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PRELIMINARY AND INCOMPLETE

ABSTRACT. This paper studies whether Euro area monetary policy changed after the introduction of the Eu-
ropean Monetary Union (EMU). To do that we consider vector autoregression (VAR) models that allows for
regime switching in coefficients and variances and we estimate them using post-1970 Euro data. Our em-
pirical results overwhelmingly support regime changes in shock variances instead of changes in coefficients.
These results are robust to different identifications schemes. We also find that monetary shocks generate the
liquidity effect and have significant effects on output. These results are robust to different identifications and
different regimes.

I. INTRODUCTION

This paper studies whether Euro area monetary policy chaafgedthe introduction of the European
Monetary Union (EMU). To do that we consider vector autoregression (VAR) models that allow for regime
switching in coefficients and variances and we estimate them using post-1970 Euro area data.

The process towards the EMU was initiated more than 25 years ago. In March 1979, the Europec
Monetary System (EMS) started operating, with the objectives of reducing inflation and preparing fol
monetary integration. Ten years later the Delors Report set out a plan to introduce EMU over three stage
The first stage (increasing cooperation among Euro area central banks) was launched in 1990. In Janu
1994, the second stage began with the establishment of the European Monetary Institute (EMI) as tt
forerunner to the European Central Bank (ECB). Finally, in January 1999 stage three started. The eu
became the single currency for the member states of the Euro area and a single monetary policy w
introduced under the authority of the (ECB).

Date: March 30, 2005.

We thank Fabio Canova, Jon Faust and Harald Uhlig for helpful discussions. Eric Wang provided excellent research assi
tance. The views expressed herein are those of the authors and not necessarily those of the Federal Reserve Bank of Atlant
the Federal Reserve System.



METHODS AND APPLICATIONS 2

We have observed that in the last decade annual inflation has been under 5 percent (it was well abc
10 percent in the late 70’s and early 80’s), the volatility of output has decreased (while maintaining its
average annual growth rate), and short term nominal interest rates have been at a record low.

The coincidence of both events (introduction of the EMU and lower volatility of prices and output)
drives us to ask the following questions: Is the decrease in volatility linked to: (1) a change in the Eurc
area monetary policy? (2) a change in the actions of the private sector?, or (3) a decrease in the volatili
of shocks hitting the economy?

A researcher giving an affirmative answer to the first inquiry could argue that monetary policy has bee
able to better manage the effects of shocks in the Euro economy since the early 90’s. Alternatively,
researcher giving a positive answer to the second question could claim that some type of financial inn
vation has allowed private agents to better handle the shocks. But these are not the only two possit
explanations. A researcher giving an affirmative response to the third query could maintain that shock
hitting the Euro area have been less volatile in the last decade.

In order to shed some light on this debate some research has been done. Peersman and Smets (2
identified a structural VAR for the Euro area from 1980 until 1998. Using a Chow test, they show that the
overall macroeconomic effects of a monetary policy are stable over time. Ciccarelli and Rebucci (2003
use an heterogenous time-varying panel VAR model to analyze the monetary transmission mechanis
across countries and time. They find that the transmission mechanism changed in the second part of
90s. Using post-1999 data, Angeloni and Ehrmann (2003) find evidence that the monetary transmissic
mechanism has become more potent and homogeneous across countries because of the EMU. De Bc
(2002) presents an error-correction model of the interest rate pass-through process for the Euro area. Us
pre- and post-1999 data finds a quicker pass-through process since the introduction of the euro.

We see two potential problems with theses approaches. First, most of them (expect Ciccarelli ar
Rebucci, 2003) do not consider time-varying parameter models. Instead, they use pre- and post-EMU de
and search for a structural break. Second, none of the mentioned papers considers time-varying volatili

Dividing the sample in pre- and post-EMU data amplifies the small sample problems associated with
short sample. In addition, structural break analysis rest on the assumption that the probability of a regin
change is either one or zero. An event as institutionally complicated as the effects of the EMU on monetat
policy should not be modelled as a discrete one. Taking into account that the probability of such event me
be between zero and one is crucial. Finally, Sims and Zha (2004b) remark how important it is to conside
heteroscedastic shocks when studying regime switching models. Assuming constant volatility may big
the results towards finding changes in parameters.

In order to solve these shortcomings we build on Sims and Zha (2004b). We identify monetary polic
and private sector behaviors in VARs that allow for regime switching in both coefficients and variances
using a Bayesian approach. A crucial feature of our approach is that regimes are modelled as outcomes
a hidden Markov chain. Thus, all the regimes can have positive probability at any moment in time . We
contemplate four cases of regime switching: (1) no regime switching (i.e., a standard constant-paramet
VAR), (2) regime switching in variances only, (3) regime switching in the monetary policy coefficients
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and variances, and (4) regime switching in the private sector coefficients and variances. Then, we use t
posterior odds ratio to choose the regime switching case and the number of regimes that fits the data be

There are two main novelties in our approach. The first newness is with respect to Sims and Zh
(2004b), while the second innovation is technical. We improve with respect to Sims and Zha (2004b) ir
that we identify monetary policy and private sector behaviors using four different schemes. This will allow
us to check the robustness of our results. The first identification uses a standard ordering as in Christiar
Eichenbaum and Evans (1996). Secondly, we isolate the economic shocks following the strategy describ
in Gordon and Leeper (1994) and Sims and Zha (2004b). Third, we impose the long-run restriction
introduced by Blanchard and Quah (1993) and Gali (1999). Finally, we use sign restrictions as propose
by Faust (1998), Canova and De Nicol6 (2002), and Uhlig (forthcoming).

The technical innovation relates to how some of the identification schemes are implemented. Some
these identification schemes are computationally demanding, hence we develop new algorithms to impl
ment them efficiently. Our methods are not only easy to use, but also take little computational time relativ
to the existing algorithms.

On the other hand, our methodology is not without problems. First, we use aggregated data for th
Euro are! This can only be done under the assumption of homogeneity across countries of both monetal
policy and monetary policy effects. Several authors have argued that the Euro area monetary transmissi
process is uneven across countries. Cecchetti (2001) argues that legal differences between countries cr
asymmetries in the response to policy among Euro area countries. Mihov (2001) provided econometr
evidence in support of this conclusion. Kieler and Saarenheimo (1998), Guiso et al. (1999) and Angelon
Kashyap and Mojon (2003) have shown, on the other hand, that such differences are not robust to chang
in empirical methodology and data. Also, in a recent article, Peersman (2004) shows that the effects
monetary policy are relatively uniform across the whole Euro area.

Second, our model is not microfounded. A bigger challenge seems to be the construction of mode
of the Euro area, with proper microfoundation and a realistic characterisation of the transmission proces
Smets and Wouters (2003) have confronted such a challenge DSGE model can fit the data better that c
stant parameter VARs. Our results indicate that VAR models with time-varying parameters and variance
should replace the traditional constant-parameter VARSs as a benchmark to gauge how well a DSGE moc
fits the data. Therefore, the next step should be to build and estimate a DSGE with time-varying paramete
and variances.

Our main findings are as follows. First, the posterior odds ratio overwhelmingly favors two regimes in
the post-1970 Euro economy. This result holds for the four identifications used in this paper. Second, mo
of regime change is reflected in the variances of VAR disturbances. Thus, VAR models with time-varying
shock variances should replace the traditional constant-parameter VARs as a benchmark to gauge h
well a DSGE model fits the data. Contrary to the results produced by the constant-parameter VARS, tt

Yn particular, we use the "synthetic" data for the Euro area constructed by The Econometric Modeling Unit at the ECB. Se
Fagan, Henry, and Mestre (forthcoming) for details.
2See Fernandez-Villaverde et. al., 2005, for details
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models with time-varying shock variances imply large uncertainty across identifications about the effec
of monetary policy shocks on the general price level. But both the liquidity effect and the output effect in
response to a monetary policy shock are significant.

The rest of the paper is organized as follows. Section Il lays out the general framework. Section Il
reviews the four popular identification strategies and develops new methods to implement some of the:
strategies. Detailed proofs of some theorems are provided in appendices. Section IV applies our methc
to the Euro economy and discusses the key robust findings. Section V concludes the paper.

[I. GENERAL FRAMEWORK

In this section we present a framework to investigate whelfueo area monetary policy changed af-
ter the introduction of the European Monetary Union (EMU). First, we present time-varying parameters
structural VAR model (SVAR). Second, we portray the reduced-form VAR implied by the structural model.
Third, we introduce a class of linear restrictions on contemporaneous parameters of the SVAR that can |
used to identify monetary policy and private sector behaviors. Fourth, we write the likelihood function of
the identified SVAR. Fifth, we define the priors. Finally, we present the posterior distributions and show
how to draw from them.

II.L1. The Structural Model. Here, we present a model to estimate changes in the Euro area monetary
policy. Following Hamilton (1989) and Sims and Zha (?), we use time-varying parameters SVAR that
allows us to identify monetary authority and private sector behaviors. The structural VAR is as follows:

p
s/tAo(st):glw,gAg(st)wc(st)H(, t=1,....T. (1)

whereT is the sample sizey is the number of states, argle {1,...,h} is the state of the econ-
omy at timet. s follows a Markov chain with the transition probability matiikx= [z, ..., 7] where
m = [m,...,m;] andmj = m(i| j), whereri| j) is the probability that equalsi given thats_; was
equal toj. Ap(s) is ann x n contemporaneous parameter matrix when the state of the econemp is
the lag lengthA, (%) is ann x nlag ¢ parameter matrix when the state of the econonyy,iandC(s) is a
1 x nvector of constant parameters when the state of the econamyiss ann x 1 vector of endogenous
variables at time, z = 1 for all t3, & is ann x 1 vector of structural shocks at tinbeg; is i.i.d. normally
distributed with mean 0 and covariance matfxThe initial conditionsyp,--- ,y1_p, are taken as given.

Now we provide some definitions that will be useful in the rest of the paper. Let
Ao=[Ao(1),...,A0(h)]
and
AL =TAL (1), Ap(h)T

Sitis straightforward to include other exogenous variables in our framework.
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where
Al (k) = [Al(k)lv"'vAp (k)/,C(k)/],
fork=1,...,h.

Also let
ajo=[aj0(1),...,a;0(h)7]

be thej™ column ofAq and

aj+ = [aj,+ (1)/a---,aj,+ (hy)

be thej" column ofA,, where
aj+ (k) =[aj1.+K),...,a)p+(K),cj (k)
fork=1,...,handj=1,...,n.

Finally, if we define
X = [)/t—la e 7y{—p7zﬂl
then (1) can be compactly written as:

}/tAO(St):X{A‘F(S[)_Fst/?t:lw"?T' (2)

II.2. The Reduced-Form Representation and the Impulse Response Function§he reduced-form
representation implied by the structural model (2) is as follows:

Yt =%B(s)+u(s), t=1,....T. (3
where
B(s) =A: (5)A (3).
U (2) = &A (%),
and

forgs=1,....,handt=1,... T.
Let us now consider the impulse response functions. First, let us define:

B(k)=[B1(K)',...,Bp(K)",Bo(K) T’

fork=1,...,h.
Let the state bé, then the impulse responseyef , to shock is:
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W, (k) = a;’tut"

fork=1,...,h, whereW, (k), for v > 0, solves the following system of equations:

Wy (k) = By (k) Wy_1(k) + B3 (K) Wy 2 (K) + ...+ By (k) Wy _p (k) 4)
with Wo (K) = I, andW, (k) =0if v <Ofork=1,...,h.
Now letP be an orthogonal matrix and let the reduced-form representation impliegy) P, A, (k)P)
be:

Yi=XBM+G (K, t=1,..T (5)
and the impulse responseyef , to shocku; be:

LTJv (k) = a{)}'/t&:v

fork=1,...,h.

It can be shown tha (k) = B (k) and¥, (k) = W, (k)P fork=1,...,hand allv > 0.

Therefore, the reduced-form representation impliedAyk), A, (k)) and(Ao(k)P, A (k)P) are identi-
cal. Hence, the structural models implied [#(K), A+ (k)) and(Aq(K)P, A+ (k)P) would share the likeli-
hood function and be observationally equivalent. On the other hand,q;mﬁe # W, (k), the reduced-
form representation implied bjAo(k), A+ (k)) and(Ao(k)P, A (k)P) does not share the impulse response
functions. Finally, note, that in order to compute the impulse responses implied by (3), we onB (k¢ed
andAg (k) fork=1,...h.

I1.3. Identifying Restrictions. Without restrictions the structural system (2) would not be identifieB. If
is an orthogonal matrix, the reduced-form representation impligd\pik), A (k)) and(Ag(K)P, A+ (k)P)
would be identical. Therefore, the structural models implied(Ay(k),A. (k)) and (Ag(k)P, A+ (k)P)
would be observationally equivalent. In this section we define a class of linear restrictions impdggd on

Forj=1,...,nandk=1,...,h, let theq; x n matrix Q;, whereq; < n, define the; restrictions over
the elements o o(k) such as

Qjajo(k) =0 (6)

and letU; be then x g; matrix whose columns form the orthonormal basis for the null spacq.ofhen,
Qjajo(k) =0ifand only if3 aqj x 1 vectorbj(k) such that

aj.0(k) = Ujbj(k). ()
Finally, for j=1,...,n, let
bj = [bj (1)/7' Y (h)/]la
b=[by,...,bn,]
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and
U=I[Uj,...,u.

Note the following three points. First, any setagfp(k) andQj for j=1,...,nandk=1,... himplies
asetofU; andbj(k) for j =1,...,nandk=1,...,hand vice versa. Therefore, it is equivalent to defining
the linear restrictions using eithaj o(k) andQ; or Uj andbj(k). This implies that we can evaluate the
likelihood function either usin@; anda; o(k) or U; andbj (k). As it will be clear in the next section, we
follow the second approach.

Second, any identification scheme defined as exclusion restrictions on the contemporaneous parame
belongs to this class of linear restrictions. For example, if we let3, the exclusion restrictions iden-
tification scheme described by a lower triangular matrix is characterized by the following Qgtfof
j=1....3:

QL= [(0,1,0)/, (0’071)/]/
QZ = [(07071)/]/

Finally, if P is an orthogonal matrix, in general, it would not be the case@at o(k)P = 0 holds. In
fact, if the model is exactly identified, for any matrg(k), there is a uniqu® such thaQ; aj o(k)P =0
holds. We show these results in the following subsection.

II.4. Normalization. Because linear restrictions do not uniquely determine the sign of any equation, a
SVAR with linear restrictions cannot be globally identified. A normalization rule is need in addition
to the linear restrictions. There are many different normalization rules and we follow the one defined ir
Waggoner and Zha (2003b). As was pointed out in that paper, the choice of normalization rule is importar
particularly with respect to inferences concerning impulse responses. However, the theory developed
this paper will work for any choice of normalization rule as long as for any set of parameters the rule
uniquely determines a choice of sign for each equation in the system.

At the same time, for Markov switching models, any permutation of the states will result in an observa:
tionally equivalent set of parameters. So as with SVARs, a normalization rule for determining the naming
of the states is required. We follow the Wald normalization as described in Hamilton, Waggoner, and Zh
(2003). As for the normalization rule for the SVAR, the theory developed in this paper will work for any
choice of normalization as long as for any set of parameters the rule uniquely determines a choice f
the naming of the states. We shall implicitly assume that all of our Markov switching SVAR models are
normalized concerning both the signs of the impulse response functions and the naming of the states.

I1.5. Is the Model Exactly Identified? An important question when dealing with SVAR is to know if the
set of restrictions characterized by (6) exactly identifies the SVAR. Let us first define what we mean by
SVAR with linear restrictions given by (6) to be exactly identified.

Definition 1. A SVAR with linear restrictions given by (6) is exactly identified if and only if for every
reduced form parametéB (k), >(k)), except perhaps on a set of measure zero, and for &ery, ... h
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there exists a unique seAg(K), A, (k)), whereB(k) = A, (k)Ag(k) "t andZ (k) = (Ao(k)Ao(k)’)’l, such
that satisfies the restrictions.

Rothenberg (1971) gives a necessary condition for exact identification, which rexqired) /2 re-
strictions. However, Rothenberg’s (1971) condition is not suffictéfe following theorem 2 gives us a
necessary and sufficient condition for the SVAR system to be exactly identified.

Theorem2. A SVAR with linear restrictions given by (6) is exactly identified if and only if there exists a
permutationo of {1,---,n} such tharank(Qg;)) = n—i.

Proof. The proof is provided in Appendix D. O

Theorem 2 allows us to check if the SVAR is exactly identified. The next theorem tell us how to find
such an identification.

Theorem3. A SVAR with linear restrictions given by (6) is exactly identified if and only if for al-
most all values of the structural parametgtg(k), A, (k)), such thaB(k) = A, (k)Ag(k)~t andZ(k) =
(Ao(K)Ag(K)") %, there exists the unique orthogonal maRik) such thatAg(k)P (k), A (k)P (K)) satisfies
the identifying restrictions in the form of (6).

Proof. The proof is provided in Appendix D. O

Theorem 3 implies that if restrictions described by (6) exactly identify the SVAR, then we can find a
uniqueP (k), such thatAo (k)P (k), A (k)P(k)) satisfies the identifying restrictions for any é8g(k), A (k))
such thaB(k) = A, (K)Ag(k)~* andX (k) = (Ao(k)Ao(k)’)_l. Thus, we can always start with a recursive
framework and then fin@ (k) such that{ Ag(k)P(k), A+ (k)P (K)) satisfies (6).

The final question is how to find suchPgk) for k= 1,... h. In subsection Ill.3 we show how to find
P(k) fork=1,... ,hfor SVARs exactly identified using short-run and long-run restrictions.

I1.6. The Likelihood Function. In this section we describe how to evaluate the likelihood for the time-
varying parameters SVAR defined by (2) and identified using the class of linear restrictions just describe
in section 11.3. We first define:

d; (k) = aj,+ (k) =Sg0(k), (8)

fork=1,...,handj=1,...,n, where
S= [Ir/1><nvol(

mfn)xn]/

Now let

forj=1,...,n.

4See Sims and Zha (1999) for a counter example.
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Finally, let
d=[d,...,dn).

Note that anydg andd imply a matrixA. Therefore, for any giveld, the matriced andd imply the
matricesAg andA.. Thus, we can write the likelihood function either usigandA, or b andd. We
choose the first option.

Now, if we define

Y'=|y;...yt]’, and

for all t we can write the following theorem.

Theoremd. Given the restriction matrikl, the conditional likelihood functiorv;r(yt|Y‘*1,st, b,d), IS

1 n
m(yi[Y'" 1 s,b,d) O det| [Uibi(s)...Unbn(s)]| exp ~5 > b (s)U{SUjb; (St)]
=

12 _
—5 Y (di(s)+ (S-R)Ujbj () Hr (dj (8) + (S—R) Ujb; (St))] :
=1
where
Ht - Xil:xtv
= Htilxéyh
and
S =yt —RHR.
Proof. The proof is given in Appendix C. 0J

Following Kim and Nelson (), we can write the likelihood functimiYr |b,d).

Corollary 5. Given the restriction matri, the likelihood functionn(YT\b,d, I‘I), is:

h

(YT |b,d, M) O r!{ Z [(ye Y1, s, b,d) Pris Y b,d,l‘l)]}

where
h
Pr(& |Yt_1a bada I_I) = z 7T(St |&,1) Pr(stfl|Yt_17 bvdv I_I)
s=1

and Pr&_1|Y'1,b,d, M) is updated using the Bayes rile.

SWe initialize the system setting Rg(Y,b,d, M) = Pr(so|b,d,M) = 1/h



METHODS AND APPLICATIONS 10

II.7. Priors: Modelling Regimes. If we let all the parameters vary across regimeandd can be es-
timated independently across regimes. Therefore, we could use the methods by Chib (1996) and Sir
(1999) to perform the model estimation. The problem is that a VAR with four to seven endogenous
variables and one-year lag length would suffer the over-parameterization problems associated with fe
degrees of freedom. Hence, we define three set of priors that restrict the variation of parameters acrc
regimes. First, we consider priors that impose constant parameters model, i.e., no cross-regime variatic
Second, we contemplate priors which only allow for variances to change across regimes. Finally, we als
use priors that imply that both parameters and variances can change across regimes. The actual priors
each of the cases are defined in Appendix B. In this section we just highlight the main differences amon
the three set of priors and their implications for cross-regime variation. In order to do that we first rewrite
the parameters defining model (1) in the following way:

aijo(k) =2 j0& (K @k,

di,j.e (k) = di je& (k) Aij (K),
and
¢j (k) =¢jgj (k) pj (k)
fori,j=1,...,nandk=1,...,h. Notice that writing the parameters this way already imposes a re-
striction on cross-regime variation. We restrict the cross-regime variatidrswice we do not allow for
variation between lags (i.e(¢ j (k) = d; j » (k) for ¢/,£=1,...,p)). This restriction is common to the
three cases considered here.

e Case I: Constant Parameters Priors. These priors impfigk) = 1, @ j(k) = 1, A j(k) = 1, and
pj(k)=1fori,j=1,....,nandk = 1,....h. Thereforeg; j o(k) =@ jo(k), di (k) = di (k)
andcj (k) =c; fori, j=1,...,nandk=1,...,h. This case corresponds to the constant-parameters
VARs widely used in the literature.

e Case Il: Regime-Varying Variances Priors. These priors impagek) = 1, Ai j(k) = 1m and
pj(k) =1 fori,j=1,....,nandk = 1,...,h. Therefore, we can writg; j o (k) = & joéj (K),
di.jc (k) =di ;& k), andcj (k) = ¢;j&j (k) fori,j =1,....nandk = 1,...,h. These priors im-
ply that structural equations in model 1 are proportional across regimes. These priors also impl
that the reduced-form parameters are constant across regimég(k)e= B(k') for all k, k’, while
the variances of vary across regimes.

e Case lll: Regime-Varying Variances and Parameters Priors. These priors imfygdse= 1 and
ajo=1fori,j=1,....,nandk=1,....h. Therefores; j o (k) = @.j (K), di ¢ (K) = di j sAi j (K),
andc;j (k) =¢j (k) yj (k) fori, j=1,...,nandk=1,...,h. These set of priors imply that structural
equations in model 1 move freely across regimes, with the only restriction that they do not chang
across lags. These priors also imply that the reduced-form parameters and variances change acr

regimes.
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Given that our priors are defined over columnsAgtk) andA. (k), we can always mix cases Il and
lll. For example, we can specify priors such that a set of columm&y) and A, (k) follows case Il,
while the rest of the columns &(k) andA, (k) follow case Ill. Given that the columns of our SVAR
(see equation (1)) are structural equations, mixing cases Il and Il imply that we have structural equatior
with only regime-varying variances (case Il) and structural equations with both regime-varying variance
and regime-varying parameters (case lll).

11.8. Posterior. Sections I1.6 and 11.7 describe the likelihood function of model (1) and the three sets of
prior distributions that we use in this paper. Since our priors restrict the variability of parameters acros
regimes, we cannot use the methods developed by Hamilton (1989) and Chib (1996). Instead we use t
method described in Sims and Zha (2004a). Because of space considerations we refer the reader to S
and Zha (2004a) for a detailed discussion of the posterior distributions implied by prior cases I-1ll anc
how to draw from them. Suffices to say that we are interested in the following posterior distributions:

m(S'IYT,b,d, @A, u,M)
m(N|YT,b,d, @,A,u,S")
(@, A, uYT,b,d, ST, M)
m(blYT.d, @, A, u, ST, M)

Y

whereS" = (s,...,sr) andd, @, A, andu are defined in appendix B, and we use standard McMc to
draw from these posterior distributions and the modified harmonic mean (MHM), described in Gelfanc
and Dey (1994), to compute the marginal likelihood.

[1l. | DENTIFICATION SCHEMES

The general framework described in section Il allows us tesmhar various identification schemes. We
use four popular identification strategies. First we use a recursive scheme as in Christiano, Eichenbau
and Evans (1996). Second, we use a non-recursive method as in Gordon and Leeper (1994) and Sim
and Zha (2004b). Third, we identify shocks using long-run restrictions as in Blanchard and Quah (1993
and Gali (1992). Finally, we use sign restrictions as in Faust (1998), Canova and De Nicol6 (2002), an
Uhlig (forthcoming). The first two identification methods can be summarized as linear restrictions on
Ao(k) for k =1,...;h, while the two last cannot. Therefore, the first two identification schemes can be
directly mapped into the framework described in section Il. In this section, we show how the last two car
be derived from a recursive identification scheme, hence we can also use the methods described in sect
Il to analyze them. The fact that we can consider four different identification schemes will be important
to check the robustness of our results.

6SVARSs identified using this scheme we will be sometimes called triangular systems.
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Fed|Inf | MD | PS| PS

Y | X X 0 | x| x

Pl x X 0O | x| O

R| x | x X 0|0

M| x X X 0|0

Ex| O | x| O | 0] O
TABLE 1. Identification Scheme for “GLSZ”

It is also important to note that both sign and long run restrictions are computationally demanding. W
develop new methods to implement them efficiently. Our methods are not only easy to use, but also tal
little computational time relative to the existing methods.

lll.1. CEE Identification. In an influential paper, Christiano, Eichenbaum, and Evans (1996) propose
a recursive identification strategy to identify monetary policy. We call this identification “CEE”. They
assumey(k) to be a triangular system fér=1,...,h. Our, VAR identified using “CEE”, includes output

(Y), output deflator (P), nominal short-term interest rate (R), M3 (M), and Euro/dollar exchange rafe (Ex).
Since in this identification scheme the order of variables matters, we follow Christiano, Eichenbaum, an
Evans and order the variables in the following way: Y, P, R, M, and Ex. Hence, a structural shock to outpu
will only affect output, a structural shock to inflation will affect output and inflation, etc. Using theorem 2
it can be checked the this SVAR is exactly identified.

[11.2. GLSZ Identification. Gordon and Leeper (1994) and Sims and Zha (2004b) propose another iden-
tification strategy. We call this identification “GLSZ". Their identification focuses on the interpretation
of the structural equations themselves. In particular, they separate the monetary policy equation from tt
money demand equations and other non-policy equations. The restrictions used to achieve such ider
fication typically require simultaneous (non-recursive) relationships between the financial variables like
the interest rate and money. We use the same variables used in “CEE”". The identification is describe
in Table 1. An X in Table 1 indicates unrestricted parameter&ifk) for all k = 1,...h and the blank
spaces indicate the parameters that are restricted to be zero. The “Fed” column in Table XX represer
the Federal Reserve contemporaneous behavior, the “Inf” column describes the financial sector, the “ML
represents the money demand equation, and the block consisting of the last two columns represents
production sector, whose variables are arbitrarily ordered in an upper triangular form. Using theorem 2
can be proved that the this SVAR is over-identified.

[11.3. BGQ Identification. In a seminal work Blanchard and Quah (1993) propose to use restrictions
on the long-run impulse responses to achieve exact identification of a VAR model (henceforth we call i
“BGQ” identification). For a given regime or stake= 1, ... h, the long run responses can be expressed

“Afull description of the data is given in Appendix A
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as the inverse of the matrixk), where:

L (k) = Ao(k) — ;1Ae(k)-

We often do not have sufficient long-run restrictions that are economically justifiable to achieve exac
identification. Gali (1992) suggests a combination of short-run and long-run restrictions to get the VAR
model identified. The short-run restrictions used by Gali (1992) are linear restrictions impo8gkpn
or Aal(k) or both (see also Blanchard and Watson 1986 and Bernanke and Mihov 1998). This set o
restrictions forms a system of nonlinear equations to be solved to get the maximum likelihood estimate
or the posterior estimates if a prior is uge&olving a system of nonlinear equations (or minimizing a
nonlinear function) for each posterior draw is time-consuming and not feasible for the regime switching
model studied here. In this section we describe some new methods to deal efficiently with a combinatio
of long-run and short-run restrictions in exactly-identified SVARSs.

Fork=1,...,h, define

/
Hibo A1) = | (1))’ 9)

The restrictions considered by Blanchard and Quah (1993), Gali (1992), and others are special cases
linear restrictions on each columnXfa, ), A, ())- This means that they can be defined as a set of matrices
Qj for j=1,...,nsuch that:

_ [ (Ag*(K)

QiXiao(k), A (k))& =0, (10)
wheree; is the | column of then x n identity matrix. The rank o®j is the number of linear restrictions
on thej™ column ofXa k). A, (k)
Theorem 2 allows us to check if the SVAR identified using (10) is exactly identified. If that is the case,
theorem 3 tells us that for anyo(k), A+ (k)) a unique orthogonal matriR(k), for k=1,...,h, exists,
such that:

QjX(o(kP (i), A (P(K) € =0,
forj=1,...,nandk=1,...,h.
The question is how to find the orthogonal matAxk). In the following algorithm we describe an
efficient way to findP (k):

Algorithm1.
Assume the SVAR model is exactly identified. leebe the permutation with the property tmank(QU(i)) =
n—ifori=1,....n. Let(Ag(k),AL(k)), fork=1,... h, be the set of structural parameters coming from
the recursive identification.

8The 2SLS estimate, as used by Gali (1992), is an approximation to the maximum likelihood estimate. How well the
approximation is depends on how good the instruments are in the first stage of the estimation.

9n addition to the linear restrictions, we also have to impose a normalization rule to uniquely determine the sign of eacl
equation in the system. See Waggoner and Zha (2003b) for details.
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(1) Letk=1.

(2) Leti=1. Letpi(k) be any unit-lengtm-dimensional vector such thaa, A, k) Pi(K) sat-
isfies the restrictions on columai (i), i.e. Qgi)Xagk),A, (k) Pi(K) = 0. Such vector exists because
rank (Qg (i) XAk A, (k) < rank(Qg()) =n—1<n. The vector can be found using the LU decom-
pOSitiOﬂ OfQG(i)x(Ao(k),A_,_(k))' Seti =i +1.

(3) Form the matrix:

Qa (i) X(Ao(k) A+ (K)
" pa(k)’
Qo) = :
pi—1(K)’

(4) Letpi(k) be a unit length vector such trég(i) pi(k) = 0. Such vector exists becausek (Qq i) ) =
n—iand henceank(f)a(i)) < n. The vector can be found using the LU decompositio@,%.

(5) Ifi<ngoto (3).

(6) If k< hgoto (1), otherwise stop.

The above algorithm produces the matrices
P(k) = [ Po-11)(K) -+ Po1m)(K) |
for k=1,...,h, which are the required matric&.

l1l.4. Exclusion Restrictions. Most long-run and short-run restrictions used in the literature are of ex-
clusion nature. If these restrictions meet certain conditions, we have an even more efficient algorithm fc
determining the matri®. Such conditions are described by the following definition.

Definition 6. Identifying restrictions of the form of (9) argiangularizableif the following condition
holds: QjXa, ), A, (k)€ = 0 if and only if there is a permutatid® (k) of the rows ofX s, k) A, (k) and a
permutatiorP,(k) of the columns oX(a,k).A, (k))» Such that the permuted matix(k)X a, ) A, (k) P2(K)

is lower triangular.

If exclusion restrictions are triangularizable, algorithm 1 can be further improved, so that the orthogona
matrix given by theorem 3 can be found using a single QR decomposition as described in the followin
theorem.

Theorem7. Suppose the identifying restrictions are triangularizable.k=erd, . .. .h, letP; (k) andP>(k)

be the permutation matrices. L& (K),A.(k)), for k= 1,...,h, be the set of structural parameters
coming from the recursive identification. Using the QR decompositiorQFQ(k)X(AO(k)7A+(k)))', write
PL(K)X(ag(k).A. (k) = TL(K)P3(k) wherePs(k) is an orthogonal matrix andi_ (k) is lower triangular. The
structural parameter®o(k)P(k), A (k)P(k)) for P(k) = P3(k)'P»(k)’ satisfy the restrictions.

10Note that by constructioR is an orthonormal matrix
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Three long-run restrictions
Aggregate demand shocks have no long-run effect on output
Monetary policy shocks have no long-run effect on output
Exchange rate shocks have no long-run effect on output

Three short-run restrictions
Monetary policy shocks have no contemporaneous effect on output
Exchange rate shocks have no contemporaneous effect on output

Exchange rate shocks have no contemporaneous effect on the interest rate
TABLE 2. ldentifying restrictions under BGQ

[11.5. Data Description and Identification Assumptions. Finally, let us describe the data and the com-
bination of long-run and short-run restrictions that we use to identify our SVAR. We follow Peersman
and Smets (2003) and consider a four-variable VAR system combining both long-run and short-run re
strictions to achieve a particular BGQ identification. The four endogenous variables are quarterly outpt
growth (Ay), quarterly inflation (AP), the nominal short-term interest rate (R), and quarterly change of
the exchange rate (AREXThere are four structural shocks in this system: an aggregate supply sfipck (

an aggregate demand shoeK), a monetary policy shockeP), and an exchange rate sho&#)( In the
notation of (1) we have

Vi = [Ay: AR RAEX]',
&=eel e €.

Peersman and Smets’ (2003) long-run and short-run restrictions are summarized in table 2. We use t
same set of restrictions. Table 2 identification restrictions imply three exclusion restriction(k) and
three exclusion restrictions mgl(k). Then, we have:

, L=

At (k) = , (11)

o O X X
X X X X
o X X X
X X X X
O O o X
X X X X
X X X X
X X X X

where the symbok means no restriction imposed and 0 means the exclusion restriction. Checking if the
model is identified or not should always be the first step. If we use theorem 2, we can see that (11) exact
identifies the modet!

Lrrom the discussion prior to theorem 2, it should be clear that we cannot count the number of exclusion restriction t
verify if the model is or not exactly identified. Here it is an example: If, instead of the assumption that an exchange rate shoc
has no contemporaneous effect on output, we assume that a demand shock has no contemporaneous effect on output, we
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l11.6. CDFU Identification. The above described identification schemes are based on zero restrictions
either on the contemporaneous coefficients of the SVAR or the long run responses of certain variables
shocks. This class of approaches is easy to implement, but sometimes they do not generate the impu
responses that fit economists’ prior beliefs. Faust (1998), Canova and De Nicol6(2002), and Uhlig (forth
coming) propose an alternative approach. Their basic idea is to use sign restrictions directly on impuls
responses themselves to identify SVARs. For example, in response to a contractionary monetary shock i
interest rate should rise, while money, prices, and output should all fall. We call their approach “CDFU”
identification. Although Faust (1998), Canova and De Nicol6(2002), and Uhlig (forthcoming) start from
the same idea, they implement it in different ways. In this section, we first briefly describe the approache
of Faust, Canova and De Nicold, and Uhlig, highlighting the problems of applying them to our switching
model. Then, we describe our algorithm. Finally, we describe the variables considered in the VAR an
state the sign restrictions we use to identify structural shocks.

[11.6.1. Faust Method.Faust (1998) presents a way to check the robustness of any claim from a SVAR.
All possible identifications are checked searching for the one that is worst for the claim, subject to the
restriction that the identified VAR produces the correct impulse response functions.

Faust (1998) shows that this problem is equivalent to solving a eigenvalue prgngﬁ%i)! times,
whereRis the number of sign restrictions all= max(h—1,R). As Faust (1998) recognizes, this method
may not be feasible for large problems, like the one analyzed here. Finally, we see Faust’s approach a:
way to check claims on contributions of identified shocks to the forecast error variance, not as a way t
identify SVARSs.

[11.6.2. Canova and De Nicol6 MethodCanova and De Nicol6 (2002) also identify SVARs using impulse
response sign restrictions. Their method is based on the following theorem:

TheoremB. Let P (n x n) be an orthogonal matrix. Then a unique Sel{ie&7j}rj1:i+l i”:‘ll exists, where
0< 6 <2mif j=i+1land—m/2< 6 < m/2if j > i+ 1, such that?

n-1 n
P= Qij (6]
il:lj:illl i (6.3)

n—1 n

the following pattern of restrictions ofy, (k) andL~%(k):

or

0 x x x X X X X

1 X X X X 1 0 x x x
k) = , L4k = , 12
AO() 0 x X X (k) 0 X x X (12)

x x 0 x 0 x x x

If we compare (11) and (12), we observe that both have the same number of exclusion restriction. On other hand, if we us
theorem 2 we find that the restriction implied by (12) do not exactly identify the system.
124 canova and De Nicol6 (2002), the notatiQn; (0) is used wherd is implicitly assumed to vary with differemtandj.
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where
1 0 O
S— :
0 1 0
0O --- 0 -1
and ) )
coli col |
| l
1 0 0 0
Qij(6;)=|rowi— 0 --- cos(@;j) --- —sin(@;) --- O
rowj— 0 --- sin(6;) --- cos(@;) -+ O
I 0o .. 0 0 1
Proof. The proof follows from Algorithm 5.2.2 of Golub and Van Loan (?). O

Using theorem 8, Canova and De Nicol6 (2002) identify SVARs with the following algorithm:

Algorithm2.

(1) Begin with a triangular SVAR system.

(2) Draw the system parameteXg(k) andB (k) from the posterior distribution.

(3) Determine a grid on the set of all orthogonal matrices.

(4) Perform a grid search to find an orthogonal maf&ik), such that the impulse responses generated
from Ag(K)P (k) andB (k) satisfy all the sign restrictions.

Theorem 8 allows for different ways to design a grid, but because the space of all orthagonal
matrices is a1(n— 1) /2 dimensional space, any grid that divides the intefvat/2,71/2] in M points-3
implies a search ovev"("~1)/2 points in the space of all orthogomak n matrices. Thus, it is not feasible
to perform this grid search for large valuesof

[11.6.3. Uhlig’s Methods.Uhlig’s (forthcoming) proposes another method to identify SVARs based on
impulse response sign restrictions. His method draws from the set of posterior orthonormal matrices, su
that the impulse response sign restrictions hold, using the following algorithm:

Algorithm 3.
(1) Begin with a triangular SVAR system.
(2) Draw the system parametekg(k) andB (k) from the posterior distribution.

LBor the interval—7, 11 in 2M points.
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(3) Drawn independent standard normal vectors of lengémd recursively orthonormalize them. Call
P(k) the resulting orthonormal matrix.

(4) Generate the impulse responses fiytk)P (k) andB (k).

(5) If these impulse responses do not satisfy the sign restrictions, keep the draw. Otherwise discard i

This method is feasible for large models like the one we are dealing with in this paper. In fact, the
method we propose in the following subsection is just a more efficient version of Uhlig’s approach.

[11.6.4. Our Algorithm. In this subsection we propose a modified version of Uhlig’s method to draw
from the posterior distribution of orthonormal matrices such that a given set of impulse response sig
restrictions hold. The main difference between Uhlig’s and our approach is that while Uhlig recursively
orthonormalizeP (k), we use the following theorem to directly draw an orthonormal m#(ky.

Theoremd. Let X be ann x n random matrix with each element having an independent standard normal
distribution. LetX = QRbe the QR decomposition &f with the diagonal oR normalized to be positive.
ThenQ has the uniform (or Haar) distribution.

Proof. The proof follows directly from Stewart (?). 0J

Theorem 9 gives us an easy and fast way to implement random selections of orthonormal matrices
order to get the impulse responses that satisfy a set of sign restrictions as describeid below.

Algorithm4.

(1) Begin with a triangular SVAR system.

(2) Draw the system parameteg(k) andB (k) from the posterior distribution.

(3) Draw an independent standard normal n matrix X and letX = QRbe the QR decomposition of
X with the diagonal oR normalized to be positive.

(4) LetP(k) = Q and generate the impulse responses fAy(k)P (k) andB (k).

(5) If these impulse responses do not satisfy the sign restrictions, then return to step (3).

In theory, this algorithm is not guaranteed to terminate. In practice, we set a maximum number o
iterations in which steps (3) through (5) should be repeated. If the maximum is reached, the algorithr
should move to step (1) to draw another set of parameter vatues.

The main differences with Uhlig’s method are: (1) We do not discard any posterior draw and (2) we
directly draw from uniform (or Haar) distribution while Uhlig does it recursively. These two differences
make our algorithm more efficient and faster—two important features given the large system we considel

1stewart (?) has even more efficient algorithms for generating uniform random orthogonal matrices, but they are les
straightforward and more difficult to implement.

Bn the applications discussed in Section IV, we set the maximum number to be 1000 and this maximum was never reach
in our millions of posterior draws.
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l1l.7. Data Description and Identification Assumptions. Finally, let us describe the data and the sign
restrictions we use to identify our SVAR. Our SVAR, identified using sign restrictions, includes the same
data that “CEE” and “GLSZ” include, i.e., output (Y), output deflator (P), nominal short-term interest rate
(R), M3 (M), and Euro/dollar exchange rate (Ex). We use the following sign restrictions:

e An expansionary monetary policy shock implies an interest rate decrease and an increase of V
for two periods.

e A positive shock to money demand implies an interest rate and M3 increase for two periods.

e A positive demand shock implies an increase in output and prices for two periods.

e A positive supply shock implies an increase in output and a decrease in prices for two periods.

e A positive external shock implies an exchange rate devaluation and an increase in output for tw:
periods.

IV. EMPIRICAL RESULTS

In this section we identify a set of five-lag SVAR using the itiigcation schemes discussed in section
lll. As mentioned in section I1.7, our priors specification allows us to mix cases Il and Ill. We consider
five different specifications:

¢ All-constant specification. No regime change is allowed.

e Variance-only specification. All the structural equations are Case Il.

e Monetary-policy specification. All the structural equations except monetary policy equation are
Case IlI, while the monetary policy equation is Case Ill.

e Private-sector specification. All the structural equations except monetary policy equation are Cas:
[1I, while the monetary policy equation is Case Il.

¢ All-change specification. All the structural equations are Case lll.

The all-constant specification does not consider regime change. We will take this as the benchma
specification. In the variance-only specification all the structural equations have case Il priors. Therefor
only the variance of the structural equations changes across regimes. With this specification we consic
the case where no change in behavior has occurred and all the change in observed volatility is explain
by changes in the volatility of the structural shocks. In the monetary-policy specification we allow for the
parameters of the monetary policy equation to change across regimes, while only the variance of the rest
the structural equations is allowed to change across regimes. With this specification we consider the ca
that the monetary authority has changed its behavior while the private sector has not. In the private-sect
specification the parameters of all the structural equations, but those of the monetary policy equatio
are allowed to change across regimes, while only the variance of the monetary policy equation can chan
across regimes. With this specification we consider the case that the private sector has changed its beha
while the monetary authority has not. Finally, in the all-change specification, all the parameters of all the
structural equations can change.
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Constant 2271.0
Variance Only| Monetary Policy| Private Sector All Change
2 states 2291.8 2284.5 2274.4 2278.8
3 states 2287.3 DEG DEG DEG
4 states 2281.9 DEG DEG DEG
5 states 2279.1 DEG DEG DEG
6 states 2272.9 DEG DEG DEG

TABLE 3. Marginal log likelihoods for the five specifications andeliént number of states
under the CEE identification scheme.

IV.1. Results for the CEE identification. The CEE identification scheme considers output (Y), output
deflator (P), nominal short-term interest rate (R), M3 (M), and Euro/dollar nominal exchange rate (EX)
and uses a recursive scheme to identify the structural shocks. The order of the variables is the follov
ing: Y, P, R, M, and Ex. Hence, R contemporaneously responds to changes in Y and P, but Y does n:
contemporaneously respond to changes to any other variables.

Table 3 reports the marginal log likelihoods for the five specifications and different number of states
under the CEE identification schertfe.” A variance-only specification, with two or three states, is
overwhelmingly favored by the data in comparison to the constant VAR model and any other time-varying
VAR models. From these results we interpret that, when identified using the CEE scheme, SVARs witl
more than 3-state tend to overfit the data, and thus are penalized by the marginal likelihood. The lo
marginal likelihood difference between the 2-state and 3-state variance-only specifications is less than fol
This evidence is strong, but not conclusive, in favor of the 2-state variance-only specification. Therefore
because of space considerations, we only analyze the 2-state variance-only specification. Table 3 a
shows that the data strongly favor the 2-state monetary policy specification over the constant, 2-sta
private sector, and 2-state all-change specifications. We interpret this result as evidence in favor of
change in the Euro-area monetary policy authority behavior during the studied period.

Figure 1 displays the posterior probability of each state for the 2-state variance-only specification mode
under the CEE identification. We call the state with very high and persistent probability after 1992 the
EMS regime, while the other is called Non-EMS regime. Although the EMS regime remains with high
probability for the some years before 1993, it periodically switches to the other state, probably reflectint

16All the marginal likelihoods reported in this paper are computed with 6 million MCMC draws. Using repeated runs, the
computed maximum of numerical standard errors for all marginal likelihoods is less than 0.7 in log value. Using the Newey
West (1987) approximation procedure, the numerical standard errors give even smaller values. The marginal likelihood fc
the constant VAR model is computed using the algorithm described by Chib (1996) and Waggoner and Zha (2003a). TF
Matlab code can be downloaded from home.earthlink.net/ tzha02/programCode.html. Because the Markov chain Monte Ca
algorithm for the time-varying VAR models is not a Gibbs sampler, the marginal likelihoods for these models are computec
using the modified harmonic means procedure discussed by Geweke (1999).

L’DEG stands for “degenerate”, meaning that for these models there is no posterior probability for at least one state.
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FIGURE 1. Posterior probabilities of states for the 2-state vagamly specification
model under the CEE identification.

the uncertain periods of implementing the new monetary system (Ungerer 8t aliMe notice three
things in figure 1: (1) the coincidence between the 1993 regime change and the institutional evolutio
of the EMS occurred in August of 1993, after 1992-93 crisis (2) the non-EMS regime has very high anc
persistent probability before 1980, and (3) between 1980 and 1993 the probability of any of the regime
is quite volatile. This high volatility reflects the uncertainty associated with the intuitional change taking
place in the Euro area. It is also important to notice that the fact that the probability of the EMS regime
increases after 1980 should not be surprising, since most of the inflation decline in the Euro area occurr:
during the 80’s.

Table 4 reports the variance of the structural shocks for each variable under the two regimes, alor
with the relative variance across regimes, for the 2-state variance-only specification model under the CE
identification. The EMS regime is associated with much smaller volatility of structural shocks of all the
variables. In particular, most of the fall in volatility is due to the fall in the variance of shocks to R and
P. This phenomenon is also reflected in the impulse responses to a monetary shock displayed in Figure
The first column graphs the impulse response associated with a monetary policy shock for the consta
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Variables| EMS Non-EMS | Relative volatility

Y 0.014E-03 0.042E-03 3.039

P 0.003E-03 0.016E-03 4.235

R 0.015E-03 0.064E-03 4.063

M 0.015E-03 0.028E-03 1.854

Ex 0.553E-03 1.087E-03 1.963

TABLE 4. Residual variance of the shocks for the 2-state variantyeroodel under CEE

specification model under the CEE identification. The last two columns graph the impulse response a
sociated with a monetary policy shock for the 2-state variance-only specification. The non-EMS regim
impulse responses are larger than those for the EMS regime, while the responses for the constant mo
are in between those of the two regimes. In response to a contractionary shock to monetary policy, the i
terest rate rises and money falls (the liquidity effect), output falls, but the price level rises son&what.
increase in the price level, although statistically significant, is not economically important as compared t:
the other models.

Thus, if we identify the SVAR using the CEE scheme, the data favor a 2-state variance-only specifi
cation. One of the regimes mainly occurs after 1993 and is associated with lower volatility of structura
shocks to R and P. We call this regime EMS regime. After a contractionary shock to monetary policy, we
estimate a liquidity effect, a drop in output, and an increase in the price level. The estimated price puzzl
is significant, but weak.

IV.2. Results for the GLSZ identification. As in the CEE identification scheme, the GLSZ scheme
considers output (Y), output deflator (P), nominal short-term interest rate (R), M3 (M), and Euro/dollar
nominal exchange rate (Ex) and uses a recursive scheme to identify the structural shocks. The GLS
identification differs from the CEE identification in two ways. First, it does not treat M and R recursively,
but models them simultaneously as money demand and money supply, where the money demand equat
includes the variables M, R, Y, and P and the monetary policy equation includes only the two variables N\
and R Second the resulting structural model is over-identified.

Table 5 reports the marginal log likelihoods for the five specifications and different number of states
under the GLSZ identification scheme. We conclude two things: (1) the 2-state variance-only specifice
tion dominates all the other specifications for the GLSZ identification scheme and (2) the marginal log
likelihood slightly favors the GLSZ identification scheme over the CEE. Hence, as it was the case with
the CEE scheme, the data favors the 2-state variance-only specification, although there is an importe

18The price puzzle exists even when we include commodity prices in the VAR and when we reorder the variables (fol

example, lettingR responds to commodity prices B or both).
9We choose this identification on the basis of a information-delay assumption that the central bank cannot observe real GL

and the GDP deflator within the quarter.
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FIGURE 2. Impulse responses to a one-standard-deviation monetdioy ghock under
the CEE identification. The solid line represents the posterior median estimate and the two
dashed lines contain the 68 percent probability based on 500,000 MCMC draws.

Constant 2273.6
Variance Only| Monetary Policy| Private Sector All Change
2 states 2297.8 2290.8 2277.6 2279.7
3 states 2290.6 DEG DEG DEG
4 states 2283.3 DEG DEG DEG
5 states 2281.0 DEG DEG DEG
6 states 2277.8 DEG DEG DEG

TABLE 5. Marginal log likelihoods for the five specifications andehént number of states
under the GLSZ identification scheme.

difference. When identifying the SVAR using GLSZ, the evidence is conclusive in favor of the 2-state
model over the 3-state one.
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FIGURE 3. Posterior probabilities of states for the 2-state vagamly specification
model under the GLSZ identification.

Figure 3 displays the posterior probability of each state for the 2-state variance-only specification mode
under the GLSZ identification. Figure 1 and figure 3 are remarkably similar, with two very distinguishable
regimes. The EMS regime has very high and persistent probability after 1993, while the non-EMS regim
has very high and persistence probability before 1980. Between 1980 and 1993 the probability of any «
the regimes is quite volatile.

Table 6 reports the variance of the structural shocks for each variable under the two regimes, along wi
the relative variance across regimes, for the 2-state variance-only specification model under the GLS
identification. The EMS regime is associated with smaller volatility of structural shocks of all the vari-
ables. As in CEE scheme, most of the fall in volatility is concentrated in the shocks to R and P.

Figure 4 reports the impulse responses to a monetary policy shock for the GLSZ identification schem
The first column graphs the impulse response associated with a monetary policy shock for the consta
specification, while the last two columns graph the impulse response associated with a monetary polic
shock for the 2-state variance-only specification. An important thing to notice is the uncertainty about th
dynamic responses. All the 68 percent confidence intervals are wider than in the CEE scheme. As in tt
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Variables| EMS Non-EMS | Relative volatility
Y 0.013E-03 0.039E-03 2.797
P 0.004E-03 0.014E-03 3.459
R 0.018E-03 0.052E-03 2.755
M 0.012E-03 0.028E-03 2.340
Ex 0.551E-03 1.200E-03 2.175
TABLE 6. Residual variance of the shocks for the 2-state varianteroodel under GLSZ
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FIGURE 4. Impulse responses to a one-standard-deviation monetéicy ghock under
the GLSZ identification. The solid line represents the posterior median estimate and the
two dashed lines contain the 68 percent probability based on 500,000 MCMC draws.

CEE scheme, we find that, in response to a contractionary shock to monetary policy, the interest rate ris
and money falls (the liquidity effect), output falls, but the price level rises somewhat. The main difference
with the CEE scheme is that, since the confidence intervals are so wide, the prize puzzle is not statistica
significant.
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Hence, we conclude that, for the 2-state variance-only specification, the GLSZ and the CEE schem:
produce very similar results, although the CEE scheme produces a more accurate estimation and the
ginal likelihood strongly supports the GLSZ scheme.

IV.3. Results for the BGQ Identification. As discussed in Section Ill, another widely-used identification
scheme is to use long-run restrictions (Blanchard and Quah 1993 and Gali 1992). A typical finding is the
the estimated impulse responses of output to a monetary shock are small, even in the short run (see G
1992). Using the identification scheme of Gali (1992) and Peersman and Smets (2003), in this section v
show that our estimated output responses to a monetary policy shock are also small, consistent with t
previous estimates in the literature. However, the error bands are so wide and skewed that they chan
the implications of the point estimates. The wide error bands also raise a question of how informative thi
particular identification i€° 2 We use the following variables: output growthY(\ quarterly inflation

(AP), nominal short-term interest rate (R), and quarterly change of the exchange raje (Isig the
restrictions reported in table 2, we identify four structural shocks: an aggregate supply shoan(
aggregate demand shoa€), a monetary policy shockeP), and an exchange rate shoeR)(

As mentioned in section 111.3, in order to implement the BGQ scheme, we start from a recursive syster
(a CEE type of scheme). Then, for each posterior draw we find the rotatit(lof and A (k) such that
the restrictions reported in table 2 hold. This implies that there are subtleties in interpreting the five type
of time-varying specifications. An orthonormal rotationfefk) will, in general, violate the time-varying
restrictions on the original form ofg(k). Hence, all the four columns in Tab®? relate to all-change
specifications in the sense that the parameters in each colui(lof after the rotation, vary across
states beyond a scaling factor. The differences among these columns reflect different parsimonious we
of parameterizing the time-varying coefficients, and accordingly we label these columns as “TV I”, “TV
II”, etc., where TV stands for time-variation.

For this four-variable VAR system, the 3-state TV-1 specification gives the highest marginal likeli-
hood?? Figure 5 displays the posterior probabilities of each regime for the 3-state TV-I specification for
the BGQ scheme. We call the first state the early-EMS regime, which is concentrated between late 7C
and early 90’s. We call the second state the EMS regime, which concentrates after 1993. If we compa

20Faust and Leeper (?) make this same point.

21ynrealistic wide error bands can be caused by not properly normalizing the signs of responses for each posterior dra
Such problem can be solved by appropriate normalization (see Waggoner and Zha, 2003a, and Hamilton, Waggoner and Z
2003, for detailed discussions). Indeed, when the impulse responses are properly normalized, one may be able to obtain sens
error bands of impulse responses for certain SVAR models with long-run restrictions imposed (e.g., Sims and Zha 1999 ar
Evans and Marshaf®). The impulse responses of output to a monetary policy shock under the long-run restrictions of Evans
and Marshall are long-lived (more than 4 years) and strong.

22ecause three out of the four variables are in first differences, we make the overall tightness of the hyperparameters ve
loose by setting\g = 2,us = ug = 0.1. The log value of the highest marginal likelihood is 186&nd the log value of the
marginal likelihood for the constant model is 1697.1. We also experimented with different prior hyperparameter values and ot
results are not sensitive to these changes despite the fact that three series are differenced and presumably stationary.
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Variables Early EMS EMS Non-EMS

AY 0.056E-03 0.013E-03(0.242) 0.028E-03 (0.509)
AP 0.009E-03 0.003E-03 (0.355) 0.064E-03 (7.011)
R 0.053E-03 0.013E-03(0.248) 0.081E-03 (1.505)
AEX 1.216E-03 0.663E-03 (0.545) 1.439E-03 (1.182)

TABLE 7. Residual variance of the shocks for the 2-state TV-1 moddeuBGQ
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FIGURE 5. Posterior probabilities of states for the 3-state BGQ model

the regimes we obtained using the CEE and the GLSZ schemes, with the ones estimated here, we find t
the EMS regime is consistent throughout the three identification schemes and the new (early-EMS) regin
concentrates during the 80’s disinflation period.

Table 7 reports the residual variances for the four variables of the 3-state TV-I specification. The vari
ances of all structural shock variances are smaller for the EMS. This result is consistent with the findin
reported for the CEE and GLSZ schemes. Figure 6 displays the impulse responses to a contractione
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monetary policy shock for the constant and 3-state TV-I specification. The point estimates, represented |
the solid lines, say that, in response to a contractionary monetary policy shock, the interest rate rises a
both output and prices decline. The point estimate indicates that the output effect is quite small, but th
error bands show that there is a fat tail of the probability distribution skewed toward a large output loss fo
the three regimes. In other words, there is a substantial probability for a large output drop after a contra
tionary monetary policy shock. The point estimate also indicates that there is no price puzzle, but the err
bands are so wide that there is a non-trivial probability of a price increase after a contractionary monetal
policy shock. Overall, the error bands reported in Figure 6 seem unusually wide and ill-deteffhined.
They are nonetheless important because they imply that the point estimates could be misleading. T
methods developed in Section I11.3 not only generalize the types of restrictions and applications one ce
use, but also provide a convenient and efficient algorithm for obtaining accurate posterior distributions t
assess both quantitative and qualitative implications derived from the point estimates.

We conclude that the BGQ scheme finds that a 3-state TV-I specification fits the data better. As |
was the case for both the CEE and the GLSZ schemes, there is an EMS regime after 1993 characteri:
by lower volatility of the structural shocks. On one hand, the point estimates for the impulse respons
functions show that, in response to a contractionary monetary policy shock, the interest rate rises and bc
output and prices decline (no price puzzle). On the other hand, the estimated error bands are so wide tl
none of the point estimates implications are conclusive.

IV.4. Results for the CDFU identification. The last identification scheme we consider is the CDFU
scheme. As in the CEE and GLSZ identification schemes, we consider a SVAR with output (Y), outpu
deflator (P), nominal short-term interest rate (R), M3 (M), and Euro/dollar nominal exchange rate (Ex)
We restrict the signs of the impulse responses such that:

e An expansionary monetary policy shock implies an interest rate decrease and an increase of V
for two periods.

e A positive shock to money demand implies an increase in interest rate and M3 for two periods.

¢ A positive demand shock implies an increase in output and prices for two periods.

e A positive supply shock implies an increase in output and a decrease in prices for two periods.

e A positive external shock implies an exchange rate devaluation and an increase in output for tw:
periods.

As it was the case for the BGQ scheme, in order to implement the CDFU scheme, we start from
recursive systerfi* Then, we rotate each posterior drawfgfk) andA . (k), such that the signs restrictions
hold. As before, this rotation implies that all considered specifications are all-change specifications in th
sense that the parameters in each columAgk), after the rotation, vary across states beyond a scaling

23The error bands reported by Peersman and Smets are much better behaved. Note that they have a different sample pe
and their bands are generated by only 100 draws. We find that this particular identification is quite fragile. For example, whe
the data in 2003 were taken out of our sample, the characteristics of the estimated impulse responses were completely chang

24since the CEE scheme and the CDFU scheme share variables, we start form the CEE scheme reported in section V.1
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FIGURE 6. Impulse responses to a one-standard-deviation monetdioy ghock under

the BGQ identification. The solid line represents the posterior median estimate and the two

dashed lines contain the 68 percent probability based on 500,000 MCMC draws.

factor. The differences between specifications reflect different parsimonious ways of parameterizing tt
time-varying coefficients, and we label these columns accordingly as “TV I, “TV II", etc., where TV

stands for time-variatiof?

Table 8 reports the marginal log likelihood for different specifications and number of the states for &

SVAR identified using the CDFU scheri2Data favors a 2-state TV-I specification.

It can be shown that the rotation does not change the variances of these residuals in any state. Thereft
the shock variances for the 2-state TV-I specification identified using the CDFU scheme are the same
reported in Table 4. Similarly, the posterior probabilities of states are the same as displayed in figure 1.

2We also experimented with other time-varying combinations of Case Il and Case Il for the different equations before
applying the sign restrictions dlq;l(k), and the resultant marginal likelihoods have substantially lower values than the 2-state

TV-I model.

26since we start form the CEE scheme reported in section IV.1, table 3 and tables 8 are identical.
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Constant 2271.0
TV-I | TV-II | TV-III | TV-IV
2 states| 2291.8| 2284.5| 2274.4| 2278.8
3 states| 2287.3| DEG | DEG | DEG
4 states| 2281.9] DEG | DEG | DEG
5 states| 2279.1) DEG | DEG | DEG

6 states| 2272.9] DEG | DEG | DEG
TABLE 8. Marginal log likelihoods for the five specifications andeliént number of states

under the CDFU identification scheme.
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FIGURE 7. Impulse responses to a one-standard-deviation moneddicy ghock under
the CDFU identification. The solid line represents the posterior median estimate and the
two dashed lines contain the 68 percent probability based on 500,000 MCMC draws.

Figure 7 reports the impulse responses for both the constant model and the 2-state TV-I model. Agai
the responses under the EMS regime are smaller than those under the non-EMS regime and those with
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constant VAR model, but the general dynamic shapes are the same. We find a significant liquidity effec
and a significant output and price drop after a contractionary monetary policy $hock.

V. CONCLUSION

This paper has examined changes of the Euro monetary regingethe VAR methodology. We find
that SVARs that consider regime regime switching fit the data much better than constant parameter SVAR
Thus, making the regime switching feature explicit is essential to obtaining a VAR benchmark agains
which the fit of DSGE models is compared. We robustly find that the regime associated with most year
of the EMS has considerably smaller shock variances for all the variables studied in this paper. We fin
the liquidity and output effects of a monetary policy shock and we show that these results are robust t
different identifications and different regimes. For the CEE and GLSZ schemes we find a price puzzle
while that is not the case for the BGQ and CDFU schemes.

On the technical side, we have developed a set of new efficient methods that allow us to conside
different identification strategies. We have also shown how these methods can be used to accurately obt
the error bands of impulse responses associated with different identification schemes. These error bat
make us question some of the point estimate dynamic responses.

APPENDIXA. THE DATA

We use quarterly data form 1970:1 to 2003:4 from the Area-Wddel (AWM) database released by
the European Central Bank. See Fagan, Henry, and Mestre (forthcoming) for details. The variables a
listed below, along with the variable symbols used by the AWM database.

¢ Y: Real GDP in millions of euros with base year 1995. (YER)
P: Real GDP deflator with base year 1995=100. (YED)

e M: M3 measure of money stock in millions of eur&s.

R: The nominal short-term interest rate. (STN)

Ex: The nominal exchange rate (Euro/$). (EEN)

APPENDIXB. THE PRIORS

In this Appendix we specify the details of the priors used mphaper. First, we describe the priors on
1, common to the three cases. Then, we described the priors on the parameters that differ across the th
cases.

The prior of the transition matrixX], takes a Dirichlet form as suggested by Chib (). For the kth column
of M, 1%, the prior density iST(1%) = (TR, . .. THy) O klk_l... I;‘k_l. We chooser;; fori, j=1,...,n
as described in Sims and Zha (2004a).

2Hence, we do not find any evidence of price puzzle.

28Tjs variables is not included in the Area-wide Model (AWM) database. We obtain this variable from the reference serie:
on monetary aggregates reported by the ECB
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Now let us describe the priors on the parameters that differ across the three cases. Before proceedil
we introduce a few new notations. Lgtbe a column vector af ones. Let

Ao=[ai0,---,3n0,

wherea; o is an x 1 vector of the form:

aj0=[ay,j0,..-,an,j0] forall j.

Now let
E - [Elv"'afn]a

whereé; is ah x 1 vector of the form:
& =1[&(1),....&(h)] forall j.
Let
o=[o ..., @],
whereg; is anh x 1 vector of the form:
o =[¢gQ),....¢ ()], forall j,

wheregj; (k) is an x 1 vector of the form:

@ (K) =@ (K),...,gnj (K], forallkand allj.
Define also
d=[dy,....dy)",
whered; is amx 1 vector of the form:

dj = [dj4,....d} 5] forall j,

whered; ¢ is an x 1 vector of the form:

dj¢=[dyjs,...,dn ] forall£andallj.
Let
A = [Ala"'vAn]a

whereAj is anh x 1 vector of the form:

Aj=[Al(1),.... A (h)] forall j,

whereA; (k) is an x 1 vector of the form:
Aj(K) = [Arj(K),...,Anj (k)] forall j and allk.
Let
p=[H1,- -, Hn],
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wherey; is ah x 1 vector of the form:

i = [Hj(1),..., (0] forall j.
Then we can write
aj0 =P (§j®3)0).
where
®; = diag({®; () h_,)
and
®; (k) =diag({@; (K },)

Finally, we can also write

dj =Aj (& @dj),
where
. h
Aj= dlag({/\j (k)}k:1> ,
/\'(k): IP®A1 (k) Onp><1
. 01xnp Hj <k> ’
and

Aj (k) = diag({Ai; (0 }y)-
We are now ready to specify the priors corresponding to Cases I-lIl. We begin with Case Il and work
backward to Case I.

B.1. Case lll. Letéj = ¢, andaj o= ¢, forall j, then

aj,0=Pj¢n= @ forall |
and

dj =Aj (¢h®dj) forall j.

Let now the priors on the contemporaneous parameters of the naggehe:
m(ajo) =m(¢) =0 (0,l,®@Hjo) forall j.

Since

@ = (Ih®@Uj) bj, forall j,
that imply priors orb; of the form:

m(bj) =0 (0,Hjo),
where
Fio= (U] (n@H;3) u,-)l.

Let now the priors on the lagged and constant parameters of the nlpdeé:

m(dj) =0 (0,Hj ) forall j,
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(A)) = 0 (0,(Ih®1n) 02) forall j,
and

m(pj) =0 <O,Ih®o§> for all j.
B.2. Case ll. Let ¢j = Gy, Aj = Gan, andpj = 1 for all j, then
ajo=¢j®@ajoforall |
and
d; = & ®d; forall j.
Let now the priors on the contemporaneous parameters of the napgehe:
m(aj0) = 0 (0,Hj ) forall j.
Since
¢j@ajo= (Ih®@Uj) by, forall j,
that imply priors orb; of the form:

m(bj|&) =0 (07%70)7

where
Ifljvo:?Lh@(Uj’Hj?OlUj)l,
and
§(17  &UER) .. Q)&M)
§&1) &7 .. §@&M

\?Lh - : : . :
& (1) &M@ ... &h)y?
Let now the priors on the lagged and constant parameters of the ndpdeé:
m(dj) =0 (0,H;j ) forall j.
Finally, let priors oré; (k) be defined ovelj (k) = Ejz (k) as:

m(¢j (k) =T (az,B;) forallkandj.
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B.3. Case |. Let&j = Gy, ¢ = Gn, Aj = Gun, andyj = 1 for all j, then
aj0=¢®ajpforall |

and

dj = ¢y®dj for all j.
Let now the priors on the contemporaneous parameters of the rapgehe:

1(aj0) =0 (0,Hj o) forall j.
Since
Gh®aj o= (|h®Uj) bj, for all j,

that imply priors orb; of the form:

ﬂ(bj) =0 <O,|:|\j7o> ,

where
N N -1
Hio=Yine (UH3Y;)
and
11 ... 1
N 11 ...1
Yj,h:
11 ... 1

Let now the priors on the lagged and constant parameters of the rﬂ(pme:

m(dj) =0 (0,H;j ) forall j.

APPENDIXC. PROOF OFTHEOREM4

Proof. LetY; ands. Using compact notation (2), model (1) implies the following conditional likelihood
function:

1 (yi[Y'" 1, 5,b,d) O det|Ag ()| exp —%(%%(&)—Xﬁ&(&)) (ViAo(s) - XA (%))'|. (A1)

Now, let
H'[ = X{Xta
R - Ht_lxéyt?
and
S=y%— Pt/HtH-
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Note now that we rewrite the right hand side of (Al) as:
1 / !/ / /
detiAo(%)]exp |~ 341A0 (&) A () ~ 240 %) AL, ()% XA (3) A, ()% =

det|Ao| exp [—% i (vtay,0() (8f0(S)%) —2(Maj.0(8)) (&4 (30%) + (4a).+ (3) (8,1 () %)

=1

=]

NI
I
=

det|Aq ()| exp [— (& o(s)%) (Majo(x)) —2(aj 1 (3)'%) (ajo(s)) + (& 4 (3)%) (xaj + (St))] =

I

al o () iy 0 () — 28 1 () % Yeay 0 () + & o () %% a0 (St)] :

)

NI =

M-

J

det|Ao (st)| exp [—

Then

(
(Y s,6) O det|A0(st)|exp[—%Z bj (s) UjSUjb; (St)]
exp [—é_ 1(dj () + (S—R)Ujbj () He (dj () + (S—R) Ujby <St>)]
=
Finally, note that relationship (7) implies:

det|/Ao ()| = det|[az 0(S) - --an0(s)]| = det] [U1by (%) ...Unbn (s)]]-

APPENDIXD. PROOF OFTHEOREMSZ2, 3,AND 7

D.1. Definition of Exact Identification in SVARs. We follow Rothenberg (1971) in defining global and

local identification. In the general discussion that follows, we require that the reduced form system b
globally identified. For the systems under consideration here, some non-colinearity condition must b

imposed on the variablg. For instance, one could assume thattfor m the matrix[y; - - - yt| is of full
rank with positive probability. We are not concerned with the particulars of distributions af, the we
simply assume that the reduced form system is globally identified.

There are two conflicting conditions in the notion of exact identification. First, there should be enougt
restrictions so that the system is globally identified. On the other hand, there should be few enough restri
tions so that the reduced form specification remains unconstrained. This is formalized in the following

definition.
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Definition 10. A SVAR with linear restrictions given by? is just identified if and only if for every
reduced form parameté¢B,X), except perhaps on a set of measure zero, there exists exasttytural
parameter$Ag, A, ) with B= A Ay landz = (AoAg) ! that satisfies the restrictions.

Because the reduced form system is assumed to be globally identified, if two structural paramete
(Ag,A;) and (Ao,&) are observationally equivalent then they must map to the same reduced form para
meter(B,). Thus the definition implies that the restricted structural system is globally identified, except
on a set of measure z&b On the other hand, since almost all reduced form parameters correspond to
some restricted structural parameters, the reduced form parameters are not constrained by the restricti
on the structural parameters. For SVARs, allowing for exceptional behavior on a set of measure zero
important. If this exception were not allowed, then the only linear restrictions that would result in exact
identification would be those that are recursive.

Finally, the issue of normalization must be addressed. For linear restrictions of the kind described i
this paper, changing the sign of a columnfgfandA ;. has no effect on whether or not the restrictions are
satisfied.

Lemmall. For 1<i <k <n, letV; be a subspace @&". If for every invertiblen x n matrix A, there
exists an orthonormal s€t/y, ---, v} in R" such thaty, € A, then there exists awith 1 < j <k and
dim(Vj) > k.

Proof. Given a subspad#/ of R" ande € R, let Ay ¢ be the linear transformation that fixééand maps
eachu in the perpendicular componentWto eu. If dim(Vi) < kfor 1 <i <k, then using the following
three statements\WW ande > 0 can be constructed such thfa{ ¢ violates the conditions of the lemma.
So it suffices to prove the following.

(1) If dim (Vi) < k, then there exists a subspace subsphae# R" of dimensionn — k+ 1 such that
Unv, ={0}.

(2) LetW be ak — 1 dimensional subspace Bf'. There exists & > 0 such that there cannot e
orthonormal vectors in the set

Svs={w+uecR"|\weW and|u| < J}.

(3) LetU andV be subspaces &" such thatl "V = {0} and letw be the perpendicular complement
of U. For everyd > 0 there exists & > 0 such that for alk < y if ve Ay ¢V and||v|| = 1, then
VE Sy
(1) If dim (V) < k < n, then each is of measure zero iR", as will be the union of th&;. So
there exists ai; that is not contained in any. If k = n, then the one dimensional subspace generated

29 5, is the set of al(B,%) such that exists exactly one structural parameterA., ) with B= A, A;* ands = (AOA())’l
that satisfies the restrictions, then the complemei8; 6§ assumed to be of measure zero. §ebe the set of all structural
parameter$Ag, A ) such that the reduced form parametéaAal, (AoAg)_l) is in the complement of;. It can be shown

that the measure &, is zero.
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by u; is the required subspace. Kf< n, then letV; be the subspace generated\yandu;. Since
dim (\7.) < k41 < n, by the same measure argument as before, there will emjstreat is not contained
in the union of thei. If k=n— 2, then the two dimensional subspace generated;ndu, is the
required subspace. This argument can be continued until alaasis, u, k.1 has been constructed for
the required subspace.

(2) Suppose there wesg, ---, Vi in Sy 5 that were orthonormal. Since theare inSy 5, write v; =

w; + u; wherew; € W and||ui|| < 8. Let X be thenx k matrix | w; --- wyg | and letY be then x k

matrix [ Vi W ] Because thev are in ak — 1 dimensional space, the matdX is singular and
because the are orthonormaly’Y is thek x k identity matrix. Becausé can be chosen arbitrarily small,
X’X can be made to be arbitrarily close to the identity matrix, which is a contradiction.

(3) If this were not true, then there would exisda- 0 and sequence of andg; such that the; tend to
zero andyi € AwgV, ||Vi|| = 1, andv; ¢ Sy 5. Becausé) andW are perpendicular componentscan be
uniquely written as; = u; +w; whereu; € U andw; € W. Sincel|vi|| = 1 andu; andw; are orthogonal,
[wi|| < 1. Sincevi ¢ Sys, [|Ui]| > . Sincev; € AwgV, gliui +w; € V. Dividing by the norm, we see that

Ui + &W

VIluil12 -+ €2 wa 2

Since this is a bounded sequence, some subsequence must convergellu$irecbounded away from
zero, ||wi|| is bounded above, and is closed, the convergent subsequence must converge to a non-zerc
element oJ NV, which is a contradiction. OJ

eV

Theoreml2. For 1<i <k < n, letV; be a subspace @". The following statements are equivalent.
(1) For every invertiblen x n matrix A there exists an orthonormal sgti, - - - , vk} such thaw; € AV.
(2) There exists a permutatianof {1,---,k} such that dinfV ) > .

Proof. (1) = (2). Proceed by finite induction ok Whenk = 1, the result is trivially true. Now
suppose thatl) = (2) for somek < n. Let(V4,---,Vk.1) be subspaces such that (1) holds. By Lemma
(11), we know that there existsjawith 1 < j < k+1 and dim(V;) > k+ 1. Without loss of generality,
assume thaf = k+ 1. Since (1) holds fofV1,- -+ ,Vk.1), (1) will also hold for(Vy,---,Vk). This implies
that there exists a permutationof {1,- -k} such that dinfVj)) > i. This combined with the fact that
dim(Vk+1) > k+ 1 shows that (2) holds.

(2) = (1). Assume that (2) holds and I&tbe any invertiblen x n matrix. Since din(AVU(l)) >1,
there exists a vecta; (1) € AVy(1) of unitlength. Now suppose that an orthonormal{s%t<1), e ,va(j)}
has been chosen so thgt;) € AV, ;). LetU be then— j dimensional subspace Bf' consisting of vectors
orthogonal to{ V1), -+ ,Vg(j) }. Since dim(AVy(j;1)) > j+1, the intersection df andAV,; ;1) contains
a non-zero vector. Letyj.1) be any element dfl N AV, 1) of unitlength. Then{vg1), -, Vo(j1)}
is a set of orthonormal vectors with;, € AV ;). So (1) holds. O

Corollary 13. For 1<i<n<m, letg be theit column of then x n identity matrix and leQ); be a matrix
with mcolumns. LeX be a full rankm x n matrix. The following are equivalent.
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(1) For every investabla x n matrix A there exists @& x n orthogonal matriXP such thatQ;X APg = 0.
(2) There exist a permutatiom of {1,---,n} such tharank(Qy ;) < n—i.

Proof. The corollary a simple restatement of Theorem 12 whem. If
Vi = {ve R"|QXv=0},

then, dimV;) = n—rank(Q;X) > n—rank(Q;) >i. So (2) is equivalent to (2) of Theorem 12. Since
Qi XAPg = 0 if and only if Pg € A=V, (1) is equivalent to (1). O

Theorent??follows easily from the corollary by noting that sin&€A (L)) is a surjection, if the system
is not over identified then (1) will hold for all full ranik x n matrices.

Proof. It can be shown tha&X a,pa, p) = X(ap.a,)P- SO
PiX(popa PPz = PiXaa, )PP
= TRPPP =T,
which implies that the rotated parametéfgP, A P) satisfy the restrictions. O
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