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PRELIMINARY AND INCOMPLETE

ABSTRACT. This paper studies whether Euro area monetary policy changed after the introduction of the Eu-

ropean Monetary Union (EMU). To do that we consider vector autoregression (VAR) models that allows for

regime switching in coefficients and variances and we estimate them using post-1970 Euro data. Our em-

pirical results overwhelmingly support regime changes in shock variances instead of changes in coefficients.

These results are robust to different identifications schemes. We also find that monetary shocks generate the

liquidity effect and have significant effects on output. These results are robust to different identifications and

different regimes.

I. I NTRODUCTION

This paper studies whether Euro area monetary policy changedafter the introduction of the European

Monetary Union (EMU). To do that we consider vector autoregression (VAR) models that allow for regime

switching in coefficients and variances and we estimate them using post-1970 Euro area data.

The process towards the EMU was initiated more than 25 years ago. In March 1979, the European

Monetary System (EMS) started operating, with the objectives of reducing inflation and preparing for

monetary integration. Ten years later the Delors Report set out a plan to introduce EMU over three stages.

The first stage (increasing cooperation among Euro area central banks) was launched in 1990. In January

1994, the second stage began with the establishment of the European Monetary Institute (EMI) as the

forerunner to the European Central Bank (ECB). Finally, in January 1999 stage three started. The euro

became the single currency for the member states of the Euro area and a single monetary policy was

introduced under the authority of the (ECB).
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We have observed that in the last decade annual inflation has been under 5 percent (it was well above

10 percent in the late 70’s and early 80’s), the volatility of output has decreased (while maintaining its

average annual growth rate), and short term nominal interest rates have been at a record low.

The coincidence of both events (introduction of the EMU and lower volatility of prices and output)

drives us to ask the following questions: Is the decrease in volatility linked to: (1) a change in the Euro

area monetary policy? (2) a change in the actions of the private sector?, or (3) a decrease in the volatility

of shocks hitting the economy?

A researcher giving an affirmative answer to the first inquiry could argue that monetary policy has been

able to better manage the effects of shocks in the Euro economy since the early 90’s. Alternatively, a

researcher giving a positive answer to the second question could claim that some type of financial inno-

vation has allowed private agents to better handle the shocks. But these are not the only two possible

explanations. A researcher giving an affirmative response to the third query could maintain that shocks

hitting the Euro area have been less volatile in the last decade.

In order to shed some light on this debate some research has been done. Peersman and Smets (2003)

identified a structural VAR for the Euro area from 1980 until 1998. Using a Chow test, they show that the

overall macroeconomic effects of a monetary policy are stable over time. Ciccarelli and Rebucci (2003)

use an heterogenous time-varying panel VAR model to analyze the monetary transmission mechanism

across countries and time. They find that the transmission mechanism changed in the second part of the

90s. Using post-1999 data, Angeloni and Ehrmann (2003) find evidence that the monetary transmission

mechanism has become more potent and homogeneous across countries because of the EMU. De Bondt

(2002) presents an error-correction model of the interest rate pass-through process for the Euro area. Using

pre- and post-1999 data finds a quicker pass-through process since the introduction of the euro.

We see two potential problems with theses approaches. First, most of them (expect Ciccarelli and

Rebucci, 2003) do not consider time-varying parameter models. Instead, they use pre- and post-EMU data

and search for a structural break. Second, none of the mentioned papers considers time-varying volatility.

Dividing the sample in pre- and post-EMU data amplifies the small sample problems associated with a

short sample. In addition, structural break analysis rest on the assumption that the probability of a regime

change is either one or zero. An event as institutionally complicated as the effects of the EMU on monetary

policy should not be modelled as a discrete one. Taking into account that the probability of such event may

be between zero and one is crucial. Finally, Sims and Zha (2004b) remark how important it is to consider

heteroscedastic shocks when studying regime switching models. Assuming constant volatility may bias

the results towards finding changes in parameters.

In order to solve these shortcomings we build on Sims and Zha (2004b). We identify monetary policy

and private sector behaviors in VARs that allow for regime switching in both coefficients and variances

using a Bayesian approach. A crucial feature of our approach is that regimes are modelled as outcomes of

a hidden Markov chain. Thus, all the regimes can have positive probability at any moment in time . We

contemplate four cases of regime switching: (1) no regime switching (i.e., a standard constant-parameter

VAR), (2) regime switching in variances only, (3) regime switching in the monetary policy coefficients
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and variances, and (4) regime switching in the private sector coefficients and variances. Then, we use the

posterior odds ratio to choose the regime switching case and the number of regimes that fits the data best.

There are two main novelties in our approach. The first newness is with respect to Sims and Zha

(2004b), while the second innovation is technical. We improve with respect to Sims and Zha (2004b) in

that we identify monetary policy and private sector behaviors using four different schemes. This will allow

us to check the robustness of our results. The first identification uses a standard ordering as in Christiano,

Eichenbaum and Evans (1996). Secondly, we isolate the economic shocks following the strategy described

in Gordon and Leeper (1994) and Sims and Zha (2004b). Third, we impose the long-run restrictions

introduced by Blanchard and Quah (1993) and Galí (1999). Finally, we use sign restrictions as proposed

by Faust (1998), Canova and De Nicoló (2002), and Uhlig (forthcoming).

The technical innovation relates to how some of the identification schemes are implemented. Some of

these identification schemes are computationally demanding, hence we develop new algorithms to imple-

ment them efficiently. Our methods are not only easy to use, but also take little computational time relative

to the existing algorithms.

On the other hand, our methodology is not without problems. First, we use aggregated data for the

Euro are.1 This can only be done under the assumption of homogeneity across countries of both monetary

policy and monetary policy effects. Several authors have argued that the Euro area monetary transmission

process is uneven across countries. Cecchetti (2001) argues that legal differences between countries create

asymmetries in the response to policy among Euro area countries. Mihov (2001) provided econometric

evidence in support of this conclusion. Kieler and Saarenheimo (1998), Guiso et al. (1999) and Angeloni,

Kashyap and Mojon (2003) have shown, on the other hand, that such differences are not robust to changes

in empirical methodology and data. Also, in a recent article, Peersman (2004) shows that the effects of

monetary policy are relatively uniform across the whole Euro area.

Second, our model is not microfounded. A bigger challenge seems to be the construction of models

of the Euro area, with proper microfoundation and a realistic characterisation of the transmission process.

Smets and Wouters (2003) have confronted such a challenge DSGE model can fit the data better that con-

stant parameter VARs. Our results indicate that VAR models with time-varying parameters and variances

should replace the traditional constant-parameter VARs as a benchmark to gauge how well a DSGE model

fits the data. Therefore, the next step should be to build and estimate a DSGE with time-varying parameters

and variances.2

Our main findings are as follows. First, the posterior odds ratio overwhelmingly favors two regimes in

the post-1970 Euro economy. This result holds for the four identifications used in this paper. Second, most

of regime change is reflected in the variances of VAR disturbances. Thus, VAR models with time-varying

shock variances should replace the traditional constant-parameter VARs as a benchmark to gauge how

well a DSGE model fits the data. Contrary to the results produced by the constant-parameter VARs, the

1In particular, we use the "synthetic" data for the Euro area constructed by The Econometric Modeling Unit at the ECB. See

Fagan, Henry, and Mestre (forthcoming) for details.
2See Fernández-Villaverde et. al., 2005, for details
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models with time-varying shock variances imply large uncertainty across identifications about the effect

of monetary policy shocks on the general price level. But both the liquidity effect and the output effect in

response to a monetary policy shock are significant.

The rest of the paper is organized as follows. Section II lays out the general framework. Section III

reviews the four popular identification strategies and develops new methods to implement some of these

strategies. Detailed proofs of some theorems are provided in appendices. Section IV applies our methods

to the Euro economy and discusses the key robust findings. Section V concludes the paper.

II. GENERAL FRAMEWORK

In this section we present a framework to investigate whetherEuro area monetary policy changed af-

ter the introduction of the European Monetary Union (EMU). First, we present time-varying parameters

structural VAR model (SVAR). Second, we portray the reduced-form VAR implied by the structural model.

Third, we introduce a class of linear restrictions on contemporaneous parameters of the SVAR that can be

used to identify monetary policy and private sector behaviors. Fourth, we write the likelihood function of

the identified SVAR. Fifth, we define the priors. Finally, we present the posterior distributions and show

how to draw from them.

II.1. The Structural Model. Here, we present a model to estimate changes in the Euro area monetary

policy. Following Hamilton (1989) and Sims and Zha (?), we use time-varying parameters SVAR that

allows us to identify monetary authority and private sector behaviors. The structural VAR is as follows:

y′tA0(st) =
p

∑
ℓ=1

y′t−ℓAℓ (st)+z′tC(st)+ ε ′t , t = 1, . . . ,T. (1)

whereT is the sample size,h is the number of states, andst ∈ {1, . . . ,h} is the state of the econ-

omy at timet. st follows a Markov chain with the transition probability matrixΠ = [π1, . . . ,πh] where

π j =
[
π1, j , . . . ,πh, j

]′
andπi, j = π(i| j), whereπ(i| j) is the probability thatst equalsi given thatst−1 was

equal toj. A0(st) is ann×n contemporaneous parameter matrix when the state of the economy isst , p is

the lag length,Aℓ (st) is ann×n lag ℓ parameter matrix when the state of the economy isst , andC(st) is a

1×n vector of constant parameters when the state of the economy isst . yt is ann×1 vector of endogenous

variables at timet, zt = 1 for all t3, εt is ann×1 vector of structural shocks at timet. εt is i.i.d. normally

distributed with mean 0 and covariance matrixIn. The initial conditions,y0, · · · ,y1−p, are taken as given.

Now we provide some definitions that will be useful in the rest of the paper. Let

A0 = [A0(1)′ , . . . ,A0(h)′]′

and

A+ = [A+ (1)′ , . . . ,A+ (h)′]′

3It is straightforward to include other exogenous variables in our framework.
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where

A+ (k) = [A1(k)′ , . . . ,Ap(k)′ ,C(k)′]′

for k = 1, . . . ,h.

Also let

a j,0 = [a j,0(1)′ , . . . ,a j,0(h)′]′

be thej th column ofA0 and

a j,+ = [a j,+ (1)′ , . . . ,a j,+ (h)′]′

be thej th column ofA+, where

a j,+ (k) = [a j,1,+(k) , . . . ,a j,p,+(k) ,c j (k)]
′

for k = 1, . . . ,h and j = 1, . . . ,n.

Finally, if we define

xt = [y′t−1, . . . ,y
′
t−p,z

′
t ]
′

then (1) can be compactly written as:

y′tA0(st) = x′tA+ (st)+ ε ′t , t = 1, . . . ,T. (2)

II.2. The Reduced-Form Representation and the Impulse Response Functions.The reduced-form

representation implied by the structural model (2) is as follows:

y′t = x′tB(st)+u′t (st) , t = 1, . . . ,T. (3)

where

B(st) = A+ (st)A−1
0 (st) ,

u′t (st) = ε ′t A−1
0 (st) ,

and

E
(
ut (st)u′t (st)

)
=

(
A0(st)A′

0(st)
)−1

for st = 1, . . . ,h andt = 1, . . . ,T.

Let us now consider the impulse response functions. First, let us define:

B(k) = [B1(k)′ , . . . ,Bp(k)′ ,B0(k)′]′

for k = 1, . . . ,h.

Let the state bek, then the impulse response ofyt+ν to shockut is:
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Ψν (k) =
∂yt+ν
∂ut

for k = 1, . . . ,h, whereΨν (k), for ν ≥ 0, solves the following system of equations:

Ψν (k) = B′
1(k)Ψν−1(k)+B′

2(k)Ψν−2(k)+ . . .+B′
p(k)Ψν−p(k) (4)

with Ψ0(k) = In andΨν (k) = 0 if ν < 0 for k = 1, . . . ,h.

Now letP be an orthogonal matrix and let the reduced-form representation implied by(A0(k)P,A+(k)P)

be:

y′t = x′tB̃(k)+ ũ′t (k) , t = 1, . . . ,T. (5)

and the impulse response ofyt+ν to shockũt be:

Ψ̃ν (k) =
∂yt+ν
∂ ũt

for k = 1, . . . ,h.

It can be shown that̃B(k) = B(k) andΨ̃ν (k) = Ψν (k)P−1 for k = 1, . . . ,h and allν ≥ 0.

Therefore, the reduced-form representation implied by(A0(k),A+(k)) and(A0(k)P,A+(k)P) are identi-

cal. Hence, the structural models implied by(A0(k),A+(k)) and(A0(k)P,A+(k)P) would share the likeli-

hood function and be observationally equivalent. On the other hand, sinceΨ̃ν (k) 6= Ψν (k), the reduced-

form representation implied by(A0(k),A+(k)) and(A0(k)P,A+(k)P) does not share the impulse response

functions. Finally, note, that in order to compute the impulse responses implied by (3), we only needB(k)

andA0(k) for k = 1, . . . ,h.

II.3. Identifying Restrictions. Without restrictions the structural system (2) would not be identified. IfP

is an orthogonal matrix, the reduced-form representation implied by(A0(k),A+(k)) and(A0(k)P,A+(k)P)

would be identical. Therefore, the structural models implied by(A0(k),A+(k)) and (A0(k)P,A+(k)P)

would be observationally equivalent. In this section we define a class of linear restrictions imposed onA0.

For j = 1, . . . ,n andk = 1, . . . ,h, let theq j ×n matrix Q j , whereq j ≤ n, define theq j restrictions over

the elements ofa j,0(k) such as

Q j a j,0(k) = 0 (6)

and letU j be then×q j matrix whose columns form the orthonormal basis for the null space ofQ j . Then,

Q j a j,0(k) = 0 if and only if∃ aq j ×1 vectorb j(k) such that

a j,0(k) = U j b j(k). (7)

Finally, for j = 1, . . . ,n, let

b j = [b j (1)′ , . . . ,b j (h)′]′,

b = [b1, . . . ,bn, ]
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and

U = [U ′
1, . . . ,U

′
n]
′.

Note the following three points. First, any set ofa j,0(k) andQ j for j = 1, . . . ,n andk = 1, . . . ,h implies

a set ofU j andb j(k) for j = 1, . . . ,n andk = 1, . . . ,h and vice versa. Therefore, it is equivalent to defining

the linear restrictions using eithera j,0(k) andQ j or U j andb j(k). This implies that we can evaluate the

likelihood function either usingQ j anda j,0(k) or U j andb j(k). As it will be clear in the next section, we

follow the second approach.

Second, any identification scheme defined as exclusion restrictions on the contemporaneous parameters

belongs to this class of linear restrictions. For example, if we letn = 3, the exclusion restrictions iden-

tification scheme described by a lower triangular matrix is characterized by the following set ofQ j for

j = 1, . . . ,3:

Q1 = [(0,1,0)′,(0,0,1)′]′

Q2 = [(0,0,1)′]′

Finally, if P is an orthogonal matrix, in general, it would not be the case thatQ j a j,0(k)P = 0 holds. In

fact, if the model is exactly identified, for any matrixA0(k), there is a uniqueP such thatQ j a j,0(k)P = 0

holds. We show these results in the following subsection.

II.4. Normalization. Because linear restrictions do not uniquely determine the sign of any equation, a

SVAR with linear restrictions cannot be globally identified. A normalization rule is need in addition

to the linear restrictions. There are many different normalization rules and we follow the one defined in

Waggoner and Zha (2003b). As was pointed out in that paper, the choice of normalization rule is important

particularly with respect to inferences concerning impulse responses. However, the theory developed in

this paper will work for any choice of normalization rule as long as for any set of parameters the rule

uniquely determines a choice of sign for each equation in the system.

At the same time, for Markov switching models, any permutation of the states will result in an observa-

tionally equivalent set of parameters. So as with SVARs, a normalization rule for determining the naming

of the states is required. We follow the Wald normalization as described in Hamilton, Waggoner, and Zha

(2003). As for the normalization rule for the SVAR, the theory developed in this paper will work for any

choice of normalization as long as for any set of parameters the rule uniquely determines a choice for

the naming of the states. We shall implicitly assume that all of our Markov switching SVAR models are

normalized concerning both the signs of the impulse response functions and the naming of the states.

II.5. Is the Model Exactly Identified? An important question when dealing with SVAR is to know if the

set of restrictions characterized by (6) exactly identifies the SVAR. Let us first define what we mean by a

SVAR with linear restrictions given by (6) to be exactly identified.

Definition 1. A SVAR with linear restrictions given by (6) is exactly identified if and only if for every

reduced form parameter(B(k),Σ(k)), except perhaps on a set of measure zero, and for everyk = 1, . . . ,h
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there exists a unique set(A0(k),A+(k)), whereB(k) = A+(k)A0(k)−1 andΣ(k) = (A0(k)A0(k)′)
−1, such

that satisfies the restrictions.

Rothenberg (1971) gives a necessary condition for exact identification, which requiresn(n−1)/2 re-

strictions. However, Rothenberg’s (1971) condition is not sufficient.4 The following theorem 2 gives us a

necessary and sufficient condition for the SVAR system to be exactly identified.

Theorem2. A SVAR with linear restrictions given by (6) is exactly identified if and only if there exists a

permutationσ of {1,· · · ,n} such thatrank
(
Qσ(i)

)
= n− i.

Proof. The proof is provided in Appendix D. �

Theorem 2 allows us to check if the SVAR is exactly identified. The next theorem tell us how to find

such an identification.

Theorem3. A SVAR with linear restrictions given by (6) is exactly identified if and only if for al-

most all values of the structural parameters(A0(k),A+(k)), such thatB(k) = A+(k)A0(k)−1 andΣ(k) =

(A0(k)A0(k)′)
−1, there exists the unique orthogonal matrixP(k) such that(A0(k)P(k),A+(k)P(k)) satisfies

the identifying restrictions in the form of (6).

Proof. The proof is provided in Appendix D. �

Theorem 3 implies that if restrictions described by (6) exactly identify the SVAR, then we can find a

uniqueP(k), such that(A0(k)P(k),A+(k)P(k)) satisfies the identifying restrictions for any set(A0(k),A+(k))

such thatB(k) = A+(k)A0(k)−1 andΣ(k) = (A0(k)A0(k)′)
−1. Thus, we can always start with a recursive

framework and then findP(k) such that(A0(k)P(k),A+(k)P(k)) satisfies (6).

The final question is how to find such aP(k) for k = 1, . . . ,h. In subsection III.3 we show how to find

P(k) for k = 1, . . . ,h for SVARs exactly identified using short-run and long-run restrictions.

II.6. The Likelihood Function. In this section we describe how to evaluate the likelihood for the time-

varying parameters SVAR defined by (2) and identified using the class of linear restrictions just described

in section II.3. We first define:

d j (k) = a j,+ (k)−Saj,0(k) , (8)

for k = 1, . . . ,h and j = 1, . . . ,n, where

S= [I ′n×n,0
′
(m−n)×n]

′

Now let

d j = [d j (1)′ , . . . ,d j (h)′]′

for j = 1, . . . ,n.

4See Sims and Zha (1999) for a counter example.
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Finally, let

d = [d1, . . . ,dn].

Note that anyA0 andd imply a matrixA+. Therefore, for any givenU , the matricesb andd imply the

matricesA0 andA+. Thus, we can write the likelihood function either usingA0 andA+ or b andd. We

choose the first option.

Now, if we define

Yt = [y1 . . .yt ]
′ , and

for all t we can write the following theorem.

Theorem4. Given the restriction matrixU , the conditional likelihood function,π
(
yt |Yt−1,st ,b,d

)
, is:

π
(
yt |Y

t−1,st ,b,d
)

∝ det| [U1b1(st) . . .Unbn(st)]| exp

[
−

1
2

n

∑
j=1

b′j (st)U ′
jStU jb j (st)

]

exp

[
−

1
2

n

∑
j=1

(
d j (st)+

(
S−Pt

)
U jb j (st)

)′
Ht

(
d j (st)+

(
S−Pt

)
U jb j (st)

)
]

,

where

Ht = x′txt ,

Pt = H−1
t x′tyt ,

and

St = y′tyt −P
′

t HtPt .

Proof. The proof is given in Appendix C. �

Following Kim and Nelson (), we can write the likelihood functionπ (YT |b,d).

Corollary 5. Given the restriction matrixU , the likelihood function,π
(
YT |b,d,Π

)
, is:

π(YT |b,d,Π) ∝
T

∏
t=1

{
h

∑
st=1

[π(yt |Y
t−1,st ,b,d)Pr(st |Y

t−1,b,d,Π)]

}

where

Pr(st |Y
t−1,b,d,Π) =

h

∑
st=1

π(st |st−1)Pr(st−1|Y
t−1,b,d,Π)

and Pr(st−1|Yt−1,b,d,Π) is updated using the Bayes rule.5

5We initialize the system setting Pr(s0|Y0,b,d,Π) = Pr(s0|b,d,Π) = 1/h
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II.7. Priors: Modelling Regimes. If we let all the parameters vary across regimes,b andd can be es-

timated independently across regimes. Therefore, we could use the methods by Chib (1996) and Sims

(1999) to perform the model estimation. The problem is that a VAR with four to seven endogenous

variables and one-year lag length would suffer the over-parameterization problems associated with few

degrees of freedom. Hence, we define three set of priors that restrict the variation of parameters across

regimes. First, we consider priors that impose constant parameters model, i.e., no cross-regime variation.

Second, we contemplate priors which only allow for variances to change across regimes. Finally, we also

use priors that imply that both parameters and variances can change across regimes. The actual priors for

each of the cases are defined in Appendix B. In this section we just highlight the main differences among

the three set of priors and their implications for cross-regime variation. In order to do that we first rewrite

the parameters defining model (1) in the following way:

ai, j,0(k) = ai, j,0ξ j (k)φi, j (k) ,

di, j,ℓ (k) = di, j,ℓξ j (k)λi, j (k) ,

and

c j (k) = c jξ j (k)µ j (k)

for i, j = 1, . . . ,n andk = 1, . . . ,h. Notice that writing the parameters this way already imposes a re-

striction on cross-regime variation. We restrict the cross-regime variation ofd since we do not allow for

variation between lags (i.e.,(di, j,ℓ (k) = di, j,ℓ′ (k) for ℓ′, ℓ = 1, . . . ,p)). This restriction is common to the

three cases considered here.

• Case I: Constant Parameters Priors. These priors imposeξ j(k) = 1, φi, j(k) = 1, λi, j(k) = 1, and

µ j(k) = 1 for i, j = 1, . . . ,n andk = 1, . . . ,h. Thereforeai, j,0(k) = ai, j,0(k), di, j,ℓ (k) = di, j,ℓ (k),

andc j (k) = c j for i, j = 1, . . . ,n andk= 1, . . . ,h. This case corresponds to the constant-parameters

VARs widely used in the literature.

• Case II: Regime-Varying Variances Priors. These priors imposeφi, j(k) = 1, λi, j(k) = 1m and

µ j(k) = 1 for i, j = 1, . . . ,n and k = 1, . . . ,h. Therefore, we can writeai, j,0(k) = ai, j,0ξ j (k),

di, j,ℓ (k) = di, j,ℓξ j (k), andc j (k) = c jξ j (k) for i, j = 1, . . . ,n andk = 1, . . . ,h. These priors im-

ply that structural equations in model 1 are proportional across regimes. These priors also imply

that the reduced-form parameters are constant across regimes, i.e.,B(k) = B(k′) for all k,k′, while

the variances ofu′t vary across regimes.

• Case III: Regime-Varying Variances and Parameters Priors. These priors imposeξ j(k) = 1 and

a j,0 = 1 for i, j = 1, . . . ,n andk = 1, . . . ,h. Thereforeai, j,0(k) = φi, j (k), di, j,ℓ (k) = di, j,ℓλi, j (k),

andc j (k) = c j (k)µ j (k) for i, j = 1, . . . ,n andk = 1, . . . ,h. These set of priors imply that structural

equations in model 1 move freely across regimes, with the only restriction that they do not change

across lags. These priors also imply that the reduced-form parameters and variances change across

regimes.
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Given that our priors are defined over columns ofA0(k) andA+(k), we can always mix cases II and

III. For example, we can specify priors such that a set of columns ofA0(k) andA+(k) follows case II,

while the rest of the columns ofA0(k) andA+(k) follow case III. Given that the columns of our SVAR

(see equation (1)) are structural equations, mixing cases II and III imply that we have structural equations

with only regime-varying variances (case II) and structural equations with both regime-varying variances

and regime-varying parameters (case III).

II.8. Posterior. Sections II.6 and II.7 describe the likelihood function of model (1) and the three sets of

prior distributions that we use in this paper. Since our priors restrict the variability of parameters across

regimes, we cannot use the methods developed by Hamilton (1989) and Chib (1996). Instead we use the

method described in Sims and Zha (2004a). Because of space considerations we refer the reader to Sims

and Zha (2004a) for a detailed discussion of the posterior distributions implied by prior cases I-III and

how to draw from them. Suffices to say that we are interested in the following posterior distributions:

π(ST |YT ,b,d,φ ,λ ,µ,Π)

π(Π|YT ,b,d,φ ,λ ,µ,ST)

π(φ ,λ ,µ|YT ,b,d,ST ,Π)

π(b|YT ,d,φ ,λ ,µ,ST ,Π),

whereST = (s1, . . . ,sT) andd, φ , λ , andµ are defined in appendix B, and we use standard McMc to

draw from these posterior distributions and the modified harmonic mean (MHM), described in Gelfand

and Dey (1994), to compute the marginal likelihood.

III. I DENTIFICATION SCHEMES

The general framework described in section II allows us to consider various identification schemes. We

use four popular identification strategies. First we use a recursive scheme as in Christiano, Eichenbaum,

and Evans (1996).6 Second, we use a non-recursive method as in Gordon and Leeper (1994) and Sims

and Zha (2004b). Third, we identify shocks using long-run restrictions as in Blanchard and Quah (1993)

and Galí (1992). Finally, we use sign restrictions as in Faust (1998), Canova and De Nicoló (2002), and

Uhlig (forthcoming). The first two identification methods can be summarized as linear restrictions on

A0(k) for k = 1, ...,h, while the two last cannot. Therefore, the first two identification schemes can be

directly mapped into the framework described in section II. In this section, we show how the last two can

be derived from a recursive identification scheme, hence we can also use the methods described in section

II to analyze them. The fact that we can consider four different identification schemes will be important

to check the robustness of our results.

6SVARs identified using this scheme we will be sometimes called triangular systems.
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Fed Inf MD PS PS

Y × × 0 × ×

P × × 0 × 0

R × × × 0 0

M × × × 0 0

Ex 0 × 0 0 0
TABLE 1. Identification Scheme for “GLSZ”

It is also important to note that both sign and long run restrictions are computationally demanding. We

develop new methods to implement them efficiently. Our methods are not only easy to use, but also take

little computational time relative to the existing methods.

III.1. CEE Identification. In an influential paper, Christiano, Eichenbaum, and Evans (1996) propose

a recursive identification strategy to identify monetary policy. We call this identification “CEE”. They

assumeA0(k) to be a triangular system fork = 1, ...,h. Our, VAR identified using “CEE”, includes output

(Y), output deflator (P), nominal short-term interest rate (R), M3 (M), and Euro/dollar exchange rate (Ex).7

Since in this identification scheme the order of variables matters, we follow Christiano, Eichenbaum, and

Evans and order the variables in the following way: Y, P, R, M, and Ex. Hence, a structural shock to output

will only affect output, a structural shock to inflation will affect output and inflation, etc. Using theorem 2

it can be checked the this SVAR is exactly identified.

III.2. GLSZ Identification. Gordon and Leeper (1994) and Sims and Zha (2004b) propose another iden-

tification strategy. We call this identification “GLSZ”. Their identification focuses on the interpretation

of the structural equations themselves. In particular, they separate the monetary policy equation from the

money demand equations and other non-policy equations. The restrictions used to achieve such identi-

fication typically require simultaneous (non-recursive) relationships between the financial variables like

the interest rate and money. We use the same variables used in “CEE”. The identification is described

in Table 1. An X in Table 1 indicates unrestricted parameters inA0(k) for all k = 1, ...h and the blank

spaces indicate the parameters that are restricted to be zero. The “Fed” column in Table XX represents

the Federal Reserve contemporaneous behavior, the “Inf” column describes the financial sector, the “MD”

represents the money demand equation, and the block consisting of the last two columns represents the

production sector, whose variables are arbitrarily ordered in an upper triangular form. Using theorem 2 it

can be proved that the this SVAR is over-identified.

III.3. BGQ Identification. In a seminal work Blanchard and Quah (1993) propose to use restrictions

on the long-run impulse responses to achieve exact identification of a VAR model (henceforth we call it

“BGQ” identification). For a given regime or statek = 1, . . . ,h, the long run responses can be expressed

7A full description of the data is given in Appendix A
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as the inverse of the matrixL(k), where:

L(k) = A0(k)−
p

∑
ℓ=1

Aℓ(k).

We often do not have sufficient long-run restrictions that are economically justifiable to achieve exact

identification. Galí (1992) suggests a combination of short-run and long-run restrictions to get the VAR

model identified. The short-run restrictions used by Galí (1992) are linear restrictions imposed onA0(k)

or A−1
0 (k) or both (see also Blanchard and Watson 1986 and Bernanke and Mihov 1998). This set of

restrictions forms a system of nonlinear equations to be solved to get the maximum likelihood estimates

or the posterior estimates if a prior is used.8 Solving a system of nonlinear equations (or minimizing a

nonlinear function) for each posterior draw is time-consuming and not feasible for the regime switching

model studied here. In this section we describe some new methods to deal efficiently with a combination

of long-run and short-run restrictions in exactly-identified SVARs.

For k = 1, . . . ,h, define

X(A0(k), A+(k)) =

[ (
A−1

0 (k)
)′

(
L−1

0 (k)
)′

]
(9)

The restrictions considered by Blanchard and Quah (1993), Galí (1992), and others are special cases of

linear restrictions on each column ofX(A0(k), A+(k)). This means that they can be defined as a set of matrices

Q j for j = 1, . . . ,n such that:

Q jX(A0(k), A+(k))ej = 0, (10)

whereej is the j th column of then×n identity matrix. The rank ofQ j is the number of linear restrictions

on the j th column ofX(A0(k), A+(k)).
9

Theorem 2 allows us to check if the SVAR identified using (10) is exactly identified. If that is the case,

theorem 3 tells us that for any(A0(k), A+(k)) a unique orthogonal matrixP(k), for k = 1, . . . ,h, exists,

such that:

Q jX(A0(k)P(k), A+(k)P(k))ej = 0,

for j = 1, . . . ,n andk = 1, . . . ,h.

The question is how to find the orthogonal matrixP(k). In the following algorithm we describe an

efficient way to findP(k):

Algorithm1.

Assume the SVAR model is exactly identified. Letσ be the permutation with the property thatrank
(
Qσ(i)

)
=

n− i for i = 1, . . . ,n. Let (A0(k),A+(k)), for k = 1, . . . ,h, be the set of structural parameters coming from

the recursive identification.
8The 2SLS estimate, as used by Galí (1992), is an approximation to the maximum likelihood estimate. How well the

approximation is depends on how good the instruments are in the first stage of the estimation.
9In addition to the linear restrictions, we also have to impose a normalization rule to uniquely determine the sign of each

equation in the system. See Waggoner and Zha (2003b) for details.
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(1) Letk = 1.

(2) Let i = 1. Let pi(k) be any unit-lengthn-dimensional vector such thatX(A0(k),A+(k))pi(k) sat-

isfies the restrictions on columnσ (i), i.e. Qσ(i)X(A0(k),A+(k))pi(k) = 0. Such vector exists because

rank
(
Qσ(i)X(A0(k),A+(k))

)
≤ rank

(
Qσ(i)

)
= n− 1 < n. The vector can be found using the LU decom-

position ofQσ(i)X(A0(k),A+(k)). Seti = i +1.

(3) Form the matrix:

Q̃σ(i) =




Qσ(i)X(A0(k),A+(k))

p1(k)′

...

pi−1(k)′




(4) Let pi(k) be a unit length vector such thatQ̃σ(i) pi(k) = 0. Such vector exists becauserank
(
Qσ(i)

)
=

n− i and hencerank
(
Q̃σ(i)

)
< n. The vector can be found using the LU decomposition ofQ̃σ(i).

(5) If i < n go to (3).

(6) If k < h go to (1), otherwise stop.

The above algorithm produces the matrices

P(k) =
[

pσ−1(1)(k) · · · pσ−1(n)(k)
]
,

for k = 1, . . . ,h, which are the required matrices.10

III.4. Exclusion Restrictions. Most long-run and short-run restrictions used in the literature are of ex-

clusion nature. If these restrictions meet certain conditions, we have an even more efficient algorithm for

determining the matrixP. Such conditions are described by the following definition.

Definition 6. Identifying restrictions of the form of (9) aretriangularizable if the following condition

holds:Q jX(A0(k), A+(k))ej = 0 if and only if there is a permutationP1(k) of the rows ofX(A0(k),A+(k)) and a

permutationP2(k) of the columns ofX(A0(k),A+(k)), such that the permuted matrixP1(k)X(A0(k),A+(k))P2(k)

is lower triangular.

If exclusion restrictions are triangularizable, algorithm 1 can be further improved, so that the orthogonal

matrix given by theorem 3 can be found using a single QR decomposition as described in the following

theorem.

Theorem7. Suppose the identifying restrictions are triangularizable. Fork = 1, . . . ,h, letP1(k) andP2(k)

be the permutation matrices. Let(A0(k),A+(k)), for k = 1, . . . ,h, be the set of structural parameters

coming from the recursive identification. Using the QR decomposition on
(
P1(k)X(A0(k),A+(k))

)′
, write

P1(k)X(A0(k),A+(k)) = TL(k)P3(k) whereP3(k) is an orthogonal matrix andTL(k) is lower triangular. The

structural parameters(A0(k)P(k),A+(k)P(k)) for P(k) = P3(k)′P2(k)′ satisfy the restrictions.

10Note that by constructionP is an orthonormal matrix
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Three long-run restrictions

Aggregate demand shocks have no long-run effect on output

Monetary policy shocks have no long-run effect on output

Exchange rate shocks have no long-run effect on output

Three short-run restrictions

Monetary policy shocks have no contemporaneous effect on output

Exchange rate shocks have no contemporaneous effect on output

Exchange rate shocks have no contemporaneous effect on the interest rate
TABLE 2. Identifying restrictions under BGQ

III.5. Data Description and Identification Assumptions. Finally, let us describe the data and the com-

bination of long-run and short-run restrictions that we use to identify our SVAR. We follow Peersman

and Smets (2003) and consider a four-variable VAR system combining both long-run and short-run re-

strictions to achieve a particular BGQ identification. The four endogenous variables are quarterly output

growth (∆y), quarterly inflation (∆P), the nominal short-term interest rate (R), and quarterly change of

the exchange rate (∆Ex). There are four structural shocks in this system: an aggregate supply shock (εs),

an aggregate demand shock (εd), a monetary policy shock (ε p), and an exchange rate shock (εe). In the

notation of (1) we have

yt = [∆yt ∆Pt R∆Ext ]
′,

εt = [εs
t εd

t ε p
t εe

t ]′.

Peersman and Smets’ (2003) long-run and short-run restrictions are summarized in table 2. We use the

same set of restrictions. Table 2 identification restrictions imply three exclusion restrictions inL−1(k) and

three exclusion restrictions inA−1
0 (k). Then, we have:

A−1
0 (k) =




× × × ×

× × × ×

0 × × ×

0 × 0 ×




, L−1(k) =




× × × ×

0 × × ×

0 × × ×

0 × × ×




, (11)

where the symbol× means no restriction imposed and 0 means the exclusion restriction. Checking if the

model is identified or not should always be the first step. If we use theorem 2, we can see that (11) exactly

identifies the model.11

11From the discussion prior to theorem 2, it should be clear that we cannot count the number of exclusion restriction to

verify if the model is or not exactly identified. Here it is an example: If, instead of the assumption that an exchange rate shock

has no contemporaneous effect on output, we assume that a demand shock has no contemporaneous effect on output, we have
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III.6. CDFU Identification. The above described identification schemes are based on zero restrictions

either on the contemporaneous coefficients of the SVAR or the long run responses of certain variables to

shocks. This class of approaches is easy to implement, but sometimes they do not generate the impulse

responses that fit economists’ prior beliefs. Faust (1998), Canova and De Nicoló(2002), and Uhlig (forth-

coming) propose an alternative approach. Their basic idea is to use sign restrictions directly on impulse

responses themselves to identify SVARs. For example, in response to a contractionary monetary shock the

interest rate should rise, while money, prices, and output should all fall. We call their approach “CDFU”

identification. Although Faust (1998), Canova and De Nicoló(2002), and Uhlig (forthcoming) start from

the same idea, they implement it in different ways. In this section, we first briefly describe the approaches

of Faust, Canova and De Nicoló, and Uhlig, highlighting the problems of applying them to our switching

model. Then, we describe our algorithm. Finally, we describe the variables considered in the VAR and

state the sign restrictions we use to identify structural shocks.

III.6.1. Faust Method.Faust (1998) presents a way to check the robustness of any claim from a SVAR.

All possible identifications are checked searching for the one that is worst for the claim, subject to the

restriction that the identified VAR produces the correct impulse response functions.

Faust (1998) shows that this problem is equivalent to solving a eigenvalue problem∑M
i=0

R!
i!(R−i)! times,

whereR is the number of sign restrictions andM = max(n−1,R). As Faust (1998) recognizes, this method

may not be feasible for large problems, like the one analyzed here. Finally, we see Faust’s approach as a

way to check claims on contributions of identified shocks to the forecast error variance, not as a way to

identify SVARs.

III.6.2. Canova and De Nicoló Method.Canova and De Nicoló (2002) also identify SVARs using impulse

response sign restrictions. Their method is based on the following theorem:

Theorem8. Let P (n×n) be an orthogonal matrix. Then a unique series{{θi, j}
n
j=i+1}

n−1
i=1 exists, where

0≤ θi, j < 2π if j = i +1 and−π/2≤ θi, j ≤ π/2 if j > i +1, such that:12

P =
n−1

∏
i=1

n

∏
j=i+1

Qi, j
(
θi, j

)

or

P = S
n−1

∏
i=1

n

∏
j=i+1

Qi, j
(
θi, j

)

the following pattern of restrictions onA−1
0 (k) andL−1(k):

A−1
0 (k) =




0 × × ×

× × × ×

0 × × ×

× × 0 ×




, L−1(k) =




× × × ×

0 × × ×

0 × × ×

0 × × ×




, (12)

If we compare (11) and (12), we observe that both have the same number of exclusion restriction. On other hand, if we use

theorem 2 we find that the restriction implied by (12) do not exactly identify the system.
12In Canova and De Nicoló (2002), the notationQi, j (θ) is used whereθ is implicitly assumed to vary with differenti and j.
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where

S=




1 · · · 0 0
...

...
...

...

0 · · · 1 0

0 · · · 0 −1




and

Qi, j
(
θi, j

)
=




col i

↓

col j

↓

1 · · · 0 · · · 0 · · · 0
...

...
...

...
...

row i → 0 · · · cos
(
θi, j

)
· · · −sin

(
θi, j

)
· · · 0

...
...

.. .
...

...

row j → 0 · · · sin
(
θi, j

)
· · · cos

(
θi, j

)
· · · 0

...
...

...
.. .

...

0 · · · 0 · · · 0 · · · 1




.

Proof. The proof follows from Algorithm 5.2.2 of Golub and Van Loan (?). �

Using theorem 8, Canova and De Nicoló (2002) identify SVARs with the following algorithm:

Algorithm2.

(1) Begin with a triangular SVAR system.

(2) Draw the system parametersA0(k) andB(k) from the posterior distribution.

(3) Determine a grid on the set of all orthogonal matrices.

(4) Perform a grid search to find an orthogonal matrixP(k), such that the impulse responses generated

from A0(k)P(k) andB(k) satisfy all the sign restrictions.

Theorem 8 allows for different ways to design a grid, but because the space of all orthogonaln× n

matrices is an(n−1)/2 dimensional space, any grid that divides the interval[−π/2,π/2] in M points13

implies a search overMn(n−1)/2 points in the space of all orthogonaln×n matrices. Thus, it is not feasible

to perform this grid search for large values ofn.

III.6.3. Uhlig’s Methods.Uhlig’s (forthcoming) proposes another method to identify SVARs based on

impulse response sign restrictions. His method draws from the set of posterior orthonormal matrices, such

that the impulse response sign restrictions hold, using the following algorithm:

Algorithm3.

(1) Begin with a triangular SVAR system.

(2) Draw the system parametersA0(k) andB(k) from the posterior distribution.

13Or the interval[−π,π] in 2M points.
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(3) Drawn independent standard normal vectors of lengthn and recursively orthonormalize them. Call

P(k) the resulting orthonormal matrix.

(4) Generate the impulse responses fromA0(k)P(k) andB(k).

(5) If these impulse responses do not satisfy the sign restrictions, keep the draw. Otherwise discard it.

This method is feasible for large models like the one we are dealing with in this paper. In fact, the

method we propose in the following subsection is just a more efficient version of Uhlig’s approach.

III.6.4. Our Algorithm. In this subsection we propose a modified version of Uhlig’s method to draw

from the posterior distribution of orthonormal matrices such that a given set of impulse response sign

restrictions hold. The main difference between Uhlig’s and our approach is that while Uhlig recursively

orthonormalizeP(k), we use the following theorem to directly draw an orthonormal matrixP(k).

Theorem9. Let X be ann×n random matrix with each element having an independent standard normal

distribution. LetX = QRbe the QR decomposition ofX with the diagonal ofRnormalized to be positive.

ThenQ has the uniform (or Haar) distribution.

Proof. The proof follows directly from Stewart (?). �

Theorem 9 gives us an easy and fast way to implement random selections of orthonormal matrices in

order to get the impulse responses that satisfy a set of sign restrictions as described below.14

Algorithm4.

(1) Begin with a triangular SVAR system.

(2) Draw the system parametersA0(k) andB(k) from the posterior distribution.

(3) Draw an independent standard normaln×n matrix X and letX = QRbe the QR decomposition of

X with the diagonal ofR normalized to be positive.

(4) LetP(k) = Q and generate the impulse responses fromA0(k)P(k) andB(k).

(5) If these impulse responses do not satisfy the sign restrictions, then return to step (3).

In theory, this algorithm is not guaranteed to terminate. In practice, we set a maximum number of

iterations in which steps (3) through (5) should be repeated. If the maximum is reached, the algorithm

should move to step (1) to draw another set of parameter values.15

The main differences with Uhlig’s method are: (1) We do not discard any posterior draw and (2) we

directly draw from uniform (or Haar) distribution while Uhlig does it recursively. These two differences

make our algorithm more efficient and faster–two important features given the large system we consider.

14Stewart (?) has even more efficient algorithms for generating uniform random orthogonal matrices, but they are less

straightforward and more difficult to implement.
15In the applications discussed in Section IV, we set the maximum number to be 1000 and this maximum was never reached

in our millions of posterior draws.
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III.7. Data Description and Identification Assumptions. Finally, let us describe the data and the sign

restrictions we use to identify our SVAR. Our SVAR, identified using sign restrictions, includes the same

data that “CEE” and “GLSZ” include, i.e., output (Y), output deflator (P), nominal short-term interest rate

(R), M3 (M), and Euro/dollar exchange rate (Ex). We use the following sign restrictions:

• An expansionary monetary policy shock implies an interest rate decrease and an increase of M3

for two periods.

• A positive shock to money demand implies an interest rate and M3 increase for two periods.

• A positive demand shock implies an increase in output and prices for two periods.

• A positive supply shock implies an increase in output and a decrease in prices for two periods.

• A positive external shock implies an exchange rate devaluation and an increase in output for two

periods.

IV. EMPIRICAL RESULTS

In this section we identify a set of five-lag SVAR using the identification schemes discussed in section

III. As mentioned in section II.7, our priors specification allows us to mix cases II and III. We consider

five different specifications:

• All-constant specification. No regime change is allowed.

• Variance-only specification. All the structural equations are Case II.

• Monetary-policy specification. All the structural equations except monetary policy equation are

Case II, while the monetary policy equation is Case III.

• Private-sector specification. All the structural equations except monetary policy equation are Case

III, while the monetary policy equation is Case II.

• All-change specification. All the structural equations are Case III.

The all-constant specification does not consider regime change. We will take this as the benchmark

specification. In the variance-only specification all the structural equations have case II priors. Therefore,

only the variance of the structural equations changes across regimes. With this specification we consider

the case where no change in behavior has occurred and all the change in observed volatility is explained

by changes in the volatility of the structural shocks. In the monetary-policy specification we allow for the

parameters of the monetary policy equation to change across regimes, while only the variance of the rest of

the structural equations is allowed to change across regimes. With this specification we consider the case

that the monetary authority has changed its behavior while the private sector has not. In the private-sector

specification the parameters of all the structural equations, but those of the monetary policy equation,

are allowed to change across regimes, while only the variance of the monetary policy equation can change

across regimes. With this specification we consider the case that the private sector has changed its behavior

while the monetary authority has not. Finally, in the all-change specification, all the parameters of all the

structural equations can change.
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Constant 2271.0

Variance Only Monetary Policy Private Sector All Change

2 states 2291.8 2284.5 2274.4 2278.8

3 states 2287.3 DEG DEG DEG

4 states 2281.9 DEG DEG DEG

5 states 2279.1 DEG DEG DEG

6 states 2272.9 DEG DEG DEG
TABLE 3. Marginal log likelihoods for the five specifications and different number of states

under the CEE identification scheme.

IV.1. Results for the CEE identification. The CEE identification scheme considers output (Y), output

deflator (P), nominal short-term interest rate (R), M3 (M), and Euro/dollar nominal exchange rate (Ex)

and uses a recursive scheme to identify the structural shocks. The order of the variables is the follow-

ing: Y, P, R, M, and Ex. Hence, R contemporaneously responds to changes in Y and P, but Y does not

contemporaneously respond to changes to any other variables.

Table 3 reports the marginal log likelihoods for the five specifications and different number of states

under the CEE identification scheme.16 17 A variance-only specification, with two or three states, is

overwhelmingly favored by the data in comparison to the constant VAR model and any other time-varying

VAR models. From these results we interpret that, when identified using the CEE scheme, SVARs with

more than 3-state tend to overfit the data, and thus are penalized by the marginal likelihood. The log

marginal likelihood difference between the 2-state and 3-state variance-only specifications is less than four.

This evidence is strong, but not conclusive, in favor of the 2-state variance-only specification. Therefore,

because of space considerations, we only analyze the 2-state variance-only specification. Table 3 also

shows that the data strongly favor the 2-state monetary policy specification over the constant, 2-state

private sector, and 2-state all-change specifications. We interpret this result as evidence in favor of a

change in the Euro-area monetary policy authority behavior during the studied period.

Figure 1 displays the posterior probability of each state for the 2-state variance-only specification model

under the CEE identification. We call the state with very high and persistent probability after 1992 the

EMS regime, while the other is called Non-EMS regime. Although the EMS regime remains with high

probability for the some years before 1993, it periodically switches to the other state, probably reflecting

16All the marginal likelihoods reported in this paper are computed with 6 million MCMC draws. Using repeated runs, the

computed maximum of numerical standard errors for all marginal likelihoods is less than 0.7 in log value. Using the Newey-

West (1987) approximation procedure, the numerical standard errors give even smaller values. The marginal likelihood for

the constant VAR model is computed using the algorithm described by Chib (1996) and Waggoner and Zha (2003a). The

Matlab code can be downloaded from home.earthlink.net/ tzha02/programCode.html. Because the Markov chain Monte Carlo

algorithm for the time-varying VAR models is not a Gibbs sampler, the marginal likelihoods for these models are computed

using the modified harmonic means procedure discussed by Geweke (1999).
17DEG stands for “degenerate”, meaning that for these models there is no posterior probability for at least one state.
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FIGURE 1. Posterior probabilities of states for the 2-state variance-only specification

model under the CEE identification.

the uncertain periods of implementing the new monetary system (Ungerer et all?). We notice three

things in figure 1: (1) the coincidence between the 1993 regime change and the institutional evolution

of the EMS occurred in August of 1993, after 1992-93 crisis (2) the non-EMS regime has very high and

persistent probability before 1980, and (3) between 1980 and 1993 the probability of any of the regimes

is quite volatile. This high volatility reflects the uncertainty associated with the intuitional change taking

place in the Euro area. It is also important to notice that the fact that the probability of the EMS regime

increases after 1980 should not be surprising, since most of the inflation decline in the Euro area occurred

during the 80’s.

Table 4 reports the variance of the structural shocks for each variable under the two regimes, along

with the relative variance across regimes, for the 2-state variance-only specification model under the CEE

identification. The EMS regime is associated with much smaller volatility of structural shocks of all the

variables. In particular, most of the fall in volatility is due to the fall in the variance of shocks to R and

P. This phenomenon is also reflected in the impulse responses to a monetary shock displayed in Figure 2.

The first column graphs the impulse response associated with a monetary policy shock for the constant
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Variables EMS Non-EMS Relative volatility

Y 0.014E-03 0.042E-03 3.039

P 0.003E-03 0.016E-03 4.235

R 0.015E-03 0.064E-03 4.063

M 0.015E-03 0.028E-03 1.854

Ex 0.553E-03 1.087E-03 1.963
TABLE 4. Residual variance of the shocks for the 2-state variance-only model under CEE

specification model under the CEE identification. The last two columns graph the impulse response as-

sociated with a monetary policy shock for the 2-state variance-only specification. The non-EMS regime

impulse responses are larger than those for the EMS regime, while the responses for the constant model

are in between those of the two regimes. In response to a contractionary shock to monetary policy, the in-

terest rate rises and money falls (the liquidity effect), output falls, but the price level rises somewhat.18 The

increase in the price level, although statistically significant, is not economically important as compared to

the other models.

Thus, if we identify the SVAR using the CEE scheme, the data favor a 2-state variance-only specifi-

cation. One of the regimes mainly occurs after 1993 and is associated with lower volatility of structural

shocks to R and P. We call this regime EMS regime. After a contractionary shock to monetary policy, we

estimate a liquidity effect, a drop in output, and an increase in the price level. The estimated price puzzle

is significant, but weak.

IV.2. Results for the GLSZ identification. As in the CEE identification scheme, the GLSZ scheme

considers output (Y), output deflator (P), nominal short-term interest rate (R), M3 (M), and Euro/dollar

nominal exchange rate (Ex) and uses a recursive scheme to identify the structural shocks. The GLSZ

identification differs from the CEE identification in two ways. First, it does not treat M and R recursively,

but models them simultaneously as money demand and money supply, where the money demand equation

includes the variables M, R, Y, and P and the monetary policy equation includes only the two variables M

and R.19 Second the resulting structural model is over-identified.

Table 5 reports the marginal log likelihoods for the five specifications and different number of states

under the GLSZ identification scheme. We conclude two things: (1) the 2-state variance-only specifica-

tion dominates all the other specifications for the GLSZ identification scheme and (2) the marginal log

likelihood slightly favors the GLSZ identification scheme over the CEE. Hence, as it was the case with

the CEE scheme, the data favors the 2-state variance-only specification, although there is an important

18The price puzzle exists even when we include commodity prices in the VAR and when we reorder the variables (for

example, lettingR responds to commodity prices orEx or both).
19We choose this identification on the basis of a information-delay assumption that the central bank cannot observe real GDP

and the GDP deflator within the quarter.
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FIGURE 2. Impulse responses to a one-standard-deviation monetary policy shock under

the CEE identification. The solid line represents the posterior median estimate and the two

dashed lines contain the 68 percent probability based on 500,000 MCMC draws.

Constant 2273.6

Variance Only Monetary Policy Private Sector All Change

2 states 2297.8 2290.8 2277.6 2279.7

3 states 2290.6 DEG DEG DEG

4 states 2283.3 DEG DEG DEG

5 states 2281.0 DEG DEG DEG

6 states 2277.8 DEG DEG DEG
TABLE 5. Marginal log likelihoods for the five specifications and different number of states

under the GLSZ identification scheme.

difference. When identifying the SVAR using GLSZ, the evidence is conclusive in favor of the 2-state

model over the 3-state one.
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FIGURE 3. Posterior probabilities of states for the 2-state variance-only specification

model under the GLSZ identification.

Figure 3 displays the posterior probability of each state for the 2-state variance-only specification model

under the GLSZ identification. Figure 1 and figure 3 are remarkably similar, with two very distinguishable

regimes. The EMS regime has very high and persistent probability after 1993, while the non-EMS regime

has very high and persistence probability before 1980. Between 1980 and 1993 the probability of any of

the regimes is quite volatile.

Table 6 reports the variance of the structural shocks for each variable under the two regimes, along with

the relative variance across regimes, for the 2-state variance-only specification model under the GLSZ

identification. The EMS regime is associated with smaller volatility of structural shocks of all the vari-

ables. As in CEE scheme, most of the fall in volatility is concentrated in the shocks to R and P.

Figure 4 reports the impulse responses to a monetary policy shock for the GLSZ identification scheme.

The first column graphs the impulse response associated with a monetary policy shock for the constant

specification, while the last two columns graph the impulse response associated with a monetary policy

shock for the 2-state variance-only specification. An important thing to notice is the uncertainty about the

dynamic responses. All the 68 percent confidence intervals are wider than in the CEE scheme. As in the
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Variables EMS Non-EMS Relative volatility

Y 0.013E-03 0.039E-03 2.797

P 0.004E-03 0.014E-03 3.459

R 0.018E-03 0.052E-03 2.755

M 0.012E-03 0.028E-03 2.340

Ex 0.551E-03 1.200E-03 2.175
TABLE 6. Residual variance of the shocks for the 2-state variance-only model under GLSZ
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FIGURE 4. Impulse responses to a one-standard-deviation monetary policy shock under

the GLSZ identification. The solid line represents the posterior median estimate and the

two dashed lines contain the 68 percent probability based on 500,000 MCMC draws.

CEE scheme, we find that, in response to a contractionary shock to monetary policy, the interest rate rises

and money falls (the liquidity effect), output falls, but the price level rises somewhat. The main difference

with the CEE scheme is that, since the confidence intervals are so wide, the prize puzzle is not statistically

significant.
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Hence, we conclude that, for the 2-state variance-only specification, the GLSZ and the CEE schemes

produce very similar results, although the CEE scheme produces a more accurate estimation and the mar-

ginal likelihood strongly supports the GLSZ scheme.

IV.3. Results for the BGQ Identification. As discussed in Section III, another widely-used identification

scheme is to use long-run restrictions (Blanchard and Quah 1993 and Galí 1992). A typical finding is that

the estimated impulse responses of output to a monetary shock are small, even in the short run (see Galí,

1992). Using the identification scheme of Galí (1992) and Peersman and Smets (2003), in this section we

show that our estimated output responses to a monetary policy shock are also small, consistent with the

previous estimates in the literature. However, the error bands are so wide and skewed that they change

the implications of the point estimates. The wide error bands also raise a question of how informative this

particular identification is.20 21 We use the following variables: output growth (∆Y), quarterly inflation

(∆P), nominal short-term interest rate (R), and quarterly change of the exchange rate (∆Ex). Using the

restrictions reported in table 2, we identify four structural shocks: an aggregate supply shock (εs), an

aggregate demand shock (εd), a monetary policy shock (ε p), and an exchange rate shock (εe).

As mentioned in section III.3, in order to implement the BGQ scheme, we start from a recursive system

(a CEE type of scheme). Then, for each posterior draw we find the rotation ofA0(k) andA+(k) such that

the restrictions reported in table 2 hold. This implies that there are subtleties in interpreting the five types

of time-varying specifications. An orthonormal rotation ofA0(k) will, in general, violate the time-varying

restrictions on the original form ofA0(k). Hence, all the four columns in Table?? relate to all-change

specifications in the sense that the parameters in each column ofA0(k), after the rotation, vary across

states beyond a scaling factor. The differences among these columns reflect different parsimonious ways

of parameterizing the time-varying coefficients, and accordingly we label these columns as “TV I”, “TV

II”, etc., where TV stands for time-variation.

For this four-variable VAR system, the 3-state TV-I specification gives the highest marginal likeli-

hood.22 Figure 5 displays the posterior probabilities of each regime for the 3-state TV-I specification for

the BGQ scheme. We call the first state the early-EMS regime, which is concentrated between late 70’s

and early 90’s. We call the second state the EMS regime, which concentrates after 1993. If we compare

20Faust and Leeper (?) make this same point.
21Unrealistic wide error bands can be caused by not properly normalizing the signs of responses for each posterior draw.

Such problem can be solved by appropriate normalization (see Waggoner and Zha, 2003a, and Hamilton, Waggoner and Zha,

2003, for detailed discussions). Indeed, when the impulse responses are properly normalized, one may be able to obtain sensible

error bands of impulse responses for certain SVAR models with long-run restrictions imposed (e.g., Sims and Zha 1999 and

Evans and Marshall?). The impulse responses of output to a monetary policy shock under the long-run restrictions of Evans

and Marshall are long-lived (more than 4 years) and strong.
22Because three out of the four variables are in first differences, we make the overall tightness of the hyperparameters very

loose by settingλ0 = 2,µ5 = µ6 = 0.1. The log value of the highest marginal likelihood is 1736.8 and the log value of the

marginal likelihood for the constant model is 1697.1. We also experimented with different prior hyperparameter values and our

results are not sensitive to these changes despite the fact that three series are differenced and presumably stationary.
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Variables Early EMS EMS Non-EMS

∆Y 0.056E-03 0.013E-03 (0.242) 0.028E-03 (0.509)

∆P 0.009E-03 0.003E-03 (0.355) 0.064E-03 (7.011)

R 0.053E-03 0.013E-03 (0.248) 0.081E-03 (1.505)

∆Ex 1.216E-03 0.663E-03 (0.545) 1.439E-03 (1.182)

TABLE 7. Residual variance of the shocks for the 2-state TV-I model under BGQ
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FIGURE 5. Posterior probabilities of states for the 3-state BGQ model.

the regimes we obtained using the CEE and the GLSZ schemes, with the ones estimated here, we find that

the EMS regime is consistent throughout the three identification schemes and the new (early-EMS) regime

concentrates during the 80’s disinflation period.

Table 7 reports the residual variances for the four variables of the 3-state TV-I specification. The vari-

ances of all structural shock variances are smaller for the EMS. This result is consistent with the finding

reported for the CEE and GLSZ schemes. Figure 6 displays the impulse responses to a contractionary
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monetary policy shock for the constant and 3-state TV-I specification. The point estimates, represented by

the solid lines, say that, in response to a contractionary monetary policy shock, the interest rate rises and

both output and prices decline. The point estimate indicates that the output effect is quite small, but the

error bands show that there is a fat tail of the probability distribution skewed toward a large output loss for

the three regimes. In other words, there is a substantial probability for a large output drop after a contrac-

tionary monetary policy shock. The point estimate also indicates that there is no price puzzle, but the error

bands are so wide that there is a non-trivial probability of a price increase after a contractionary monetary

policy shock. Overall, the error bands reported in Figure 6 seem unusually wide and ill-determined.23

They are nonetheless important because they imply that the point estimates could be misleading. The

methods developed in Section III.3 not only generalize the types of restrictions and applications one can

use, but also provide a convenient and efficient algorithm for obtaining accurate posterior distributions to

assess both quantitative and qualitative implications derived from the point estimates.

We conclude that the BGQ scheme finds that a 3-state TV-I specification fits the data better. As it

was the case for both the CEE and the GLSZ schemes, there is an EMS regime after 1993 characterized

by lower volatility of the structural shocks. On one hand, the point estimates for the impulse response

functions show that, in response to a contractionary monetary policy shock, the interest rate rises and both

output and prices decline (no price puzzle). On the other hand, the estimated error bands are so wide that

none of the point estimates implications are conclusive.

IV.4. Results for the CDFU identification. The last identification scheme we consider is the CDFU

scheme. As in the CEE and GLSZ identification schemes, we consider a SVAR with output (Y), output

deflator (P), nominal short-term interest rate (R), M3 (M), and Euro/dollar nominal exchange rate (Ex).

We restrict the signs of the impulse responses such that:

• An expansionary monetary policy shock implies an interest rate decrease and an increase of M3

for two periods.

• A positive shock to money demand implies an increase in interest rate and M3 for two periods.

• A positive demand shock implies an increase in output and prices for two periods.

• A positive supply shock implies an increase in output and a decrease in prices for two periods.

• A positive external shock implies an exchange rate devaluation and an increase in output for two

periods.

As it was the case for the BGQ scheme, in order to implement the CDFU scheme, we start from a

recursive system.24 Then, we rotate each posterior draw ofA0(k) andA+(k), such that the signs restrictions

hold. As before, this rotation implies that all considered specifications are all-change specifications in the

sense that the parameters in each column ofA0(k), after the rotation, vary across states beyond a scaling

23The error bands reported by Peersman and Smets are much better behaved. Note that they have a different sample period

and their bands are generated by only 100 draws. We find that this particular identification is quite fragile. For example, when

the data in 2003 were taken out of our sample, the characteristics of the estimated impulse responses were completely changed.
24Since the CEE scheme and the CDFU scheme share variables, we start form the CEE scheme reported in section IV.1
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FIGURE 6. Impulse responses to a one-standard-deviation monetary policy shock under

the BGQ identification. The solid line represents the posterior median estimate and the two

dashed lines contain the 68 percent probability based on 500,000 MCMC draws.

factor. The differences between specifications reflect different parsimonious ways of parameterizing the

time-varying coefficients, and we label these columns accordingly as “TV I”, “TV II”, etc., where TV

stands for time-variation.25

Table 8 reports the marginal log likelihood for different specifications and number of the states for a

SVAR identified using the CDFU scheme.26 Data favors a 2-state TV-I specification.

It can be shown that the rotation does not change the variances of these residuals in any state. Therefore,

the shock variances for the 2-state TV-I specification identified using the CDFU scheme are the same as

reported in Table 4. Similarly, the posterior probabilities of states are the same as displayed in figure 1.

25We also experimented with other time-varying combinations of Case II and Case III for the different equations before

applying the sign restrictions onA−1
0 (k), and the resultant marginal likelihoods have substantially lower values than the 2-state

TV-I model.
26Since we start form the CEE scheme reported in section IV.1, table 3 and tables 8 are identical.
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Constant 2271.0

TV-I TV-II TV-III TV-IV

2 states 2291.8 2284.5 2274.4 2278.8

3 states 2287.3 DEG DEG DEG

4 states 2281.9 DEG DEG DEG

5 states 2279.1 DEG DEG DEG

6 states 2272.9 DEG DEG DEG
TABLE 8. Marginal log likelihoods for the five specifications and different number of states

under the CDFU identification scheme.
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FIGURE 7. Impulse responses to a one-standard-deviation monetary policy shock under

the CDFU identification. The solid line represents the posterior median estimate and the

two dashed lines contain the 68 percent probability based on 500,000 MCMC draws.

Figure 7 reports the impulse responses for both the constant model and the 2-state TV-I model. Again,

the responses under the EMS regime are smaller than those under the non-EMS regime and those with the



METHODS AND APPLICATIONS 31

constant VAR model, but the general dynamic shapes are the same. We find a significant liquidity effect

and a significant output and price drop after a contractionary monetary policy shock.27

V. CONCLUSION

This paper has examined changes of the Euro monetary regime using the VAR methodology. We find

that SVARs that consider regime regime switching fit the data much better than constant parameter SVARs.

Thus, making the regime switching feature explicit is essential to obtaining a VAR benchmark against

which the fit of DSGE models is compared. We robustly find that the regime associated with most years

of the EMS has considerably smaller shock variances for all the variables studied in this paper. We find

the liquidity and output effects of a monetary policy shock and we show that these results are robust to

different identifications and different regimes. For the CEE and GLSZ schemes we find a price puzzle,

while that is not the case for the BGQ and CDFU schemes.

On the technical side, we have developed a set of new efficient methods that allow us to consider

different identification strategies. We have also shown how these methods can be used to accurately obtain

the error bands of impulse responses associated with different identification schemes. These error bands

make us question some of the point estimate dynamic responses.

APPENDIX A. THE DATA

We use quarterly data form 1970:1 to 2003:4 from the Area-wideModel (AWM) database released by

the European Central Bank. See Fagan, Henry, and Mestre (forthcoming) for details. The variables are

listed below, along with the variable symbols used by the AWM database.

• Y: Real GDP in millions of euros with base year 1995. (YER)

• P: Real GDP deflator with base year 1995=100. (YED)

• M: M3 measure of money stock in millions of euros.28

• R: The nominal short-term interest rate. (STN)

• Ex: The nominal exchange rate (Euro/$). (EEN)

APPENDIX B. THE PRIORS

In this Appendix we specify the details of the priors used in the paper. First, we describe the priors on

Π, common to the three cases. Then, we described the priors on the parameters that differ across the three

cases.

The prior of the transition matrix,Π, takes a Dirichlet form as suggested by Chib (). For the kth column

of Π, πk, the prior density isπ(πk) = π(π1k, . . .πnk) ∝ πα1k−1
1k . . .παnk−1

nk . We chooseαi j for i, j = 1, . . . ,n

as described in Sims and Zha (2004a).

27Hence, we do not find any evidence of price puzzle.
28This variables is not included in the Area-wide Model (AWM) database. We obtain this variable from the reference series

on monetary aggregates reported by the ECB
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Now let us describe the priors on the parameters that differ across the three cases. Before proceeding,

we introduce a few new notations. Letςn be a column vector ofn ones. Let

A0 = [a1,0, . . . ,an,0],

wherea j,0 is an×1 vector of the form:

a j,0 = [a1, j,0, . . . ,an, j,0]
′ for all j.

Now let

ξ = [ξ1, . . . ,ξn] ,

whereξ j is ah×1 vector of the form:

ξ j =
[
ξ j (1), . . . ,ξ j (h)

]′
for all j.

Let

φ = [φ1, . . . ,φn] ,

whereφ j is anh×1 vector of the form:

φ j =
[
φ ′

j (1), . . . ,φ ′
j (h)

]′
, for all j,

whereφ j (k) is an×1 vector of the form:

φ j (k) =
[
φ1, j (k) , . . . ,φn, j (k)

]′
, for all k and all j.

Define also

d = [d
′
1, . . . ,d

′
n]
′,

whered j is am×1 vector of the form:

d j = [d
′
j,1, . . . ,d

′
j,p,c j ]

′ for all j,

whered j,ℓ is an×1 vector of the form:

d j,ℓ =
[
d1, j,ℓ, . . . ,dn, j,ℓ

]′
for all ℓ and all j.

Let

λ = [λ1, . . . ,λn] ,

whereλ j is anh×1 vector of the form:

λ j =
[
λ ′

j (1), . . . ,λ ′
j (h)

]′
for all j,

whereλ j (k) is an×1 vector of the form:

λ j (k) =
[
λ1, j (k) , . . . ,λn, j (k)

]′
for all j and allk.

Let

µ = [µ1, . . . ,µn] ,
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whereµ j is ah×1 vector of the form:

µ j =
[
µ j (1), . . . ,µ j (h)

]′
for all j.

Then we can write

a j,0 = Φ j
(
ξ j ⊗a j,0

)
,

where

Φ j = diag
({

Φ j (k)
}h

k=1

)

and

Φ j (k) = diag
({

φi, j (k)
}n

i=1

)
.

Finally, we can also write

d j = Λ j
(
ξ j ⊗d j

)
,

where

Λ j = diag
({

Λ j (k)
}h

k=1

)
,

Λ j (k) =

[
Ip⊗∆ j (k) 0np×1

01×np µ j (k)

]
,

and

∆ j (k) = diag
({

λi, j (k)
}n

i=1

)
.

We are now ready to specify the priors corresponding to Cases I–III. We begin with Case III and work

backward to Case I.

B.1. Case III. Let ξ j = ςh anda j,0 = ςn for all j, then

a j,0 = Φ jςhn = φ j for all j

and

d j = Λ j
(
ςh⊗d j

)
for all j.

Let now the priors on the contemporaneous parameters of the model,a j,0, be:

π
(
a j,0

)
= π

(
φ j

)
= ℵ

(
0,Ih⊗H j,0

)
for all j.

Since

φ j =
(
Ih⊗U j

)
b j , for all j,

that imply priors onb j of the form:

π
(
b j

)
= ℵ

(
0,H j,0

)
,

where

H j,0 =
(
U ′

j

(
Ih⊗H−1

j,0

)
U j

)−1
.

Let now the priors on the lagged and constant parameters of the model,d j , be:

π
(
d j

)
= ℵ

(
0,H j,+

)
for all j,
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π
(
λ j

)
= ℵ

(
0,(Ih⊗ In)σ2

λ
)

for all j,

and

π
(
µ j

)
= ℵ

(
0,Ih⊗σ2

µ

)
for all j.

B.2. Case II. Let φ j = ςn, λ j = ςnh, andµ j = 1 for all j, then

a j,0 = ξ j ⊗a j,0 for all j

and

d j = ξ j ⊗d j for all j.

Let now the priors on the contemporaneous parameters of the model,a j,0, be:

π
(
a j,0

)
= ℵ

(
0,H j,0

)
for all j.

Since

ξ j ⊗a j,0 =
(
Ih⊗U j

)
b j , for all j,

that imply priors onb j of the form:

π
(
b j |ξ j

)
= ℵ

(
0,H̃ j,0

)
,

where

H̃ j,0 = ϒ̃ j,h⊗
(
U ′

jH
−1
j,0U j

)−1
,

and

ϒ̃ j,h =




ξ j (1)2 ξ j (1)ξ j (2) . . . ξ j (1)ξ j (h)

ξ j (2)ξ j (1) ξ j (2)2 . . . ξ j (2)ξ j (h)
...

...
. . .

...

ξ j (h)ξ j (1) ξ j (h)ξ j (2) . . . ξ j (h)2




.

Let now the priors on the lagged and constant parameters of the model,d j , be:

π
(
d j

)
= ℵ

(
0,H j,+

)
for all j.

Finally, let priors onξ j (k) be defined overζ j (k) = ξ 2
j (k) as:

π
(
ζ j (k)

)
= Γ

(
αζ ,βζ

)
for all k and j.
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B.3. Case I. Let ξ j = ςh, φ j = ςn, λ j = ςnh, andµ j = 1 for all j, then

a j,0 = ςh⊗a j,0 for all j

and

d j = ςh⊗d j for all j.

Let now the priors on the contemporaneous parameters of the model,a j,0, be:

π
(
a j,0

)
= ℵ

(
0,H j,0

)
for all j.

Since

ςh⊗a j,0 =
(
Ih⊗U j

)
b j , for all j,

that imply priors onb j of the form:

π
(
b j

)
= ℵ

(
0,Ĥ j,0

)
,

where

Ĥ j,0 = ϒ̂ j,h⊗
(
U ′

jH
−1
j,0U j

)−1
,

and

ϒ̂ j,h =




1 1 . . . 1

1 1 . . . 1
...

...
.. .

...

1 1 . . . 1




.

Let now the priors on the lagged and constant parameters of the model,d j , be:

π
(
d j

)
= ℵ

(
0,H j,+

)
for all j.

APPENDIX C. PROOF OFTHEOREM 4

Proof. Let Yt andst . Using compact notation (2), model (1) implies the following conditional likelihood

function:

π
(
yt |Y

t−1,st ,b,d
)

∝ det|A0(st)|exp

[
−

1
2

(
y′tA0(st)−x′tA+ (st)

)(
y′tA0(st)−x′tA+ (st)

)′
]
. (A1)

Now, let

Ht = x′txt ,

Pt = H−1
t x′tyt ,

and

St = y′tyt −P
′

t HtPt .
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Note now that we rewrite the right hand side of (A1) as:

det|A0(st)|exp

[
−

1
2

y′tA0(st)A′
0(st)yt −2y′tA0(st)A′

+ (st)xt +x′tA+ (st)A′
+ (st)xt

]
=

det|A0|exp

[
−

1
2

n

∑
j=1

(
y′ta j,0(st)

)(
a′j,0(st)yt

)
−2

(
y′ta j,0(st)

)(
a′j,+ (st)xt

)
+

(
x′ta j,+ (st)

)(
a′j,+ (st)xt

)
]

=

det|A0(st)|exp

[
−

1
2

n

∑
j=1

(
a′j,0(st)yt

)(
y′ta j,0(st)

)
−2

(
a j,+ (st)

′ xt
)(

y′ta j,0(st)
)
+

(
a′j,+ (st)xt

)(
x′ta j,+ (st)

)
]

=

det|A0(st)|exp

[
−

1
2

n

∑
j=1

a′j,0(st)y′tyta j,0(st)−2aj,+ (st)
′ x′tyta j,0(st)+a′j,0(st)x′txta j,0(st)

]
.

Then

π
(
yt |Y

t−1,st ,θi
)

∝ det|A0(st)|exp

[
−

1
2

n

∑
j=1

a′j,0(st)Sta j,0(st)

]

exp

[
−

1
2

n

∑
j=1

(
a j,+ (st)−Pta j,0(st)

)′
Ht

(
a j,+ (st)−Pta j,0(st)

)
]

But equation (8) implies thata j,+ (st) = d j (st)+Saj,0(st), then

π
(
yt |Y

t−1,st ,θi
)

∝ det|A0(st)|exp

[
−

1
2

n

∑
j=1

b′j (st)U ′
jStU jb j (st)

]

exp

[
−

1
2

n

∑
j=1

(
d j (st)+

(
S−Pt

)
U jb j (st)

)′
Ht

(
d j (st)+

(
S−Pt

)
U jb j (st)

)
]

Finally, note that relationship (7) implies:

det|A0(st)| = det
∣∣[a1,0(st) . . .an,0(st)]

∣∣ = det| [U1b1(st) . . .Unbn(st)]| .

�

APPENDIX D. PROOF OFTHEOREMS2, 3, AND 7

D.1. Definition of Exact Identification in SVARs. We follow Rothenberg (1971) in defining global and

local identification. In the general discussion that follows, we require that the reduced form system be

globally identified. For the systems under consideration here, some non-colinearity condition must be

imposed on the variablezt . For instance, one could assume that fort ≥ m the matrix[y1 · · ·yt ] is of full

rank with positive probability. We are not concerned with the particulars of distributions of thezt , so we

simply assume that the reduced form system is globally identified.

There are two conflicting conditions in the notion of exact identification. First, there should be enough

restrictions so that the system is globally identified. On the other hand, there should be few enough restric-

tions so that the reduced form specification remains unconstrained. This is formalized in the following

definition.
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Definition 10. A SVAR with linear restrictions given by?? is just identified if and only if for every

reduced form parameter(B,Σ), except perhaps on a set of measure zero, there exists exactly 2n structural

parameters(A0,A+) with B = A+A−1
0 andΣ =

(
A0A′

0

)−1
that satisfies the restrictions.

Because the reduced form system is assumed to be globally identified, if two structural parameters

(A0,A+) and
(
Ã0, Ã+

)
are observationally equivalent then they must map to the same reduced form para-

meter(B,Σ). Thus the definition implies that the restricted structural system is globally identified, except

on a set of measure zero29. On the other hand, since almost all reduced form parameters correspond to

some restricted structural parameters, the reduced form parameters are not constrained by the restrictions

on the structural parameters. For SVARs, allowing for exceptional behavior on a set of measure zero is

important. If this exception were not allowed, then the only linear restrictions that would result in exact

identification would be those that are recursive.

Finally, the issue of normalization must be addressed. For linear restrictions of the kind described in

this paper, changing the sign of a column ofA0 andA+ has no effect on whether or not the restrictions are

satisfied.

Lemma11. For 1≤ i ≤ k ≤ n, letVi be a subspace ofRn. If for every invertiblen×n matrix A, there

exists an orthonormal set{v1, · · · ,vk} in R
n such thatvi ∈ AVi, then there exists aj with 1 ≤ j ≤ k and

dim(Vi) ≥ k.

Proof. Given a subspaceW of R
n andε ∈ R, let AW,ε be the linear transformation that fixesW and maps

eachu in the perpendicular component ofW to εu. If dim(Vi) < k for 1≤ i ≤ k, then using the following

three statements aW andε > 0 can be constructed such thatAW,ε violates the conditions of the lemma.

So it suffices to prove the following.

(1) If dim(Vi) < k, then there exists a subspace subspaceU of R
n of dimensionn− k+ 1 such that

U ∩Vi = {0}.

(2) LetW be ak−1 dimensional subspace ofR
n. There exists aδ > 0 such that there cannot bek

orthonormal vectors in the set

SW,δ = {w+u∈ R
n |w∈W and‖u‖ < δ} .

(3) LetU andV be subspaces ofR
n such thatU ∩V = {0} and letW be the perpendicular complement

of U . For everyδ > 0 there exists aγ > 0 such that for allε < γ if v∈ AW,εV and‖v‖ = 1, then

v∈ SW,δ .

(1) If dim(Vi) < k ≤ n, then eachVi is of measure zero inRn, as will be the union of theVi. So

there exists au1 that is not contained in anyVi. If k = n, then the one dimensional subspace generated

29If S1 is the set of all(B,Σ) such that exists exactly one structural parameter(A0,A+) with B = A+A−1
0 andΣ = (A0A′

0)
−1

that satisfies the restrictions, then the complement ofS1 is assumed to be of measure zero. LetS2 be the set of all structural

parameters(A0,A+) such that the reduced form parameters
(

A+A−1
0 ,(A0A′

0)
−1

)
is in the complement ofS1. It can be shown

that the measure ofS2 is zero.
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by u1 is the required subspace. Ifk < n, then letṼi be the subspace generated byVi andu1. Since

dim
(
Ṽi

)
< k+1≤ n, by the same measure argument as before, there will exist au2 that is not contained

in the union of theṼi. If k = n− 2, then the two dimensional subspace generated byu1 andu2 is the

required subspace. This argument can be continued until a basisu1, · · · ,un−k+1 has been constructed for

the required subspace.

(2) Suppose there werev1, · · · ,vk in SW,δ that were orthonormal. Since thev are inSW,δ , write vi =

wi + ui wherewi ∈ W and‖ui‖ < δ . Let X be then× k matrix
[

w1 · · · wk

]
and letY be then× k

matrix
[

v1 · · · vk

]
. Because thew are in ak−1 dimensional space, the matrixX′X is singular and

because thev are orthonormal,Y′Y is thek×k identity matrix. Becauseδ can be chosen arbitrarily small,

X′X can be made to be arbitrarily close to the identity matrix, which is a contradiction.

(3) If this were not true, then there would exist aδ > 0 and sequence ofvi andεi such that theεi tend to

zero andvi ∈ AW,εiV, ‖vi‖ = 1, andvi /∈ SW,δ . BecauseU andW are perpendicular components,vi can be

uniquely written asvi = ui +wi whereui ∈U andwi ∈W. Since‖vi‖ = 1 andui andwi are orthogonal,

‖wi‖ ≤ 1. Sincevi /∈ SW,δ , ‖ui‖> δ . Sincevi ∈ AW,εiV, 1
εi

ui +wi ∈V. Dividing by the norm, we see that

ui + εiwi√
‖ui‖

2 + ε2
i ‖wi‖

2
∈V

Since this is a bounded sequence, some subsequence must converge. Since‖ui‖ is bounded away from

zero,‖wi‖ is bounded above, andV is closed, the convergent subsequence must converge to a non-zero

element ofU ∩V, which is a contradiction. �

Theorem12. For 1≤ i ≤ k≤ n, letVi be a subspace ofRn. The following statements are equivalent.

(1) For every invertiblen×n matrixA there exists an orthonormal set{v1, · · · ,vk} such thatvi ∈ AVi.

(2) There exists a permutationσ of {1,· · · ,k} such that dim
(
Vσ(i)

)
≥ i.

Proof. (1) =⇒ (2). Proceed by finite induction onk. Whenk = 1, the result is trivially true. Now

suppose that(1) =⇒ (2) for somek < n. Let(V1, · · · ,Vk+1) be subspaces such that (1) holds. By Lemma

(11), we know that there exists aj with 1≤ j ≤ k+1 and dim
(
Vj

)
≥ k+1. Without loss of generality,

assume thatj = k+1. Since (1) holds for(V1, · · · ,Vk+1), (1) will also hold for(V1, · · · ,Vk). This implies

that there exists a permutationσ of {1,· · · ,k} such that dim
(
Vσ(i)

)
≥ i. This combined with the fact that

dim(Vk+1) ≥ k+1 shows that (2) holds.

(2) =⇒ (1). Assume that (2) holds and letA be any invertiblen×n matrix. Since dim
(
AVσ(1)

)
≥ 1,

there exists a vectorvσ(1) ∈ AVσ(1) of unit length. Now suppose that an orthonormal set
{

vσ(1), · · · ,vσ( j)
}

has been chosen so thatvσ(i) ∈AVσ(i). LetU be then− j dimensional subspace ofR
n consisting of vectors

orthogonal to
{

vσ(1), · · · ,vσ( j)
}

. Since dim
(
AVσ( j+1)

)
≥ j +1, the intersection ofU andAVσ( j+1) contains

a non-zero vector. Letvσ( j+1) be any element ofU ∩AVσ( j+1) of unit length. Then
{

vσ(1), · · · ,vσ( j+1)

}

is a set of orthonormal vectors withvσ(i) ∈ AVσ(i). So (1) holds. �

Corollary 13. For 1≤ i ≤ n≤ m, letei be theith column of then×n identity matrix and letQi be a matrix

with mcolumns. LetX be a full rankm×n matrix. The following are equivalent.
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(1′) For every investablen×n matrixA there exists an×n orthogonal matrixP such thatQiXAPei = 0.

(2′) There exist a permutationσ of {1,· · · ,n} such thatrank
(
Qσ(i)

)
≤ n− i.

Proof. The corollary a simple restatement of Theorem 12 whenk = n. If

Vi = {v∈ R
n |QiXv= 0} ,

then, dim(Vi) = n− rank(QiX) ≥ n− rank(Qi) ≥ i. So (2′) is equivalent to (2) of Theorem 12. Since

QiXAPei = 0 if and only ifPei ∈ A−1Vi, (1′) is equivalent to (1). �

Theorem?? follows easily from the corollary by noting that sinceX (A(L)) is a surjection, if the system

is not over identified then (1) will hold for all full rankm×n matrices.

Proof. It can be shown thatX(A0P,A+P) = X(A0,A+)P. So

P1X(A0P,A+P)P2 = P1X(A0,A+)PP2

= TLP3P′
3P′

2P2 = TL

which implies that the rotated parameters(A0P,A+P) satisfy the restrictions. �
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