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ABSTRACT 
 

This paper provides a simple shrinkage representation that describes the 
operational characteristics of various forecasting methods that are applicable when there 
are a large number of orthogonal predictors (such as principal components).  These 
methods include pretest methods, Bayesian model averaging, empirical Bayes, and 
bagging.  We then compare these and other many-predictor forecasting methods in the 
context of macroeconomic forecasting (real activity and inflation) using 131 monthly 
predictors with monthly U.S. economic time series data, 1959:1 - 2003:12.  The 
theoretical shrinkage representations serve to inform our empirical comparison of these 
forecasting methods. 
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1. Introduction 

 

Over the past ten years, there has been a great deal of research on forecasting 

using many predictors.  Currently available methods include forecast combination, model 

selection, dynamic factor model forecasts, Bayesian model averaging, empirical Bayes 

methods, and bagging; for a recent survey, see Stock and Watson (2004a).  This wealth of 

methods raises the question of whether recommendations can be made about which of 

these methods might be the best starting point in an empirical forecasting exercise, both 

from a theoretical perspective and based on empirical forecast performance.  One 

difficulty in comparing these methods theoretically is that their derivations generally rely 

on different modeling assumptions, and it is not clear from these derivations what the 

algorithms are actually doing when applied in settings in which the modeling 

assumptions do not hold.  Also, although there have been empirical studies of the 

performance of many of these methods for macroeconomic forecasting, it is difficult to 

draw conclusions across methods because of differences in data sets and implementation 

across studies. 

This paper therefore has two objectives.  The first is to set out some preliminary 

results on a unified framework for characterizing the properties of forecasting methods 

applied to many orthogonal predictors (such as principal components of an original set of 

predictors).  The results cover pretest and information-criterion methods, Bayesian model 

averaging (BMA), empirical Bayes (EB) methods, and bagging.  It is shown that 

asymptotically all these methods have the same “shrinkage” representation, in which the 

weights in the forecasts are the OLS estimator times a shrinkage factor that depends on 

the t-statistic of that coefficient.  These representations are a consequence of the 

algorithms and they hold under weak stationarity and moment assumptions about the 

actual statistical properties of the predictors; thus these methods can be compared directly 

using these shrinkage representations. 

The second objective is to report the results of an extensive empirical comparison 

of these and other methods for forecasting with many predictors.  Recent research has 

focused on three classes of methods to improve forecast accuracy with many predictors.  

The first class of methods is based on combining a large number of forecasts computed 
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from relatively simple models.  The second class uses a small number of latent factors to 

summarize the information in predictors, and the third class includes shrinkage, model 

averaging and model selection methods that reduce sampling error in estimated 

regression coefficients.  Each of these methods has both theoretical and empirical 

support.  The classic papers of Bates and Granger (1969) and Granger and Ramanathan 

(1984) provide the theoretical case for forecast combining, and this method has proven 

very successful in practice (see Stock and Watson (2004a) and Timmerman (2004) for 

references).  Principal components and factor analysis are standard tools for descriptive 

analysis (see Anderson (1984), for example), and have been applied to the large-n 

forecasting problem by Boivin and Ng (2003, 2005), Stock and Watson (2002a,b), Forni, 

Hallin, Lippi and Reichlin (2003) among others.  Shrinkage methods are well known 

from the classic work of Stein (1955) and James and Stein (1960), and flexible shrinkage 

methods for the regression model have been developed using Bayesian model averaging 

methods originally discussed in Leamer (1978) and surveyed in Hoeting, Madigan, 

Raftery, and Volinsky (1999).  Fernandez, Ley and Steele (2001) provide important 

practical developments so the method can be routinely used in large-n regression 

forecasting with nonorthogonal regressors; Clyde, Desimone, and Parmigiani (1996), 

Clyde(1999a,b) study the case of orthogonal regressors, and Koop and Potter (2003) and 

Wright (2004) use versions of large-n Bayesian model averaging for macroeconomic 

forecasting.  Finally, “bagging” (Breiman (1996)) is another model averaging scheme, 

and Inoue and Kilian (2004) report promising results using this method for large-n 

forecasting of inflation. 

This paper compares the empirical accuracy of these methods for forecasting U.S. 

macroeconomic time series over a roughly 30-year out-of-sample period.  Using a dataset 

consisting of 131 monthly macroeconomic economic time series over 1960-2003, nine of 

the series are forecast using the other series as predictors.  Pseudo out-of-sample forecasts 

are constructed over 1974-2003 for horizons ranging from 1 to 12 months ahead using 52 

different large-n forecasting models. 

The empirical comparison focuses on three questions.  First, which models 

perform best, for which horizons and for which series?  Second, do the methods produce 

very similar forecasts or do the forecasts differ in important ways?  Third, if they are 
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different, how and why to they differ, and can the differences and similarities be 

explained in light of the shrinkage representations of these methods? 

The shrinkage representations for forecasts using orthogonal predictors are 

described in Section 2.  Section 3 provides additional details on the various models used 

in the empirical comparison, and Section 4 describes the data and the forecasting 

experiment. As it turns out, the results for the 52 models are well summarized by 14 of 

the models, and Section 5 presents detailed empirical results for this subset.  (Stock and 

Watson (2004b) contains detailed results for all 52 models.)  Section 6 offers some 

concluding remarks.  

 

2.  Shrinkage Representations of Forecasting Methods  

 

We consider the multiple regression model with orthonormal regressors, 

 

Yt+1 = δ′Pt + εt+1,   t = 1,…, T, P′P/T = In   (1) 

 

where Pt is a n-dimensional predictor known at time t with ith element Pit, Yt+1 is the 

variable to be forecast, and the error εt+1 has variance σ2.  It is assumed that Yt+1 and Pt 

have sample mean zero.  (The extension to multi-step forecasting is discussed below, 

where we also augment the model with a constant and lagged values of Y.)  For the 

theoretical development it does not matter how the regressors are constructed, however in 

our applications and in the recent empirical econometric literature they are constructed as 

the first n principal components, dynamic principal components, or a variant of these 

methods, using an original, potentially larger set of regressors, {Xt}.  In practice we might 

imagine constructing n = 100 principal components from 200 series and using them to 

forecast monthly data using 20 years of history for T = 240. 

With so many regressors, OLS will work poorly so we consider forecasting 

methods that impose and exploit additional structure on the coefficients in (1).  We will 

show that all these methods have a shrinkage representation, that is, the forecasts from 

these methods can all be written as, 
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1|T TY +
%  = 1

1

ˆ( )
n

i i T
i

t Pψ κ δ +
=
∑  + op(1),    (2) 

 

where 1|T TY +
%  is the forecast of YT+1 made using data through time T, îδ  = 1

11

T
it tt

T P Y−
+=∑  is 

the OLS estimator of δi (the ith element of δ), ti = îTδ /se , where 2
es  = 

2
11

ˆ( ) /( )T
t tt

Y P T nδ+=
′− −∑ , and ψ is a function specific to the forecasting method.  The 

factor κ depends on the method.  For pretest methods and bagging, κ = 1.  For the Bayes 

methods, κ = (1 – n/T)–1/2; this factor arises because the posterior distribution for σ2 

concentrates around the MLE instead of around the degrees-of-freedom adjusted 

estimator 2
es . 

We refer to (2) as the shrinkage representation of these forecasting methods 

because, if 0 ≤ ψ (x) ≤ 1, the operational effect of these methods is to produce linear 

combinations in which the weights are the OLS estimator, shrunk towards zero by the 

factor ψ. 

We consider four classes of forecasting procedures:  pretest and information 

criterion methods; Bayesian methods, including Bayesian model averaging, empirical 

Bayes, and bagging.  A key feature is that the proof that the remainder term in (2) is op(1) 

for these different methods relies on far weaker assumptions on the true distribution of 

(Y, P) than the modeling assumptions used to derive the methods.  As a result, the 

performance of these methods can be understood and analyzed even if they are applied in 

circumstances in which the original modeling assumptions clearly do not hold, for 

example when they are applied to multistep-ahead forecasting. 

 

2.1  Pretest and Information Criterion Methods   

Because the regressors are orthogonal, a hard threshold pretest for model selection 

in (2) corresponds to including those regressors with t-statistics exceeding some threshold 

c.  For pretest (PT) methods, the ith coefficient, PT
iδ% , is estimated by the OLS estimator if 

|ti| > c, and is zero otherwise, that is, 
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PT
iδ%  = 1(|ti| > c) îδ .      (3) 

 

Expressed in terms of (2), the pretest ψ function is, 

 

ψPT(t) = 1(|t| > c).      (4) 

 

Under some additional conditions, the pretest methods correspond to information 

criteria methods, at least asymptotically.  For example, consider AIC applied sequentially 

to the increasing sequence of models constructed by sorting the regressors by the 

decreasing magnitude of their t-statistics.  If n is fixed and if some of the δ coefficients 

are fixed while others are in a n–1/2 neighborhood of zero, then asymptotically the same 

regressors will be selected by AIC as by applying the pretest (4) with c = 2 .  

 

2.2 Bayes Methods 

For tractability, Bayes methods in the linear model have focused almost 

exclusively on the case of strictly exogenous regressors and independently distributed 

homoskedastic normal errors.  For our purposes, the leading case in which these 

assumptions are used are the Bayesian model averaging (BMA) methods discussed in the 

next subsection.  This modeling assumption is, 

 

{εt} ⊥{Pt} and εt is i.i.d. N(0,σ2) (strict exogeneity + normality).  (5) 

 

We also adopt the usual modeling assumption of squared error loss.  Bayes procedures 

constructed under assumption (5) with squared error loss will be called “Normal Bayes” 

(NB) procedures.  Note that we treat (5) as a modeling tool, where the model is in general 

misspecified, that is, the actual DGP is not assumed to satisfy (5). 

We suppose that the prior distribution specifies that the coefficients {δi} are i.i.d., 

that the prior distribution on δi given σ2 can written in terms of τi = /iTδ σ , and that 

{τi} and σ2 have independent prior distributions: 
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{τi = /iTδ σ } ~ i.i.d Gτ(τ), σ2 ~ Gσ(σ), and {τi}, σ2 are independent (prior) (6) 

 

If T is fixed, the only two restrictions in (6) are that δi is i.i.d. and that σ2 enters the 

conditional distribution of δi given σ2 only as a scale factor. 

Under squared error loss, the normal Bayes estimator NB
iδ%  is the posterior mean,  

 
NB

iδ%  = Eδ,σ(δi|Y,P),      (7) 

 

where the subscript Eδ,σ indicates that the expectation is taken with respect to δ (which 

reduces to δi by independence under (6)) and σ2.  Under the normality-exogeneity 

assumption (5), ( δ̂ , 2
es ) are sufficient for ( δ̂ , σ2}.  Moreover îδ  and ˆ

jδ  are 

independently distributed for all i ≠ j conditional on (δ, σ2), and îδ |δ, σ2 is distributed 

N(δi, σ2/T).  Thus, conditional on σ, under the normality-exogeneity assumption the 

posterior mean has the so-called simple Bayes form (cf. Maritz and Lwin (1989)), 

 

NB
iδ% |σ = îδ  + 

2

T
σ ˆ( )iδ δl ,      (8) 

 

where ( )xδl  = dln(mδ(x))/dx, where mδ(x) = |/
( ) ( | )

T
x dGδ σσ

φ δ δ σ−∫  is the marginal 

distribution of an element of δ̂ , Gδ|σ is the conditional prior of an element of δ given σ, 

and φω is the pdf of a N(0,ω2) random variable. 

The shrinkage representation of the NB estimator follows from (8) by performing 

the change of variables τi = T δi/σ.  For priors satisfying (6) and under conditions made 

precise below, the shrinkage function for the NB estimator is, 

 

ψNB(u) = 1 + ( )ul /u,          (9) 

 



 7

where ( )ul  = dlnm(u)/du, m(u) = ( ) ( )u dGτφ τ τ−∫ , and φ is the standard normal density.  

Integrating over the posterior distribution of σ2 results in the posterior mean approaching 

the MLE for σ2, which leads to ψNB being evaluated at u = κti in the shrinkage 

representation (2), with κ = (1 – n/T)–1/2. 

 

2.3 Bayesian Model Averaging. 

Our treatment of BMA with orthogonal regressors follows Clyde, Desimone, and 

Parmigiani (1996), Clyde(1999a,b), and Koop and Potter (2003).  The Clyde, Desimone, 

and Parmigiani (1996) BMA setup adopts the exogeneity-normality assumption (5) and a 

Bernoulli prior model for variable inclusion with a g-prior for δ conditional on inclusion.  

Specifically, with probability p let δi|σ ~ N(0, σ2/g) (so τi ~ N(0, T/g)), and with 

probability 1 – p let δi = 0 (so τi = 0).  Note that this prior model satisfies (6).  Direct 

calculations show that, under these priors, the shrinkage representation (9) specializes to 

 

ψBMA(u) = ( ) ( ( ) )
(1 )[ ( ) ( ( ) ) (1 ) ( )]

pb g b g u
g pb g b g u p u

φ
φ φ+ + −

                       (10) 

 

where b(g) = /(1 )g g+  and φ is the standard normal density, and where ψBMA is 

evaluated at u = κti, just as in the general case (9). 

 

2.4 Empirical Bayes 

Empirical Bayes (EB) estimation treats the prior G as an unknown distribution to 

be estimated.  Under the stated assumptions, { îδ } constitute n i.i.d. draws from the 

marginal distribution m, which in turn depends on the prior G.  Because the conditional 

distribution of δ̂ |δ  is known in the exogenous-normal model, this permits inference 

about G.  In turn, the estimator of G can be used in (8) to compute the empirical Bayes 

estimator.  The estimation of the prior can be done either parametrically or 

nonparametrically.  We refer to the resulting empirical Bayes estimator generically as 
EB

iδ% .  The shrinkage function for the EB estimator is, 
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ψEB(u) = 1 + ˆ( )ul /u,          (11) 

 

where ˆ( )ul  is the estimate of the score of the marginal distribution of {ti}.  This score 

can be estimated directly or alternatively can be computed using an estimated prior Ĝτ , 

in which case ˆ( )tl  = ˆd ln ( ) /dm t t , where ˆ ( )m t  = ˆ( ) ( )t dGτφ τ τ−∫ . 

 

2.5 Bagging 

Bootstrap aggregation or “bagging” (Breiman (1996)) (BG) smoothes the hard 

threshold in pretest estimators by averaging over a bootstrap sample of pre-test 

estimators.  Inoue and Kilian (2004) apply bagging to a forecasting situation like that 

considered in this paper and report some promising results; also see Lee and Yang 

(2004).  Bühlmann and Yu (2002) considered bagging with a fixed number of strictly 

exogenous regressors and i.i.d. errors, and showed that asymptotically the bagging 

estimator can be represented in the form (2), where (for ti ≠ 0), 

 

ψBG(t)  = 1 – Φ(t + c) + Φ(t – c) + t–1[φ(t – c) – φ(t + c)],           (12) 

 

where c is the pre-test critical value, φ is the standard normal density, and Φ the standard 

normal CDF.  We consider a variant of bagging in which the bootstrap step is conducted 

using a parametric bootstrap under the exogeneity-normality assumption (5).  This 

algorithm delivers the Bühlmann-Yu expression (12), however the expression obtains 

under weaker assumptions on the number and properties of the regressors. 

 

2.6  Formal results 

We now turn to a formal statement of the validity of the shrinkage representations 

of the foregoing forecasting methods.   
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Let pT denote a vector of predictors used to construct the forecast and let { iδ% } 

denote the estimator of the coefficients for the method at hand.  Then each method 

produces linear (in piT) forecasts of the form, 

 

1|T TY +
%  = 

1

n

i iT
i

pδ
=
∑ %       (13) 

 

Formally we treat the predictor vector pT as nonrandom with finite elements |piT| ≤ 

pmax.  Equivalently we could treat pT as random and distributed independently of the 

estimation sample, in which case the results would be interpreted as conditional upon its 

realized value. 

The first theorem bounds the difference between the forecast made using the exact 

forecasting algorithm and its shrinkage representation for the NB and BG forecasts.  (It 

follows immediately from the definition of the pretest estimator that its shrinkage 

representation 1|
ˆ PT
T TY +  = 

1

ˆ( )
n

PT
i i iT

i

t pψ δ
=
∑ , where ψPT(t) = 1(|t| > c), is exact, so this 

representation is not listed in the theorem.)  The bounds in Theorem 1 depend only on the 

algorithm and modeling assumptions and make no assumptions about the true DGP, so 

Theorem 1 characterizes the behavior of the forecasting algorithm.  The bounds hold for 

all T, n (subject to some conditions stated in the theorem). 

First, we introduce some notation.  Let E() without any subscript denote 

expectation over the true unknown (frequentist) sampling distribution given {δi}, σ2, 

which in general is not the exogenous-normal distribution (5) that is used to compute the 

estimator.  For the Bayes procedure, let Eσ(.|Y,P) denote expectations taken over the 

posterior distribution of σ, calculated using normal likelihood and exogenous regressors 

and priors that satisfy (6).  Finally, let 2ˆYσ  = Y′Y/T and let 2ˆεσ  = Y′[I – P(P′P)–1P′]Y/T be 

the MLE of σ2, so 2
es  = κ2 2ˆεσ . 

 

Theorem 1. 

(a) Normal Bayes.  Let ζ = 2 2ˆ /εσ σ .  Suppose that Gτ and Gσ are such that, for all  
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T – n > r0, 

(i) |Eσ[(ζ – 1)|Y,P]| ≤ K1/(T – n),  

     Eσ[(ζ – 1)4|Y,P] ≤ K2/(T – n)2,  

     Eσ[ζ–4|Y,P] ≤ K3 – 1; 

(ii) supu|urdmψNB(u)/dum)| ≤ M for r, m = 1, 2. 

Then, for all (T, n) such that T – n > r0, 
2

1|
1

ˆˆ ( )
n

NB NB
T T i i iT

i

E Y t pψ κ δ+
=

⎡ ⎤−⎢ ⎥⎣ ⎦
∑  ≤ 2

maxp 2

1

1 ( )
n

NB
i

i

a
n =
∑ , 

where κ = (1 – n/T)–1/2, 

ψNB(t) = 1 + ( )t
t
l , ( )tl  = d ln ( )

d
m t
t

, m(t) = ( ) ( )t dGτφ τ τ−∫ , and 

NB
ia  ≤ ( ) ( )2 2 2 2 2 2

1 2 33/ 2

1 1ˆ ˆ
( ) 2 4 2Y i Y

n E K M E K K M t
T n

σ σ
κ

⎡ ⎤+⎢ ⎥− ⎣ ⎦
. 

(b) Bagging.  Let B be the number of parametric bootstrap draws used to construct 

the bagging estimator.  Then for all (T, n) such that T – n > 8, 
2

1|
1

ˆˆ ( )
n

BG BG
T T i i iT

i

E Y t pψ δ+
=

⎡ ⎤−⎢ ⎥⎣ ⎦
∑  ≤ 2

maxp 4ˆYEσ 2

1

1 ( )
n

BG
i

i

a
n =
∑ , 

where  

ψBG(t)  = 1 – Φ(t + c) + Φ(t – c) + t–1[φ(t – c) – φ(t + c)], 

| |BG
ia  ≤ 

1/ 442 2 3

43
0

( ) | |
( ) ( )

m
T n T n i

m

n nm c K E t
B T n T n

µ− −
=

⎡ ⎤⎛ ⎞+ ⎢ ⎥⎜ ⎟− − ⎝ ⎠⎢ ⎥⎣ ⎦
∑ , 

mr(c) = maxµvar[(z + µ)1(|z + µ| > c ξ )] < ∞, where z ~ N(0,1),  

 ξ ~ 2 /r rχ ,  and z and ξ are independent, 

µr = 
1/ 234 ( 4)

( 2)( 4)( 6)( 8)
r r r

r r r r r
⎡ ⎤+ +

+⎢ ⎥− − − −⎣ ⎦
, and K4 = 28e–2 3/π . 

 

Proofs are given in the Appendix. 

The rates conditions in (i) in Theorem 1(a) specify rates at which the posterior 

distribution of σ2 concentrates around the MLE 2ˆεσ .  These rates are consistent with those 
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arising in a Bernstein-von Mises theorem and specify rate.  Conditions (ii) bound the 

behavior of the derivatives of ψNB.  In general the terms M, K1, K2, and K3 are constants 

conditional on the data but depend on ( δ̂ , 2ˆεσ ), where the specific form of the dependence 

is determined by the priors.  For example, consider the usual conjugate priors, that is, τi 

i.i.d. N(0, T/g) and 1/σ2 ~ Γ(α, 1/β).  In this case, condition (ii) is satisfied because ψNB is 

constant (the amount of shrinkage does not depend on ti), so M = 0.  The posterior for ζ = 
2ˆεσ /σ2 is Γ(a, 1/b), where a = α + T/2 and b = β/ 2ˆεσ  + T/2 + [2κ–2(1/T + 1/g)]–1 1 2

ii
T t− ∑ .  

In the case of diffuse priors g = β  = 0, the posterior for ζ is Γ(α + T/2, 2/T], so r0, K1, K2, 

and K3 are constants that do not depend on ( δ̂ , 2ˆεσ ).1 

The next result provides high-level conditions on the DGP (that is, on the true 

distribution of (Y, P)|(δ, σ)), and on the rate at which the number of regressors grows as T 

increases, under which the shrinkage representations provide asymptotically valid 

approximations to the forecasting algorithm. 

 

Theorem 2.  Suppose that the conditions of Theorem 1 are satisfied and 

additionally that (i) n/T → ν, 0 ≤ ν < 1.  Then: 

(a)  Normal Bayes.  Suppose, in addition to (i) that (ii) ( )2 2 2
1 ˆYE K M σ  < ∞ and (iii) 

( )2 2 2
2 3 ˆi YE K K M t σ  < ∞.  Then as T → ∞, 

2

1|
1

ˆˆ ( )
n

NB NB
T T i i iT

i

E Y t pψ κ δ+
=

⎡ ⎤−⎢ ⎥⎣ ⎦
∑  → 0. 

(b) Bagging.  Suppose, in addition to (i), that (iv) B/n → ∞ and (v) 4ˆYEσ   < ∞, and 

(vi) maxiE 12
it  < ∞.  Then as T → ∞, 

 
2

1|
1

ˆˆ ( )
n

BG BG
T T i i iT

i

E Y t pψ δ+
=

⎡ ⎤−⎢ ⎥⎣ ⎦
∑  → 0. 

 

We make several comments.   
                                                 
1 Specifically, for g = β  = 0, let r0 = 8 to ensure that Eσ(σ2|Y,P)–4 exists.  Then Κ1 = 2α, K2 = (2 + α/2)2{3 + 

[5 + 4α + (1 – α)4]/(α + 4)}, and K3 = max[1,(4/α)4]. 
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1. Theorem 2 states that the validity of the shrinkage factor representations require 

much weaker assumptions than those upon which the models are based, 

specifically Y and the t-statistic have sufficiently many moments.  In this sense, 

the shrinkage factor representations are consequences of the algorithm, not 

properties of the true DGP.  In particular, the frequentist risk (under squared error 

loss) of the forecasts is the same whether the regressors are strictly or weakly 

exogenous, and whether the errors have a normal distribution or not, as long as 

the conditions of Theorem 2 are satisfied.  This observation serves to generalize 

the narrow optimality results for BMA and NB to cases of interest in time series, 

in particular with predetermined by not strictly exogenous regressors. 

2. The results hold when the number of regressors is fixed or when n increases 

proportionally to the sample size.  If n/T → 0, then κ → 1 and this factor drops 

out of the representation (2).  However, if n increases proportionately to T, then κ 

→ (1 – ν)–1/2 > 1 for the Bayes representations.  This arises because the posterior 

concentrates around the MLE, which equals κ2 2
es , but se appears in the OLS t-

statistic.  This same factor would arise in the expression for bagging if bagging 

were implemented with the t-statistic computed with ˆεσ  in the denominator, not 

se, however that is not the way bagging has been implemented in the literature. 

3. As discussed following the statement of Theorem 1, the specific moment 

conditions under part (a) depend on the priors Gτ and Gσ. 

4. Condition (vi) in Theorem 2, that ti has twelve moments, might be stronger than 

necessary arises in the proof through a series of convenient inequalities. 

5. The results presented for the general normal Bayes estimator will extend to an 

empirical Bayes estimator under suitable conditions.  The results in Theorem 1 

are conditional on the data (no expectations are taken over (Y, P)) so the results in 

part (a) apply directly to an empirical Bayes estimator, where Gτ now is 

interpreted as involving estimated parameters.  The results in Theorem 2 have 

expectations over the data and now the shrinkage function ψNB is a sequence of 

shrinkage functions, which depend on the estimated prior.  Under suitable 

regularity conditions, if the empirical Bayes estimation step is consistent then the 
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asymptotic empirical Bayes shrinkage representation ψEB is the ψNB with the 

probability limit of the estimated prior replacing Gτ. 

6. These representations permit the extension of these methods to direct multistep 

forecasting.  In a multistep setting, the errors have a moving average structure.  

However the forecasting methods can be implemented by substituting HAC t-

statistics, OLS coefficient estimators into the shrinkage representations. 

7. The shrinkage factor representation of bagging allows us to ascertain whether 

bagging is asymptotically admissible, a result that is currently unavailable. Setting 

ψBA equal to ψNB yields the integral-differential equation, 

 

dln ( ) ( )
d

z t

z s dG s
z

τφ

=

−∫  = t[Φ(t – c) – Φ(t + c)] + φ(t – c) – φ(t + c).  (14) 

 

If there is a proper prior Gτ that satisfies (14), then this is the prior for which 

bagging is asymptotically Bayes, in which case bagging would be asymptotically 

admissible.  Let Gτ have density g and characteristic function h(s) = ( )iste g t dt∫ .  

Then g satisfies (14) if  it is a density and if h satisfies the Fredholm equation of 

the second kind, 

 

h(s) = ( , ) ( )K s t h t dt∫ ,     (15) 

where  

 

K(s,t) = 
2

2

sin( ( )) cos( ( ))2
( )

t ste c s t c s tc
s s t s t

− + ⎡ ⎤− −
−⎢ ⎥− −⎣ ⎦

.  (16) 

 

 

3. Empirical Comparisons:  Details of Forecasting Methods 
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We now turn to an empirical comparison of various many-predictor forecasting 

methods.  This section describes the specifics of the forecasting methods, including the 

specifics of the transformations from the original predictors (X) to the orthonormal 

predictors (P).  We also describe some benchmark methods that will be used in the 

univariate analysis, as well as two large-n methods that are implemented directly to the 

original X predictors (forecasting combination and non-orthonormal g-prior BMA).  This 

section also explains multistep forecasting and the treatment of the intercept and lags of Y 

included as predictors, issues that were suppressed in the development of Section 2.  The 

extant theory for many of the forecasting methods assumes that X and Y are I(0) 

variables, so that many of the series are first or second differences of the raw data series 

(or the logarithm of the raw series); the specific transformation for each series is given in 

the data appendix.   

Let h denote the forecast horizon and h
T hY +  denote the I(0) horizon-specific 

transformation of Y to be forecast. (For example, when forecasting the monthly index of 

industrial production, IP, h
T hY + = (1200/h)×ln(IPt+h/IPt), the h-period growth rate expressed 

in percentage points at an annual rate.)  Forecasts of h
T hY + are constructed by estimating 

the projections of h
T hY + onto XT and lags of YT, so that the forecast of h

T hY + at time T, 

denoted /
h

T h TY + , is given by /
h

T h TY + = α + β′XT + φ(L)YT, where (α, β, φ(L)) contain 

parameters to be estimated by the competing methods.   

The remainder of this section discusses the specific forecasting methods used in 

the empirical comparison.  The discussion focuses on methods for forecasting h
T hY +  using 

data through period T; the next section discusses the recursive forecasting experiment in 

which T varies through the pseudo out-of-sample period.  Discussion of selection of AR 

lag length, number of factors in the factor model, and computational details are also 

postponed until the next section.  

 

3.1 Two Benchmarks  

Two benchmark method are included in the forecast comparision. 
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Univariate autoregressions. Forecasts from the univariate AR(p) model are 

computed as ,
/

ˆˆ ˆ (L)AR h
T h T TY Yα φ+ = + where the coefficients are estimated by the OLS 

regression of h
t hY + onto (1, Yt, Yt−1, … , Yt+1−p) for t = 1,…, T−h, where pre-sample values 

of Y0, Y−1,…, Y1−p are used to initialize the regression.  This sample period will be used 

for all of the methods described below. 

OLS using all predictors. The forecast is constructed as 
,

,
ˆ ˆˆ ˆ ' (L)OLS h

T h T T TY X Yα β φ+ = + + , where the parameters are estimated by the OLS regression 

of  h
t hY + onto (1, Xt,  Yt, Yt−1,…, Yt+1−p). 

 

3.2 Combined Bivariate ADL models 

These forecasts are constructed by combining forecasts computed from bivariate 

autoregressive distributed lag (ADL) models.  The ith  ADL model includes pi,x lags of 

Xi,t,  pi,y lags of Yt, and has the form ,
/ ,

ˆ ˆˆ ˆ (L) (L)iADL h
T h T i i i T i TY X Yα β φ+ = + + , where the 

parameters are estimated by the OLS regression of h
t hY + onto (1, Xi,t, X i,t−1,…, 

,, 1 i xi t pX + − ,  

Yt, Yt−1,…, 
,1 i yt pY + − ).  The combined forecast is ,,

/ /
1

ˆ ˆ i

n
ADL hComb h

T h T i T h T
i

Y wY+ +
=

= ∑  where wi denotes the 

weight given to the i’th forecast.  The weights are chosen in one of two ways. 

Simple Averages. These methods use simple averages such as the mean (wi = 

1/n), median, or trimmed mean for the combined forecasts. 

Weights based on in-sample fit. It seems natural to choose weights in a way that 

reflects, at least in part, the relative in-sample fit of the corresponding ADL models.  

There are several methods to do this; Wright (2003) suggests a method based on a 

particular Bayesian Model Averaging (BMA) model that has some theoretical appeal, and 

this method will be used in the comparison below.  When pi,x = px  and pi,y = py for all i, 

this yields weights 

 

wi ∝  

1
2

,

1
(1 )

yT p

AR ADL iSSR SSRλ λ

− −⎛ ⎞
⎜ ⎟
⎝ ⎠⎡ ⎤

⎢ ⎥+ −⎣ ⎦
                  (17) 
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where SSRAR and SSRADL,i denote the sum of squared residuals from the AR and i’th ADL 

model, 1+py denotes the  number of estimated coefficients in the AR model, and λ is a 

parameter that is between 0 and 1.  When λ = 1, each model receives the same weight, 

and as λ decreases better fitting models receive greater weight. 

3.3 Factor Models 

The factor model forecasts are based on the model 

 

Xt = ΛFt + et                                  (18) 
h

t hY + = α + γ′Ft + φ(L)Yt + ut+h.                                            (19) 

 

Equation (18) describes the n×1 vector Xt using a k×1 vector of unobserved factors Ft and 

an error term et.  Empirical content is given to this relation by assuming that k is much 

smaller than n and the elements of et are only weakly correlated; this implies that 

covariances between the (many) elements of Xt are explained, in large part, by the (few) 

factors in Ft.  The model is described in detail in Stock and Watson (2004b) and the 

references cited there. Equation (19) describes h
t hY +  using the factors, autoregressive lags, 

and an forecast error ut+h that is assumed to satisfy E(ut+h| {Xτ, Yτ}τ≤t) = 0.  Because Xt  does 

not enter (19) directly, the elements of Xt  are useful for predicting h
t hY +  only because they 

contain information about Ft.   Equation (19) is a factor-augmented autoregression 

(FAAR), and forecasts are computed as  

 
,

/
ˆˆ ˆˆ ˆ ' ( )FAAR h

T h T T T TY F L Yα γ φ+ = + +          (20) 

 

where t̂F denotes the estimate of Ft constructed from 1{ }T
j jX = and α̂ , ˆTγ  and ˆ ( )T Lφ  are 

obtained from the OLS regression of h
t hY +  onto (1, t̂F , Yt, …, Yt−p+1).  Three estimators of 

Ft are considered in the forecasting comparison. 
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 FAAR-OLS.  Stock and Watson (2002a,b) proposed forecasts as in (20) using the 

principal components estimator of Ft. The principal components estimator solves the least 

squares problem: 

 

               , , '
1

min ( ) '( )
p

T

F F F I t t t t
t

X F X FΛ =
=

− Λ − Λ∑ .                  (21) 

 

Because of the form of the objective function, forecasts based on these estimates of Ft  

are labeled as FAAR-OLS. 

FAAR-GLS. Forni, Hallin, Lippi, and Reichlin (2003) proposed a generalized 

principal component for Ft that solves the GLS problem 

 

    1
, , '

1

ˆmin ( ) ' ( )
p

T

F F F I t t t t
t

X F X F−
Λ =

=

− Λ Ω − Λ∑        (22) 

 

where Ω̂  is an estimator of  Ω = var(et) constructed from frequency domain principal 

component analysis. Forecasts using this estimator will be labeled FAAR-GLS.  

FAAR-WLS.  Boivin and Ng (2004) and Forni et al (2003) suggest an alternative 

to FAAR-GLS that instead solves (22) using a diagonal version of Ω̂ .  That is, the 

estimator solves the weighted least squares version of (22). This estimator will be labeled  

FAAR-WLS. 

 

3.4 Bayesian Model Averaging, Variable Selection, and Other Shrinkage Methods 

Bayesian model averaging with non-orthogonal predictors. To begin, consider 

the forecasting problem for h = 1, and for notational ease write 1
1tY + = Yt+1. The Bayesian 

model averaging (BMA) methods used here begin with the regression model  

 

Yt+1 = λ′Wt + θ′Zt + ut+1                     (23) 

 

where Wt = (1 Yt … Yt+1−p)′ includes the constant and AR components and Zt contains the 

elements of X, transformed so that they are orthogonal to W. (Using obvious notation Z = 
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(I − W(W′W)−1W′)X.)  The formal Bayesian analysis uses a likelihood derived from the 

assumption that ut is iid N(0, σ2) and priors for the parameters (λ, θ, σ) to construct the 

predictive density of YT+1; the mean of the predictive density is the minimum mean 

square error forecast of YT+1. 

Fernandez, Ley, and Steele (2001a) survey BMA methods, and propose useful 

computational methods and benchmark priors for the BMA regression model.  

Uninformative (flat) priors are used for (λ, σ):  π(λ, σ) ∝ 1/σ, where π denotes the prior 

density.  The prior for θ is more complicated and captures the notion that many of the 

values of θi are likely to be zero, or equivalently, many of the regressors can be excluded 

from the model.  It is useful to represent θi as the product θi = ρiγi, where γi is a 0-1 

binary variable.  Let γ denote the n×1 vector of γi’s. The vector γ can take on m = 2n 

possible values, which can be listed as γ1, γ2,…, γm.  Let Sj denote the selection matrix 

that selects the non-zero elements of γj from γ,  and let ρj = Sjρ and j
tZ = SjZt, so that the 

vector ρj contains the non-zero regression coefficients and j
tZ  are the corresponding 

regressors. Conditional on γ = γj, the model is Yt+1 = λ′Wt + ρj′ j
tZ + ut+1, and a standard g-

prior (Zellner (1986)) is used for ρj: specifically,  ρj|γ = γj
, σ  ~ N(0, σ2[gZj′Zj]-1). 

Forecasts for the conditional model are then straightforward to derive: conditional 

on γ = γj, the forecast is given by 1/
1ˆˆ ˆ' '

1
j j j

T T T TY W Z
g

λ ρ+ = +
+

, where ( λ̂ , ˆ jρ ) is the OLS 

estimator from the regression of Yt+1 onto (Wt, j
TZ ). The BMA forecast is the weighted 

average of these forecasts: 1/ 1/
1

ˆ ˆ
m

BMA j
T T j T T

j

Y w Y+ +
=

= ∑ , where wj = Prob(γ = γj| Y) is the posterior 

probability that γ = γj, which, from Bayes theorem, satisfies wj ∝  L(Y|γ =γj)P(γ = γj) 

where L(Y|γ =γj) denotes is the likelihood of the data conditional on γ = γj, marginalized 

with respect to (λ, ρj, σ).   Following Fernandez, Ley, and Steele (2001a), 

 

L(Y|γ = γj) ∝  
1

/ 2 2( ) [ ( ) (1 ( )) ]j

p
k R U

ja g a g SSR a g SSR
+

−
+ −       (24) 
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where a(g) = g/(1+g), SSRR is the sum of squared residuals from the regression of Yt+1 

onto Wt, U
jSSR  is the sum of squared residuals from the regression of Yt+1 onto (Wt, j

tZ ), 

and kj is the number of regressor in j
tZ .  The prior P(γ = γj) follows from an assumption 

that γi are iid with P(γi = 1) = p.  When p = ½, each model is equally likely, so that the wj 

is proportional to L(Y|γ =γj). 

Evidently, calculation of 1/
ˆ BMA
T TY +  requires estimation of each of the m = 2n models, 

and this is infeasible when n is large.2  However, 1/
ˆ BMA
T TY +  can be very well approximated 

using simulation methods to select models with high posterior probability.  As suggested 

by Fernandez, Ley, and Steele (2001) the analysis here uses the MC3 algorithm of 

Madigan and York (1995) for the simulations.  Details are provided in the next section. 

Bayesian model averaging using orthogonal predictors.  As discussed in Clyde, 

Desimone, and Parmigiani (1996), Clyde(1999a,b), and Koop and Potter (2003),  BMA 

estimation is greatly simplified when the regressors are orthogonal.  Thus, let Pt denote 

the standardized principal components of Z; that is, Pt = HZt, where 1 't tt
T PP− ∑  = In. The 

regression model (23) can then be written as 

 

Yt+1 = λ′Wt + δ′Pt + ut+1.                     (25) 

 

where and let δ′  = θ′H−1.  The BMA forecast is the extension of the method discussed in 

Section 2.2, specifically, 

 

1/ ,
1

ˆ ˆˆ ' ( )
n

BMA PC BMA
T T T i i i T

i

Y W t Pλ ψ δ−
+

=

= + ∑ ,                      (26) 

 

where ψBMA is given in (10) and λ̂  is the OLS estimator of λ.  (Note that this formulation 

uses the plug-in approach for σ2, rather than integrating over the posterior.) 

                                                 
2 With n = 130, estimation of all of the models would take approximately 4×1028 years using a computer 
that could estimate 1000 models per second. 
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Empirical Bayes model averaging using principal components.  The empirical 

Bayes forecast is, 

 

1/ ,
1

ˆ ˆˆ ' ( )
n

EB PC EB
T T T i i i T

i

Y W t Pλ ψ δ−
+

=

= + ∑ ,                      (27) 

 

where ψEB is given by (7).  The EB forecast was implemented for the BMA mixture 

distribution, which implies the marginal distribution, îTδ ~ N(0, σ2+g-1) with 

probability p, and îTδ ~ N(0, σ2) with probability (1−p).  The empirical Bayes model 

averaging estimator constructs the mixed normal MLE’s of σ2, g, and p from { îδ }. 

Model selection using principal components.  The pretest/information criterion 

forecasts have the form,  

 

1/ ,
1

ˆ ˆˆ ' ( )
n

IC PC IC
T T T i i i T

i

Y W t Pλ ψ δ−
+

=

= + ∑ ,                  (28) 

 

where ψIC(τ) = 1(τ2 > 2) for AIC and ψIC(τ) = 1(τ2 >ln(T)) for BIC. 

Bagging using principal components.  The bagging forecast is  

 

1/ ,
1

ˆ ˆˆ ' ( )
n

Bagging PC Bagging
T T T i i i T

i

Y W t Pλ ψ δ−
+

=

= + ∑                   (29) 

 

where ψBagging is given by (12).  Our empirical results use the asymptotic representation 

(29) and thus avoid the need for the bootstrap calculations that normally are part of the 

bagging computation. 

Multistep forecasts. The likelihood function underlying the BMA methods is 

based on the assumption that the regression error u in (25) is iid N(0,σ2), but when h > 1, 

u is serially correlated, and eliminating the serial correlation using a GLS-like 

transformation is inappropriate because the regressors are not strictly exogenous.  Thus, 

when h > 1, the BMA forecasts will not have their usual theoretical justification as the 
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minimum mean square error predictor associated with the relevant prior distribution.  

However, an alternative and less formal interpretation of the BMA methods is that they 

are methods for generating sensible shrinkage estimators for the regressions coefficients, 

which in turn may produce accurate forecasts.  Under this interpretation, it is interesting 

to see how the compare to other forecasting methods even when h > 1, and this 

interpretation motivates the empirical analysis reported below. 

 

4. Description of the Forecasting Experiment 

 

4.1 Data and Sample Period 

The data are monthly observations on 131 U.S. macroeconomic time series from 

1959:1 through 2003:12. Forecasts are constructed for nine of these series (four measures 

of real activity, two interest rates, and three price indices), and all 131 series are used as 

predictors.  As discussed above, the series are transformed by taking logarithms and/or 

differencing.  In general, first differences of logarithms (growth rates) are used for real 

quantity variables, first differences are used for nominal interest rates, and second 

differences of logarithms (changes in growth rates) for price series.  The forecasted 

variable, h
t hY + , is the rate of growth of the real activity variables, the change in the interest 

rates, and the change in the rate of price inflation over the forecast period.  Thus, h
t hY + = 

(1200/h)×ln(IPt+h/IPt) for the index of industrial production (IP), h
t hY + = TBILLt+h – 

TBILLt for the interest rate on three month Treasury bills (TBILL), and h
t hY + = 1200[(1/h) 

ln(CPIt+h/CPIt)− ∆ln(CPIt)] for the consumer price index (CPI),3 and so forth.  Table 1 

shows the definition of h
t hY +  and Yt for each of the nine variables that are forecast. 

                                                 
3 Several of the models were also computed using an alternative transformation of the price series: h

t hY +  = 
(pt+h – pt+h–12) – (pt – pt–12), where pt denotes the logarithm of the price index.  This transformation is used in 
Giannone, Reichlin, and Sala (2004), and, with h = 12 and no AR lags, is the model used by Atkeson and 
Ohanian (2001).  Averaging across series and over the entire pseudo out-of-sample period, the AR forecasts 
that used this transformation performed slightly worse than the forecasts that used the transformation 
discussed in the text for horizons h = 1, 3, 6, and 12 when lag lengths were chosen by AIC; they also 
performed worse for h = 6 and 12 when BIC was used.  When the out-of-sample period was restricted to 
post 1983, and again averaging across the four price series, the alternative transformation performed 
marginally better for h = 1 and 3 when AIC was used, but marginally worse for h = 6 and 12.  Similar 
results were found for the other forecasting models. 
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Psuedo out-of-sample forecasts are calculated for each variable and method and 

for horizons h = 1, 3, 6, and 12 months.  The pseudo out-of-sample forecasting period 

begins in T = 1974:7 and continues through T = 2003:12−h.  Forecasts constructed at date 

T are based on models that are estimated using data dated T and earlier; the estimation 

period for recursive forecasts begins in1960:1 with previous values used to initialize the 

autogressions.  Models were also estimated using rolling samples containing the most 

recent 120 periods.  In this case, the OLS, BMA, BIC, Bagging and FAAR models were 

constructed using 60 predictors that were randomly selected from the original set of 131. 

 

4.2 Estimation Details 

AR lags. All of the models include AR lags of Y and this requires a choice of the 

lag length.  For most of the models the lag length was chosen by several different 

methods: recursively computed AIC and BIC (with 0 ≤ p ≤ 12), and pre-specified values 

p=4 and p=12.  For the BMA methods it was computationally convenient to used fixed 

values, and these models were estimated using 4 and 12 lags.   

FAAR models.  The number of factors for the FAAR forecasts was determined 

three different methods: recursive AIC and BIC (0 ≤ k ≤ 10) applied to the forecasting 

equation, and with a pre-specified value of k = 3.  The GLS principal component 

estimator used the estimator of Ω̂  described in Forni, et al (2003) and their 

accompanying software.  Specifically, let xt denote the standardized values of Xt. The 

estimated spectrum of x, Sxx(ω), is computed at 101 equally spaced ordinates using a 

Bartlett kernel applied to p = T1/2 sample autocovariances.  The estimated spectrum of the 

dynamic factor components, Scc(ω), is computed for each of the 101 frequencies using 

kdyn  dynamic principal components of Sxx(ω); as suggested by Gianone, Reichlin, and 

Sala (2004), the empirical analysis uses kdyn = 2. The estimated value of Ω is computed as 

Ω̂  = Sxx − Scc, where Sxx is the sample second moment matrix of x and Scc is the inverse 

fourier transform of Scc(ω). The diagonal elements of this estimator were used for the 

WLS estimator. 

Combined ADL models. Each bivariated ADL model was estimated with βi(L) 

and φ(L) lag lengths chosen by recursively computed AIC and BIC (with  0 ≤ px ≤ 12 and 
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0 ≤ py ≤ 12) and with fixed values  px = py = 4.  The simple combining methods were 

computed using the mean, median and 2-percent-symmetrically-trimmed mean of the 

ADL forecasts. The combined forecasts that used weights given in (17) used the ADL 

models with fixed lag lengths, and were computed using a grid of fixed values of λ 

between 0 and 1, and with λ estimated recursively by predictive least squares (PLS), 

where the first PLS out-of-sample forecast period is T = 1970:12.   

BMA. The priors for the BMA models required specification of the parameters p 

and g (see the discussion following (23)), and  these were chosen based on suggestions in 

Fernandez, Ley and Steele (2002). The parameter p was set to 0.5, so that all constituent 

models in BMA had an equal prior probability; g was chosen so that the priors were very 

diffuse (g = 1/T or g = 1/n2) or informative (g = 1.0).  The BMA forecasts were computed 

using a relatively small number of MC3 simulations.  For each series and horizon, 107 

initial “burn-in” simulations were carried out before the first forecast period.  Then, for 

each forecast period, 106 simulations were performed, where the final value for forecast 

period T served as the initial value for period T+1.  This process was carried out using 

two different randomly chosen initial values.  The resulting forecasts were, for the 

purpose of the analysis carried out in this paper, essentially identical.  Stock and Watson 

(2004b) addresses this is more detail.  

Bagging The t-statistics used for the shrinkage factors were computed using the 

usual OLS formula and with Newey-West standard errors (with a lag length parameter 

equal to the forecast horizon).  The pretest critical value for bagging was set at c = 1.96 

(5% pretest) and c = 2.58 (1% pretest).   

Forecasts reported. The combination of different models with procedures for 

estimating lag lengths, factors, and so forth led to 52 distinct forecasts for each date, 

series, and horizon.  Examination of these forecasts suggested that their key features were 

well represented by the 14 forecasts described in Table 2.  Results for this subset of the 

forecasts are presented in the next section; detailed results for all of the 52 forecasts can 

be found in Stock and Watson (2004b). 

 

5. Relative Performance of the Forecasts 
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5.1 Forecast Performance and Stability 

Table 3 summarizes the pseudo out-of-sample forecasting performance for the 14 

methods and for each of the 9 series forecast at the 4 forecast horizons.  Panel A shows 

the results for h = 1, panel B for h = 3, and so forth.  The first row of each panel shows 

the root mean square forecast error (root-MSFE) for the combined ADL forecast using 

simple average  (wi = 1/n) combining weights; the forecast is labeled Combined-Mean in 

the table. This forecast will serve as a benchmark in what follows, so that the other 

forecasts will be evaluated relative to this forecast.  As documented in the survey paper 

by Timmerman (2004), this is formidable benchmark that typically outperforms 

univariate autoregressions and many multivariate methods.   

The other rows in each of the panels of Table 3 show the MSFE of the various 

forecasting methods relative to the MSFE for the benchmark.  For example, in Panel A (h 

=1), the value of 1.04 in the row labeled AR and the column labeled PI indicates that the 

ratio of MSFE for the AR forecast relative to the MSFE for the Combined-Mean forecast 

was 1.04 for the series PI (Personal Income).  Thus, the MSFE for the AR forecast was 

4% higher than the corresponding MSFE for the Combined-Mean forecast. 

Several results can be gleaned from Table 3.  For example, the Combined-Mean 

forecast uniformly dominates the AR, OLS and Bagging forecasts across all series and 

horizons.  The OLS forecasts are particularly poor, often with MSFE’s 2 or even 3 times 

larger than the benchmark.  The Bagging forecasts also perform poorly, with relative 

MSFE’s 14%-60% larger than the benchmark for h = 1, and 54%-142% larger for h = 12.  

The FAAR forecasts generally outperform the benchmark, however there are a few 

exceptions (for example, the relative MSFE for FAAR-OLS and FAAR-WLS are 1.34 

and 1.38 for IP at h = 12, and the relative MSFE for FAAR-GLS is 1.23 for EMP at h = 

1).  As a group, the BMA forecasts outperform the benchmark for h = 1, but their relative 

forecasting performance deteriorates as the forecast horizon increases.  Indeed, as the 

horizon increases there is a general deterioration of all of the forecasts relative to the 

benchmark: in Panel A (h = 1) 51 of the  117 of the reported relative MSFE’s are less 

than 1.0; this falls to 17 in Panel D (h = 12). 

Table 4 summarizes the detailed results from Table 3 and investigates the stability 

of the conclusions across sub-samples of the out-of-sample period.  The second column 
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of Table 4 shows the relative MSFE for each method averaged across the 9 series and 4 

horizons; it also shows the fraction of the 36 series/horizon relative MSFE’s that are less 

than 1.0.  For example, the average relative MSFE for the AR forecast was 1.10 and none 

of the 36 entries in Table 3 for this forecast were less than 1.0.  The final two columns 

repeat these calculations for the first and second half of the out-of-sample period.  

Averaged across all series and horizons, the FAAR methods performed best over the full 

out-of-sample period.  For example, the average relative MSFE for FAAR-OLS was 0.96, 

and this method outperformed the benchmark in 81% of the series/horizon forecasts.  The 

next-best performing forecasts are the BMA methods using principal components and the 

SSR-combined ADL forecasts. These methods performed slightly worse than the 

benchmark, but slightly better than the AR forecast. The other forecasts (OLS, the BMA 

methods applied the untransformed regressors, and BIC and Bagging applied to principal 

components) all performed worse than the AR forecast. The last two columns of the table 

show a general increase in the relative MSFE for many of the methods in the second 

period indicating an improvement in the relative performance of the benchmark forecast.  

The relative performance of the AR model also improved in the second period.  However, 

the relative ranking of methods is generally robust across the two sample periods. 

When there are large and persistent changes in model parameters, estimates 

computed from rolling samples are more accurate than estimates computed from 

recursive samples. Table 5 takes up this issue by comparing the recursively computed 

forecasts examined in Tables 3 and 4 with forecasts computed from models estimated 

using 120-month rolling samples.  The results in the table are based on the MSFE of the 

recursively estimated model relative to the MSFE for the rolling estimates. (A relative 

MSFE less than 1.0 implies that the recursive estimates produced more accurate forecasts 

than the rolling estimates.) The first panel of Table 5 summarizes the results for the 

various methods; it shows the fraction of the relative MSFE for 36 series/horizon 

forecasts that are less than 1.0 (column 2) and the mean of these 36 relative MSFE’s 

(column 3).  Panel B shows analogous results for each series averaged across the 56 

method/horizon forecasts.  The mean relative MSFE is less 1.0 for all methods (Panel A) 

and for all series (Panel B).  For all but two methods (OLS and Combined-SSR), the 

recursive forecasts are more accurate than the rolling forecasts for over 75% of the series 
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and horizons (panel A, column 2);  for all of the series, the recursive forecasts are more 

accurate than the rolling forecasts for over 70% of the methods and horizons (panel B, 

column 2).  Thus, as a general rule the recursive forecasts are more accurate than the 

rolling forecasts. 

Results for other variants of the forecast methods. Stock and Watson (2004b) 

reports detailed results for 52 variants of the basic forecasting models that include 

variations on AR lags, numbers of factors, and priors for the BMA models.  It is useful to 

highlight a few of the results from these additional models.  First, for several of the 

models it was computationally convenient to fix the number of AR lags, and the results 

reported in Tables 2-4 use 4 lags.  Forecasts for the real variables and interest rates were 

generally more accurate using 4 rather than 12 lags, but this was not true for the inflation 

series.  However, the ranking of the various methods and the results on stability are the 

same for the 12 lag models.  Second, the bagging forecasts reported here are based on 

HAC robust t-statistics, but the results are essentially identical using t-statistics computed 

used standard OLS formula.  Apparently, the serial correlation in the principal 

components is sufficiently small that the overlapping sample for h > 1 is not important.  

Third, the performance of the bagging forecast improved when the pre-test critical value 

was increased.  For example, the average full sample relative MSFE reported in Table 4 

falls from 1.54 for c = 1.96, to 1.28 for c = 2.58.  (The reason for this is discussed below).  

Finally, the uninformative prior for the BMA forecasts reported here uses g = 1/n2; there 

is slight decrease in forecasting performance using g = 1/T, a result that is consistent with 

the simulation results reported in Fernandez, Ley, and Steele (2002). 

 

5.2 Properties of the Forecasts 

The average correlations across series and horizon for the forecasts constructed by 

each method are shown in Table 6.  Values greater that 0.80 are shown in bold and values 

greater than 0.90 are shown in italics.  Evidently, there are relatively few large 

correlations: only 27 out of the 91 correlations are greater than 0.80, only 5 are greater 

than 0.90, and the average correlation is 0.72.  Apparently, the forecasts are subject to 

markedly different sampling error and/or capture different features of the predictors.  

Forecasts within groups are more highly correlated.  For example, the FAAR forecasts 
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have an average correlation of 0.90 (and the FAAR-OLS and FAAR-WLS correlation is 

0.98); the average correlation within the BMA forecasts is 0.85; the average correlation 

of methods using all of the principal components is 0.86.  Finally, the AR forecast is 

highly correlated with the combined mean forecast (correlation = 0.94), and the bagging 

forecast is highly correlated with the OLS forecast (correlation = 0.96).   

The next set of results compare the variance of the forecasts across methods and 

series, and shows the decomposition of this variance into components associated with the 

AR lags and with the other predictors.  The variance decomposition is based on the 

decomposition of the forecast  

 

ˆ h
t hY + = ,ˆ h AR

t hY + + ,ˆ h Z
t hY + + ,ˆ h Residual

t hY + ,      (30) 

where ,ˆ h AR
t hY +  is constructed as the projection of ˆ h

t hY +  onto Wt = (1, Yt, Yt−1, …, Yt−12), ,ˆ h Z
t hY +  

is the projection of ˆ h
t hY +  onto Zt, where Zt  is the residual from the projection of Xt onto 

Wt, and ,ˆ h Residual
t hY +  is the residual from the projection of ˆ h

t hY +  onto Wt and Zt.  By 

construction, the three components are mutually orthogonal.  With the exception of the 

ADL forecasts, each forecast is constructed as linear combination of the elements of Wt 

and Zt, and indeed, this motivates the decomposition.  The projections defining the 

components in (30) are computed by the OLS regression of the recursively computed 

values of  ˆ h
t hY +  onto Wt and Zt over the entire pseudo out-of-sample period; because of 

time variation in the coefficients in the recursively estimated models the regression of 

ˆ h
t hY +  onto Wt and Zt will not fit perfectly, and the component ,ˆ h Residual

t hY +  captures this effect.   

Table 7 shows the value of the variance of the forecast ˆ h
t hY +  and its 

components ,ˆ h AR
t hY + , and ,ˆ h Z

t hY + , relative to series being forecast Yt+h. The first panel shows 

the average values of these relative variances across series and horizons for each of the 

forecasting methods, and the second panel shows the averages across methods and 

horizon for each series.   

Looking first at the forecasting methods summarized in Panel A, the Combined-

Mean and AR forecasts are very similar; both have essentially the same variance, with a 

small fraction of this variance associated with the Z’s.  This is not surprising for the AR 
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forecast in which the Z’s do not enter the forecast; here the non-zero component ,ˆ h Z
t hY +  is 

associated with time variation in the estimated AR coefficients which is correlated with 

Zt.  The result is more surprising for the Combined-Mean forecast: it implies that this 

forecast is essentially the AR forecast with a small, but apparently useful, Z component.  

The variance associated with ,ˆ h AR
t hY +  is similar for each of the other forecasts, and these 

methods differ only in the importance of ,ˆ h Z
t hY + .  For the OLS forecast, this component has 

a very large variance, so large in fact that the variance of the forecast ˆ h
t hY +  exceeds the 

variance of the series forecast h
t hY + .  The bagging forecast also has a large ,ˆ h Z

t hY +  

component.  Interestingly, the FAAR-GLS forecast puts far less weight on the predictors 

than the FAAR-OLS or FAAR-WLS forecasts. 

Looking at the series summarized Panel B, three results stand out.  First, the real 

variables (PI, IP, UR, and EMP) have relatively small AR contributions and high 

contributions associated with the Z’s.  In contrast, the AR contributions associated with 

the inflation series (CPI, PPI, PCE) are larger, and the relative contributions associated 

with Z are smaller.  The two interest rates are apparently less predictable than the other 

series; both the AR and Z components are relatively small. 

 

5.3 Comparison of the Principal Component Forecasts 

As shown in section 2, the various forecasts using principal components all have 

the form 1/ ,1
ˆ ˆˆ ' ( )n

T T T i i i Ti
Y W t Pλ ψ δ+ =

= + ∑  where λ̂  and δ̂ are the OLS estimators of λ and 

δ from (25) (see (26). (28), and (29)), and where ψi = ψ(|ti|), where ti is the t-statistic for 

testing δi = 0.  The methods differ only in that each uses a different function ψ, and this 

suggests that insight into their relative performance might gained by studying these 

functions.  

For the BMA forecasts the function s depends on the prior parameters g and p; the 

formal Bayes procedures used p = 0.5 and two values of g (1.0 and 1/n2); the empirical 

Bayes forecast used values of p and g estimated from the sample values of îδ .  Table 8 

shows the values of p and g estimated for each series and horizon for T = 2003:12.  

Evidently, for most series and horizons the empirical Bayes forecasts use values of p that 
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are much less than 0.5.  When p = 0.5, each of the constituent models in the BMA 

procedure receives equal prior weight; in contrast, when p < 0.5 more prior weight is 

placed on models with fewer regressors. Evidently, the marginal distribution of the îδ ’s is 

more consistent with a model with few regressors.  The empirical Bayes estimates of g 

are small; conditional on the choice of regressors with non-zero coefficients, there is little 

shrinkage of the OLS estimates.  The series TBOND is an exception: the estimated values 

of p and g are relatively large for this series. 

Figure 1 compares the shrinkage ψ functions for the BMA and bagging models, 

together with the BIC for T = 360 (for this figure we set κ = 1 for all methods). The BMA 

function is plotted for three values of (p, g): (0.5, 1.0), (0.5, 1/n2), with n = 130, and 

(0.03, .0.03), the estimated values for the unemployment rate series for h = 6 from Table 

8.  The s function for BIC is a 0-1 step function at |t| = 2.42, while all of the other 

functions increase smoothly as |t| increases. The ,
BMA
p gψ   functions are quite different from 

ψBagging and from one another. 0.5,1.0
BMAψ  puts significant weight on all of the OLS estimates 

but has a maximum value of 0.5.  (A simple calculations shows that the maximum value 

of ,
BMA
p gψ  is 1/(1+g).)  In contrast, 20.5,1/

BMA
n

ψ  and 0.03,0.03
BMAψ  put little weight on OLS estimates 

with t-statistics less than 2.5 in absolute value, and nearly full weight on OLS estimates 

with absolute t-statistics greater than 4.0.  Bagging puts relatively large weight on all of 

the OLS estimates; 1.96
Bagging
cψ = has a minimum value of 0.28, and is greater than 0.5 for 

values of |t|  > 1.3.  When c increases to 2.58, 2.58
Bagging
cψ =  (not shown in the figure)  has a 

minimum value of 0.08, and is greater than 0.5 for values of t  > 2.1.  Thus, when c = 

2.58,  2.58
Bagging
cψ =  looks more like 20.5,1/

BMA
n

ψ  and 0.03,0.03
BMAψ , functions that led to more accurate 

forecasts than bagging using c= 1.96.  

To see what these functions means for the forecasts, Figure 2 shows the values of 

ψBIC, 1.96
Bagging
cψ = , 0.5,1.0

BMAψ , 20.5,1/
BMA

n
ψ  and ˆ ˆ,

BMA
p gψ  for each principal component for UR, CPI and 

TBOND at T = 2003:12.  The results for UR and CPI are similar.  The empirical Bayes 

forecasts put near unit weight on the first few principal components, and very little 

weight on the other principal components.  For UR and CPI, the empirical Bayes 

forecasts are essentially the same as FAAR-OLS forecast.  The BMA forecast with p=0.5 
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and g = 1/n2 behaves similarly, although it places somewhat more weight on handful of 

other principal components. In contrast, the p=0.5 and g=1.0 BMA and the bagging 

forecast put large, but variable, weight on all of factors.  The results for TBOND are 

different, as now the empirical Bayes forecast uses p̂ = 0.48 and ĝ = 0.42, and thus puts 

substantial weight on all of the principal components. 

 

6.  Conclusions 

 

The common structure of a large class of shrinkage estimators in the orthogonal 

regressor model facilitates comparison of the estimators and analysis of their properties in 

settings more general (and more relevant) than those used to develop the estimators.  For 

example Bayesian model averaging, empirical Bayes, and bagging can be studied in the 

multi-step prediction problem with non-exogenous regressors. 

The empirical analysis suggests the following answers to the questions raised in 

the introduction.  First, the most accurate forecasts are produced by the factor models. 

The OLS and WLS factor models performed marginally better than the GLS model, but 

the performance of all three models was similar, and these models outperformed the other 

models.  As expected, OLS performed poorly, but so did bagging (which placed 

substantial weight on all of the regressors).  These results are generally robust to sample 

period, and recursively estimated models generally outperformed rolling estimates. 

The second empirical conclusion is that the forecasts are different, but it is useful 

to consider three distinct groups.  The first group includes the AR model and the 

combined-mean of the bivariate ADL models.  These forecasts are almost entirely a 

function of lagged values of the series being forecast.  The second group includes OLS 

and bagging.  These models put substantial weight on all of the predictors, and the 

resulting large sampling error leads to inaccurate forecasts.  The third group includes the 

FAAR models and the principal component BMA models with small values of g.  These 

models put weight on only a few of the principal components, resulting in less sampling 

error, and more accurate forecasts. 

Taken together, these empirical results suggest that the large-n predictor 

information set is usefully summarized by a small number of factors, at least for the 
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purposes of short-run macroeconomic forecasting.  Future research might usefully be 

focused on refining the factor models, perhaps by improving the ψ functions that underlie 

the various principal component forecasts. 
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Appendix:  Proofs of Theorems in Section 2 

 

Proof of Theorem 1.  Consider the linear forecast  1|T TY +
%  = 

1

n
i iTi
pδ

=∑ %  with possible 

shrinkage function ψ(κti), where κ = (1 – n/T)–1/2 for NB and κ = 1 for BG.  Then 

 

1|
1

ˆ( )
n

T T i i iT
i

Y t pψ κ δ+
=

− ∑%  = 
1

ˆ( )
n

i i i iT
i

t pδ ψ κ δ
=

⎡ ⎤−⎣ ⎦∑ %  = 
1

n

i iT
i

pρ
=
∑  

 

where ρi  = ˆ( )i i itδ ψ κ δ−% .  Thus, by the Cauchy-Schwartz inequality and the assumption 

|piT| ≤ pmax, 

 

1|
1

ˆ( )
n

T T i i iT
i

Y t pψ κ δ+
=

− ∑%  ≤ 
1

| |
n

i iT
i

pρ
=
∑  ≤ ( )

1/ 2
1/ 22 2

max
1

n

i
i

np ρ
=

⎛ ⎞
⎜ ⎟
⎝ ⎠
∑  

 

so that 
2

1|
1

ˆ( )
n

T T i i iT
i

E Y t pψ κ δ+
=

⎡ ⎤−⎢ ⎥⎣ ⎦
∑%  ≤ 2 2 2

max
1

1 n

i
i

p n E
n

ρ
=
∑ .   (31) 

 

The remainder of the proof bounds n2E 2
iρ . 

(a)  Let ît  = ˆ ˆ/iT εδ σ , so ît  = κti.  With this notation, ρi = ˆˆ( )i i itδ ψ δ−% .   By (7), (8), the 

sufficiency of ( îδ , 2
es ) for (δi, σ2), and the lack of dependence of the prior Gτ on σ, the 

NB estimator is, 

 

    NB
iδ%  = Eσ[ îδ  + (σ2/T) ˆ( )iδ δl | δ̂ , 2

es ] 

= Eσ[1 + ˆ( )iτl / îτ | δ̂ , 2
es ] îδ  

= Eσ[ψNB( îτ )| δ̂ , 2
es ] îδ , 
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where the second line obtains by the change of variables τi = T δi/σ and îτ  = ˆ /iTδ σ  

and the third line follows from the definition of ψNB.  Let ζ = 2ˆεσ /σ2 so îτ  = ît ζ1/2.  Then, 

 

        ρi = NB
iδ%  – ψNB( ît ) îδ  

= 2ˆ ˆˆˆ( ) ( ) | ,NB NB
i i e iE t sσ ψ τ ψ δ δ⎡ ⎤−⎣ ⎦  

= 1/ 2 2ˆˆ ˆ( ) ( ) | ,NB NBe
i i i e

s t E t t s
T σ ψ ζ ψ δ⎡ ⎤−⎣ ⎦  

= 2 21 ˆˆ ˆ( ) ( 1) | ,
2

NBe
i i e

s t t E s
T σψ ζ δ

κ
′ ⎡ ⎤−⎣ ⎦   

+ ( )2 2 2 21 ˆ( ) ( ) ( 1) | ,
8

NB NBe
i i i i i e

s t E t t t t s
T σ ψ ψ ζ ζ δ−⎡ ⎤′′ ′− −⎢ ⎥⎣ ⎦

%% % % %  

      = ρ1i + ρ2i,         (32) 

 

where the penultimate equality follows from a second order mean value expansion of 

ψNB(tζ1/2) around ζ = 1, where ψNB′ and ψNB′′ are the first and second derivatives of ψNB, 

ζ%  ∈ [1, ζ], it%  = ît
1/ 2ζ% , and in the first expression setting ti = ît /κ;  and where, in the 

final line, ρ1i and ρ2i are the two respective major terms in the preceding line.  (The 

derivative exists by condition (ii) in the statement of the theorem.)  Note that by 

Minkowski’s inequality, 

 

E 2
iρ  ≤ ( )2

2 2
1 2i iE Eρ ρ+ .      (33) 

 

Now 

 

|ρ1i| = 2 21 ˆˆ ˆ( ) ( 1) | ,
2

NBe
i i e

s t t E s
T σψ ζ δ

κ
′ ⎡ ⎤−⎣ ⎦  

       ≤ 11
2

es KM
T nTκ −
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  ≤ 13/ 2

1 1 ˆ
2 ( ) YMK

T n
σ

κ −
      (34) 

 

where the first inequality follows from assumptions (i) and (ii) and the second inequality 

follows from 

 
2
es /T = Y′[I – P(P′P)P′]Y/[(T – n)T] ≤ Y′Y/[(T – n)T] = 2ˆYσ /(T – n),  (35) 

 

where 2ˆYσ  = Y′Y/T.  Also, 

 

|ρ2i| = ( )2 2 2 21 ˆ( ) ( ) ( 1) | ,
8

NB NBe
i i i i i e

s t E t t t t s
T σ ψ ψ ζ ζ δ−⎡ ⎤′′ ′′− −⎢ ⎥⎣ ⎦

%% % % %  

    ≤ ( )2
2 4 2 4 21 ˆ ˆ( ) ( ) | , ( 1) | ,

8
NB NBe

i i i i i e e
s t E t t t t s E s
T σ σψ ψ ζ δ ζ δ−⎡ ⎤′′ ′′ ⎡ ⎤− −⎢ ⎥ ⎣ ⎦⎣ ⎦

%% % % %  

≤ 4 2 4 21 ˆ ˆ2 | , ( 1) | ,
8

e
i e e

s t M E s E s
T σ σζ δ ζ δ−⎡ ⎤ ⎡ ⎤−⎣ ⎦ ⎣ ⎦

% ,   (36) 

 

where the first equality follows from the definition of ρ2i in (32), the second line uses the 

Cauchy-Schwartz inequality, and the third inequality uses condition (ii).  Because ζ%  ∈ 

[1, ζ] and ζ ≥ 0,  

 

Eσ( 4ζ −% | δ̂ , 2
es ) ≤ Eσ [max(1,ζ–4) | δ̂ , 2

es )] 

     = 4 2

1
2

ˆ| ,
0

ˆ( | , )
i e

es
f v s dv

ζ δ
δ−∫  + 4 2

2
ˆ| ,

1

ˆ( | , )
i e

es
vf v s dv

ζ δ
δ−

∞

∫  

     ≤ 1 + Eσ(ζ–4| δ̂ , 2
es ) 

 ≤ K3 for T– n > r0,        (37) 

 

where the second inequality follows by extending the range of integration of both 

integrals to [0,∞] (the integrands are nonnegative), and the final inequality follows from 
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condition (i).  Substituting (37) into (36), using (35) and assumptions (i) and (ii), and 

collecting terms yields, 

 

|ρ2i| ≤ 2
2 33/ 2

1 1 ˆ2
8 ( ) i YK K M t

T n
σ

−
. 

 

Squaring the final bounds for |ρ1i| and |ρ2i|, taking expectations over the distribution of 

( δ̂ , 2
es ) given (δ, σ2), substituting the result into (33), multiplying by n2, and simplifying 

yields, 

 

n2E 2
iρ  ≤ ( ) ( )

22
2 2 2 2 2 2
1 2 33

1 1ˆ ˆ
( ) 2 4 2Y i Y

n E K M E K K M t
T n

σ σ
κ

⎡ ⎤+⎢ ⎥− ⎣ ⎦
,  (38) 

 

which, upon substitution into (31), yields the result stated in the theorem. 

 

(b)  This proof applies to bagging implemented using the parametric bootstrap based on 

the exogeneity-normality assumption (5).  Let the superscript * denote bootstrap 

realizations and let E* denote expectations taken with respect to the bootstrap distribution 

conditional on the observed data (Y, P).  Each parametric bootstrap realization draws T 

observations such that P*′P*/T = I and Y*|P* ~ N(P* δ̂ , 2
es I).  Let *

îjδ  denote the jth 

bootstrap draw of the OLS estimator of δi and let 2*
,e js  denote the jth bootstrap draw of the 

OLS estimator of σ2, let ξ* = 2*
,e js / 2

es , and let *
ijt  = T *

îjδ / *
,e js .  The jth bootstrap 

realization of the pretest estimator is 1(| *
ijt |>c) *

îjδ .  The bagging estimator is 

 

BG
iδ%  = * *

1

1 ˆ1(| | )
B

ij ij
j

t c
B

δ
=

>∑ ,      (39) 

 

where B is the number of bootstrap draws. 
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By construction, under the * distribution, *
îjδ  ~ i.i.d. N( îδ , 2

es /T) so *ˆ /ij eT sδ  ~ 

i.i.d. N(ti, 1), ξ* ~ i.i.d. 2 /T n T nχ − − , and *
îjδ  and ξ* are independently distributed.  It is 

useful to introduce the representation *ˆ /ij eT sδ  =  ti + *
ijz , where *

ijz  ~ i.i.d. N(0,1) (the 

equality in this equation is equality in distribution if the bootstrap draws are of (P*, Y*) 

but the equation can alternatively be taken as the primitive parametric bootstrap sampler 

in which case it is an equality.) 

We now turn to the evaluation of E 2
iρ .  Now 

 

ρi = BG
iδ%  – ψBG(tt) îδ   

    = ( BG
iδ%  – E* BG

iδ% ) + (E* BG
iδ%  – ψBG(tt) îδ )  

    = ρ1i + ρ2i, 

 

where ρ1i = BG
iδ%  – E* BG

iδ%  and ρ2i = E* BG
iδ%  – ψBG(tt) îδ .  Note that, by Minkowski’s 

inequality, 

 

E 2
iρ  ≤ ( )2

2 2
1 2i iE Eρ ρ+ .      (40) 

 

First consider E 2
1iρ .  Now E 2

1iρ  = E[E* 2
1iρ ] = Evar*(ρ1i) since the * distribution is 

conditional on (Y,P) and E*ρ1i = 0.  Now 

 

var*(ρ1i) = var*( BG
iδ%  – E* BG

iδ% ) 

= * * * * * *

1

1 ˆ ˆvar 1(| | ) 1(| | )
B

ij ij ij ij
j

t c E t c
B

δ δ
=

⎧ ⎫⎡ ⎤> − >⎨ ⎬⎣ ⎦⎩ ⎭
∑  

= * * *1 ˆvar 1(| | )ij ijt c
B

δ⎡ ⎤>⎣ ⎦  

= 
*2

* *
ˆ1 var 1(| | ) ije

ij
e

Ts t c
T B s

δ⎡ ⎤
>⎢ ⎥

⎢ ⎥⎣ ⎦
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= ( )( )
2

* * * *1 var 1 | |e
i ij j i ij

s t z c t z
T B

ξ⎡ ⎤+ > +⎢ ⎥⎣ ⎦
, 

 

where the second equality follows by substituting (39), the third equality follows because 

the bootstrap draws are i.i.d., and the fourth equality adopts the ( *
ijz , *

jξ ) notation 

introduced above.  Now ( )( )* *1 | |ij ijt z d t z+ > +  has a N(t,1) distribution if the variable 

exceeds d and equals zero otherwise.  This random variable has a variance that is 

bounded as a function of t and the maximum variance (over t) is continuous in d.  

Because *
jξ  is distributed 2 /T n T nχ − −  and is independent of *

ijz , it follows that 

( )( )* * *var* 1 | |i ij j i ijt z c t zξ⎡ ⎤+ > +⎢ ⎥⎣ ⎦
 is bounded as a function of ti.  Using the notation 

introduced in the statement of the theorem, we have that 

 

var*(ρ1i) ≤ 
2 1 ( )e

T n
s m c
T B −  ≤ 

2ˆ
( )

( )
Y

T nm c
B T n

σ
−−

, 

 

where the second inequality uses the inequality (35); thus 

 

E 2
1iρ  ≤ 

2ˆ
( )

( )
Y

T n
E m c

B T n
σ

−−
.      (41) 

 

Now turn to E 2
2iρ .  We have that, 

 

       ρ2i = E* BG
iδ%  – ψBG(tt) îδ  

= * * *ˆ1(| | )ij ijE t c δ>  – ψBG(tt) îδ  

= 
*

* *
ˆ ˆ

1(| | ) ( )ij BGe i
ij i

e e

Ts TE t c t
s sT
δ δψ

⎡ ⎤
> −⎢ ⎥

⎢ ⎥⎣ ⎦
 

= ( ) ( )* * * *1 | | ( )BGe
i ij j i ij i i

s E t z c t z t t
T

ξ ψ⎡ ⎤+ > + −⎢ ⎥⎣ ⎦
. 
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Now  

( ) ( )* * *1 | |ij ijE t z d t z⎡ ⎤+ > +⎣ ⎦  = 
*

* * *

| |

( ) ( )
t z d

t z z dzφ
+ >

+∫   

= 
*

* *

| |

( )
t z d

t z dzφ
+ >
∫  + 

*

* * *

| |

( )
t z d

z z dzφ
+ >
∫   

= ψBA(t,d)t 

 

where ψBG(t,d) ≡ 1 – Φ(t + d) + Φ(t – d) + t–1[φ(t – d) – φ(t + d)] (cf. Bühlmann and Yu 

(2002)).  Thus 

 

ρ2i = * *( , ) ( , )BG BGe
i i j i

s t E t c t c
T

ψ ξ ψ⎡ ⎤−⎣ ⎦
. 

 

Let ψBG′ and ψBG′′ denote the first two derivatives of ψBG with respect to its second 

argument (direct calculation show that tψBG′(t,c) and tψBG′′(t,c) exist).  By the extendend 

mean value theorem, the second order expansion of ψBG(ti,c *
jξ ) around *

jξ  = 1 yields, 

 

ρ2i = 
* 2

* * 2
2

( 1)1 1( , ) ( 1) ( , ) ( , )
2 8

jBG BG BGe
i i j i i i i

s E t t c c t t c c t t c c
T

ξ
ψ ξ ψ ψ

ξ
⎧ ⎫−⎪ ⎪⎡ ⎤′ ′′ ′− + −⎨ ⎬⎣ ⎦⎪ ⎪⎩ ⎭

% % % %
%  (42) 

  

where c%  = c ξ% , where ξ%  ∈ [1, *
jξ ].  The * expectation of the first term in large 

brackets in (42) is 

 

* *1 ( , ) ( 1)
2

BG
i i jE t t c cψ ξ⎡ ⎤′ −⎢ ⎥⎣ ⎦

 = * *1 ( , ) ( 1)
2

BG
i i jt t c cEψ ξ′ −  = 0 

 

because *
jξ  is distributed 2 /T n T nχ − − .  Thus from (42) we have, 
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|ρ2i| = 
* 2

* 2
2

( 1)1 ( , ) ( , )
8

jBG BGe
i i i i

s E t t c c t t c c
T

ξ
ψ ψ

ξ
⎧ ⎫−⎪ ⎪⎡ ⎤′′ ′−⎨ ⎬⎣ ⎦⎪ ⎪⎩ ⎭

% % % %
%  

      ≤ 
* 2

2 *
2

( 1)1 sup ( , ) ( , )
8
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We now calculate or bound the three final terms in (43).  First, * * 4( 1)jE ξ −  is the 

fourth central moment of a 2 /T n T nχ − −  random variable, so  

 
* * 4( 1)jE ξ −  = 12(T – n)(T – n + 4)/(T – n)4.    (44) 

 

Next, because ξ%  ∈ [1, *
jξ ] and because the fourth moment of the reciprocal of a 

2
rχ  random variable exists for r > 8 and is [(r – 2)(r – 4)(r – 6)(r – 8)]–1, for T – n ≥ 8 we 

have that  

 

     * * 4
jE ξ −%  ≤ 1+ * * 4

jE ξ −  

= 1 + 
4( )

( 2)( 4)( 6)( 8)
T n

T n T n T n T n
−

− − − − − − − −
    (45) 

 

where the first inequality obtains using the argument leading to the second inequality in 

(37). 

Now turn to the sup term in (43).  Direct evaluation of the derivatives using the 

definition of ψBG show that tψBG′(t,u)u = u2[φ(t + u) – φ(t – u)] and tψBG′′(t,u)u2 = u2[φ(t 

+ u) – φ(t – u)] – u3[(t + u)φ(t + u) + (t – u)φ(t – u)].  Thus  

 

        |tψBG′(t,u)u| ≤ 2supuu2φ(t + u) 

    ≤ 2sup(v – t)2φ(v) 
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     ≤ 2[(supvv2φ(v)) + 2t supv|vφ(v)| + t2supvφ(v)] 

= 2(h2 + 2h1t + h2t2)      (46) 

 

where the second line follows by the change of variables v = t + u and where hm = 
/ 2 / 2 / 2m mm e π− .  Similar calculations provide a bound on |tψBG′′(t,u)u2| which, 

combined with the bound in (46), yields 

 

2sup ( , ) ( , )BG BG
u i i i it t u u t t u uψ ψ′′ ′−   

≤ 2[(2h2 + h4) + (4h1 + 3h3)|ti| + (2h0 + 3h2) 2
it  + h1|ti|3] 

≤ 
3

4
0

14 | |mi
m

h t
=

∑ , 

 

where the final equality uses hi < hm for i < m and m > 1.  Substituting this bound, (44), 

and (45) into (43), squaring, taking expectations, and collecting terms yields 
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where the second inequality uses the inequality (35), the third inequality is Cauchy-

Schwartz, direct evaluation shows that K4 = 28e–2 3/π  ≈ 3.703…, and 

 

µr = 
1/ 234 ( 4)

( 2)( 4)( 6)( 8)
r r r

r r r r r
⎡ ⎤+ +

+⎢ ⎥− − − −⎣ ⎦
. 
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 Substituting (41) and (47) into (40), multiplying by n2, and using 2ˆYEσ  ≤ 4ˆYEσ  yields, 

 

    n2E 2
iρ  ≤ 

21/ 442 2 3
4

43
0

ˆ ( ) | |
( ) ( )

m
Y T n T n i

m

n nE m c K E t
B T n T n

σ µ− −
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⎧ ⎫⎡ ⎤⎛ ⎞⎪ ⎪+ ⎢ ⎥⎨ ⎬⎜ ⎟− − ⎝ ⎠⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭
∑ , 

 

which upon substitution into (31) yields the result stated in the theorem. 

 

Proof of Theorem 2.  Theorem 2 follows directly from Theorem 1. 
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Data Appendix 

 
All of the data series used as predictors are listed in Table A.1, which lists the 

series name (which is the series label used in the source database), the transformation 
applied to the series, and a brief data description. All series are from the Global Insights 
(formerly DRI) Basic Economics Database, except those that include TCB (which are 
from the Conference Board’s Indicators Database) or AC (author’s calculation).  

Before using the series as predictors they were screened for outliers.  
Observations of the transformed series with absolute median deviations larger than 6 
times the inter quartile range were replaced with the median value of the preceding 5 
observations. 

 
Table A.1 

Series Tran Description 
a0m052  ∆ln     Personal Income (AR, Bil. Chain 2000 $) (TCB) 
a0m051  ∆ln     Personal Income Less Transfer Payments (AR, Bil. Chain 2000 $) (TCB) 
a0m224_r  ∆ln     Real Consumption (AC) a0m224/gmdc (a0m224 is from TCB) 
a0m057  ∆ln     Manufacturing And Trade Sales (Mil. Chain 1996 $)  (TCB) 
a0m059  ∆ln     Sales Of Retail Stores (Mil. Chain 2000 $) (TCB) 
ips10  ∆ln     Industrial Production Index -  Total Index 
ips11  ∆ln     Industrial Production Index -  Products, Total 
ips299  ∆ln     Industrial Production  Index -  Final Products 
ips12  ∆ln     Industrial Production Index -  Consumer Goods 
ips13  ∆ln     Industrial Production Index -  Durable Consumer Goods 
ips18  ∆ln     Industrial Production Index -  Nondurable Consumer Goods 
ips25  ∆ln     Industrial Production Index -  Business Equipment 
ips32  ∆ln     Industrial Production Index -  Materials 
ips34  ∆ln     Industrial Production Index -  Durable Goods Materials 
ips38  ∆ln     Industrial Production Index -  Nondurable Goods Materials 
ips43  ∆ln     Industrial Production Index -  Manufacturing (Sic) 
ips307  ∆ln     Industrial Production  Index -  Residential Utilities 
ips306  ∆ln     Industrial Production  Index -  Fuels 
pmp  lv      Napm Production Index (Percent) 
a0m082  ∆lv   Capacity Utilization (Mfg) (TCB) 
lhel  ∆lv   Index Of Help-Wanted Advertising In Newspapers (1967=100;Sa) 
lhelx  ∆lv   Employment: Ratio; Help-Wanted Ads:No. Unemployed Clf 
lhem  ∆ln     Civilian Labor Force: Employed, Total (Thous.,Sa) 
lhnag  ∆ln     Civilian Labor Force: Employed, Nonagric.Industries (Thous.,Sa) 
lhur  ∆lv   Unemployment Rate: All Workers, 16 Years & Over (%,Sa) 
lhu680  ∆lv   Unemploy.By Duration: Average(Mean)Duration In Weeks (Sa) 
lhu5  ∆ln     Unemploy.By Duration: Persons Unempl.Less Than 5 Wks (Thous.,Sa) 
lhu14  ∆ln     Unemploy.By Duration: Persons Unempl.5 To 14 Wks (Thous.,Sa) 
lhu15  ∆ln     Unemploy.By Duration: Persons Unempl.15 Wks + (Thous.,Sa) 
lhu26  ∆ln     Unemploy.By Duration: Persons Unempl.15 To 26 Wks (Thous.,Sa) 
lhu27  ∆ln     Unemploy.By Duration: Persons Unempl.27 Wks + (Thous,Sa) 
a0m005  ∆ln     Average Weekly Initial Claims, Unemploy. Insurance (Thous.) (TCB) 
ces002  ∆ln     Employees On Nonfarm Payrolls - Total Private 
ces003  ∆ln     Employees On Nonfarm Payrolls - Goods-Producing 
ces006  ∆ln     Employees On Nonfarm Payrolls - Mining 
ces011  ∆ln     Employees On Nonfarm Payrolls - Construction 
ces015  ∆ln     Employees On Nonfarm Payrolls - Manufacturing 
ces017  ∆ln     Employees On Nonfarm Payrolls - Durable Goods 
ces033  ∆ln     Employees On Nonfarm Payrolls - Nondurable Goods 
ces046  ∆ln     Employees On Nonfarm Payrolls - Service-Providing 
ces048  ∆ln     Employees On Nonfarm Payrolls - Trade, Transportation, And Utilities 
ces049  ∆ln     Employees On Nonfarm Payrolls - Wholesale Trade 
ces053  ∆ln     Employees On Nonfarm Payrolls - Retail Trade 
ces088  ∆ln     Employees On Nonfarm Payrolls - Financial Activities 
ces140  ∆ln     Employees On Nonfarm Payrolls - Government 
a0m048  ∆ln     Employee Hours In Nonag. Establishments (AR, Bil. Hours) (TCB) 
ces151  lv      Avg Weekly Hrs of Prod or Nonsup Workers On Private Nonfarm Payrolls -  Goods-Producing 
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ces155  ∆lv   Avg Weekly Hrs of Prod or Nonsup Workers On Private Nonfarm Payrolls -    Mfg Overtime Hours 
aom001  lv      Average Weekly Hours, Mfg. (Hours) (TCB) 
pmemp  lv      Napm Employment Index (Percent) 
hsfr  ln Housing Starts:Nonfarm(1947-58);Total Farm&Nonfarm(1959-)(Thous.,Saar) 
hsne  ln Housing Starts:Northeast (Thous.U.)S.A. 
hsmw  ln Housing Starts:Midwest(Thous.U.)S.A. 
hssou  ln Housing Starts:South (Thous.U.)S.A. 
hswst  ln Housing Starts:West (Thous.U.)S.A. 
hsbr  ln Housing Authorized: Total New Priv Housing Units (Thous.,Saar) 
hsbne*  ln Houses Authorized By Build. Permits:Northeast(Thou.U.)S.A 
hsbmw*  ln Houses Authorized By Build. Permits:Midwest(Thou.U.)S.A. 
hsbsou* ln Houses Authorized By Build. Permits:South(Thou.U.)S.A. 
hsbwst*  ln Houses Authorized By Build. Permits:West(Thou.U.)S.A. 
pmi  lv      Purchasing Managers' Index (Sa) 
pmno  lv      Napm New Orders Index (Percent) 
pmdel  lv      Napm Vendor Deliveries Index (Percent) 
pmnv  lv      Napm Inventories Index (Percent) 
a0m008  ∆ln     Mfrs' New Orders, Consumer Goods And Materials (Bil. Chain 1982 $) (TCB) 
a0m007  ∆ln     Mfrs' New Orders, Durable Goods Industries (Bil. Chain 2000 $) (TCB) 
a0m027  ∆ln     Mfrs' New Orders, Nondefense Capital Goods (Mil. Chain 1982 $) (TCB) 
a1m092  ∆ln     Mfrs' Unfilled Orders, Durable Goods Indus. (Bil. Chain 2000 $) (TCB) 
a0m070  ∆ln     Manufacturing And Trade Inventories (Bil. Chain 2000 $) (TCB) 
a0m077  ∆lv   Ratio, Mfg. And Trade Inventories To Sales (Based On Chain 2000 $) (TCB) 
fm1  ∆2ln Money Stock: M1(Curr,Trav.Cks,Dem Dep,Other Ck'able Dep)(Bil$,Sa) 
fm2  ∆2ln Money Stock:M2(M1+O'nite Rps,Euro$,G/P&B/D Mmmfs&Sav&Sm Time Dep(Bil$,Sa) 
fm3  ∆2ln Money Stock: M3(M2+Lg Time Dep,Term Rp's&Inst Only Mmmfs)(Bil$,Sa) 
fm2dq  ∆ln     Money Supply - M2 In 1996 Dollars (Bci) 
fmfba  ∆2ln Monetary Base, Adj For Reserve Requirement Changes(Mil$,Sa) 
fmrra  ∆2ln Depository Inst Reserves:Total,Adj For Reserve Req Chgs(Mil$,Sa) 
fmrnba  ∆2ln Depository Inst Reserves:Nonborrowed,Adj Res Req Chgs(Mil$,Sa) 
fclnq  ∆2ln Commercial & Industrial Loans Oustanding In 1996 Dollars (Bci) 
fclbmc  lv      Wkly Rp Lg Com'l Banks:Net Change Com'l & Indus Loans(Bil$,Saar) 
ccinrv  ∆2ln Consumer Credit Outstanding - Nonrevolving(G19) 
a0m095  ∆lv   Ratio, Consumer Installment Credit To Personal Income (Pct.) (TCB) 
fspcom  ∆ln     S&P's Common Stock Price Index: Composite (1941-43=10) 
fspin  ∆ln     S&P's Common Stock Price Index: Industrials (1941-43=10) 
fsdxp  ∆lv   S&P's Composite Common Stock: Dividend Yield (% Per Annum) 
fspxe  ∆ln     S&P's Composite Common Stock: Price-Earnings Ratio (%,Nsa) 
fyff  ∆lv   Interest Rate: Federal Funds (Effective) (% Per Annum,Nsa) 
cp90  ∆lv   Cmmercial Paper Rate (AC) 
fygm3  ∆lv   Interest Rate: U.S.Treasury Bills,Sec Mkt,3-Mo.(% Per Ann,Nsa) 
fygm6  ∆lv   Interest Rate: U.S.Treasury Bills,Sec Mkt,6-Mo.(% Per Ann,Nsa) 
fygt1  ∆lv   Interest Rate: U.S.Treasury Const Maturities,1-Yr.(% Per Ann,Nsa) 
fygt5  ∆lv   Interest Rate: U.S.Treasury Const Maturities,5-Yr.(% Per Ann,Nsa) 
fygt10  ∆lv   Interest Rate: U.S.Treasury Const Maturities,10-Yr.(% Per Ann,Nsa) 
fyaaac  ∆lv   Bond Yield: Moody's Aaa Corporate (% Per Annum) 
fybaac  ∆lv   Bond Yield: Moody's Baa Corporate (% Per Annum) 
scp90  lv      cp90-fyff 
sfygm3  lv      fygm3-fyff 
sfygm6  lv      fygm6-fyff 
sfygt1  lv      fygt1-fyff 
sfygt5  lv      fygt5-fyff 
sfygt10  lv      fygt10-fyff 
sfyaaac  lv      fyaaac-fyff 
sfybaac  lv      fybaac-fyff 
exrus  ∆ln     United States;Effective Exchange Rate(Merm)(Index No.) 
exrsw  ∆ln     Foreign Exchange Rate: Switzerland (Swiss Franc Per U.S.$) 
exrjan  ∆ln     Foreign Exchange Rate: Japan (Yen Per U.S.$) 
exruk  ∆ln     Foreign Exchange Rate: United Kingdom (Cents Per Pound) 
exrcan  ∆ln     Foreign Exchange Rate: Canada (Canadian $ Per U.S.$) 
pwfsa  ∆2ln Producer Price Index: Finished Goods (82=100,Sa) 
pwfcsa  ∆2ln Producer Price Index:Finished Consumer Goods (82=100,Sa) 
pwimsa  ∆2ln Producer Price Index:Intermed Mat.Supplies & Components(82=100,Sa) 
pwcmsa  ∆2ln Producer Price Index:Crude Materials (82=100,Sa) 
psm99q  ∆2ln Index Of Sensitive Materials Prices (1990=100)(Bci-99a) 
pmcp  lv      Napm Commodity Prices Index (Percent) 
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punew  ∆2ln Cpi-U: All Items (82-84=100,Sa) 
pu83  ∆2ln Cpi-U: Apparel & Upkeep (82-84=100,Sa) 
pu84  ∆2ln Cpi-U: Transportation (82-84=100,Sa) 
pu85  ∆2ln Cpi-U: Medical Care (82-84=100,Sa) 
puc  ∆2ln Cpi-U: Commodities (82-84=100,Sa) 
pucd  ∆2ln Cpi-U: Durables (82-84=100,Sa) 
pus  ∆2ln Cpi-U: Services (82-84=100,Sa) 
puxf  ∆2ln Cpi-U: All Items Less Food (82-84=100,Sa) 
puxhs  ∆2ln Cpi-U: All Items Less Shelter (82-84=100,Sa) 
puxm  ∆2ln Cpi-U: All Items Less Midical Care (82-84=100,Sa) 
gmdc  ∆2ln Pce,Impl Pr Defl:Pce (1987=100) 
gmdcd  ∆2ln Pce,Impl Pr Defl:Pce; Durables (1987=100) 
gmdcn  ∆2ln Pce,Impl Pr Defl:Pce; Nondurables (1996=100) 
gmdcs  ∆2ln Pce,Impl Pr Defl:Pce; Services (1987=100) 
ces275  ∆2ln Avg Hourly Earnings of Prod or Nonsup  Workers  On Private Nonfarm Payrolls - Goods-Producing 
ces277  ∆2ln Avg Hourly Earnings of Prod or Nonsup  Workers  On Private Nonfarm Payrolls - Construction 
ces278  ∆2ln Avg Hourly Earnings of Prod or Nonsup  Workers  On Private Nonfarm Payrolls - Manufacturing 
hhsntn  ∆lv   U. Of Mich. Index Of Consumer Expectations(Bcd-83) 
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Table 1 

Forecasted Series 
 

Series  Abbreviation h
t hY +  Yt 

Real Personal Income  PI (1200/h)ln(Zt+h/Zt) ∆ln(Zt) 
Industrial Production  IP (1200/h)ln(Zt+h/Zt) ∆ln(Zt) 
Unemployment  Rate UR (Zt+h − Zt)   ∆Zt 
Employment  EMP (1200/h)ln(Zt+h/Zt) ∆ln(Zt) 
3-Mth Tbill Rate  TBILL (Zt+h − Zt)   ∆Zt 
10-Yr TBond Rate  TBOND (Zt+h − Zt) ∆Zt 
Producer Price Index  PPI 1200[(1/h) ln(Zt+h/Zt)− ∆ln(Zt)]  ∆2ln(Zt) 
Consumer Price Index  CPI 1200[(1/h) ln(Zt+h/Zt)− ∆ln(Zt)] ∆2ln(Zt) 
PCE Deflator  PCED 1200[(1/h) ln(Zt+h/Zt)− ∆ln(Zt)] ∆2ln(Zt) 
 
Notes:  This table lists the nine series that are forecast.  The first column gives the 
description of the series, the second lists the abbreviation used in the results tables, the 
next two columns shows the transformations that define the variable forecast, h

t hY + , and 
the autoregressive lags, Y. 
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Table 2 
Forecasting Models 

 
Method Description 

Combined-Mean  Combined ADL Models, AIC Lag Selection, sample mean (wi = 
1/n). This serves as the benchmark for many of the comparisons. 

AR AR Model, AIC Lag Selection 
OLS  All X Variables,  pY = 4, all coefficients estimated by OLS 
Combined-SSR Combined ADL Models, pY = 4,  wi from (17) with λ  chosen by 

PLS 
FAAR-OLS Factor Augmented AR model, OLS estimation of Factors (PC), 

AIC selection of factors and AR lags 
FAAR-GLS Factor Augmented AR model, GLS estimation of Factors (PC), 

AIC selection of factors and AR lags 
FAAR-WLS Factor Augmented AR model, WLS estimation of Factors (PC), 

AIC selection of factors and AR lags 
BMA(1/n2,0.5)  BMA using X , pY = 4, g = 1/n2, p = 0.5 
BMA(1,0.5)  BMA using X , pY = 4, g = 1, p = 0.5 
BMA-PC(1/n2,0.5)  BMA using Principal Components of X, pY = 4, g = 1/n2,  

p = 1/2 
BMA-PC(1,0.5)  BMA using Principal Components of X, pY = 4, g = 1, p = 1/2 
PEB-PC  BMA using Principal Components of X, pY = 4, empirical Bayes 

estimates of g and p 
BIC-PC Principal Components of X with BIC Selection, pY = 4 
Bagging-PC Bagging using Principal Components of X,  c = 1.96 with Newey-

West t-statistics, pY = 4 
 
Notes: The table describes the forecasting models that form the basis for the empirical 
results shown in Section 4.  The first column shows the abbreviation for the method (this 
abbreviation is used in all of the tables below), and the second column describes the 
method. 
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Table 3 
Mean Square Forecast Errors 

 
a. h  = 1 

   PI IP UR EMP TBILL TBOND PPI CPI PCED 
Combined-Mean 
Root-MSFE  

6.51 7.54 0.17 2.16 0.55 0.34 5.48 2.52 1.93 

MSFE Relative to Combined-Mean 
AR  1.04 1.09 1.07 1.07 1.03 1.02 1.04 1.06 1.03 
OLS  1.87 1.94 1.83 2.41 1.73 1.43 2.70 2.33 2.04 
Combined-SSR  0.88 0.91 0.90 0.93 1.03 0.93 1.06 1.07 1.02 
FAAR-OLS  0.96 0.91 0.86 0.92 0.86 0.92 1.00 0.97 0.98 
FAA-GLS  1.00 1.05 0.95 1.23 0.93 0.96 1.04 1.01 1.05 
FAAR-WLS  0.96 0.90 0.86 0.95 0.86 0.93 1.01 0.95 0.98 
BMA(1/n2,0.5)  0.92 0.89 0.88 1.02 1.08 0.94 1.07 1.10 1.02 
BMA(1,0.5)  0.94 0.83 0.87 1.10 1.05 0.99 1.21 1.21 1.22 
BMA-PC(1/n2,0.5)  0.95 0.90 0.87 0.91 0.89 0.90 1.08 1.13 1.02 
BMA-PC(1,0.5)  0.99 0.92 0.97 0.96 0.99 0.95 1.14 1.15 1.09 
PEB-PC  0.97 0.99 0.86 0.99 0.91 0.96 1.29 1.18 1.11 
BIC-PC  1.05 0.96 0.97 1.02 1.07 1.02 1.28 1.26 1.22 
Bagging-PC  1.22 1.15 1.16 1.44 1.28 1.14 1.60 1.54 1.42 
 
 

b. h  = 3 
   PI IP UR EMP TBILL TBOND PPI CPI PCED 
Combined-Mean 
Root-MSFE  

3.40 5.56 0.32 1.76 1.26 0.75 3.92 1.97 1.43 

MSFE Relative to Combined-Mean 
AR  1.07 1.14 1.13 1.11 1.03 1.02 1.07 1.14 1.08 
OLS  2.00 1.57 1.53 1.36 1.33 1.26 2.71 2.72 2.35 
Combined-SSR  1.04 1.00 0.90 0.93 0.87 0.92 1.22 1.24 1.07 
FAAR-OLS  0.98 0.85 0.85 0.91 0.91 0.96 0.98 0.91 0.95 
FAA-GLS  0.99 0.96 0.84 1.05 0.88 0.94 1.01 0.92 0.98 
FAAR-WLS  0.99 0.84 0.86 0.92 0.89 0.93 1.01 0.92 0.97 
BMA(1/n2,0.5)  0.96 0.96 0.88 0.98 0.88 0.95 1.30 1.31 1.09 
BMA(1,0.5)  0.97 0.82 0.84 0.92 0.94 1.02 1.56 1.41 1.23 
BMA-PC(1/n2,0.5)  1.01 0.86 0.83 0.92 0.81 0.87 1.30 1.26 1.13 
BMA-PC(1,0.5)  0.99 0.83 0.91 0.82 0.84 0.88 1.38 1.39 1.18 
PEB-PC  0.96 0.83 0.82 0.89 0.82 0.91 1.42 1.30 1.19 
BIC-PC  1.23 1.01 0.96 1.10 0.99 0.98 1.56 1.48 1.40 
Bagging-PC  1.40 1.04 1.07 1.00 1.04 1.03 1.92 1.89 1.57 
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Table 3 (Continued) 
c. h  = 6 

   PI IP UR EMP TBILL TBOND PPI CPI PCED 
Combined-Mean 
Root-MSFE  

2.39 4.15 0.50 1.64 1.66 1.06 3.08 1.71 1.19 

MSFE Relative to Combined-Mean 
AR  1.08 1.18 1.20 1.06 1.06 1.02 1.07 1.17 1.10 
OLS  2.58 2.64 1.75 2.07 1.35 1.47 3.07 2.32 2.69 
Combined-SSR  1.16 1.12 1.01 0.90 0.90 0.98 1.24 1.24 1.14 
FAAR-OLS  1.10 1.21 0.93 1.04 0.86 0.99 0.99 0.85 0.97 
FAA-GLS  0.97 1.00 0.84 1.09 0.88 0.96 1.01 0.86 0.97 
FAAR-WLS  1.13 1.20 0.92 1.04 0.80 0.99 0.99 0.84 0.97 
BMA(1/n2,0.5)  1.22 1.46 1.19 1.38 0.86 1.08 1.35 1.24 1.19 
BMA(1,0.5)  1.19 1.39 1.01 1.35 0.87 1.13 1.69 1.41 1.43 
BMA-PC(1/n2,0.5)  1.12 1.09 0.97 1.12 0.79 0.99 1.41 1.20 1.17 
BMA-PC(1,0.5)  1.07 0.99 0.95 1.03 0.86 0.98 1.47 1.27 1.26 
PEB-PC  1.04 1.06 0.93 1.04 0.80 1.03 1.35 1.15 1.16 
BIC-PC  1.46 1.30 1.15 1.57 0.98 1.15 1.93 1.38 1.68 
Bagging-PC  1.71 1.71 1.23 1.64 1.07 1.25 2.19 1.71 1.94 
 

d. h = 12 
   PI IP UR EMP TBILL TBOND PPI CPI PCED 
Combined-Mean 
Root-MSFE  

1.86 3.40 0.84 1.66 2.12 1.57 2.73 1.59 1.12 

MSFE Relative to Combined-Mean 
AR  1.05 1.25 1.21 1.15 1.12 1.02 1.14 1.28 1.19 
OLS  2.28 2.83 2.07 2.30 2.15 1.75 3.16 2.62 3.44 
Combined-SSR  1.14 1.16 1.05 1.07 1.11 0.97 1.28 1.17 1.11 
FAAR-OLS  1.10 1.34 0.99 0.99 0.90 1.02 0.97 0.76 0.96 
FAA-GLS  1.03 1.04 0.93 1.08 0.97 1.03 1.03 0.84 0.98 
FAAR-WLS  1.14 1.38 0.92 1.01 0.93 1.01 0.95 0.74 0.99 
BMA(1/n2,0.5)  1.41 1.80 1.47 1.61 1.21 1.33 1.41 1.29 1.17 
BMA(1,0.5)  1.41 1.64 1.27 1.55 1.50 1.33 1.86 1.51 1.67 
BMA-PC(1/n2,0.5)  1.19 1.22 1.05 1.21 1.22 1.15 1.47 1.23 1.40 
BMA-PC(1,0.5)  1.04 1.12 1.04 1.15 1.25 1.05 1.50 1.28 1.36 
PEB-PC  1.11 1.14 0.99 1.12 1.02 1.12 1.43 1.09 1.28 
BIC-PC  1.57 1.88 1.45 1.58 1.61 1.52 1.93 1.60 2.02 
Bagging-PC  1.76 2.14 1.54 1.83 1.85 1.57 2.28 1.80 2.42 
 
Notes: The first row of the table shows the root mean square forecast error (MSFE) for the combined-mean forecast over the pseudo 
out-of-sample period.  The other entries are the MSFE relative the MSFE for the combined-mean. 
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Table 4 
Summary of Relative MSFE’s for all Series and Horizons 

 
 

Average Rel. MSFE (Fraction Rel. MSFE < 1) 
Split Out-of-Sample Period 

Method 
Full Out-of-

Sample Period First Half Second Half 
AR  1.10  (0.00) 1.12  (0.00) 1.07  (0.03) 
OLS  2.16  (0.00) 2.44  (0.00) 2.02  (0.00) 
Combined-SSR 1.05  (0.39) 1.01  (0.50) 1.14  (0.22) 
FAAR-OLS  0.96  (0.81) 0.96  (0.67) 1.00  (0.69) 
FAAR-GLS  0.98  (0.61) 0.94  (0.67) 1.14  (0.44) 
FAAR-WLS  0.96  (0.75) 0.95  (0.64) 1.02  (0.67) 
BMA(1/n2,0.5)  1.16  (0.31) 1.13  (0.33) 1.31  (0.17) 
BMA(1,0.5)  1.23  (0.28) 1.17  (0.31) 1.49  (0.17) 
BMA-PC(1/n2,0.5)  1.07  (0.39) 1.01  (0.53) 1.24  (0.22) 
BMA-PC(1,0.5)  1.08  (0.44) 1.07  (0.47) 1.16  (0.31) 
PEB-PC  1.06  (0.42) 1.04  (0.42) 1.15  (0.33) 
BIC-PC  1.34  (0.17) 1.33  (0.25) 1.51  (0.06) 
Bagging-PC 1.54  (0.00) 1.61  (0.11) 1.63  (0.03) 
 
Notes: The entries show the relative MSFE averaged across all 9 series and 4 horizons.  
The number in parentheses is the fraction of the 36 series/horizon entries for which the 
relative MSFE was less than 1.0.  The relative MSFE shows the forecast MSFE relative 
to the MSFE for the combined -mean) model.  



 53

Table 5 
Recursive Forecast MSFE Relative to Rolling Forecast MSFE 

 
 

A. Summary by method across series and horizon 
Method Fraction <1 Mean 
Combined-Mean 0.81 0.95 
AR 0.92 0.93 
OLS 0.64 0.95 
Combined-SSR 0.69 0.99 
FAAR-OLS 0.94 0.88 
FAAR-GLS 0.94 0.91 
FAAR-WLS 0.97 0.85 
BMA(1/n2,0.5) 0.75 0.96 
BMA(1,0.5) 0.75 0.92 
BMA-PC(1/n2,0.5) 0.83 0.93 
BMA-PC(1,0.5) 0.75 0.95 
PEB-PC 0.92 0.89 
BIC-PC 0.92 0.86 
Bagging-PC 0.75 0.92 

 
 

B. Summary by series across method and horizon 
Series Fraction < 1 Mean 
PI 0.79 0.93 
IP 0.73 0.97 
UR 0.82 0.91 
EMP 0.73 0.96 
TBILL 0.89 0.88 
TBOND 0.95 0.86 
PPI 0.96 0.88 
CPI 0.75 0.95 
PCED 0.82 0.95 
 
Notes: The entries in panel A are based on the recursive relative to rolling MSFE’s for 
the 36 series/horizon forecasts. The second column (labeled Fraction < 1) shows the 
fraction of the 36 values that are less than 1.0 (that is, the fraction of series/horizons for 
which the MSFE of the recursive forecast was smaller than rolling forecast). The next 
columns shows the mean of these 36 values.  Panel B is similar, except it is based on the 
56 method/horizons forecasts for each series. 
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Table 6 
Correlation of Forecasts 

Averages across  Series and Horizon 
 

  Method 1 2 3 4 5 6 7 8 9 10 11 12 13 14 
  1  Combined-Mean  1.00     .      .      .      .      .      .      .      .      .      .      .      .      .  
  2  AR  0.94  1.00     .      .      .      .      .      .      .      .      .      .      .      .  
  3  OLS  0.43  0.36  1.00     .      .      .      .      .      .      .      .      .      .      .  
  4  Combined-SSR  0.75  0.65 0.47  1.00     .      .      .      .      .      .      .      .      .      .  
  5  FAAR-OLS  0.77  0.65  0.50  0.77  1.00     .      .      .      .      .      .      .      .      .  
  6  FAAR-GLS  0.73  0.61  0.53  0.73  0.86  1.00    .      .      .      .      .      .      .      .  
  7  FAAR-WLS  0.77  0.65  0.50  0.78  0.98  0.86  1.00     .      .      .      .      .      .      .  
  8  BMA(1/n2,0.5)  0.65  0.56  0.59  0.79  0.77  0.73  0.77  1.00     .      .      .      .      .      .  
  9  BMA(1,0.5)  0.60  0.50  0.80  0.71  0.73  0.73  0.73  0.86  1.00     .      .      .      .      .  
10  BMA-PC(1/n2,0.5) 0.68  0.57  0.63  0.78  0.82  0.77  0.82  0.82  0.83  1.00     .      .      .      .  
11  BMA-PC(1,0.5)  0.71  0.65  0.87  0.74  0.72  0.71  0.72  0.79  0.88  0.87  1.00     .      .      .  
12  PEB-PC  0.67  0.57  0.66  0.77  0.80  0.75  0.80  0.80  0.82  0.94  0.87  1.00     .      .  
13  BIC-PC  0.57  0.48  0.70  0.66  0.70  0.66  0.69  0.74  0.80  0.88  0.85  0.84  1.00     .  
14  Bagging-PC 0.52  0.44  0.96  0.59  0.62  0.63  0.62  0.70  0.87  0.78  0.94  0.78  0.84  1.00 

 
Notes: The entries are the average correlation (over 36 series×horizons) of the pseudo out-of-sample forecasts. 
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Table 7 

Variance Decomposition of ˆ h
t hY +  

 
A. Average Across Series and Horizon 

Total Components Method 
ˆ( )

( )

h
t h
h

t h

Var Y
Var Y

+

+

 
,ˆ( )

( )

h AR
t h

h
t h

Var Y
Var Y

+

+

 
,ˆ( )

( )

h Z
t h

h
t h

Var Y
Var Y

+

+

 

Combined-Mean  0.32 0.29 0.02 
AR  0.31 0.28 0.02 
OLS  1.23 0.21 0.78 
Combined-SSR  0.40 0.21 0.17 
FAAR-OLS  0.58 0.24 0.32 
FAAR-GLS  0.39 0.22 0.15 
FAAR-WLS  0.58 0.26 0.31 
BMA(1/N2,0.5)  0.53 0.23 0.27 
BMA(1,0.5)  0.60 0.20 0.35 
BMA-PC(1/N2,0.5)  0.47 0.21 0.23 
BMA-PC(1,0.5)  0.37 0.22 0.12 
PEB-PC  0.45 0.22 0.21 
BIC-PC  0.68 0.21 0.37 
Bagging-PC 0.80 0.21 0.48 
 

B. Average Across Method and Horizon 
Total Components Series 

ˆ( )
( )

h
t h
h

t h

Var Y
Var Y

+

+

 
,ˆ( )

( )

h AR
t h

h
t h

Var Y
Var Y

+

+

 
,ˆ( )

( )

h Z
t h

h
t h

Var Y
Var Y

+

+

 

PI  0.47 0.03 0.37 
IP 0.71 0.12 0.53 
UR  0.52 0.07 0.40 
EMP  0.57 0.24 0.30 
TBILL  0.37 0.07 0.23 
TBOND 0.27 0.06 0.16 
PPI  0.73 0.56 0.13 
CPI 0.70 0.49 0.17 
PCED 0.61 0.43 0.15 
 
Notes: Results in Panel A were computed using the recursively computed pseudo out-of-
sample forecasts, and are average values across the 36 series×horizon forecasts.  The 
second column shows the ratio of the variance of the forecast to the variance of the  
series’ actual value.  The last two columns decomposes the ratio in column (2) by 
expressing the forecast in terms of a component associated the AR lags and a component 
associated with the predictors X that is orthogonal to the AR lags.  Column (2) is not the 
exact sum of columns (3) and (4) because of time variation in the recursively estimated 
model parameters.  Panel B is similar, except it is based on the 56 method×horizons 
forecasts for each series. 
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Table 8  

Full-Sample Parameter Estimators for the Empirical Bayes Forecasting Model 
 
 Forecast Horizon 
Series 1 3 6 12 
 p̂  ĝ  p̂  ĝ  p̂  ĝ  p̂  ĝ  
PI 0.01 0.06 0.01 0.05 0.08 0.14 0.09 0.15 
IP 0.19 0.15 0.13 0.09 0.10 0.05 0.07 0.04 
UR  0.02 0.04 0.04 0.04 0.03 0.03 0.27 0.04 
EMP  0.01 0.03 0.10 0.08 0.13 0.09 0.12 0.06 
TBILL  0.07 0.11 0.05 0.07 0.08 0.07 0.07 0.08 
TBOND  0.37 1.00 0.41 0.63 0.48 0.42 0.24 0.22 
PPI 0.60 1.36 0.04 0.13 0.01 0.04 0.06 0.10 
CPI 0.46 0.28 0.01 0.03 0.01 0.02 0.04 0.04 
PCED  0.22 0.46 0.02 0.09 0.01 0.04 0.05 0.08 
 
 
Notes: This table shows the estimates of  p and g for the empirical Bayes forecasts for T = 2003:12.
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Figure 1 
 

Shrinkage Factors for PC Forecasting Models 
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Figure 2 
Shrinkage Factors for Principal Components 

h = 6, T = 2003:12 
 
 

a. Unemployment Rate (UR) 
 

 
 

b. CPI Inflation Rate (CPI) 
 

 
 
 

C. 10-Year Treasury Bond Rate (TBOND) 

 




