scientific knowledge that will also be part of the engine for subsequent

applied innovations and growth. In our model, the academic sector will be the other source

of basic knowledge creation. We assume that the academic sector consists of a measure U of

research labs per industry each of which is index by u ∈ U . Each lab receives an instantaneous

transfer of T̂u = T̂ from the government to finance its research. We assume that the academic

sector operates with the same basic research technology to (6) ,

C̃b (du) = w
[
h̄b + hb (du)

]
.

In this specification du is the basic innovation flow of lab u and h̄b is the fixed cost which

we assume to be equal to the average of private firms’ fixed cost h̄b =
∫
hbdF(hb). This

specification implies that the government can affect the basic research output through its

funds allocated to the academic sector such that

du = h−1
b

(
T̂ /(MU)

w
− h̄b

)
and d̃u = Udu (8)

where d̃u is the academic basic innovation flow per product line. In this economy, resources

allocated to the academic sector T̂ is a tool controlled by the policymaker. Similar to the basic

innovation by the private firms, each of the du scientific knowledge by the academic sector has

an immediate application in a random industry i and product line j. In addition to i, the same

basic knowledge will have an immediate application in another industry i′ 6= i and line j′ with

probability p ∈ (0, 1) . These basic technologies will be used in production by the incumbent

firms in j and j′. This implies that the latest qualities in j and j′ increase by η and the profit

of the incumbent firm becomes π (η) .
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At this point, it would be useful to express the total rate of basic innovation that will

benefit a producer other than the original innovator,

s =
1

M

(
(1 + p)

∫
U
dudu+

∫
F

(
p− ρmf

)
bfdf

)
. (9)

Here the spillover is the sum of academic basic innovation (first integral) and the sum of

unappropriated portion (1− ρmf ) of the spillover from basic research bf (second integral).

3.3 Entry and Exit

Entry There is a set of potential entrants of measure χ per industry. In order to enter,

entrant firms invest in applied research at the cost ha(â) in terms of the labor units and

innovate a new single product in the economy at a flow rate of â > 0. This new product is

realized with the same probability across industries. The equilibrium applied innovation flow

rate of a potential entrant is determined by

max
â
{âEijV (i, j)− wha(â)} (10)

where EV (i, j) is the expected value of entering into industry i and innovating on a product

line j.

Exit In this economy, firm exit happens in two ways. First, firms get replaced by their

competitors through creative destruction which happens at the rate τ i in industry i. When a

firm loses all of its product lines, it exits the market.

Second, each incumbent firm f receives a destructive shock at the rate κ. When this

happens, the firm shuts-down its production operations and exits the economy. Then each

of its product lines are sold to another firm within the same industry at price νi ≥ 0. This

way, each firm in the economy randomly receives a buy-out opportunity.

Buy-Outs We assume that the probability of receiving a buy-out option is proportional to

the number of products that the firm has within the same industry and that the price paid is

νi. As a result, the arrival rate of a new buy-out opportunity to firm f in industry i is nifκ.

This can be thought of as a simple way of modeling mergers and acquisitions in our framework.

The quality of production of the acquired firm will be a function of the share of high quality

product lines in the economy. Let this share be denoted by Ψ̃.
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Industry Expansion Expanding into new markets have advantages, such as better appro-

priation of research investments and having more access to troubled firms. Therefore firms

spend additional resources in order to be able to expand into new industries. Specifically firm

f hires he (ef ) workers in order to be able to penetrate into a new industry. This effort results

with an expansion at the Poisson flow rate ef .

This concludes the economic environment of the model except the labor market clearing

condition. At this point, we find it useful to summarize in the following table the arrival rates

in this economy.

Name Generated by Rate Explanation

1) applied innovation firm f af used for production by f
2) basic innovation firm f bf used for production by f
3) spillovers of basic innovation firm f pbf used for production by f or some f ′

4) academic basic innovation academic lab u du used for production by some f
5) spillovers from academic basic innv academic lab u pdu used for production by some f ′

6) outside applied innovation outsider f â used by entrant f
7) unappropriated spillover firms and labs s computed from 3) and 5)

8) firm destruction/buy-out exogenous κ product line bought by f
9) expansion firm f ef firm f expands if successful

3.4 Labor Market

The labor market clearing condition of this economy has to satisfy the following inequality

1 ≥
∑
I

[∫
Fi

∫
J
nif

(
lijf + ha(aijf ) + hb(bijf ) + 1(bf>0)h

b
f + he(ef )

)
djdf + ha(â)

]
+

∫
U

[
h̄b + hb(du)

]
du.

(11)

In each product line, the production takes place only by the latest innovator. Therefore demand

for production workers come only from the technological leaders in each product line which is

represented as the first term inside the parenthesis. On the other hand, demand for researchers

comes from incumbents, outsiders and academic labs. Each active firm hires researchers to

conduct applied research (second term) and basic research (third and fourth terms). Firms also

hire workers to seek opportunities for industry expansions. The demand for research workers

by the entrants is captured by the last term in the square bracket. Finally, academic sector

employs additional researchers for the independent projects and this demand is expressed by

the last two terms in (11). Labor market clearing condition requires that the total demand for

labor should be less than or equal to the total labor supply in the economy which is 1 in this

case.
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3.4.1 Government

The government simply imposes a lump-sum tax T on the household to finance its spending

T̂ on academic sector. We assume that the government follows a balanced budget such that

MT̂t = Tt ∀t where M is simply the measure of research labs.

This concludes the description of the model. The next section characterizes the equilibrium

of this economy.

3.5 Equilibrium

Throughout, we focus on Symmetric Markov Perfect Equilibria (SMPE) where all alloca-

tions across the industries are the same and the strategies are only a function of the pay-

off relevant state variables. Let τmax ≡ amax(1 + χ) + bmax (1 + p) be an upper bound

for the creative destruction rate.18 Let us also define Z ≡ {0, 1, ..,M} × Z2
+ × [0, τmax] ×

R3
+ × [0, 1]2. Focusing on SMPE will allow us to express all strategies only as a function of

z ≡
(
m,nη, nλ, τ , Z, w, r,Ψ, Ψ̃

)
∈ Z and drop the firm, product line and industry identities

(f, j, i) . Let Γ∗m,n denote the equilibrium share of firms that own n product lines and operates

in m industries such that
M∑
m=1

∞∑
n=1

Γ∗m,n = 1.

Similarly we define Γ̃∗m as the share of product lines that are owned by m−industry firms such

that

Γ̃∗m =
F ∗

M

∞∑
n=1

Γ∗m,nn

and
∑M

m=1 Γ̃∗m = 1. Since F ∗Γ∗m,n is the mass of m−industry firms with n product lines,

F ∗Γ∗m,nn is the total number of product lines held by these firms. Summing those values over

n and dividing by the total mass of products M then yields the share of products owned by

m−industry firms Γ̃∗m ∈ [0, 1].

Definition 1 (Symmetric Allocation) Let
[
T (t) , T̂ (t)

]
t≥0

be the policy sequence. A sym-

metric allocation for this economy is defined as a sequence of pricing and production

decisions [pz (t) , yz (t)]t≥0 , a sequence of research and expansion decisions for incumbents

[az(t), bz(t), em (t)]t≥0 and outsiders [â(t)]t≥0, a sequence of academic sector’s research flows

[d(t)]t≥0, sequences of midstream sector’s price and output and downstream sector’s output

[P (t), Y (t), Z(t)]t≥0, wage rate [w(t)]t≥0, interest rate [r(t)]t≥0,sequences of distributions of

18τmax is computed as the sum of maximum arrival rates of a, b and c, taking into account their spillovers.
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product line type, and product lines in terms of their owners types [Ψ (t) , Ψ̃(t), {Γm,n (t)}m,n]t≥0

and a sequence of firm measure [F (t)]t≥0.

Our focus will be on symmetric steady-state where all aggregate variables grow at the same

rate g. Let Qi(t) ≡ exp
(∫ 1

0 ln(qij(t))dj
)

be the quality index of industry i. We will assume that

all industries start with the same quality index Qi (0) = Q0 ∀i. Since we are focusing on steady

state equilibrium, we will normalize all growing variables by Z/M , the average final product

per industry, and denote these variables with “˜” on top, such as X̃ ≡ XM/Z. Similarly we

define z̃ ≡
(
m,nη, nλ, τ , w̃, r,Ψ, Ψ̃

)
. Finally we denote all the equilibrium values with a star

“*”.

Before we move on to its characterization, we first define the equilibrium.

Definition 2 (Symmetric Steady-State Markov Perfect Equilibrium) For any given

policy
(
T, T̂

)
, a symmetric steady-state Markov Perfect Equilibrium (SSSMPE) is given by

a time-invariant tuple

{Ỹ ∗, P ∗, y∗z̃ , p∗z̃, a∗z̃, b∗z̃, e∗z̃, â∗, d∗, τ∗,Ψ∗, Ψ̃∗,Γ∗m,n, w̃∗, r∗, F ∗, g∗}

such that (i) each industry’s aggregate output Ỹ ∗ and P ∗ solve the maximization problem of the

midstream monopolist, (ii) upstream monopolist’s price and output decisions p∗z̃ and y∗z̃ solve

its profit maximization problem, (iii) upstream monopolist’s research and expansion efforts a∗z̃,

b∗z̃, and e∗z̃ maximize its expected firm value, (iv) outsider’s research effort â∗ maximizes the

outsider firm’s expected value (v) academic basic innovation rate d∗ is consistent with policy T̂ ,

(vi) creative destruction rate τ∗, the invariant distributions τ∗,Ψ∗, Ψ̃∗,Γ∗m,n, F
∗ and the growth

rate g∗ are consistent with the research and expansion efforts a∗z̃, b
∗
z̃, â
∗, e∗z̃ (vii) labor share w̃∗

clears the labor market, and (viii) the interest rate r∗ satisfies the household’s Euler equation.

3.5.1 Households

The standard maximization of the household leads to the usual Euler equations for CRRA

preferences
Ż∗

Z∗
= g∗ =

r∗ − δ
γ

(12)

3.5.2 Profits

Given these specifications, we can express the maximization of the final good sector,

max
Yi∈I

{[
M∑
m=1

Y
ε−1
ε

i

] ε
ε−1

−
M∑
m=1

PiYi

}
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where Yi and Pi denote the production and price of the aggregate good of industry i. The

optimal choice by the final good producer determines the demand for aggregate output of

industry i

Y ∗i = Z∗/P ∗εi . (13)

Let the marginal cost of producing the industry aggregate Yi be denoted by P̂i in terms of the

final good. Taking the demand for her product as given, downstream monopolist i maximizes

her profit as

max
Pi,Yi

{(
Pi − P̂i

)
Yi

}
subject to (13) .

As a result, the optimal price is a constant mark-up over the marginal cost

P ∗i =
ε

ε− 1
P̂ ∗i , Y ∗i = Z∗

(
ε− 1

ε

)ε
i

P̂ ∗−ε and Π∗i =

[
ε− 1

P̂

]ε−1

Z∗ε−ε. (14)

The cost minimization problem for the monopolist i is

min
yi,j∈[0,1]

∫ 1

0
pi,jyi,jdj subject to (2)

where yi,j is the production of good j in industry i. Note that the specification in (2) requires

the same expenditure on each product j, pi,jyi,j = YiP̂i. This, together with (14) yield the

following relationship between prices

p∗i,jy
∗
i,jε/ (ε− 1) = P ∗i Y

∗
i . (15)

Next we turn to the upstream sector and zoom into industry i, product line j. Let qijf and

q′ijf ′ be the highest and second highest quality goods in product line j, respectively. Since the

second highest quality producer can steal the market if and only if the price is higher than its

marginal cost, the highest quality producer will set the price equal to the closest competitor’s

marginal cost as follows,
qijf
p∗ijf

=
q′ijf ′

p∗′ijf ′
= q′ijf ′

ϕ

w∗

which yields

p∗ijf = p∗k = (1 + k)
w∗

ϕ
, k ∈ {η, λ} (16)

This expression implies that the price mark-up is an increasing function of the innovation size

λk. Since the highest quality producer will price others out of the submarket, we can drop f

subscripts from now on and label the only producer by j.
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Symmetry across industries implies P ∗i Y
∗
i = Y ∗/M . Combining this with (15) and (16) ,

we express the equilibrium quantity of each intermediate good as

y∗i,j = y∗k =
ϕ (ε− 1)

w̃∗ε (1 + k)
, k ∈ {η, λ} (17)

Note that the endogenous variables are only a function of the size of the latest innovation.

Using (16), (17), the profit is simply

π̃∗k =
(ε− 1) k

ε (1 + k)
, k ∈ {η, λ} .

Then Y ∗ from (2) and (17) is simply

Y ∗ =
Qϕ (ε− 1)

w̃∗ε (1 + η)Ψ∗ (1 + λ)1−Ψ∗

where Qi ≡ exp
(∫ 1

0 ln qijdj
)

is the quality index of industry i. Similarly the final output in

symmetric equilibrium (Qi = Q and Fi (k) = F (k)) is

Z∗ =
M

ε
ε−1Qϕ (ε− 1)

w̃∗ε (1 + η)Ψ∗ (1 + λ)1−Ψ∗
. (18)

So far we have solved the production decisions of the firms. In order to find the optimal

research decisions, we express the value functions of the firms in the next section.

3.5.3 Value Functions

Let nηf and nλf denote the number of product lines that firm f owns with η and λ step sizes,

respectively. Our focus is on the symmetric equilibrium to turn the problem into a tractable

version. Without the symmetry assumption, the model becomes quite intractable without

much new insights in terms of the key points of the model. In this case, instead of focusing

on the number of products in a particular industry, we need only to keep track of the number

of products of each type and the number of industries that the firm is present in. Due to our

symmetry assumptions, we have Ψ∗i = Ψ∗ and τ∗i = τ∗, ∀i ∈ I in equilibrium. For notational

simplicity, we will drop the firm subscripts f. The firm takes the equilibrium product share

Ψ̃∗, probability of high quality applied innovation Ψ∗, wage rate w̃∗, creative destruction rate

τ∗, and interest rate r∗ as given. Then we can express the normalized value function as
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r∗Ṽ (m,nη, nλ) = (19)

max
am,bm,
em



nηπ̃η + nλπ̃λ − (nη + nλ) w̃∗
[
ha(amn) + hb (bmd) + 1(bm>0)h

b] + he(emn)
]

+ (nη + nλ) am

[
Ψ∗Ṽ (m,nη + 1, nλ) + (1−Ψ∗) Ṽ (m,nη, nλ + 1)− Ṽ (m,nη, nλ)

]
+ (nη + nλ) bmd (1 + ρm)

[
Ṽ (m,nη + 1, nλ)− Ṽ (m,nη, nλ)

]
+nλs

∗
[
Ṽ (m,nη + 1, nλ − 1)− Ṽ (m,nη, nλ)

]
+ (nη + nλ)κ

[
Ψ̃∗Ṽ (m,nη + 1, nλ) +

(
1− Ψ̃∗

)
Ṽ (m,nη, nλ + 1)− Ṽ (m,nη, nλ)− ν

]
+τ∗nη

[
Ṽ (m,nη − 1, nλ)− Ṽ (m,nη, nλ)

]
+τ∗nλ

[
Ṽ (m,nη, nλ − 1)− Ṽ (m,nη, nλ)

]
+em

[
Ṽ (m+ 1, nη, nλ)− Ṽ (m,nη, nλ)

]
+κ
[
(nη + nλ) ν − Ṽ (m,nη, nλ)

]


where s is the unutilized spillovers from basic research as defined in (9). Intuitively, there is

discounting at the rate r. The first line simply subtracts the instantaneous research expendi-

tures from operating profits to obtain the net instantaneous profits. The second line expresses

the change in firm value due to applied innovation. Notice that with applied innovation, we

must form an expectation about how big the innovation size is going to be using the share of

undepreciated product line Ψ. The third line expresses the change in firm value due to basic

innovation at the initial and the spillover industries. Note that firm will be able to use this

innovation also in another industry with probability ρm. The fourth line shows the change in

firm value due to utilizing an aggregate spillover which arrives at the rate s. The fifth line

describes the change in value due to buyouts where firm has to take again into account the

distribution of product line types Ψ̃. The sixth and seventh lines describe the change in firm

value due to creative destruction which happens at the rate τ . The eighth line is the change

due to new industry expansion and the last line describes the change in firm value due to

exogenous firm level destruction in which case firm is compensated by ν per-product line.

The following proposition characterizes the value function and the equilibrium research

decisions. The value function is found to be linear in the number of products (but not in

number of industries) and linearly separable between production value and the value associated

with option value of being in more industries.

Proposition 1 The the value function in (19) can be expressed as

Ṽ (m,nη, nλ) = βηnη + βλnλ + (nη + nλ)βm (20)
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where β∗η ≡
π̃η

r∗+τ∗+κ and β∗λ ≡
π̃λ+s∗β∗η

r∗+τ∗+κ+s∗ and

(r∗ + τ∗ + κ)βm = max
am,bm,
em,hbm


am
[
Ψ∗βη + (1−Ψ∗)βλ + βm

]
− w̃∗ha(am)

+bm (1 + ρm)
[
βη + βm

]
− w̃∗

[
hb (bm) + 1(hb<hbm)h

b
]

+em
(
βm+1 − βm

)
− w̃∗he(em)

+κ
[
Ψ̃∗βη +

(
1− Ψ̃∗

)
βλ

]
 . (21)

Moreover, the optimal research decisions would be the solutions of the following equations

a∗m = h′−1
a

(
Ψ∗βη + (1−Ψ∗)βλ + βm

w̃∗

)
(22)

b∗m =

 h′−1
b

(
(1+ρm)[βη+βm]

w̃∗

)
if hbf < hb∗m

0 otherwise
(23)

e∗m = h′−1
e

(
βm+1 − βm

w̃∗

)
(24)

hb∗m = b∗m (1 + ρm)
[
βη + βm

]
− w̃∗hb (b∗m) (25)

Proof. See Appendix.

A couple of key observations are in order. First, the value of a firm in (20) is determined

by the interaction of three factors: the production value of a single product line (βη, βλ), the

option value (βm), and the firm scale (nη, nλ). Second, the production value of a product

line which is equivalent to the discounted sum of future profits flows is increasing in the

instantaneous profit π̃ (which it self is increasing in innovation of size λ) and decreasing in the

rate of creative destruction τ∗ and exogenous destruction rate κ due to an increased frequency

of product line loss. Third, the option value associated with each product line reflects the

fact that each additional product line expands the firm’s capacity for research (both basic and

applied, am and bm), and investment in industry expansion (em), in addition to increasing the

rate at which the firm received buyout offers for new product lines (κ).

The first order conditions reflect the incentives associated with each type of research. In

(22) ,the incentive for applied research comes from the interaction between the expected inno-

vation size and the option value associated with gaining a new product line and the marginal

cost of innovation. As is critical in our analysis, (23) reflects the fact that there may be addi-

tional gains from basic research through utilized spillover, the probability of which is increasing

with number of industries (ρm). Note that the fixed cost structure will replicate the observed

pattern on the extensive margin of basic research seen in the data. Firms that draw a high

fixed cost (d) will find it profitable not to invest in basic research. Finally, in (24), firms will
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invest effort in expansion depending upon the additional option value generated from standing

in an additional industry.

Next, we turn to the characterization of various invariant distributions of the model.

3.5.4 Invariant Distributions

To solve for the labor market equilibrium, we need to solve for various invariant distributions.

The first one is the share of product lines Ψ ∈ [0, 1] which are not depreciated and building

on them generates a high return with a step size η. This share helps our firms to form their

expectations about the innovation step size that they will have through applied research. The

second one is the share of product lines Ψ̃ ∈ [0, 1] which are still producing high quality product

lines with step size η. Note that Ψ and Ψ̃ are not the same since the exogenous depreciation

flow ζ does not affect the current production in the product line and has an impact only on

the next innovating firm in that product line. The final one is the share of firms Γm,n that

operate in m industries and has n product lines and the share of product lines Γ̃∗m whose owner

operates in m industries. This distribution is determined by equating the inflows and outflows

for each state (m,n). This occurs when the flows from a number of underlying processes are

balanced, such as successful applied or basic innovation (with or without spillovers), industry

expansion, creative destruction, buyout opportunities, and exogenous firm destruction. Due to

its lengthy derivation, the exact forms of the flow equations and further details governing the

invariant distribution of Γ∗m,n is provided in the appendix. Solving for the invariant Γ∗m,n and

Γ̃∗m = F ∗

M

∑∞
n=1 Γ∗m,nn allows us to determine the aggregate creative destruction rate

τ∗ = ã∗ +
M∑
m=1

[
a∗m + (1 + ρm)b∗mF

(
hb∗m

)]
Γ̃∗m

where ã = âχ is the aggregate applied innovation rate by outsiders,
∑

m a
∗
mΓ̃∗m is the aggregate

applied innovation rate by incumbents, and
∑

m(1 + ρm)b∗mF
(
hb∗m
)

Γ̃∗m is the aggregate basic

innovation flow from incumbents. Two observations are in order. First, that in the event of a

spillover, a firm will acquire a new product line from another incumbent only if that spillover

falls in an industry that he operates in, which occurs with probability ρm. Second, only firms

that draw a sufficiently low fixed cost will find it profitable to invest in basic research, which

happens with probability F
(
hb∗m
)
.

For a given equilibrium wage rate w∗, we can express the basic innovation flow from each

academic research lab as

d∗ = h−1
b

(
T̂ /U

w∗
− h̄b

)
and d̃∗ = Ud∗
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Since academic labs operate regardless of their fixed cost realization, they use the remainder

of their labor on the variable cost of basic research. Next we can determine the rate at which

firms receive an unexploited basic research spillover,

s∗ = (1 + p) d̃∗ +
M∑
m=1

(p− ρm)F
(
hb∗m

)
b∗mΓ̃∗m

which happens through all academic basic innovation and the unutilized portion of private

basic research.

Now we can write the flow equation that determines the invariant share of product lines

Ψ∗ which will generate an innovation of step size η to the next innovating firm,

Ψ∗ζ = (1−Ψ∗) (1 + p)

(
d̃∗ +

M∑
m=1
F
(
hb∗m

)
b∗mΓ̃∗m

)
.

The left hand side expresses the outflow of product lines that depreciate at the rate ζ. On

the contrary, the right hand side shows the product lines that used to be depreciated and just

receive a new basic technology. This happens when academic labs innovate at the aggregate

rate d̃∗ and firms do successful basic research. Note that each basic innovation will create

another new product in addition to its initial application with probability p.

The shares of product lines with high quality production and probability of high quality step

size satisfy the following inequality Ψ̃∗ > Ψ∗. Let us define the difference, that is, products

that are currently producing at a high quality, but will become low quality upon the next

applied innovation, as ∆Ψ ≡ Ψ̃∗−Ψ∗. The inflow into ∆Ψ happens only from the product lines(
Ψ̃∗ −∆Ψ

)
that are producing with η and are not yet hit by the depreciation shock ζ. Outflow

from ∆Ψ happens when a new basic or applied innovation occurs on that product line since the

former turns the product line into a high quality product line and the latter simply reduces the

production step size to λ. As a result the flow equation reads as
(

Ψ̃∗ −∆Ψ

)
ζ = ∆Ψ (τ∗ + s∗)

which implies

Ψ̃∗ = Ψ∗
[
1 +

ζ

τ∗ + s∗

]
.

Finally we compute the equilibrium measure of firms F ∗. The total number of product

lines owned by firms has to be equal to the total measure of product lines M such that∑M
m=1

∑∞
n=1 F

∗Γ∗m,nn = M. Solving for F ∗ delivers the equilibrium measure of firms as

F ∗ =
M∑M

m=1

∑∞
n=1 Γ∗m,nn

.
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3.5.5 Labor Market

Having determined the invariant distributions, next we characterize the labor market equi-

librium. Equations (3) and (17) determine the labor demand from a particular product line

as

l∗ij = l∗k =
(ε− 1)

w̃∗ε (1 + k)
, k ∈ {η, λ} . (26)

As a result, we can express the total demand for production workers as

Lprod∗ ≡ (ε− 1)

w̃∗ε

(
Ψ̃∗

1 + η
+

1− Ψ̃∗

1 + λ

)
.

The total labor demand consists of demand for the production workers and other exploratory

expenditures as in (11). This condition can be rewritten as

1

M
=



incumbents′ non−production labor demand︷ ︸︸ ︷
M∑
m=1

{[
ha(a

∗
m) + F(hbm)

[
hb(b

∗
m) + E

(
hbf | hbf < hbm

)]]
Γ̃∗m +

∞∑
n=1

he(e
∗
m)Γ∗m,n

F ∗

M

}
+

(ε− 1)

w̃∗ε

(
Ψ̃∗

1 + η
+

1− Ψ̃∗

1 + λ

)
︸ ︷︷ ︸

incumbents′ production

+ χha(ã
∗)︸ ︷︷ ︸

outsiders

+ U
[
hb(d

∗) + h̄b
]

︸ ︷︷ ︸
academic


.

The first term on the first row of the right hand side consists of labor demand for applied and

basic research and expansion efforts. Note that only F(hbm) fraction of the state-m firms will

invest in basic research. If the condition becomes slack, the wage rate will decrease and the

demand for production workers (first term on the right side) will increase until the equality is

reset.

3.5.6 Aggregate Growth

Finally we derive the growth rate and the interest rate of the economy. Recall from (18)

that the final output is proportional to the quality index. This implies that in steady state

equilibrium we have

g∗ =
Ż∗

Z∗
=
Q̇∗

Q∗
.

The next proposition provides the exact expression for the growth rate.

Proposition 2 The equilibrium steady state growth rate of this economy is equal to

g∗ = ln (1 + η)(1+p)(d̃∗+b̄∗)+(ā∗+ã∗)Ψ∗ (1 + λ)(ā∗+ã∗)(1−Ψ∗)

∼= (ā∗ + ã∗)λ︸ ︷︷ ︸
direct applied

+
(
d̃∗ + b̄∗

)
η︸ ︷︷ ︸

direct basic

+ p
(
d̃∗ + b̄∗

)
η︸ ︷︷ ︸

cross-industry spillover

+ (ā∗ + ã∗) Ψ∗ (η − λ)︸ ︷︷ ︸
within-industry spillover

(27)
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where ā∗ =
∑M

m=1 a
∗
mΓ̃∗m and b̄∗ =

∑M
m=1 b

∗
mΓ̃∗m.

This proposition makes it clear that the equilibrium growth rate is determined by basic

and applied innovation rate and their relevant innovation sizes. Note that basic innovation

contributes to growth in three distinct ways. First, it has a direct effect through its direct

applications in the initial product line that it applies. The second effect comes through its

spillovers across industries which happens with probability p. Finally it impacts the subsequent

applied research within the same industry. Each new basic innovation has a long-lasting

impact until its effect vanishes at the rate ζ. If basic innovation did not have any effect on

the subsequent innovations (ζ →∞) , the equilibrium share of product lines with a step size η

would vanish (Ψ∗ = 0) and the within industry contribution of basic research would disappear.

Also note that basic innovation makes each applied innovation more productive by increasing

the effective step size of applied innovation by η−λ. In section 4.5.2, we quantify these distinct

effects for French economy.

Finally, we find the equilibrium value of the interest rate r∗ from the household’s intertem-

poral decision

r∗ = δ + γg∗

3.5.7 Welfare

Our focus so far has been on steady-state equilibria (mainly because of the very challenging

nature of transitional dynamics in this class of models). In our quantitative analysis, we

continue to focus on steady states and thus look at steady-state welfare. In a steady-state

equilibrium, welfare at time t = 0 can be written as

W (C∗0 , g
∗) =

∫ ∞
0

exp (−δt) (C∗0 exp (g∗t))1−γ − 1

1− γ
dt =

1

1− γ

[
Z
∗(1−γ)
0

δ − g∗ (1− γ)
− 1

δ

]
. (28)

where we use the facts that the utility is as in (1) and all output is consumed C∗0 = Z∗0 . Note

that δ > g∗ (1− γ), which is guaranteed by the Euler equation for the household (12) and the

fact that γ ≥ 1. We assume that the initial quality index is given by Q(0) = Q0. Then we use

(18) to find the initial value of final output as

Z∗0 =
M

ε
ε−1Q0ϕ (ε− 1)

w̃∗ε (1 + η)Ψ∗ (1 + λ)1−Ψ∗
(29)

Note that the welfare can be expressed purely as an increasing function of the initial

consumption (Z∗0 ) and the growth rate (g∗). However, the fixed labor supply in the model
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creates a tradeoff between the two. Allocating more researchers for innovation increases the

growth rate, but decreases the amount of production workers and hence the output and initial

consumption, and vice versa.

From a cross-sectional perspective, (29) implies that initial consumption is reduced when

the average markup in the economy is increased (higher Ψ∗), which is captured by the denomi-

nator. Moreover, the static component of welfare is increasing in the number of industries (M)

due to consumer’s love for variety. Finally, when the labor share increases, the marginal cost

of production increases, so that production, and hence the initial consumption, goes down.

From a dynamic perspective, allocating more researchers into research will increase the

growth rate as in proposition 2, which will lead to higher welfare for any given initial con-

sumption. The policies that we are going to analyze will navigate the tradeoff between the two

dimensions of welfare.

3.5.8 Planner’s Problem

One of the main goals of this study is to characterize the inefficiencies in the economy and

discuss the relevant R&D policies to address these inefficiencies. The inefficiency in the de-

centralized economy arises from two major sources, misallocation of resources into production

and research. In this analysis, we will consider a hypothetical social planner and compare the

outcome of our decentralized economy to the planner’s optimum. One could potentially con-

sider a planner who controls both production and research. However, as our focus in this paper

is on R&D and related policies and not policies directly related to production (productions

subsidies, for instance), we will consider a social planner who controls research decisions but is

still constrained by markups. In other words, firms will continue to make their own production

decisions. We will refer to this as the constrained first best (CFB).

At the CFB, it is optimal to set em = 0 for all m, since all spillovers are internalized from

the planner’s perspective. Thus all firms will operate in a single industry. Additionally, it is

optimal to have âf = af = a, as both entrants and incumbents operate the same research

technology and concavity of the production function dictates that the planner equalize the

applied research rates across firms. The planner will choose a, b, d, and hf (the cutoff fixed cost

for undertaking basic research) to maximize welfare in equation (28) subject to the following
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constraints

Pf = P[hf < hf ]

Ψζ = (1−Ψ) (1 + p) (Ud+ Pfb)

Ψ̃ = Ψ

[
1 +

ζ

(1 + χ)a+ (1 + p)(Pfb+ Ud)

]
g = a(1 + χ)[(1−Ψ)λ+ Ψη] + (1 + p) (Ud+ Pfb) η

w̃ =
Ψ̃/(1 + η) + (1− Ψ̃)/(1 + λ)

1
M − (1 + χ)ha(a)− Pf [hb(b) + E[hf |hf < hf ]]− U

[
hb(d) + h̄b

]
Since the planner is constrained by the markups, it must take into account the effect of its

actions on the distribution of markups as encompassed in the second and third lines above.

Similarly, the planner takes into account the effect of its actions on the growth rate (fourth

line) and wage rate (fifth line).

In this model, there will be major types of inefficiencies arising from research investment.

First, the aggregate level of research investment will be below the efficient level both due to the

presence of uninternalized spillovers and the fact that monopoly power may not be sufficient

to provide the proper incentives for research as a result of creative destruction and exogenous

shocks. Second, the composition of resources employed for research will not be optimal, even

if the level of investment matches that of the planner. As a result of multi-industry presence,

firms will have differing research intensities, although the planner chooses exactly the same

level of research investment across firms. The R&D policies we will consider will typically

close the gap in welfare by aligning the levels, yet the composition of resources employed for

research will remain as a source of inefficiency.

In the following section, we will estimate the decentralized economy and compare it to the

planner’s solution. Then we will consider various R&D policies that can reduce the welfare

gap between the two. One method of quantifying the difference between the CFB solution

and a particular allocation is by considering consumption equivalents. We consider changes

in welfare by considering the fractional consumption equivalent, α. That is, welfare in the

decentralized economy W (C∗0 , g
∗) is the same in an economy with the CFB growth rate gSP

and a fraction α of the CFB initial consumption CSP0 , such that

W (C∗0 , g
∗) = W (αCSP0 , gSP ).

Lemma 1 Let w̃SP , Ψ̃SP , and gSP denote the outcome of the social planner’s problem and

w̃∗, Ψ̃∗, and g∗ the equilibrium values from the decentralized economy. Then the consumption
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equivalent is given by

α =

[
w̃SP

w̃∗

]
·
[

1 + η

1 + λ

]Ψ̃SP−Ψ̃∗

·
[
δ + g∗(σ − 1)

δ + gSP (σ − 1)

] 1
σ−1

4 Quantitative Analysis

We use the Generalized Method of Moments (GMM) to estimate our model. The next section

provides details on the estimation method. Before we proceed, however, we need to specify the

functional forms for the research cost functions and the distribution of the fixed cost of basic

research F
(
hb
)
. We will assume that:

ha (x) = ξa1x
ξa2 , hb (x) = ξb1x

ξb2 and he (x) = ξe1x
ξe2

where ξa1, ξ
b
1, ξ

e
1 > 0 and ξa2, ξ

b
2, ξ

e
2 > 1. We will also assume that the fixed costs are drawn from

a lognormal distribution with mean µ and variance σ2. As a result, the set of parameters of

the model is {γ, δ, ε, ϕ, η, λ, p, ζ, χ, κ, µ, σ, U, ξa1, ξa2, ξb1, ξb2, ξe1, ξe2}.
We have some preset parameters. Since labor productivity does not have a direct effect

on key moments, including profits, we normalize to ϕ = 1. Following the macro-consumption

literature, we take the intertemporal elasticity of substitution as γ = 2. The discount factor

δ together with the growth rate g∗ and γ determines the interest rate in our model economy.

Our benchmark growth rate will be around 1.5%. The interest rate in France for the period

was around 3.5%. Therefore it is reasonable to set the discount factor to δ = 0.01. However,

appendix C replicates all the exercises for ρ = 0.05 as robustness checks. Finally, we pick

the CES parameter to be ε = 2. 19 Our moments are typically insensitive to the curvature

parameter of the expansion production function ξe2, therefore we simply take a quadratic cost

function, but estimate its scale parameter ξe1. This leaves us with the following vector of

parameters to be estimated:

θ14×1 ≡
[
η λ p ζ χ κ µ σ U ξa1 ξa2 ξb1 ξb2 ξe1

]′
∈ Θ

where Θ is the set of parameter vectors.

For the period that we consider, there was existing government support for R&D activities.

Our dataset contains information on the publicly funded portion of private R&D. On average,

10% of private R&D was funded publicly. Therefore in our estimation, we introduce a uniform

19A reasonable way to calibrate this parameter would be to target the labor share of the national income
account, which is approximately 70%. We will do this in a future estimation.
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subsidy to the total R&D spending of the firm ψ = 0.10, such that a firm of type (m,n, hbf )

pays

(1− ψ)nw̃∗(ha(a
∗
m) + 1(hbf<hb∗m )[hb(b

∗
m) + hbf ])

in net research costs. The government has a balanced budget every period, so that the sum of

total subsidies and academic funding must be equal to the tax revenues, that is

T = T̂ + ψw̃∗
∑
m

(
ha(a

∗
m) + F(hb∗m)

[
hb(b

∗
m) + E

(
hbf | hbf < hb∗m

)])
Γ̃∗m.

4.1 Estimation Method

In our dataset, for each firm f and each time period t, we have a vector of N observables

from the actual data yAft ≡
[
y1
ft . . . yNft

]′
N×1

including the number of industries the firm is

present in, sales, profits, and labor costs. Let the entire dataset be denoted by y.

We use GMM for the estimation. Define Λ (y) and Λ(θ) to be, respectively, the vectors of

real data moments (generated from y) and equilibrium model moments (generated for some

vector of parameters θ). Our proposed estimator minimizes a quadratic form of the difference

between these two vectors

θ̂ = arg min
θ∈Θ

[Λ(θ)− Λ(y)] ·W · [Λ(θ)− Λ(y)]

where W is the weighting matrix. We use a diagonal weighting matrix with diagonal elements

Wii = 1/Λi(y)2

This is asymptotically consistent under fairly general conditions, but not efficient20. The

standard error of our parameter estimates, given any weighting matrix W is:

Q̂ =
(
ĜW−1Ĝ

)−1
· ĜW−1Ω̂W−1Ĝ ·

(
ĜW−1Ĝ

)−1

where Ĝ = ∂Λ(θ)
∂θ

∣∣∣
θ=θ̂

. We estimate the covariance matrix by bootstrapping the data at the

firm level. See Bloom (2008) and Lentz and Mortensen (2008) for further description and

usage. In our estimation, we use 26 moments, which are described next.

4.2 Target Moments and Identification

In this section we explain the moments that are used to identify our parameters.

20In the efficient case where W = Ω̂−1 this becomes simply Q̂ =
(
ĜΩ̂Ĝ

)−1

.
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Basic Research Intensity by Number of Industries We define basic research intensity

as the ratio of spending on basic research to spending on applied research. Since the effect of

multi-industry presence on this quantity is of critical importance to our model, we have one

moment for each m ∈ {1, . . . ,M}. Given a set of parameters and an equilibrium of the model,

this moment’s analytic value for a given m is

Λ (1− 8) =

∫ [
hb(b

∗
m) + hb1(hb<hb∗m)

]
F(hb)

ha(a∗m)

In our estimation, we use M = 10. However, in the data there are only a handful of firms

with m > 8, so we have one moment for each m ∈ {1, . . . , 7} and a final moment which

is averaged over m ∈ {8, 9, 10}. The way in which this moment increases with m identifies

the cross-industry spillover parameter p in our model. Additionally, it provides us with some

identification power for the basic research cost parameters
(
ξb1,ξb2

)
.

Average Basic and Applied Research Ratio We also have moments to track the mean

levels of research spending in the economy. The first is the ratio of applied research to sales,

and the second is the ratio of basic research to sales. Since sales and research spending are

both proportional to n, these figures will be the same across firms with the same m. Thus the

moments is given by

Λ(9) =
∑
m

w̃ha(am) · Γm

Λ(10) =
∑
m

w̃F(hbm)
[
hb(b

∗
m) + E

(
hbf | hbf < hbm

)]
· Γm

Conditional on innovation rates, these moments give us information on the research production

functions parameters.

Private to Public Basic Research Ratio The rate of academic innovation d is estimated

as a parameter. To determine this, we look at the ratio of private basic research spending to

public basic research spending. The moment is given by

Λ(11) =

∑
mF(hbm)

[
hb(b

∗
m) + E

(
hbf | hbf < hbm

)]
· Γm

hb(d) + h̄b

This moment will allow us to identify the flow rate of academic innovation d, as well as inform

us as to the level of private basic research spending.
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Distribution of m We track two moments relating to the distribution of m, the mean and

mean squared. They are given by

Λ(12) =
∑
m

m · Γm and Λ(13) =
∑
m

m2 · Γm

These moments identify the scale parameter governing the cost of expansion (ξe1) as well as

the mass of potential outside entrants (χ). The cost parameters determine the rates at which

firms expand into new industries, while the mass of entrants determines the aggregate creation

rate of single-industry firms. Together, these factors determine the equilibrium distribution of

multi-industry presence.

Profitability Firm profitability is defined as the ratio of profits to sales. As a result of

the logarithmic aggregation in each industry, sales for any given product are the same. So

total sales for a firm is just the number of products times a constant, which in this case is

ε (1− ε)−1 YM−1. For a given product, profitability is then simply k/(1 +k) where k ∈ {η, λ}.
Thus mean profitability is given by

Λ(14) = Ψ̃ ·
(

η

1 + η

)
+
(

1− Ψ̃
)
·
(

λ

1 + λ

)
where Ψ̃ ∈ (0, 1) is the share of product lines with the current technology η. This moment, in

conjunction with the employment growth and labor dispersion moments, helps us determine

the step size parameters η, λ, and ζ.

Employment Since the mass of workers is normalized to 1 in our model, we cannot target

the mean employment of firms. However, we can capture the distribution of workers by looking

at the dispersion of employment, that is, the ratio of the mean square to the square of the

mean. Calculating this moment (number 15) requires knowledge of the joint distribution of

step size, n, and m, which is prohibitive to calculate, so we simulate this moment to a high

degree of accuracy. This provides further information on the three step size parameters.

Firm Growth We have moments for sales and employment growth amongst firms. Both are

calculated conditional on the firm not exiting, since we do not observe the last period’s growth

rate for exiting firms. The expression for conditional sales growth is given by

Λ(16) =

∑
m [am + (1 + ρm)bm − τ · 1(n > 1) + κ] · [1− τ · 1(n > 1)− κ] · Γn,m

1− τ
∑

m Γm,1 − κ
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In the case of wage bill growth, we focus only on single-industry firms for computational

reasons. The expression for this moment (number 17) has a cumbersome expression which we

omit here. It is similar in structure to the above equation but also depends on the step size

parameters and distributions. The sales growth primarily informs on the rate of exogenous

destruction κ, while employment growth helps identify the step size parameters.

Exit Rate As exit occurs when firms either receive the exogenous destruction shock or lose

their last product, the predicted exit rate will be

Λ(18) = κ+ τ ·
∑
m

Γm,1

This moment serves primarily to determine the value of the rate of exogenous destruction κ,

as well as the mass of outside entrants χ, since the size of the pool of entrants affects the rate

creative destruction and hence the exit rate of single-product firms.

Extensive Margin of Basic Research Investment by Number of Industries We use

the share of positive basic research spending by each m to identify the mean µ and variance σ2

of the fixed cost distribution basic research. This is simply the probability that the idiosyncratic

fixed cost draw is less than the cutoff for a certain m

Λ(19− 26) = F(hbm).

4.3 Data

Empirical investigation on the relationship between R&D investment and multi-market activity

of a firm requires reliable and extensive information not only on product markets and on R&D

characteristics of individual firms, but also on firm ownership status. The latter allows us to

identify the product markets to which the firm is linked via its business group. We obtain this

information from three different data-sets.

R&D Information Information about R&D investment comes from the annual R&D Survey

conducted by the French Ministry of Research. The R&D survey comes in annual waves of

cross-sectional data, where the same firms are not necessarily sampled year after year (Mairesse

and Mohnen, 2010). The survey covers a representative sample of French firms of more than

20 employees investing into R&D. However firms with less than .8 Million Euros of R&D

investment fill out a shorter and simplified survey. The survey includes extensive information
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about the financing of R&D. It not only breaks down R&D investment according to the source

of the funds, but also provides its allocation to different types of R&D. More specifically all

firms are asked to report their R&D investment into basic and applied research.

Multi-Market Activity The identification of business group structures is based on a yearly

survey by INSEE called “Enqute Liasons Financieres” (LIFI). It covers all economic activities

but restricts its attention to firms which either employ more than 500 employees, or generate

more than 60 Million Euros of revenues, or hold more than 1.2 Million Euros of traded shares.

However since 1998 the survey is crossed with information from Bureau Van Dijk and thus

covers almost the whole economy. The LIFI survey contains information which makes it a

unique data set to study the relationship between multi-market activity and investment into

basic research. Besides providing information on direct financial links between firms, it also

accounts for indirect stakes and cross-ownerships when identifying the head of the group. This

is important as it allows to precisely reconstruct the group structure even in the presence

of pyramids. This feature allows us to obtain a reliable account of the structure of business

groups in the French economy and, as a consequence, reliable measures of our key variable,

the multi-market presence of business groups.

Since each firm itself can be active in several markets, we cross the data set with an

extensive yearly survey by the Ministry of Industry (“Enqute Annuelle des Entreprises”). The

survey is filled by French firms with more than 20 workers and contains information not only

on the different markets in which a firm operates but also information on market dedicated

sales for each segment. The data covers the vast majority of French firms and spans over the

period 2000-2006.

Balance Sheet Information We use the firm- and industry-level data sets based on

accounting data extracted again extracted from the EAE files. The data also includes unique

firm identifiers allowing us to match it to the R&D and LIFI data.
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4.4 Computer Algorithm Outline

An equilibrium of this model can be summarized by a vector of four variables (x∗a, x
∗
b , x
∗
s, w̃

∗)

satisfying four equations:

x∗a =
∑
m

a∗mΓ̃∗m + ã∗ and x∗b =
∑
m

(1 + ρm)b∗mΓ̃∗m

x∗s =
∑
m

(p− ρm)b∗mΓ̃∗m + (1 + p)d and
1

M
= L∗prod + L∗res

Where a∗m, b∗m, e∗m, and ã∗ are chosen in accordance with the optimality conditions put forth in

Proposition 1, Γ̃∗ satisfies the flow equations, and L∗prod and L∗res represent labor demanded for

production and research. The first three equations impose consistency on the levels of applied

and basic research and spillover. The final equation ensures labor market clearing.

Given a vector of candidate equilibrium variables, we can then evaluate the above equations

by taking the following steps:

1. Calculate Ψ and Ψ̃ using xa, xb, and xs.

2. Calculate g using, xa, and xb.

3. Using g, find r from σ and δ.

4. Now calculate βη and βλ.

5. Solve for βm, am, bm, em recursively.

6. Impose an upper bound on n and find the steady state Γm,n using the power method (or

your preferred method, e.g. an eigensolver).

7. Plug these into the equations above.

We use a Powell-Hybrid equation solver to solve this set of equations for a given set of

parameters. To minimize the GMM objective function, we perform a search over the joint

parameter and equilibrium variable space, minimizing the objective function subject to the

equilibrium constraints. For this we use a Nelder-Mead (simplex) algorithm.

4.5 Estimation Results of Baseline Economy

Table 4 reports the values of the estimated structural parameters and their asymptotic standard

errors.

36



Table 4: Parameter Estimates

Parameter Value Std. Error Description Equation

p 0.18126 0.00412 Cross-industry Spillover of Basic Research (7)

η 0.39419 0.0168 High Quality Step Size (4)

α 0.099611 0.00861 Low Quality Step Size (4)

χ 0.016093 0.000470 Mass of Outside Entrants (10)

U 1.2532 0.172 Mass of Academic Labs (8)

ξa2 1.50966 0.0284 Curvature of Applied Research Cost Function (6)

ξb2 1.62520 0.0117 Curvature of Basic Research Cost Function (6)

ξa1 0.35854 0.0354 Scale of Applied Research Cost Function (6)

ξb1 5.52095 0.312 Scale of Basic Research Cost Function (6)

ξe1 0.0051604 0.000243 Scale of Expansion Cost Function (19)

κ 0.0058871 0.000412 Exogenous Destruction Rate (19)

µf 7.0706 0.0121 Mean of Basic Research Fixed Cost (19)

σf 0.42082 0.00454 Std. Dev. of Basic Research Fixed Cost (19)

ζ 0.043695 0.0107 Depreciation Rate (19)

4.5.1 Parameter Estimates

One of most important estimate of our model is the cross-industry spillover parameter p = 0.18

which measures the probability of having an additional immediate application of the basic

innovation. This estimate affects the extent to which basic innovations contributes to cross-

sectional growth. In equilibrium, firms operate in two industries on average. Therefore the

firms have on average a 1/9 probability of internalizing a given horizontal spillover. Given

the estimate value of p, the internalized spillover is 0.02 (= (1/9)× .18). In other words with

probability 0.16, each successful basic innovation will have an application that will not be

utilized by the main innovator.

The estimated innovation size of basic research is η = 0.39 and the innovation size of each

new applied innovation is λ = 0.10. As a result, each basic innovation contributes to the

cross-sectional growth almost 4.6 times more than an applied innovation ((1 + p) η/λ ≈ 4.65).

On the other hand, each basic innovation has also a within industry spillover. The depre-

ciation rate is estimated to be ζ = 0.04 which indicates that a basic innovation affects the

subsequent innovations in the same product line for almost 25 years on average.

The elasticity of applied innovation counts with respect to the research dollars spent is

estimated to be 0.66 (= 1/ξa2) and similarly the elasticity of basic innovation with respect to

the basic research investment is 0.62 (= 1/ξb2). A single elasticity has been estimated for the

US economy by several papers (Pakes and Griliches (1984), Hall et al. (1988) and Kortum

(1992, 1993)) and the estimates are varying between 0.1 and 0.6. The fact that the elasticity

is smaller than 1 suggests that there is more investment in duplicative research efforts as the

research investment increases (Kortum, 1993). Therefore, our estimate suggests the there is a

smaller fraction of duplicative research efforts in France than in the US for a given proportional
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increase in research investment.

4.5.2 Endogenous Variables

The following table provides equilibrium values for some of the important endogenous variables

in the model

Some Key Endogenous Variables (in percentages)

ā∗ ã∗ d̃∗ b̄∗ ē∗ ρ̄∗ s∗ Ψ∗ g∗ r∗ w̃ α∗

8.1 0.13 0.37 0.20 0.91 1.74 0.44 13.2 1.40 3.51 48.9 56.4

As the table indicates, most applied innovation in the economy is done by incumbents.

Approximately 98% of applied innovations come from incumbent firms. In any given period,

about 8% of incumbents produce an applied innovation. On the basic research side, around

64% of basic innovations come from the academic sector. Also note that the arrival rate of

basic innovation is significantly smaller than that of applied innovation. Applied innovations

arrive 14 times more frequently than basic innovations. However, each basic innovation will

have associated additional contributions to economic growth which we analyze in more detail

below.

In the table above, ρ̄∗
(

= Em
[
p(m−1)
M−1

])
is the average probability of a firm producing an

appropriable cross-industry spillover on top of a basic innovation. Our estimates show that

this probability is roughly 2%. Since the probability of a cross-industry spillover is p ∼= 18%,

only 10% (ρ̄∗/p) of spillovers are utilized by the innovating firm. In other words, 90% of

cross-industry basic innovation spillovers benefit other firms. Each company in the economy

receives one of these spillovers either from another company or from the academic sector at a

total rate of s∗ ∼= 0.4%. Thus, a firm on average receives two times as many basic innovations

from cross-industry spillovers as it does from its own production of them.

The estimate for Ψ∗ captures the within industry spillovers from basic research. Thanks

to this spillover, 13% of applied innovations have a larger contribution (η− λ) to growth than

they otherwise would. The resulting improvements lead to an aggregate growth rate of 1.4%

per annum for the economy as a whole, which we analyze in the next section.

Growth Decomposition In expression (27), we show that research efforts contribute to

aggregate growth along several dimensions. The following table decomposes these effects ac-
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cording to their source and their immediate impact.

Growth Decomposition by Research Type

Direct Applied Direct Basic Cross-Industry Within Industry

(ā∗ + ã∗)λ
(
d̃∗ + b̄∗

)
η p

(
d̃∗ + b̄∗

)
η (ā∗ + ã∗) Ψ∗ (η − λ)

0.82% (58%) 0.22% (16%) 0.04% (3%) 0.32% (23%)

Overall 58% of total growth comes from the direct effect of applied innovations, while 16%

of growth comes from the direct effect of basic innovation. In addition to the direct effect,

basic research contributes to overall growth through cross-industry spillovers, which account

for 3% of total growth, and through within industry spillovers, which account for 23% of total

growth. In sum, 62% percent of the contribution of basic innovation to growth comes through

its two types of spillovers, which are not fully internalized by innovating firms.

Growth Decomposition by Institution

Entrants Incumbent Applied Incumbent Basic Academic Sector

ã∗ [Ψ∗η + (1−Ψ∗)λ] ā∗ [Ψ∗η + (1−Ψ∗)λ] (1 + p)b̄∗η (1 + p)d̃∗η

0.02% (1%) 1.12% (80%) 0.10% (7%) 0.17% (12%)

Our estimates indicate that entrants play a relatively small direct role in overall growth.

While in the US, startups are thought to play a large role in overall growth, these numbers

suggests that this may not be the case in France. We also recognize that without direct

data on entry rates, our estimate relies largely on inference from other aspects of the data,

which are listed in section 4.5.3. More interestingly, the contribution of the academic sector

to overall growth is 12%. Note that this is a lower bound for the total contribution of the

academic sector because this figure mainly captures the instantaneous contribution, but not

the effects on subsequent applied research. To give an idea of size of the dynamic contribution,

keeping the innovation rates of entrants and outsiders the same, we recompute Ψ∗ excluding the

contribution from academic basic innovation and recalculate the implied growth contributions

from the first two columns. In this case we find that growth falls to 1.20%. This implies that the

dynamic effects of academic innovation account for 14%(= (1.40− 1.20)/1.40) of total growth,

which increases the overall contribution of the academic sector to 26%.

Finally, we conclude this section by providing a decomposition of the labor force utilization.

This is informative because in our model, the only input for both production and innovation is

labor. Therefore, it is important to observe the allocation of labor amongst its various possible

uses in order to understand the mechanism behind the current results and the upcoming policy

analysis.

Labor Decomposition by Activity (in percentages)

Production Applied Incumbent Basic Incumbent Expansion Academic Entrants

89.1 8.5 0.7 ≈ 0 1.6 0.1
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In our benchmark economy, 90% of labor is used for production, and 10% is employed for

innovation activities. Amongst this 10% percent, roughly 30% of researchers are engaged in

innovation activities with additional spillovers. The policies that will consider will not only

govern the split of labor resources between production and research, but also the composition

within research across different types of innovation, since uninternalized spillovers are one of

the main sources of inefficiency.

4.5.3 Goodness of Fit and Untargeted Moments

Table 5 contains the values of moments from the actual data and our estimated model.

Table 5: Moments Used in Estimation
# Description Model Data

1 Mean basic intensity, m = 1 0.0301493 0.0665769
2 Mean basic intensity, m = 2 0.0374873 0.0466243
3 Mean basic intensity, m = 3 0.0458843 0.0616927
4 Mean basic intensity, m = 4 0.0553412 0.0801807
5 Mean basic intensity, m = 5 0.0658307 0.0763586
6 Mean basic intensity, m = 6 0.0772940 0.0782929
7 Mean basic intensity, m = 7 0.0896397 0.1224092
8 Mean basic intensity, m = 8+ 0.1237437 0.1013674
9 Mean m 1.8700803 2.209294
10 Mean square m 6.9224227 6.975635
11 Mean profitability 0.0420897 0.059547
12 Mean firm growth 0.0443639 0.0410197
13 Mean exit rate 0.0311700 0.0273
14 Mean applied R&D 0.0829785 0.0747405
15 Mean basic research 0.0031294 0.0036469
16 Private/public basic research 0.1955858 0.1516633
17 Pos. basic research, m = 1 0.1943180 0.2431939
18 Pos. basic research, m = 2 0.2304994 0.2307943
19 Pos. basic research, m = 3 0.2695655 0.2702586
20 Pos. basic research, m = 4 0.3111376 0.3482786
21 Pos. basic research, m = 5 0.3547701 0.4183674
22 Pos. basic research, m = 6 0.3999500 0.4517544
23 Pos. basic research, m = 7 0.4460875 0.5508475
24 Pos. basic research, m = 8+ 0.5607084 0.6803279
25 Labor dispersion 10.8754705 32.79106
26 Employment growth 0.0555172 0.0846145

The results indicate that the model generates firm and industry dynamics similar to those

in the data. In line with stylized fact 1, a significant fraction of innovating firms invest in basic

research. In particular, 23% of firms are investing in basic research, which was 27% in the

data. We also capture the positive relationship between the extensive margin of basic research

and multi-industry presence, as evidenced in rows 17-24 and Figure 5.

In addition, the ratio of private basic research investment to public basic research invest-

ment is 20%, while it is 15% in the data. This is partly driven by our assumption in the

model that academic labs operate regardless of their fixed cost draw, whereas private firms

are optimizing in this dimension. However, the fixed cost level is set to ensure the proper
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proportion of private firms engage in basic research, hence the model is doing well on private

firms’ extensive margin at the expense of a 5 percentage point deviation from this target. In

our model, the share of basic research in total private research investment is 8%. This number

is in line with stylized fact 2, which reports 10% for this figure.

Stylized fact number 3 states that there is a positive correlation between basic research

intensity and firm size. This is captured in our model as shown in Figure 6.

Figure 5: Firm Size Distribution Figure 6: Employment by # of Industries

The fourth stylized fact regards the correlation between profitability and basic research

intensity. The data does not show a significant correlation between these two values. The

same implication emerges from our model. In the baseline model, the correlation between

profitability and basic research intensity is XXX. This result emerges because basic research

investment is determined through instantaneous idiosyncratic shocks which are history inde-

pendent, whereas profitability is a direct function of the history of step size realizations.

In the data, firms operate on average in 1.9 industries compared to 2.2 in our model.

Furthermore, we find the mean squared in the model to be 6.9, which is in accordance with

the observed data (7.0).

Stylized fact number 6 was one of the primary motivations for introducing multi-industry

presence into our model. As explained previously in the text, multi-industry presence plays

an important role in increasing basic research incentives, by allowing a greater potential to

internalize the positive spillover from basic research. In our reduced form analysis, we found a

significant and positive correlation between multi-industry presence and basic research inten-

sity. This has been the key moment to identify the cross-industry spillover parameter. Our

model successfully generates this positive correlation, with a value of 0.011. Rows 1 through
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8 report the basic research intensity for different technological bases in the data and model.

The slope of the fitted linear line in the data is 0.008.

Our model naturally generates a positive correlation between multi-industry presence and

firm size, which has been documented empirically in stylized fact 7. This arises since both of

these moments are strongly correlated with firm survival. In the model, we find a correlation

of 0.62 between the log of firm sales and multi-industry presence. In the data, this value is

0.73.

Stylized fact 8 documents a well known feature the data, which is documented extensively

in the literature. In our model, we capture this fact with a skewness of the firm size distribution

of 2.85. This value is 3.07 in the data.

The table above reports some additional moments that are not captured by the stylized

facts. For instance, the mean profitability is 5.9% in the data, yet our model predicts a value

of 4.2%. The prime determinants of profitability are the step sizes for basic and applied

innovation. However, these also affect the investment levels for both types of research, since

this increases the return to successful innovation. Therefore, the step size parameters are set to

compromise between hitting the profitability moment and the research investment moments.

In our model, firms grow at a rate of 4.4% on average. This is close to the empirical

counterparts, which is 4.1%. The exit rate predicted by our model is 3.1%. This value is

similar to its empirical counterpart 2.7%.

We are targeting three additional moments regarding research investments. The first two

are the average ratios of applied and basic research investment to firm sales. The model

slightly overshoots applied research (8.3% vs 7.5%) and closely predicts the level of basic

research (0.31% vs 0.36%). The third moment that we are targeting is the ratio of private to

public basic research investment. In our estimation, we take academic funding as percentage of

GDP as given. Then we let the model economy determine overall private spending. There are

many other moments that we target that directly determine private basic research spending.

Therefore, hitting this moment comes at the expense of the overall fit.

All of these components of the economy determine the aggregate growth rate. Our model

matches the observed growth rate closely. Our model economy grows at a rate of 1.4%, while

the French economy grew at an average rate of 1.5% during the period studied (2000-2006).

Finally, this growth rate, in conjunction with the discount factor and the CRRA parameter,

determine the interest rate in our economy. Our model predicts an economy interest rate of

3.5%. This figure closely reflects interest rates of the French economy during the sample

period. Indeed, European Central Bank interest rates on deposit facilities which banks may
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use to make overnight deposits, varied between 3.25% in July 2000 and 2.5% in December 2006.

Another comparison figure of interest, perhaps more closely related to the French economy,

is the interest paid on 10 year French Treasury Bonds. On average the interest paid on such

government bonds was about 4.3% during the sample period and was about 3.4% in 2005.

We will now focus on the social planner’s problem to quantify the underinvestment in our

model economy. Then we will turn to various policies that could address this inefficiency.

4.5.4 Quantifying the Social Planner’s Optimum

In this section, we are going to provide the solution to the social planner’s problem described

in section 3.5.8. Recall that we are considering a planner who controls the research labs of

firms but not the firms’ production decisions. The following table summarizes these results

Social Planners Optimum (in percentages)

C∗0/C
SP
0 αSP 1 + k̄SP LSPprod LSPbas LSPapp āSP

148 100 128 60.2 14.5 23.6 16.3

ãSP d̃SP b̄SP F(hb,SPm ) ΨSP gSP

0.26 1.60 1.60 100 49.4 5.75

One thing to note in this class of model is the following. If the economy functions with

perfect competition, this removes all incentives for R&D, and as a result, all labor is allocated

for production, so that the initial consumption is maximal and the growth rate is zero. Any plan

to increase welfare will necessarily have to increase growth at the expense of initial consumption

by allocating more workers to research activities. As is well known, the patent mechanism is

one way to provide these incentives to hire researchers and innovate. However, the patent

mechanism is not guaranteed to provide the proper incentives for research. This fact reflects

itself in the table above. Although firms enjoy full monopoly power over the results of their

innovations, a large fraction of the labor force is employed for production. Even though

the planner allocates roughly 40% of labor to research activities, the decentralized economy

employs only 11% of workers for research. As a result, the initial consumption is 48% higher in

the decentralized economy, relative to the planner’s choice. By construction, the consumption

equivalent parameter αSP is equal to one. The insufficiency of the patent mechanism also

reflects itself in the planner’s choice of the rate of applied research, which is roughly 17% at

the optimum, while this number was only 8% in the decentralized economy.

The planner not only optimizes over the level of workers employed for research, but also the

composition of those workers amongst the various types of research. The planner internalizes

all types of spillovers arising from basic research. Therefore, the aggregate flow of basic research
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(excluding spillovers) rises to 3.1%, while it was only 0.6% in the decentralized economy. This

happens both on the intensive and extensive margin of basic research. In fact, the planner finds

it optimal to employ nearly all research labs, regardless of their fixed cost draw. As a result, a

larger fraction of product lines operate with high technology (60%, as opposed to 20% earlier).

Consequently, growth rises to 5.7% from 1.4%. Overall, the decentralized economy’s welfare

corresponds to an 56% consumption equivalent with respect to the social planner’s optimum.

The following policy experiments will try to bridge this gap.

5 Policy Analysis

In this section, we analyze the impact of different types of research subsidies. Given our

distinction between basic and applied research, it seems natural to propose different subsidy

policies for different types of research spending. However, such a policy would generate a

moral hazard problem since firms would have an incentive to misreport the type of research

they undertake, which is almost impossible to verify for a policymaker. In the previous section,

we provided the solution to the social planner’s problem as a benchmark. We next consider a

hypothetical case where the policymaker can observe the type of research project and subsidize

it accordingly. Secondly, to imitate real-world research subsidies, we consider the case in which

only uniform subsidies to all research types are implemented. We then consider varying the

amount of funding going to academic research labs. Finally, we allow for both uniform subsidies

and changes in academic research funding.

5.0.5 R&D Policies

Type-Dependent (TD) Research Subsidy Assume first that the policymaker can distin-

guish between different types of research efforts and accordingly provide differentiated subsidy

rates. Let ψa ∈ [0, 1) and ψb ∈ [0, 1) denote the applied research and basic research subsidy

rates respectively. The share of GDP allocated to academic research (T̂ /Z) is kept constant

at 1% by the policymaker. Total spending by firm f of type (m,n, hb) is then simply

n (1− ψa) w̃TDha(aTDmn) + n (1− ψb) w̃TD1(hb<hTDm )

[
hb
(
hTDmn

)
+ hb

]
The first-order conditions for the value function in (19) become:

ΨTDβTDη + (1−ΨTD)βTDλ + βTDm = (1− ψa) w̃TDh′a(aTDm ) (30)

(1 + ρm)(βTDη + βTDm ) = (1− ψb) w̃TDh′b(bTDm ) (31)
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In these expressions, the left side indicate the expected return to research investment and the

right side is the relevant marginal cost. Note that an increase in the subsidy rate (ψa or ψb)

reduces of research cost for the firm and leads to an increase in the research effort as a result.

The advantage of this policy is clearly that the policymaker can target a particular type of

research to correct the underinvestment in it. The following table reports the optimal subsidy

rates under this policy. As there are spillovers associated with basic research that are not

internalized, one would expect that the optimal subsidy to basic research would be higher.

Type-Dependent Research Subsidy (in percentages)

ψa ψb T̂ /Z CTD0 /CSP0 αTD 1 + k̄TD LTDprod LTDbas LTDapp
64 83 0.8 112 82.5 128 67.5 12.1 20.4

āTD ãTD d̃TD b̄TD F(hb,TDm ) ΨTD gTD w̃TD

14.0 0.21 0.18 1.80 ≈100 35.7 3.87 .609

Our quantitative results confirm this expectation. Since the underinvestment is mainly in

basic research, the optimal type-dependent subsidy dictates a much larger subsidy rate for it,

namely ψb = 83% and ψa = 64%. As a result, the researcher share and the equilibrium growth

rate increase. This happens at the expense of a lower initial consumption, which happens

through allocating a lower share of workers to production (76% as opposed to 89% in the

baseline economy), but overall, welfare increases. The consumption equivalent rises to 82%

with respect to the social planner’s optimum, which is a 26 percentage point improvement over

the baseline economy.

As discussed above, this policy is hard to implement in the real world due to the moral

hazard problem. Therefore we focus on a policy providing a uniform subsidy across firms and

research types.

Uniform Private (UP) Research Subsidy With this policy, the government subsidizes a

fraction ψ ∈ [0, 1) of each firm’s total research investment, keeping the share of funds allocated

to academic research constant. This implies that the total spending by firm f is simply

n(1 − ψ)w̃UP
(
ha(a

UP
mn) + 1(hb<hUPm )

[
hb
(
hUPmn

)
+ hb

])
. In that case the first-order conditions

for the value function in (19) become

ΨUPβUPη + (1−ΨUP )βUPλ + βUPm = (1− ψ) w̃UPh′a(a
UP
m ) (32)

(1 + ρm)(βUPη + βUPm ) = (1− ψ) w̃UPh′b(b
UP
m ) (33)

Note that such a policy subsidizes not only basic research in (33), but also applied research

in (32). Figure 7 plots the steady-state welfare, growth, researcher share in the labor market,

and the initial consumption against the subsidy rate.
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Figure 7: Effects of Uniform Subsidy

The following table summarizes the results of the optimal subsidy rate (75%).

Uniform Research Subsidy (in percentages)

ψ T̂/Z CUP0 /CSP0 αUP 1 + k̄UP LUPprod LUPbas LUPapp
75 0.8 114 75.0 128 68.5 4.73 26.7

āUP ãUP d̃UP b̄UP F(hb,UPm ) ΨUP gUP w̃UP

17.1 0.27 0.15 0.85 99.5 21.1 3.27 0.627

Our analysis of the baseline economy and the planner’s economy documented a significant

underinvestment in research overall and misallocation between the different types of research.

A uniform subsidy then attempts to align the former constrained by an inability to affect the

latter. Although the optimal type dependent basic subsidy is 83%, the optimal uniform subsidy

is only 75%, due to cross-subsidization of applied research whose optimal level was only 64%.

Under this policy, we are allocating a larger fraction of the labor force to research relative

to the baseline economy. Overall, the researcher share goes up to 31% from 11%. This reduces

the initial consumption to 77% of the baseline, yet increases the growth rate to 3.3%. In sum,

there is a sizable welfare gain from this policy, producing a consumption equivalent of 75%

with respect to the social planner’s optimum, a 19 percentage point increase from the baseline.

Although the underinvestment in basic research is sizable as evident from the 83% subsidy

rate in the previous section, uniform policy partially makes up for the underinvestment and

provides 75% subsidy which is 8 percentage point below the optimal basic research subsidy rate.

The main lesson to be drawn from this is that a uniform research subsidy should take into

account its negative welfare consequences through its oversubsidization of applied research.
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Finding a feasible method to differentiate basic and applied research is essential for better

innovation policies.

Optimal Academic Fraction of GDP (AC) In this section we will look for the optimal

public funding level for academic research as a fraction of GDP
(
T̂ /Z

)
keeping the baseline

subsidies fixed. This is particularly important because, as was documented in the baseline

estimation, almost 26% of growth is due to the academic sector. Moreover, basic research

produces many uninternalized spillovers and the academic sector is the major source of this

type of research in the economy (64% of total basic research). The following table summarizes

the results of the optimal academic policy.

Academic Research Policy (in percentages)

ψ T̂/Z CAC0 /CSP0 αAC 1 + k̄AC LACprod LACbas LACapp
10 10.0 120 83.8 128 72.3 18.4 9.32

āAC ãAC d̃AC b̄AC F(hb,ACm ) ΨAC gAC w̃AC

8.67 0.14 3.34 0.0002 0.08 47.5 3.67 0.544

The advantage of this policy is that it can more directly target the type of research that is

mainly underinvested in. As the above table indicates, without changing the private subsidy,

this policy can increase both growth and welfare significantly. The optimal fraction of GDP

allocated to academic research turns out to be 10.0%. Under this policy 28% of the labor force

is allocated to research, however, contrary to the uniform policy case, most of these researchers

are working on research projects with high potential for spillovers. The resulting economy has

a growth rate of 3.7%. Compared to the uniform, this policy is able to increase the growth

rate by 0.4 percentage points while increasing initial consumption.

Our results highlight the special role of academic research in overall growth and show the

complementarities present between public and private research. Allocating more resources to

academic research not only has a direct effect on growth, but an indirect effect by making

private research more productive. However, one should also note that this particular policy

alone cannot make up for the underinvestment in research on the part of the private sector.

Therefore, the next policy experiment is of particular importance.

Optimal Feasible Policy: Uniform Subsidy and Academic Budget (AU) Our final

policy experiment combines both of the feasible policies that have been considered thus far

individually. We will allow both the uniform subsidy rate and the academic funding rate to be

chosen by the policymaker. The advantage of considering both types of policies is to introduce

more freedom to control the incentives for both types of research in a largely separate way. In
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particular, ψ and T̂ /Z are going to be the choice variables in this exercise. The following table

contains the results of this experiment

Academic And Uniform Research Policy

ψ T̂/Z CAU0 /CSP0 αAU 1 + k̄AU LAUprod LAUbas LAUapp
73 8.5 99 95.8 128 59.5 13.9 26.5

āAU ãAU d̃AU b̄AU F(hb,AUm ) ΨAU gAU w̃AU

17.6 0.28 2.6 0.39 81.1 44.6 5.51 0.677

By using the level of academic funding to reach the proper share of researchers, the pol-

icymaker is able to lower the uniform subsidy, thus reducing needless cross-subsidization of

applied research. Under the current policy 27% of the labor force is allocated to research.

This time around, the composition of workers between applied and basic research is closer to

the social optimum. By allocating 5.9% of GDP to academic research and subsidizing private

research at a rate of 56%, the policymaker can do even better than the hypothetical case of a

type-dependent research subsidy. The growth rate goes up 3.4%, which was only 1.6% in the

baseline economy and 3.1% with type-dependent research subsidies. The resulting economy

achieves a consumption equivalent of 94% with respect to the social planner’s optimum. This

is a significant improvement over all the feasible policies we have considered so far, surpassing

the consumption equivalent of the next best (academic funding alone) by 2.7 percentage points.

To summarize our findings, recall that the baseline economy, which itself featured a 10%

uniform research subsidy, had a 15% lower consumption equivalent than the social optimum.

We first considered the most widely discussed policy, which is a uniform subsidy. Using this

tool optimally could only partially closed this gap by 3 percentage points. This was mainly

due to the fact that the policy could not distinguish between the research types with different

spillover and productivity implications. Considering a policy combination that governs both

academic and private research could generate a significant improvement, reducing this gap

by 9 percentage points. The first main conclusion to be drawn for innovation policy is the

importance of recognizing different types of innovations and the impact of policies on these

types of research. The second is that it is important to take into account both the direct

and indirect effects of academic research on productivity growth when considering growth and

innovation policies.

6 Conclusion

In this paper, we studied the distinct roles of basic research and applied research in the growth

process, the incentives of firms to invest in these distinct types of research, the contribution
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of the academic sector to economic growth, and different government policies to undo the

inefficiencies arising from basic innovation spillovers. Our theoretical framework consisted of

a general equilibrium model with firms and an academic sector. As opposed to the previous

literature, we explicitly allowed firms to invest in both types of research activities. The major

difference between basic and applied research is that the former generates potential spillovers

in the form of (a) innovation that apply to industries that are not in the activity scope of the

firm, and (b) benefits to subsequent applied research within the same industry. Firms’ presence

in multiple industries determines their ability to appropriate cross-industry spillovers, which

in turn determines their incentive to invest in basic research. The heterogeneity induced by

our multi-industry framework allowed us to identify some key structural parameters including

the probability of cross-industry spillover.

We estimated the model using detailed data on French firms conducting research in the

period 2000-2006. Using a large number of empirical moments, our model provided an overall

good fit to the data, capturing important stylized facts. We then quantified the contributions

of different actors and research types to aggregate growth. For instance, we found that 26% of

growth came from the academic sector, and 42% came from basic research investment in the

economy. We then solved the social planner’s problem and quantified the inefficiency present

in the decentralized equilibrium. In particular, we found that the baseline economy achieved

a 56% consumption equivalent with respect to the planner’s optimal allocation.

Finally, we considered several policies to remedy this inefficiency. We showed that a com-

bination of feasible policies, the uniform research subsidy and share of academic funding in

GDP could improve the consumption equivalent by 40 percentage points over the baseline.

The advantage of this policy is that it can affect both types of research differentially. While

the subsidy lifts both basic and applied research levels, the increase in academic funding brings

basic research further towards its optimal level.

The main conclusions we draw are that the impact of basic and applied research on aggre-

gate growth is very distinct. Basic research generates a significant amount of spillovers and

R&D policies could be made more effective if designed with an eye to this fact. Using uniform

R&D subsidies in an attempt to correct the underinvestment in basic research could harm the

economy by oversubsidizing applied research. In fact, complementing uniform subsidies with

a stronger support for the academic sector could greatly improve welfare. Our model draws

particular attention to the role of academic institutions in the growth process. We hope that

the framework presented in this paper will be useful for developing further models to study

other important issues such as optimal patent policies.
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8 Appendix

8.1 A - Theoretical Appendix

Proof of Proposition 1. Now we propose the following functional form for Ṽ (m,nη, nλ) =

βηnη + βλnλ + (nη + nλ)βm. Substitute this into (19)

r∗
[
βηnη + βλnλ + (nη + nλ)βm

]
=

max
am,bm,
em



nηπ̃η + nλπ̃λ − (nη + nλ) w̃∗
[
ha(amn) + hb (bmd) + 1(bm>0)h

b] + he(emn)
]

+ (nη + nλ) am
[
Ψ∗βη + (1−Ψ∗)βλ + βm

]
+ (nη + nλ) bmd (1 + ρm)

[
βη + βm

]
+ nλs

∗ [βη − βλ]
+ (nη + nλ)κ

[
Ψ̃∗βη +

(
1− Ψ̃∗

)
βλ + βm − ν

]
+τ∗nη

[
−βη − βm

]
+ τ∗nλ [−βλ − βm] + em (nη + nλ)

[
βm+1 − βm

]
+κ
[
(nη + nλ) ν −

[
βηnη + βλnλ + (nη + nλ)βm

]]


.

Now equating the coefficients of nη, nλ and (nη + nλ) we get

r∗βηnη =
{
nηπ̃η − τ∗nηβη − κβηnη

}
r∗βλnλ =

{
nλπ̃λ + nλs

∗ [βη − βλ]− τ∗nλβλ − κβλnλ}

r∗ (nη + nλ)βm = max
am,bm,
em



− (nη + nλ) w̃∗
[
ha(amn) + hb (bmd) + 1(bm>0)h

b] + he(emn)
]

+ (nη + nλ) am
[
Ψ∗βη + (1−Ψ∗)βλ + βm

]
+ (nη + nλ) bmd (1 + ρm)

[
βη + βm

]
+ (nη + nλ)κ

[
Ψ̃∗βη +

(
1− Ψ̃∗

)
βλ + βm

]
−τ∗ (nη + nλ)βm + em (nη + nλ)

[
βm+1 − βm

]
−κ (nη + nλ)βm


which in turn imply

r∗βη = π̃η/ (r∗ + τ∗ + κ)

r∗βλ =
(
π̃λ + s∗βη

)
/ (r∗ + s∗ + τ∗ + κ)

r∗βm = max
am,bm,
em


−w̃∗

[
ha(amn) + hb (bmd) + 1(bm>0)h

b] + he(emn)
]

+am
[
Ψ∗βη + (1−Ψ∗)βλ + βm

]
+ bmd (1 + ρm)

[
βη + βm

]
+κ
[
Ψ̃∗βη +

(
1− Ψ̃∗

)
βλ

]
+ em

[
βm+1 − βm

]


Proof of Proposition 2. Recall that the final output is propositonal to the quality

index Q in (18) . After ∆t period, the quality index becomes

Q (t+ ∆t) =


+(1 + p)

(
d̃∗∆t+ b̄∗∆t+ (ā∗∆t+ ã∗∆t) Ψ∗

)
ln (1 + η)

+(ā∗∆t+ ã∗∆t) (1−Ψ∗) ln (1 + λ)
+Q (t)

 .
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This follows from the fact that (1 + p)
(
d̃∗∆t+ b̄∗∆t

)
+(ā∗∆t+ ã∗∆t) Ψ∗ fraction of the prod-

uct lines are going to experience an η improvement, (ā∗∆t+ ã∗∆t) (1−Ψ∗) fraction is going to

experience a λ improvement and the remaining product lines will experience no improvement

at all. After some simple algebra we get

lim
∆t→0

Q (t+ ∆t)−Q (t)

∆t
= (1+p)

(
d̃∗ + b̄∗ + (ā∗ + ã∗) Ψ∗

)
ln (1 + η)+(ā∗+ã∗) (1−Ψ∗) ln (1 + λ) .

The last line of the proposition uses the fact that ln (1 + x) ≈ x when x is small.

Derivation of Invariant Γ∗m,n. We assume that when a firm loses its last product in

a particular industry, it maintains a foothold there, in the sense that it still receives buyout

offers and can still directly utilize basic research relevant to that industry. When a firm loses

all of it’s products or receives a destructive shock, it ceases to exist. We wish to find the joint

distribution over the number of industries a firm is in and how many product lines it owns.

For notational convenience, let us denote the basic research flow from m−industry firms by

b̂∗m ≡ F
(
hb∗m
)
b∗m. The flow equation for firms in m industries with n products is

Outflow Inflow[
a∗1 + b̂∗1 + τ∗ + κ

+e∗1 + κ

]
Γ∗1,1 = ã∗ + 2τ∗Γ∗1,2[

a∗m + b̂∗m + τ∗ + κ
+e∗m + κ

]
Γ∗m,1 = 2τ∗Γ∗m,2 + e∗m−1Γ∗m−1,1 for m ≥ 2(

n
(
a∗m + b̂∗m + τ∗ + κ

)
+e∗m + κ

)
Γ∗m,2 =

{ (
a∗m + b̂∗m (1− ρm) + κ

)
Γ∗m,n−1

+3τ∗Γ∗m,n+1 + e∗m−1Γ∗m−1,n

}
for m ≥ 1

(
n
(
a∗m + b̂∗m + τ∗ + κ

)
+e∗m + κ

)
Γ∗m,n =


(n− 1)

(
a∗m + b̂∗m (1− ρm) + κ

)
Γ∗m,n−1

+(n− 2)ρmb̂
∗
mΓ∗m,n−2

+(n+ 1)τ∗Γ∗m,n+1 + e∗m−1Γ∗m−1,n

 for n ≥ 3, m ≥ 1

where we use the convention Γ∗m,−1 = Γ∗m,0 = 0 and e∗0 = 0. The first line equates the outflows

from (m = 1, n = 1) which happens once the firm loses its product at the rate τ∗+κ, acquires a

new product line at the rate κ, innovates a new good at the rate a∗1 + b̂∗1 on average or expands

into a new industry at the rate e∗1. On the other hand, inflow happens from outsiders at the

rate ã∗ and from the firms with 2 products which lose one of their products at the rate 2τ∗.

Similar reasonings apply to the next lines.

8.2 B - Reduced Form Appendix
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8.3 C - Quantitative Appendix

Some Key Endogenous Variables (in percentages)

ā∗ ã∗ d̃∗ b̄∗ ē∗ ρ̄∗ s∗ Ψ∗ g∗ r∗ w̃ α∗

5.8 0.10 0.39 0.04 0.11 0.22 0.47 10.5 0.88 6.76 0.471 87.0

Social Planners Optimum (in percentages)

C∗0/C
SP
0 αSP 1 + k̄SP LSPprod LSPbas LSPapp āSP

118 100 126 75.5 9.9 13.5 11.3

ãSP d̃SP b̄SP F(hb,SPm ) ΨSP gSP

0.18 1.54 1.23 100 42.9 3.88

Type-Dependent Research Subsidy (in percentages)

ψa ψb T̂ /Z CTD0 /CSP0 αTD 1 + k̄TD LTDprod LTDbas LTDapp
50 74 0.8 105 93.2 126 79.6 8.2 12.2

āTD ãTD d̃TD b̄TD F(hb,TDm ) ΨTD gTD w̃TD

10.0 0.16 0.32 1.38 ≈ 100 31.1 2.72 0.520

Uniform Research Subsidy (in percentages)

ψa ψb T̂ /Z CTD0 /CSP0 αTD 1 + k̄TD LTDprod LTDbas LTDapp
59 59 0.8 109 91.0 126 82.3 3.8 13.9

āTD ãTD d̃TD b̄TD F(hb,TDm ) ΨTD gTD w̃TD

11.2 0.18 0.31 0.58 90.0 19.4 2.20 0.522

Academic Research Policy (in percentages)

ψa ψb T̂ /Z CTD0 /CSP0 αTD 1 + k̄TD LTDprod LTDbas LTDapp
10 10 5.0 109 94.9 126 82.6 10.3 7.1

āTD ãTD d̃TD b̄TD F(hb,TDm ) ΨTD gTD w̃TD

7.2 0.12 2.26 0.0 0.12 37.9 2.60 0.487

Academic And Uniform Research Policy (in percentages)

ψa ψb T̂ /Z CTD0 /CSP0 αTD 1 + k̄TD LTDprod LTDbas LTDapp
58 58 4.7 99.1 97.2 126 74.8 9.3 15.9

āTD ãTD d̃TD b̄TD F(hb,TDm ) ΨTD gTD w̃TD

12.5 0.20 1.99 0.20 50.5 37.3 3.68 0.546
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