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Abstract

The paper provides new tools for the evaluation of DSGE models, and applies it

to a large-scale New Keynesian dynamic stochastic general equilibrium (DSGE) model

with price and wage stickiness and capital accumulation. Specifically, we approximate

the DSGE model by a vector autoregression (VAR), and then systematically relax the

implied cross-equation restrictions. Let λ denote the extent to which the restrictions

are being relaxed. We document how the in- and out-of-sample fit of the resulting

specification (DSGE-VAR) changes as a function of λ. Furthermore, we learn about

the precise nature of the misspecification by comparing the DSGE model’s impulse

responses to structural shocks with those of the best-fitting DSGE-VAR. We find that

the degree of misspecification in large-scale DSGE models is no longer so large to

prevent their use in day-to-day policy analysis, yet it is not small enough that it cannot

be ignored. (JEL C11, C32, C53)
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1 Introduction

Dynamic stochastic general equilibrium (DSGE) models are not just attractive from a theo-

retical perspective, but they are also emerging as useful tools for forecasting and quantitative

policy analysis in macroeconomics. Due to improved time series fit these models are gaining

credibility in policy making institutions such as central banks. Up until recently DSGE mod-

els had the reputation of being unable to track macroeconomic time series. In fact, an assess-

ment of their forecasting performance was typically considered futile, an exception being, for

instance, DeJong, Ingram, and Whiteman (2000). Apparent model misspecifications were

used as an argument in favor of informal calibration approaches to the evaluation of DSGE

models along the lines of Kydland and Prescott (1982). Subsequently, many authors have

developed econometric frameworks that formalize aspects of the calibration approach, for in-

stance, Canova (1994), DeJong, Ingram, and Whiteman (1996), Geweke (1999), Schorfheide

(2000), and Dridi, Guay, Renault (2004). A common feature of many of these approaches

is that DSGE model predictions are either implicitly or explicitly compared to those from

a reference model. Much of the applied work related to monetary models has, for instance,

proceeded by evaluating, and to some extend also estimating, DSGE models based on dis-

crepancies between impulse response functions obtained from the DSGE model and those

obtained from the estimation of identified vector autoregressions (VARs). Examples include

Nason and Cogley (1994), Rotemberg and Woodford (1997), Boivin and Giannoni (2003),

and Christiano, Eichenbaum, and Evans (2004). As pointed out in Schorfheide (2000) such

an evaluation is sensible as long as the VAR indeed dominates the DSGE model in terms of

time series fit.

Smets and Wouters (2003a) lay out a large-scale monetary DSGE model in the New

Keynesian tradition based on work by Christiano, Eichenbaum, and Evans (2004) and fit

their DSGE model to Euro-area data. One of the remarkable empirical results is that the

DSGE model outperforms vector autoregressions estimated with a fairly diffuse training

sample prior in terms of its marginal likelihood. Loosely speaking, the log marginal like-

lihood can be interpreted as a measure of a one-step-ahead predictive score (Good, 1952).

Previous studies using more stylized DSGE models, e.g., Schorfheide (2000), always found

that even simple VARs dominate DSGE models. On the one hand, the Smets and Wouters

(2003a) finding challenges the practice of assessing DSGE models on their ability to repro-

duce VAR impulse response functions without carefully documenting that the VAR indeed

fits better than the DSGE model. On the other hand, it poses the question whether re-

searchers from now on have to be less concerned about misspecification of DSGE models.



2

Moreover, the result suggests that it is worthwhile to carefully document the out-of-sample

predictive performance of New-Keynesian DSGE models.

The contributions of our paper are twofold, one methodological and the other substan-

tive. First, we develop a set of tools that is useful to assess the time series fit of a DSGE

model. We construct a benchmark model that can assist to characterize and understand the

degree of misspecification of the DSGE model. Second, we apply these tools to a variant

of the Smets and Wouters (2003a) model and document its fit and forecasting performance

based on post-war U.S. data.

Our approach to model evaluation is based on Ingram and Whiteman (1994) and Del

Negro and Schorfheide (2004). Both papers develop methods to tilt the coefficient estimates

of a VAR toward the restrictions implied by a DSGE model in order to improve the time

series fit of the estimated VAR. While the focus of this earlier work was to improve the

empirical performance of a VAR, this paper emphasizes a different aspect. We approximate

the state-space representation of a log-linear DSGE model by a vector autoregression with

tight cross-coefficient restrictions. These restrictions are potentially misspecified and model

fit can be improved by relaxing the restrictions. The weight that we place on the DSGE

model restrictions is controlled by a hyperparameter λ. We refer to the resulting model as

DSGE-VAR(λ).

Formally, we are using a Bayesian framework in which λ scales the inverse of a prior

covariance matrix for parameters that capture deviations from the DSGE model restric-

tions. The posterior distribution of λ provides an overall assessment of the DSGE model

restrictions. Posterior mass concentrated on large values of λ provides evidence in support

of the DSGE model restrictions. The practice of assessing DSGE models based on their

posterior odds relative to a VAR with diffuse prior can be viewed as a special case in which

λ is restricted to be either ∞ or close to zero. Such a posterior odds comparison between the

extremes, however, tends to be sensitive to the specification of the diffuse prior on the VAR.

Sims (2003) noted that the posterior probabilities computed by Smets and Wouters do not

give an accurate reflection of model uncertainty as they tend to switch between the extremes

zero and one, depending on the choice of data set (Euro-area data in 2003a and U.S. data

in 2003b) and the specification of the VAR prior (Minnesota prior versus training-sample

prior). By considering an entire range of hyperparameter values between the extremes we

are allowing for varying degrees of deviations from the DSGE model restrictions and our

assessment misspecification becomes more refined and robust.

Second, in addition to studying the posterior distribution of λ we are computing a
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sequence of pseudo-out-of-sample forecasts for the state-space representation of the DSGE

model, the DSGE-VAR with λ replaced by the hyperparameter value λ̂ that has the highest

posterior probability, and a VAR with a very diffuse prior. The resulting root-mean-squared

forecast errors provide additional evidence on the fit of the DSGE model and how it changes

as the model restrictions are being relaxed.

Third, if the posterior distribution of the hyperparameter suggests to relax the DSGE

model restrictions, then the DSGE-VAR(λ̂) can be used as a benchmark for evaluating the

dynamics of the DSGE model and to gain some insights on how to improve the structural

model. Note that unlike a comparison of the DSGE model to a VAR estimated with simple

least squares methods, our analysis guarantees that the DSGE model is not compared to a

specification that fits worse, where fit is measured by the marginal likelihood.1 We provide

an identification scheme where the rotation matrix is such that in absence of misspecification

the DSGE’s and the DSGE-VAR’s impulse responses to all shocks would coincide. To the

extent that misspecification is mainly in the dynamics, as opposed to the covariance matrix

of innovations, this identification implicitly matches the short-run responses of the DSGE-

VAR to those of the underlying DSGE model. Hence, in constructing a benchmark for the

evaluation of the DSGE model we are trying to stay as close to the original specification as

possible without having to sacrifice time series fit.

The empirical findings are as follows. We document that the state space representa-

tion of the DSGE model is well approximated by a VAR with four lags in output growth,

consumption growth, investment growth, real wage growth, hours worked, inflation, and

nominal interest rates, provided the model-implied cointegration vectors are included as

additional regressors. We refer to this specification as DSGE-VECM since the cointegration

vectors are often called error correction terms in the time series literature. A preliminary

estimation of the state space representation of the DSGE model confirms the well-known

result that the exogenous driving processes of the model are highly persistent, pick up most

of the serial correlation in the observed time series, and also have to offset some of the

counterfactual co-trending implications of the DSGE model.

The posterior distribution of the hyperparameter λ has an inverse U-shape indicating

that the fit of the autoregressive system can be improved by relaxing the DSGE model

restrictions. The shape of the posterior also implies that the restrictions should not be

completely ignored when constructing a benchmark for the model evaluation as VARs with
1There is a long tradition in the forecasting literature to boost the predictive performance of VARs

through the use of prior distributions dating back to Doan, Litterman, and Sims (1984).
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very diffuse priors are clearly dominated by the DSGE-VECM(λ̂). This finding is confirmed

in the pseudo-out-of-sample forecasting experiment. According to a widely-used multivariate

forecast error statistic the DSGE model and the VECM with diffuse prior perform about

equally well in terms of one-step ahead forecasts, but are clearly worse than the DSGE-

VECM(λ̂). The forecast accuracy improvements obtained by optimally relaxing the DSGE

model restrictions are largest in the medium run. We also document the forecast accuracy

for individual series. While for most variables the forecasts improve as the restrictions are

loosened there are two exceptions: real wage and inflation forecasts hardly improve.

When comparing impulse responses between the DSGE model and the DSGE-VECM(λ̂)

we find that many responses are not only qualitatively, but also quantitatively in agreement.

However, there are exceptions. For instance, the effects of the shock to the marginal rate of

substitution between consumption and leisure are more persistent in the DSGE-VECM(λ̂)

than in the DSGE model. According to the DSGE model, output and hours increase imme-

diately in response to a government spending shock and quickly decay monotonically. The

DSGE-VECM, on the other hand, predicts delayed, hump-shaped responses of both output

and hours that are long-lasting. Moreover, the DSGE-VECM predicts a larger real effect of

monetary policy shocks.

The paper is organized as follows. The DSGE model is presented in Section 2. Sec-

tion 3 discusses how the state space representation of the DSGE model is approximated

by a vector autoregressive specification and how a prior distribution for the DSGE model

misspecification is generated. Moreover, a simple example is provided to illustrate the role

of λ in assessing the overall fit of the DSGE model and in constructing a benchmark for

forecast and impulse-response comparisons. Section 4 describes the data. Empirical results

are presented in Section 5 and Section 6 concludes.

2 Model

This section describes the DSGE model, which is a slightly modified version of the DSGE

model developed and estimated for the Euro area in Smets and Wouters (2003a). In par-

ticular, we introduce stochastic trends into the model, so that it can be fitted to unfiltered

time series observations. The DSGE model is based on work of Christiano, Eichenbaum,

and Evans (2004) and contains a large number of nominal and real frictions. To make this

paper self-contained we subsequently describe the structure of the model economy and the

decision problems of the agents in the economy.
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2.1 Final goods producers

The final good Yt is a composite made of a continuum of intermediate goods Yt(i), indexed

by i ∈ [0, 1]:

Yt =
[∫ 1

0

Yt(i)
1

1+λf,t di

]1+λf,t

(1)

where λf,t ∈ (0,∞) follows the exogenous process:

ln λf,t = (1− ρλf
) ln λf + ρλf

ln λf,t−1 + σλ,f ελ,t, (2)

where ελ,t is an exogenous shock with unit variance that in equilibrium affects the mark-

up over marginal costs. The final goods producers are perfectly competitive firms that

buy intermediate goods, combine them to the final product Yt, and resell the final good to

consumers. The firms maximize profits

PtYt −
∫

Pt(i)Yt(i)di

subject to (1). Here Pt denotes the price of the final good and Pt(i) is the price of inter-

mediate good i. From their first order conditions and the zero-profit condition we obtain

that:

Yt(i) =
(

Pt(i)
Pt

)− 1+λf,t
λf,t

Yt and Pt =
[∫ 1

0

Pt(i)
1

λf,t di

]λf,t

. (3)

2.2 Intermediate goods producers

Good i is made using the technology:

Yt(i) = max
{

Z1−α
t Kt(i)αLt(i)1−α − ZtF , 0

}
, (4)

where the technology shock Zt (common across all firms) follows a unit root process,

and where F represent fixed costs faced by the firm. We define technology growth zt =

log(Zt/Zt−1) and assume that zt follows the autoregressive process:2

zt = (1− ρz)γ + ρzzt−1 + σzεz,t. (5)

All firms face the same prices for their labor and capital inputs. Hence profit maximization

implies that the capital-labor ratio is the same for all firms:

Kt

Lt
=

α

1− α

Wt

Rk
t

, (6)

2Smets and Wouters (2003a) assume a stationary technology shock that follows an autoregressive process.

Their estimate of the autocorrelation coefficient however are very close to the upper boundary of one. We

therefore choose to assume a unit root process from the onset.



6

where Wt is the nominal wage and Rk
t is the rental rate of capital. Following Calvo (1983),

we assume that in every period a fraction of firms ζp is unable to re-optimize their prices

Pt(i). These firms adjust their prices mechanically according to

Pt(i) = (πt−1)ιp(π∗)1−ιp , (7)

where πt = Pt/Pt−1 and π∗ is the steady state inflation rate of the final good. In our

empirical analysis we will restrict ιp to be either zero or one. Those firms that are able to

re-optimize prices choose the price level P̃t(i) that solves:

maxP̃t(i)
IEt

[∑∞
s=0 ζs

pβsΞp
t+s

(
P̃t(i)

(
Πs

l=1π
ιp

t+l−1π
1−ιp∗

)
−MCt+s

)
Yt+s(i)

]

s.t. Yt+s(i) =


 P̃t(i)

(
Πs

l=1π
ιp

t+l−1π
1−ιp∗

)

Pt+s



− 1+λf,t

λf,t

Yt+s, MCt+s =
α−αW 1−α

t+s Rk α
t+s

(1− α)(1−α)Z1−α
t+s

,

(8)

where βsΞp
t+s is today’s value of a future dollar for the consumers and MCt reflects marginal

costs. We consider only the symmetric equilibrium where all firms will choose the same P̃t(i).

Hence from (3) we obtain the following law of motion for the aggregate price level:

Pt =
[
(1− ζp)P̃

1
λf,t

t + ζp(π
ιp

t−1π
1−ιp∗ Pt−1)

1
λf,t

]λf,t

. (9)

2.3 Labor packers

There is a continuum of households, indexed by j ∈ [0, 1], each supplying a differentiated

form of labor, L(j). The labor packers are perfectly competitive firms that hire labor from

the households and combine it into labor services Lt that are offered to the intermediate

goods producers:

Lt =
[∫ 1

0

Lt(j)
1

1+λw di

]1+λw

, (10)

where λw ∈ (0,∞) is a fixed parameter.3 From first-order and zero-profit conditions of

the labor packers we obtain the labor demand function and an expression for the price of

aggregated labor services Lt:

(a) Lt(j) =
(

Wt(j)
Wt

)− 1+λw
λw

Lt and (b) Wt =
[∫ 1

0

Wt(j)
1

λw di

]λw

. (11)

3Smets and Wouters (2003a) assume that i.i.d. shocks to the degree of labor substitutability are another

source of disturbance in the economy.
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2.4 Households

The objective function for household j is given by:

IEt

∞∑
s=0

βsbt+s

[
log(Ct+s(j)− hCt+s−1(j))− ϕt+s

1 + νl
Lt+s(j)1+νl +

χ

1− νm

(
Mt+s(j)
Zt+sPt+s

)1−νm
]

(12)

where Ct(j) is consumption, Lt(j) is labor supply, and Mt(j) is money holdings. House-

hold’s preferences display habit-persistence. We depart from Smets and Wouters (2003b) in

assuming separability in the utility function for a reason that will be discussed later. The

preference shifters ϕt, which affects the marginal utility of leisure, and bt, which scales the

overall period utility, are exogenous processes common to all households that evolve as:

ln ϕt = (1− ρϕ) ln ϕ + ρϕ ln ϕt−1 + σϕεϕ,t, (13)

ln bt = ρb ln bt−1 + σbεb,t. (14)

Real money balances enter the utility function deflated by the (stochastic) trend growth of

the economy, so to make real money demand stationary.

The household’s budget constraint written in nominal terms is given by:

Pt+sCt+s(j) + Pt+sIt+s(j) + Bt+s(j) + Mt+s(j) ≤ Rt+sBt+s−1(j) + Mt+s−1(j) + At+s−1(j)

+ Πt+s + Wt+s(j)Lt+s(j) +
(
Rk

t+sut+s(j)K̄t+s−1(j)− Pt+sa(ut+s(j))K̄t+s−1(j)
)
,

(15)

where It(j) is investment, Bt(j) is holdings of government bonds, Rt is the gross nominal

interest rate paid on government bonds, At(j) is the net cash inflow from participating in

state-contingent securities, Πt is the per-capita profit the household gets from owning firms

(households pool their firm shares, and they all receive the same profit), and Wt(j) is the

nominal wage earned by household j. The term within parenthesis represents the return to

owning K̄t(j) units of capital. Households choose the utilization rate of their own capital,

ut(j). Households rent to firms in period t an amount of effective capital equal to:

Kt(j) = ut(j)K̄t−1(j), (16)

and receive Rk
t ut(j)K̄t−1(j) in return. They however have to pay a cost of utilization in

terms of the consumption good equal to a(ut(j))K̄t−1(j). Households accumulate capital

according to the equation:

K̄t(j) = (1− δ)K̄t−1(j) + µt

(
1− S

(
It(j)

It−1(j)

))
It(j), (17)
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where δ is the rate of depreciation, and S(·) is the cost of adjusting investment, with

S′(·) > 0, S′′(·) > 0. The term µt is a stochastic disturbance to the price of investment

relative to consumption, see Greenwood, Hercovitz, and Krusell (1998), which follows the

exogenous process:4

ln µt = (1− ρµ) ln µ + ρµ ln µt−1 + σµεµ,t. (18)

The households’ wage setting is subject to nominal rigidities á la Calvo (1983). In

each period a fraction ζw of households is unable to re-adjust wages. For these households,

the wage Wt(j) will increase at a geometrically weighted average of the steady state rate

increase in wages (equal to steady state inflation π∗ times the growth rate of the economy

eγ) and of last period’s inflation times last period’s productivity (πt−1e
zt−1). The weights

are 1 − ιw and ιw, respectively. Those households that are able to re-optimize their wage

solve the problem:

maxW̃t(j)
IEt

∑∞
s=0(ζwβ)sbt+s

[
− ϕt+s

νl + 1Lt+s(j)νl+1
]

s.t. (15) for s = 0, . . . ,∞, (11a), and

Wt+s(j) =
(
Πs

l=1(π∗e
γ)1−ιw(πt+l−1e

zt+l−1)ιw
)
W̃t(j).

(19)

We again consider only the symmetric equilibrium in which all agents solving (19) will

choose the same W̃t(j). From (11b) it follows that:

Wt = [(1− ζw)W̃
1

λw
t + ζw((π∗eγ)1−ιw(πt−1e

zt−1)ιwWt−1)
1

λw ]λw . (20)

Finally, we assume there is a complete set of state contingent securities in nominal

terms, which implies that the Lagrange multiplier Ξp
t (j) associated with (15) must be the

same for all households in all periods and across all states of nature. This in turn implies

that in equilibrium households will make the same choice of consumption, money demand,

investment and capital utilization. Since the amount of leisure will differ across households

due to the wage rigidity, separability between labor and consumption in the utility function

is key for this result.
4We have also experimented with the introduction of a deterministic trend Υt in equation (17), as in

Greenwood, Hercovitz, and Krusell (1998). Since this added parameter does change the results or improve

the fit for our empirical specification, we set it equal to 1.
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2.5 Government policies

The central bank follows a nominal interest rate rule by adjusting its instrument in response

to deviations of inflation and output from their respective target levels:

Rt

R∗
=

(
Rt−1

R∗

)ρR
[(

πt

π∗

)ψ1
(

Yt

Y ∗
t

)ψ2
]1−ρR

σReεR,t , (21)

where εR,t is the monetary policy shock, R∗ is the steady state nominal rate, Y ∗
t is the tar-

get level of output, and the parameter ρR determines the degree of interest rate smoothing.

This specification of the Taylor rule is more standard than the one in Smets and Wouters

(2003a,b), who introduce a time-varying inflation objective that varies stochastically ac-

cording to a random walk. The random walk inflation target may help the model to fit

the medium- and long-frequency fluctuations in inflation. In this paper, we are interested

in assessing the model’s fit of inflation without the extra help coming from the exogenous

inflation target shocks. We consider two alternative specifications for the target level of

output Y ∗
t in (21). Under one specification the monetary authorities target the trend level

of output: Y ∗
t = Y s

t . Under the alternative specification they target the level of output that

would have prevailed in absence of nominal rigidities: Y ∗
t = Y f

t . The central bank supplies

the money demanded by the household to support the desired nominal interest rate.

The government budget constraint is of the form

PtGt + Rt−1Bt−1 + Mt−1 = Tt + Mt + Bt, (22)

where Tt are nominal lump-sum taxes (or subsidies) that also appear in household’s budget

constraint. Government spending is given by:

Gt = (1− 1/gt)Yt, (23)

where gt follows the process:

ln gt = (1− ρg) ln g + ρg ln gt−1 + σgεg,t (24)

2.6 Resource constraint

The aggregate resource constraint:

Ct + It + a(ut)K̄t−1 =
1
gt

Yt. (25)

can be derived by integrating the budget constraint (15) across households, and combining

it with the government budget constraint (22) and the zero profit conditions of both labor

packers and final good producers.
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2.7 Model Solution

As in Altig, Christiano, Eichenbaum, and Linde (2002) our model economy evolves along

stochastic growth path. Output Yt, consumption Ct, investment It, the real wage Wt/Pt,

physical capital Kt and effective capital K̄t all grow at the rate Zt. Nominal interest rates,

inflation, and hours worked are stationary. The model can be rewritten in terms of detrended

variables. We find the steady states for the detrended variables and use the method in

Sims (2002) to construct a log-linear approximation of the model around the steady state.

We collect all the DSGE model parameters in the vector θ, stack the structural shocks in

the vector εt, and derive a state-space representation for the n× 1 vector ∆yt:

∆yt = [∆ ln Yt,∆ lnCt, ∆ln It, ln Lt, ∆ln(Wt/Pt), πt, Rt]′,

where ∆ denotes the temporal difference operator and πt is the inflation rate.

3 DSGE-VARs as Tools for Model Evaluation

The DSGE model generates a covariance-stationary distribution of the sequence {∆yt}.
We will now derive an (approximate) vector autoregressive representation for the DSGE

model. As is well known, this representation imposes many cross-equation restrictions on the

VAR parameters. We explicitly introduce model misspecification as deviations of the VAR

parameters from these restrictions. We construct a joint prior distribution for the parameters

of the DSGE model and the parameters that characterize the model misspecification. The

prior for the misspecification parameters is centered at zero: the DSGE restrictions are the

benchmark.

The prior covariance matrix of the misspecification parameters is scaled by a hyperpa-

rameter λ, which can be interpreted as the weight that we are placing on the DSGE model

restrictions. Whenever λ is very high, the resulting model will be fairly close to the DSGE

model itself as the prior on the misspecification parameters concentrates the mass around

zero. Whenever λ is small the resulting model will be fairly close to an unrestricted VAR:

The prior on the misspecification parameters is virtually flat. Hence, we have a family of

models indexed by λ that essentially has an unrestricted VAR at one extreme and the DSGE

model at the other extreme. We will call these models DSGE-VAR(λ). Here by model we

mean a joint probability distribution for the data and the parameters. Using Markov-Chain-

Monte-Carlo methods we can generate draws from the posterior distribution of the DSGE
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model parameters and the misspecification parameters. We are also able to make posterior

inference with respect to the hyperparameter λ.

Our framework is useful for DSGE model evaluation in two respects. First, the posterior

distribution of the hyperparameter λ provides an overall summary of fit. A substantial mass

on large values of λ can be interpreted as evidence in favor of the restrictions imposed by the

DSGE model. If there are misspecifications, they are likely to be small. Posterior estimates

of λ near zero, on the other hand, indicate serious misspecification.

Second, the estimated DSGE-VAR provides a natural benchmark for comparing the

dynamics of the DSGE model to those of a less restrictive specification. There is an exten-

sive literature that evaluates DSGE models by comparing their impulse responses to those

obtained from vector autoregressions, to name a few, Cogley and Nason (1994), Rotemberg

and Woodford (1997), Schorfheide (2000), and, more recently, Boivin and Giannoni (2003)

and Christiano, Eichenbaum, and Evans (2004). An important issue in such comparisons

is the estimation and identification of the VAR that serves as a benchmark. Most authors

use simple least squares techniques to estimate the VAR, which, unfortunately, leads to

very noisy coefficient estimates. Moreover, it is often difficult to find identification schemes

that are consistent with the DSGE model that is being estimated and that identify several

structural shocks simultaneously.

Our benchmark for comparing impulse-responses is DSGE-VAR(λ̂), where λ̂ maximizes

the posterior density of λ, and, loosely speaking, selects the DSGE-VAR that yields the

best fit according to one-step-ahead pseudo-out-of-sample forecasting performance. Thus,

our benchmark links the magnitude of the deviation from the DSGE model restrictions to

the degree of their misspecification, that is, it deviates from the restrictions only to the

extent that the deviations improves fit. In our empirical analysis, we document that DSGE-

VAR(λ̂) indeed yields more precise out-of-sample forecasts than an unrestricted VAR and

therefore arguably represents a better benchmark. Importantly, DSGE-VAR is identified.

We propose an identification scheme for the structural shocks that is implementable in high-

dimensional systems and tries to keep the DSGE-VAR and DSGE model impulse responses

similar. The shapes and magnitudes of the remaining discrepancies can provide valuable

information about dynamic misspecifications of the DSGE model and how to overcome them

by refining the structural model.

The econometric analysis in this paper is closely related to earlier work by Del Negro

and Schorfheide (2004), who proposed a Bayesian procedure that tilts the VAR coefficient



12

estimates toward the restrictions implied by the DSGE model. Loosely speaking, the pro-

cedure amounts to adding artificial observations generated from the DSGE model to the

actual observations and then estimating the VAR based on this augmented data set. From

a Bayesian perspective the artificial observations generate a prior distribution for the VAR

coefficients that is centered around the DSGE model restrictions. Del Negro and Schorfheide

(2004) focused on the question: how can one improve a VAR by using information from a

DSGE model? The present paper asks the opposite question: How can one relax the re-

strictions of the DSGE model and evaluate the extent of their misspecification? Since these

two questions can be viewed as opposite sides of the same coin, the priors and posteriors

presented subsequently are almost identical to the ones used in Del Negro and Schorfheide

(2004), but we present a different derivation and interpretation.

3.1 VAR and VECM Representations of the DSGE Model

The DSGE model generates a restricted and potentially misspecified moving average (MA)

representation for the vector ∆yt. We approximate the MA representation by a VAR with

p-lags:

∆yt = Φ∗0(θ) + Φ∗1(θ)∆yt−1 + . . . + Φ∗p(θ)∆yt−p + ut. (26)

We will assume that the vector of reduced-form innovations ut is normally distributed con-

ditional on past information with mean zero and covariance matrix Σ∗u(θ). We denote

the dimension of ∆yt by n and define the k × 1 vector xt = [1, ∆y′t−1, . . . , ∆y′t−p]. Let

Φ∗(θ) = [Φ∗0(θ), . . . , Φ
∗
p(θ)]

′. Then the VAR can be rewritten as

∆y′t = x′tΦ
∗(θ) + u′t. (27)

In general, the VAR representation (26) is not exact if the number of lags p is finite. We

define ΓXX(θ) = IED
θ [xtx

′
t] and ΓXY (θ) = IED

θ [xty
′
t] and let

Φ∗(θ) = ΓXX(θ)−1ΓXY (θ). (28)

Here IED
θ [·] refers to an expectation with respect to the distribution generated by the DSGE

model. For ΓXX(θ) to be well-defined it is important that xt is stationary according to the

DSGE model and that its covariance matrix is non-singular. Both conditions are satisfied

for the model specified in Section 2. The model implied covariance matrix of ut is defined

as

Σ∗u(θ) = ΓY Y (θ)− ΓY X(θ)Γ−1
XX(θ)ΓXY (θ), (29)
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where ΓY Y and ΓY X are defined in the same way as ΓXX .

The DSGE model presented in Section 2 implies that the set of variables that we consider

for our empirical analysis has several common trends. For instance, output, consumption,

and investment all grow that the rate Zt. This suggests that we can obtain a better ap-

proximation of the DSGE model if we generate a moving-average representation from the

following vector error correction (VECM) specification

∆yt = Φ∗0(θ) + Φ∗β(θ)(β′yt−1) + Φ∗1(θ)∆yt−1 + . . . + Φ∗p(θ)∆yt−p + ut, (30)

where the (stationary) error correction terms are defined as

β′yt−1 =




ln Ct − lnYt

ln It − ln Yt

ln(Wt/Pt)− ln Yt


 . (31)

We will refer to this specification as DSGE-VECM. We can easily encompass the DSGE-

VECM in the notation developed above by redefining xt = [1, β′yt−1, ∆y′t−1, . . . , ∆y′t−p]
′

and Φ∗(θ) = [Φ∗0(θ), Φ
∗
β(θ), . . . , Φ∗p(θ)]′. For ease of exposition we will subsequently ignore

the error made by approximating the state space representation of the log-linearized DSGE

model with a finite-order vector autoregressive specification or, in other words, treat (26)

or (30), respectively, as the structural model that imposes potentially misspecified restric-

tions on the matrices Φ and Σu. We will document the magnitude of the approximation

error at the end of this section.

3.2 Misspecification and Bayesian Inference

We make the following assumptions about misspecification of the DSGE model. There is

a vector θ and matrices Ψ∆ and Σ∆
u such that the data are generated from the vector

autoregressive model

y′t = x′tΦ + u′t (32)

where

Φ = Φ∗(θ) + Φ∆, Σu = Σ∗u(θ) + Σ∆
u . (33)

and there does not exist a θ̃ ∈ Θ such that Φ = Φ∗(θ̃) and Σu = Σ∗u(θ̃).

Our econometric analysis is casted in a Bayesian framework in which initial beliefs about

the DSGE model parameter θ and the model misspecification matrices Ψ∆ and Σ∆
u are

summarized in a prior distribution. One can interpret the prior as describing how nature
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draws the misspecification. We will now motivate this prior distribution with a thought

experiment. In this experiment, we assume that Σ∆
u = 0 and condition on the DSGE model

parameter vector θ.

We assume that the prior assigns low density to large values of the misspecification

parameter Ψ∆. That is, we assume that nature is more likely to draw small than large mis-

specification matrices. This assumption reflects the belief that the DSGE model provides a

good albeit not perfect approximation of reality. We measure the size of the misspecification

Ψ∆ by the ease with which it can be detected using likelihood ratios. Suppose that a sample

of λT observations is generated from (26), where Φ is given by (33) and T is the size of the

actual sample used in the estimation. We will construct a prior that has the property that

its density is proportional to the expected likelihood ratio of Φ evaluated at its (misspeci-

fied) restricted value Φ∗(θ) versus the true value Φ = Φ∗(θ) + Φ∆. The log-likelihood ratio

is

ln
[L(Φ∗ + Φ∆, Σ∗u, θ|Y,X)

L(Φ∗,Σ∗u, θ|Y, X)

]
(34)

= −1
2
tr

[
Σ∗−1

u

(
(Φ∗ + Φ∆)′X ′X(Φ∗ + Φ∆)− 2(Φ∗ + Φ∆)′X ′Y

−Φ∗
′
X ′XΦ∗ + 2Φ∗

′
X ′Y

)]
.

Y denotes the λT ×n matrix with rows y′t and Xt is the λT × k matrix with rows x′t. After

replacing Y by XΦ∗ + U the log likelihood ratio simplifies to

ln
[L(Φ∗ + Φ∆,Σ∗u, θ|Y, X)

L(Φ∗, Σ∗u, θ|Y,X)

]
= −1

2
tr

[
Σ∗−1

u

(
Φ∆′X ′XΦ∆ − 2Φ∆′X ′U

)]
. (35)

Taking expectations over X and U using the distribution induced by the data generating

process yields (minus) the Kullback-Leibler distance between the data generating process

and the DSGE model:

IEV AR
Φ∗,Σ∗u

[
ln

[L(Φ∗ + Φ∆,Σ∗u, θ|Y, X)
L(Φ∗, Σ∗u, θ|Y,X)

] ]
= −1

2
tr

[
Σ∗−1

u

(
Φ∆′λTΓXXΦ∆

)]
, (36)

where IEV AR
Φ∗,Σ∗u

[·] denotes the expectation under the probability distribution generated by (26).5

We now choose a prior density that is proportional (∝) to the Kullback-Leibler discrepancy:

p(Φ∆|Σ∗u, θ) ∝ exp
{
− 1

2
tr

[
λTΣ∗−1

u

(
Φ∆′ΓXXΦ∆

)]}
. (37)

As the sample size λT increases the prior places more mass on misspecification matrices

that are close to zero.
5It is straightforward to verify that IEV AR

Ψ∗,Σ∗ [xtx′t] = IED
θ [xtx′t] = ΓXX(θ).
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For computational reasons it is convenient to transform this prior into a prior for Φ.

Using standard arguments we deduce that this prior is multivariate normal

Φ|Σ∗u, θ ∼ N
(

Φ∗(θ),
1

λT

[
Σ∗−1

u ⊗ ΓXX(θ)
]−1

)
. (38)

The hyperparameter λ, which determines the length of the hypothetical sample as a multiple

of the actual sample size T , scales the variance of the distribution that generates Φ∆ and

Φ. If λ is close to zero, the prior variance of the discrepancy Φ∆ is large. Large values of λ,

on the other hand, correspond to small model misspecification and for λ = ∞ beliefs about

model misspecification degenerate to a point mass at zero.

In practice we also have to take potential misspecification of the covariance matrix

Σ∗u(θ) into account. Hence, we will use the following, slightly modified, prior distribution

conditional on θ in the empirical analysis:

Σu|θ ∼ IW
(

λTΣ∗u(θ), λT − k, n

)
(39)

Φ|Σu, θ ∼ N
(

Φ∗(θ),
1

λT

[
Σ−1

u ⊗ ΓXX(θ)
]−1

)
, (40)

where IW denotes the inverted Wishart distribution. The latter induces a distribution for

the discrepancy Σ∆
u = Σu−Σ∗u. The prior distribution is proper, i.e., has mass one, provided

that λT ≥ k + n. Hence, we restrict the domain of λ to the interval [(k + n)/T,∞].

3.3 Posteriors

The posterior density is proportional to the prior density times the likelihood function. We

factorize the posterior into the conditional density of the VAR parameters given the DSGE

model parameters and the marginal density of the DSGE model parameters:

pλ(Φ, Σu, θ|Y ) = pλ(Φ, Σu|Y, θ)pλ(θ|Y ). (41)

The λ-subscript indicates the dependence of the posterior on the hyperparameter. It is

straightforward to show, e.g., Zellner (1971), that the posterior distribution of Φ and Σ is

also of the Inverted Wishart – Normal form:

Σu|Y, θ ∼ IW
(

(λ + 1)T Σ̂u,b(θ), (1 + λ)T − k, n

)
(42)

Φ|Y, Σu, θ ∼ N
(

Φ̂b(θ), Σu ⊗ (λTΓXX(θ) + X ′X)−1

)
, (43)
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where Φ̂b(θ) and Σ̂u,b(θ) are the given by

Φ̂b(θ) = (λTΓXX(θ) + X ′X)−1(λTΓXY + X ′Y ) (44)

=
(

λ

1 + λ
ΓXX(θ) +

1
1 + λ

X ′X
T

)−1 (
λ

1 + λ
ΓXY +

1
1 + λ

X ′Y
T

)

Σ̂u,b(θ) =
1

(λ + 1)T

[
(λTΓY Y (θ) + Y ′Y )− (λTΓY X(θ) + Y ′X)

×(λTΓXX(θ) + X ′X)−1(λTΓXY (θ) + X ′Y )
]
. (45)

Expressions (44) and (45) show that the larger the weight λ of the prior, the closer the

posterior mean of the VAR parameters is to Φ∗(θ) and Σ∗u(θ), the values that respect the

cross-equation restrictions of the DSGE model. On the other hand, if λ = (n + k)/T then

the posterior mean is close to the OLS estimate (X ′X)−1X ′Y . The formula for the marginal

posterior density of θ and the description of a Markov-Chain-Monte-Carlo algorithm that

generates draws from the joint posterior of Φ, Σu, and θ are provided in Del Negro and

Schorfheide (2004). Note that the joint posterior of Φ, Σ, and θ implicitly defines a posterior

distribution for the misspecification matrices Φ∆ and Σ∆.

We will study the fit of the DSGE model by looking at the posterior distribution of

the hyperparameter λ. For computational reasons, we only consider a finite set of values

Λ = {l1, . . . , lq}, where l1 = (n + k)/T and lq = ∞. Moreover, we assign equal prior

probabilities to the elements of Λ. According to Bayes Theorem, the posterior probabilities

for the hyperparameter are proportional to the marginal data density

pλ(Y ) =
∫

p(Y |θ, Σ, Φ)pλ(θ, Σ, Φ)d(θ,Σ,Φ). (46)

We denote the posterior mode of λ by

λ̂ = argmaxλ∈Λ pλ(Y ). (47)

It is common in the literature, e.g., Smets and Wouters (2002a,b) to use marginal data

densities to document the fit of DSGE models relative to VARs. In our framework this

corresponds to (approximately) to comparing pλ(Y ) for the extreme values of λ, that is,

λ = ∞ (DSGE model) and λ = (k + n)/T (VAR with nearly flat prior). We are extending

the analysis to intermediate values of λ as the posterior of the hyperparameter reveals

information about the degree of the DSGE model misspecification.

Sims (2003) criticized the use of posterior odds between DSGE models and VARs with

diffuse prior because they do not provide a realistic characterization of model uncertainty.

The latter generate a rather flat marginal data density whereas the former have a data
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density that concentrates in a small subset of the observation space. Since the probability

of observing data for which the marginal data densities of the two types of models are of

similar magnitude is very small, the odds tend to decisively favor either the VAR or the

DSGE model. Sims (2003) interprets this phenomenon as an indication that the model space

is too sparse. Another criticism of posterior odds comparisons between tightly parameterized

models such as DSGE models and more densely parameterized models such as VARs is that

the odds are very sensitive to the choice of priors, in particular, for the more general model.6

Our procedure “fills” the model space by considering a large set of intermediate models,

indexed by λ, that lie between the VAR with diffuse prior and the DSGE model. Hence we

are able to provide a more detailed characterization of model fit. Moreover, for practical

purposes we found our procedure to be robust to minor modifications to the DSGE model

and the priors.

3.4 The Role of λ in a Simple Example

This section illustrates the role of λ and the interpretation of the hyperparameter using a

stylized example. Specifically, we first describe the relationship between the posterior of

the hyperparameter λ and the degree of model misspecification. Second, we show that for

intermediate values of the “true” misspecification DSGE-VAR(λ̂) will provide more precise

parameter and impulse response function estimates (in a mean-squared error sense) as well

as more accurate forecasts than either of the two extremes, the unrestricted model or the

model where the restriction is dogmatically imposed. This is indeed the case we encounter

in practice.

The example we consider is:

yt = φyt−1 + ut, ut ∼ iidN (0, 1), (48)

where yt is a scalar, φ = φ∗ + φ∆. The variance of the one-step ahead forecast errors is

known to be one. We assume that according to the DSGE model φ∗ = 0 and abstract from

the dependence of the DSGE model on an unknown parameter vector θ. In the notation

developed previously xt = yt−1, ΓXX = 1, and the prior is of the form

φ = φ∆ ∼ N
(

0,
1

λT

)
. (49)

6A discussion of this this issue can be found in most Bayesian textbooks, often under the heading

“Lindley’s Paradox,” for instance, Robert (1994) and Gelman, Carlin, Stern, and Rubin (1995).



18

We restrict λ ≥ T−1, which means that when constructing the Kullback-Leibler distance

between the DSGE model and the autoregressive data generating process we consider at

least one hypothetical observation.

The joint density of Y = [y1, . . . , yT ] and φ conditional on λ and y0 is (in our notation

we are omitting the initial observation from the conditioning set):

p(Y, φ|λ) = (2π)−(1+T )/2(λT )
1
2 exp

{
−1

2

[
T∑

t=1

(yt − φyt−1)2 + λTφ2

]}
. (50)

Define

φ̂b(λ) = (λT +
∑

y2
t−1)

−1(
∑

ytyt−1),

which is a simplified version of the expression in (44). It can be verified that the posterior

distribution of φ is of the form:7

φ|Y, λ ∼ N
(

φ̂b(λ),
1

λT +
∑

y2
t−1

)
(51)

and the log marginal data density is given by:

ln p(Y |λ) = −T

2
ln(2π)+

1
2

ln λT− 1
2

ln
(
λT +

∑
y2

t−1

)
− 1

2

[∑
y2

t −
(
∑

ytyt−1)2

λT +
∑

y2
t−1

]
. (52)

Unlike in the empirical application where λ is restricted to take values on a finite grid, we

now let λ take values in IR+ subject to the restriction λ > T−1 and use an (improper) prior

that is uniform over the domain of λ. Hence, (52) can be interpreted as the log posterior

density of the hyperparameter. As above, we denote its mode by λ̂, and the resulting

posterior mean estimator for φ by φ̂b(λ̂). Note that the maximum likelihood estimator for

φ in this problem is given by φ̂mle =
P

ytyt−1P
y2

t−1
.

The shape of the posterior of λ depends, of course, on the particular realization of Y .

In order to provide a characterization of the posterior we assume that the observations have

been generated from the following model:

yt = (φ∗ + T−1/2φ̃∆)yt−1 + ut. (53)

According to (53) the misspecification vanishes at rate T−1/2 (local misspecification). The

trade-off between the squared bias introduced by the potentially misspecified coefficient

restriction φ = 0 and the sampling variance due to the estimation of φ stays approximately

constant, as both bias and variance decay at the same rate T−1 (see also Schorfheide (2004)).

This setup formalizes the notion that DSGE models provide a fairly good albeit not perfect
7Detailed derivations are available from the authors upon request.
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approximation of reality.8 Letting the sample size T tend to infinity we are now able to

characterize the posterior mode of λ via its asymptotic sampling distribution:

λ̂ =⇒




1

(fφ∆+Z)2−1
if (φ̃∆ + Z)2 > 1

∞ otherwise
, (54)

where Z ∼ N (0, 1) and =⇒ signifies convergence in distribution. Thus, as the magnitude of

the misspecification decreases, the probability that the posterior of λ peaks at ∞ increases.

However, even if φ̃∆ = 0 this probability is typically not equal to one, as the local misspeci-

fication parameter φ̃∆ cannot be estimated consistently. If the misspecification is large, λ̂ is

close to zero with high probability. Hence, also from a frequentist perspective, large values

of λ̂ can be interpreted as evidence in favor of small misspecifications.

We have shown that the value of λ̂ reflects the amount of misspecification present in the

data generating process. For the simple AR(1) model the true impulse response function is

∂yT+h

∂uT
=





1 if h = 1

T−h/2φ̃∆
h

otherwise
. (55)

Thus, both reliable impulse responses, that can serve as a benchmark for the evaluation of

the DSGE model, as well as accurate forecasts from an autoregressive specification require a

precise estimate of φ̃∆. We now document that when the amount of actual misspecification

is neither too small or too big, DSGE-VAR(λ̂) provides more accurate impulse response

functions and forecasts than either of the two extremes, the VAR with diffuse prior or the

VAR with DSGE model restriction dogmatically imposed.

The sampling distribution of the posterior mean φ̂b(λ̂) can be approximated in large

samples by9

√
T φ̂b(λ̂) =⇒





φ̃∆ + Z − 1fφ∆+Z if (φ̃∆ + Z)2 > 1

0 otherwise
(56)

If the misspecification is large, then the posterior mean estimator corresponds, approxi-

mately, to the maximum likelihood estimator of φ, which has the limit distribution φ̃∆ +Z
in our example. As the misspecification decreases, the probability that the DSGE-VAR(λ̂)

8If the data are generated under fixed misspecification φ = φ∆ the posterior mode λ̂ is driven to zero

asymptotically. As the sample size increases the potential advantage from imposing the DSGE model

restriction φ = 0 vanishes as φ = φ∆ can be consistently estimated. Such an analysis however does not

capture the trade-offs that a researcher faces in finite samples.
9The estimator φ̂b(λ̂) is often called empirical Bayes estimator, see, for instance, Robert (1994). The

most famous example of an empirical Bayes estimator is James’ and Stein’s celebrated estimator for the

mean of a multivariate normal distribution.
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will impose the DSGE model restrictions increases. Under a quadratic loss function the

frequentist estimation risk for the misspecification parameter is given by

T · IE
[
(φ̂− T−1/2φ̃∆)2

]
. (57)

Moreover, for this simple model, the measure of expected forecast accuracy is proportional

to (57). We plot this risk in Figure 1. For small values of φ̃∆ the most precise estimate

is obtained from the DSGE model (λ = ∞) itself. As the misspecification increases the

autoregressive model with the diffuse prior λ = T−1 eventually dominates the DSGE model.

The DSGE-VAR(λ̂) has the property that it is preferable to the VAR with diffuse prior if

the misspecification is small and that it dominates the DSGE model if the misspecification

is large.

In our example there is a range of values for |φ̃∆|, from 0.9 to 1.2, for which φ̂b(λ̂)

delivers the best estimates of the misspecification and therefore is a desirable benchmark

for the impulse-response function based evaluation of the DSGE model. We will present

empirical evidence in Section 5 that this is indeed the relevant range of misspecification

as pseudo out-of-sample forecasts for DSGE-VAR(λ̂) clearly dominate those from both the

DSGE model and the VAR with diffuse prior.

3.5 Identification

According to the VAR approximation of the DSGE model the reduced-form innovations are

functions of the structural shocks εt that generate the fluctuations in the DSGE model:

ut = ΣtrΩεt, (58)

where Σtr is the Cholesky decomposition of Σ and Ω is an orthonormal matrix with the

property ΩΩ′ = I. The matrix Ω is not identifiable since the likelihood function of the VAR

depends only on the covariance matrix

Σu = ΣtrΩΩ′Σ′tr = ΣtrΣ′tr.

For an impulse response function based evaluation of the DSGE model, a matrix Ω has to

be chosen to compute responses to structural shocks from the benchmark model. While

the literature contains many approaches to identify a small number of very specific shocks,

such as a technology shock or a monetary policy shock, the identification of an entire vector

of structural shocks in large dimensional VARs is still an open research question. One of
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the requirements is that such an identification scheme has the property that if the data are

generated from the DSGE model, then the structural shocks are correctly identified.

Del Negro and Schorfheide (2004) proposed to construct Ω as follows. The DSGE

model itself is identified in the sense that for each value of θ there is a unique matrix

A0(θ), obtained from the state space representation of the DSGE model, that determines

the contemporaneous effect of εt on ∆yt. Using a QR factorization of A0(θ), the initial

response of ∆yt to the structural shocks can be can be uniquely decomposed into
(

∂yt

∂ε′t

)

DSGE

= A0(θ) = Σ∗tr(θ)Ω
∗(θ), (59)

where Σ∗tr(θ) is lower triangular and Ω∗(θ) is orthonormal. According to Equation (26) the

initial impact of εt on the endogenous variables yt in the VAR is given by
(

∂∆yt

∂ε′t

)

V AR

= ΣtrΩ. (60)

To identify the DSGE-VAR, we maintain the triangularization of its covariance matrix Σu

and replace the rotation Ω in Equation (60) with the function Ω∗(θ) that appears in (59).

Loosely speaking, the rotation matrix is such that in absence of misspecification the DSGE’s

and the DSGE-VAR’s impulse responses to all shocks would coincide. To the extent that

misspecification is mainly in the dynamics, as opposed to the covariance matrix of inno-

vations, the identification procedure can be interpreted as matching, at least qualitatively,

the short-run responses of the VAR with those from the DSGE model. Since the DSGE

model essentially determines the direction of the responses, the approach is similar in spirit

to the sign-restriction identification schemes proposed by Canova and De Nicoló (2002) and

Uhlig (2001), except that the sign restrictions are constructed directly from a fully-specified

structural model.

The implementation of this identification procedure is straightforward in our framework.

Since we are able to generate draws from the joint posterior distribution of Φ, Σu, and θ,

we can for each draw (i) use Φ to construct a MA representation of ∆yt in terms of the

reduced-form shocks ut, (ii) compute a Cholesky decomposition of Σu, and (iii) calculate

Ω = Ω∗(θ) to obtain a MA representation in terms of the structural shocks εt.

In Del Negro and Schorfheide (2004) the identification procedure was applied to a trivari-

ate VAR in output growth, inflation, and nominal interest rates, driven by a technology

shock, a government spending shock, and a monetary policy shock. In this paper we apply

the approach to a seven-variable VAR. Once identification has been achieved a comparison
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with DSGE model impulse responses can generate important insights in the potential mis-

specification of the DSGE model. The spirit of this evaluation is to keep the autocovariance

sequence associated with the benchmark model, that is the DSGE-VAR, as close to the

DSGE model as possible without sacrificing the ability to track the historical time series.

3.6 How Well is the DSGE Model Approximated?

At the beginning of this section we described DSGE-VAR(λ) (or DSGE-VECM(λ)) as a

continuum of specifications with an essentially unrestricted VAR at one extreme and the

VAR approximation to the DSGE model at the other. The fact that for λ = ∞ we only

obtain an approximation of the log-linearized DSGE model raises the question why we did

not start out from a more general VARMA model that nests the moving average represen-

tation of the DSGE model. The answer is twofold. First, VARs have established themselves

as popular and powerful tools for empirical research and forecasting in macroeconomics.

Second, from a computational perspective the posterior of DSGE-VAR is much easier to

analyze than the posterior of a DSGE-VARMA.10

The accuracy of the VAR approximation of the DSGE model depends on the invertibility

of the DSGE model’s moving average components and on the number of included autoregres-

sive lags. Consider the following example. Suppose according to the log-linearized DSGE

model

yt = θεt + εt−1 = (θ + L)εt, εt ∼ iidN (0, 1), (61)

where yt is a scalar, L is the lag operator, and 0 ≤ θ < 1. Thus, in response to εt, y

increases between t and t + 1 and subsequently drops to zero. Since the roots of the MA

polynomial lie inside the unit circle, the lag polynomial is not invertible and yt does not

have an autoregressive representation in terms of the structural shocks εt.

Now consider the model

yt = ηt + θηt−1 = (1 + θL)ηt, ηt ∼ iidN (0, 1), (62)

which is observationally equivalent to (61) since it generates the same autocovariance se-

quence. However, the impulse response function looks quite different. In response to a
10For the VAR, we can calculate the marginal likelihood function conditional on the DSGE model param-

eters θ and the hyperparameter λ analytically. This marginal likelihood can be used for to generate draws

from the marginal posterior of θ. For a VARMA model, this analytical calculation is not possible.
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positive shock ηt, y falls between period t and t+1. Unlike (61), the model (62) is invertible

and has the infinite-order autoregressive representation

yt = −
∞∑

j=1

(−θ)jyt−j + ηt. (63)

The analysis in this paper is based on a finite-order approximation of (63). Therefore,

if the DSGE model had a non-invertible MA representation, then the impulse response

functions generated from the VAR approximation of the DSGE model would be misleading.

Alternatively, if the DSGE model corresponded to (62) with θ close to unity, then we would

need many lags to obtain an accurate autoregressive approximation. In practice, the number

of lags that can be used in an autoregressive approximation is typically constrained by the

number of observations that are available to initialize lags and to estimate the coefficients.

Fernandez-Villaverde, Rubio-Ramirez, and Sargent (2004) provide necessary and suffi-

cient conditions for the invertibility of the moving average components of linear state-space

models. Chari, Kehoe, and McGrattan (2004) illustrate that a large number of autoregres-

sive lags is needed to approximate the moving average representation of hours worked and

output generated by a standard neoclassical growth model and to accurately recover the

response of hours worked to a technology shock using long-run identification restrictions.

To check whether the VAR approximation of our DSGE model is reliable, we compare in

Figure 2 the impulse responses from the DSGE model with those from the DSGE-VAR(∞)

with four lags. These latter impulse responses are obtained using the identification proce-

dure described in the previous subsection. The impulse responses to output, consumption,

investment, and the real wage are cumulative. We fixed the parameter vector θ at the

posterior mean values reported in column 5 of Tables 2 and 3.

The solid and dash-and-dotted lines in Figure 2 represent the impulse responses of the

DSGE model and the DSGE-VAR(∞), respectively. For many of the impulse responses, for

example those of output, hours, inflation, and interest rates, the approximation is good. For

instance, in terms of cumulative output the maximum difference between the DSGE model’s

and DSGE-VAR(∞)’s impulse responses over the horizon (sixteen quarters) is less than 10

basis points for both monetary policy and technology shocks. For other impulse responses

however the approximation breaks down, most notably for the responses of consumption

and investment.

The inclusion of the error-correction terms in the DSGE-VECM specification is able

to reduce the approximation error substantially. For instance, the response of consump-

tion to a discount rate shock reverts to zero after sixteen quarters according to both the
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DSGE model and DSGE-VECM(∞), while it is well above one percent according to DSGE-

VAR(∞).11 Overall the responses of the DSGE-VECM(∞) (dotted lines in Figure 2) track

the DSGE model’s well. There are a few instances where the DSGE model’s responses and

DSGE-VECM(∞)’s are different, such as the responses of hours or the real wage to a g

(government spending) shock, or the response of cumulative investment to a λf (mark-up)

shock. Whenever this is the case, the magnitude of the difference in impulse-responses is still

contained, however, relative to the overall variability of the series. The maximum differences

between the DSGE model’s and DSGE-VECM(∞)’s impulse responses are 160 basis points

for cumulative investment, which is small relative to the overall variability of the series. To

double check that even these minor differences eventually disappear, we also computed the

responses of DSGE-VAR(∞) and DSGE-VECM(∞) with forty lags. Now, the impulse re-

sponses of the DSGE model are virtually indistinguishable from those of DSGE-VECM(∞),

while the approximation of DSGE-VAR(∞) is about as good as that of DSGE-VECM(∞)

with four lags only.

This finding suggests that DSGE-VECM(∞) is a parsimonious way to approximate the

DSGE model in presence of cointegration restrictions, and appears to be fairly successful

even with a moderate number of lags.12 The remainder of the paper mainly focuses on results

for DSGE-VECM, although we also discuss the results for the DSGE-VAR specification. In

estimating and assessing the fit of the DSGE model we condition on the same information

set used in DSGE-VECM. Specifically, we are conditioning on x0, the p initial lags of the

endogenous variables, as well as on the initial values of the cointegration vector (31).13

11It is well known in the context of non-stationary vector autoregressive systems that error-correction terms

can eliminate unit roots from moving average polynomials that appear in representations for first differences.

For instance, let y1,t = θy2,t + ε1,t and ∆y2,t = ε2,t. If one expresses ∆y1,t as a function of ∆y1,t−1 and

∆y2,t−1, then a unit root in the moving average polynomial arises ∆y1,t = θ∆y2,t−1 + ε1,t − ε1,t−1 and

an approximation of ∆y1,t through a finite-order VAR in differences will be inaccurate. However, once

the error correction term y1,t − θy2,t is included, the unit root in the moving-average polynomial vanishes

∆y1,t = −(y1,t−1 − θy2,t−1) + ε1,t + θε2,t.
12To further investigate the issue of invertibility we randomly generated data from the DSGE model, and

then checked whether DSGE-VECM(∞) was able to reproduce the original time series of structural shocks.

We find that this is indeed the case, even with four lags.
13This is achieved by running the Kalman filter on the initial observations x0, and then using the resulting

mean and variance for the state as starting values in the estimation on ∆y1. . .∆yT . Note that the initial

values of the cointegration vector combined with the sample information ∆y1. . .∆yT implies that we are

effectively giving the model information on the values of the cointegration vector for t = 1 . . . T .



25

4 The Data

All data are obtained from Haver Analytics (Haver mnemonics are in italics). Real output,

consumption, and investment are obtained by dividing the nominal series (GDP, C, and I,

respectively) by population 16 years and older (LF+LH), and deflating using the chained-

price GDP deflator (JGDP). The real wage is computed by dividing compensation per hour

in the non-farm business sector (LXNFC) by the GDP deflator. Note that compensation

per hours includes wages as well as employer contribution. It accounts for both wage and

salary workers and proprietors. Labor supply is computed by dividing hours of all persons

in the non-farm business sector (LXNFH) by population. Hours of all persons in the non-

farm business sector is an index developed by the Bureau of Labor Statistics that includes

the labor supply of both wage and salary workers and proprietors. This measure of labor

supply best corresponds to our measure of real wages.14 All growth rate are computed using

log-differences from quarter to quarter, and are in percent. Inflation is computed using log-

differences of the GDP deflator, in percent. The nominal rate corresponds to the effective

Federal Funds Rate (FFED), also in percent. Data are available from QIII:1954 to QI:2004.

5 Empirical Results

The empirical analysis has five parts. First, in a preliminary analysis we estimate the state

space representation of the log-linear DSGE model directly (not its VAR/VECM approx-

imation) and use marginal data densities to choose a baseline specification. Second, we

discuss parameter estimates for the baseline DSGE model and smoothed exogenous pro-

cesses. Third, we estimate DSGE-VECM and DSGE-VAR models for various values of λ

and document model fit in terms of marginal likelihoods and, equivalently, present the pos-

terior distribution of the hyperparameter. Fourth, we compare the pseudo-out-of-sample

forecasting performance of the DSGE model, the DSGE-VECM(λ̂), and the VECM with a

diffuse prior. Finally, we document the discrepancy between the impulse response functions

of the DSGE model and that of the DSGE-VECM(λ̂). All results reported in this paper that

are based on Markov Chain Monte Carlo simulations are computed using 110,000 draws and

discarding the first 10,000. We checked whether 110,000 draws were sufficient by repeating

the estimation procedure several times and verifying that we obtain the same results for

parameter estimates and log marginal likelihoods.
14Since we use an index as a measure of hours, which enter our specification in level, we need to pin down

the average value of the index via an additional free parameter in the DSGE model.
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5.1 Choosing a Baseline DSGE Model

Before relaxing the DSGE model restrictions we consider four different versions and deter-

mine which of the specifications attains the highest marginal data density. In the baseline

specification, denoted by S0, prices and wages are indexed with respect to steady state price

and wage inflation (ιp = ιw = 0), also known as static indexation. The output gap in

the Taylor rule (21) is defined using the trend of output along the stochastic growth path

Y ∗
t = Y s

t . Moreover, the fixed costs F in the production function for the intermediate goods

producers in Eq. (4) are set to zero.

Alternative versions of the DSGE model are obtained by modifying one aspect of the

baseline specification at a time. Specification S1 differs from the baseline version of the

DSGE model in that prices and wages are indexed with respect to last period’s price and

wage inflation rates (ιp = ιw = 1), also known as dynamic indexation. In specification S2

the output gap in the Taylor rule is calculated based on the flexible price output Y ∗
t = Y f

t .

Finally, in specification S3 the fixed costs are determined endogenously to erase steady state

profits of the intermediate goods producers.

Log marginal likelihoods for the four specifications are reported in Table 1. The posterior

odds are equal to the exponential of the log marginal likelihood differentials and summarize

the the odds of specification Si, i = 1, 2, 3, versus the baseline specification S0. S1 is clearly

rejected by the data as the posterior odds are virtually zero. While Eichenbaum and Fisher

(2004) find evidence in favor of dynamic indexation in a single-equation framework in which

only the Phillips curve is estimated, their finding does not appear to hold in a multiple

equation framework such as the one considered here. We also strongly reject specification

S3 in which the steady state profits are forced to be zero. The odds against the flexible-price

output target in the Taylor rule (S2) are less decisive but still favor the baseline version of

the DSGE model. Hence, all subsequent results are based on specification S0.

5.2 In-Sample Fit of the DSGE Model and Parameter Estimates

Figure 3 provides a first visual diagnostic of the DSGE model. The figure plots the actual

data (dark lines), as well as the one-period-ahead forecasts obtained from the Kalman filter

(gray lines), computed using the posterior mean of θ reported in column 5 of Tables 2

and 3. The in-sample fit of the DSGE model is fairly satisfactory as there appear to be no

big discrepancies between actual and fitted values. However, in terms of real activity and

real wages, the model seem to have a hard time fitting the most volatile periods, such as
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the mid-seventies. Importantly, the model consistently over-predicts consumption growth

in the first part of the sample, and under-predicts consumption growth in the second part,

except during the 1990 recession. This is a first indication that the balanced growth path

implications of the DSGE model are at odds with the data. In terms of nominal variables the

model under-predicts inflation in the late seventies, and over-predicts inflation toward the

end of the sample. Under(over)-predictions for inflation generally translate into under(over)-

predictions for the nominal interest rate.

Tables 2 and 3 report on the estimates of the DSGE model parameters. The Table

contains information on the prior distributions as well as the posterior means and the 90%

probability intervals of the structural parameters based on the estimation of the state space

representation of the DSGE model and the estimation of the DSGE-VECM(λ̂).15 For now,

we focus on the former. For most of the parameters the priors coincide with those used by

Smets and Wouters (2003a,b). Onatsky and Williams (2004) estimate the Smets-Wouters

model on Euro Area data with priors that are less informative than ours and those used in

Smets and Wouters (2003a). While they obtain different parameter estimates, they find that

the dynamics of their estimated DSGE model are similar to those obtained with the Smets

and Wouters (2003a) parameter estimates. The parameter estimates are also generally in

line with those of Smets and Wouters (2003b). The model displays a relatively high degree of

price and wage stickiness, as measured by the probability that firms (wage setters) cannot

change their price (wage) in a given period: the posterior means of ζp and ζw are 0.848

and 0.936, respectively. Smets and Wouters (2003b) also present high estimates of these

parameters.

Of particular interest for the evaluation of the DSGE model are the parameters de-

scribing the autocorrelation of the underlying exogenous processes: ρz (technology), ρϕ

(preferences of leisure), ρµ (shocks to the capital accumulation equation), b (overall prefer-

ence shifter), ρg (government spending), and ρλf
(price markup shocks). Since we model

the level of technology Zt as a unit root root process, the estimate of ρz, which measures

the serial correlation of technology growth zt, is low. All other processes are strongly auto-

correlated, particularly those for the government spending shock gt. However, for most of

these shocks the degree of persistence is not as high as that found in Smets and Wouters

(2003b). The high persistence of many of the exogenous processes raises concerns about the

ability of the DSGE model to generate endogenous propagation mechanisms. While this
15A few of the DSGE model’s parameters were fixed at the onset: δ, λf and λw were set at 0.025, 0.3 and

0.3, respectively.
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lack of internal propagation is well documented for small-scale DSGE model such as the

benchmark three-equation model described, for instance, in Woodford (2003), it is also a

concern for models with capital accumulation, variable capital utilization, adjustment costs,

habit formation, as well as price and wage stickiness as the one estimated in this paper.

Figure 4 plots the Kalman-smoothed time series for the processes zt (technology), ϕt

(preferences of leisure), µt (shocks to the capital accumulation equation), bt (overall prefer-

ence shifter), gt (government spending), and λf,t (price markup shocks), computed using the

posterior mean of θ. Not surprisingly, given the estimates of the autoregressive coefficients

shown in Table 3, many of the exogenous processes are indeed persistent. For instance,

leisure preference shocks are positive in the first part of the sample, where total hours are

generally lower than average (see Figure 3), and mostly negative in the second part and

particularly in the nineties, where hours are above average.

The government spending process gt clearly has a downward trend which is deemed as

very unlikely by the stationarity assumption stated in Eq. (24). The reason for this nega-

tive trend can be traced to the consistent under-prediction of consumption starting in the

early eighties, documented in Figure 3. According to the model investment, output, and

consumption all grow at the same rate, when measured in nominal terms (or in real terms

when deflated by the same price deflator). In the data, consumption has been growing faster

than either output or investment. The DSGE model’s inability to account for this fact may

explain the downward path of gt in Figure 4. The impulse responses (Figure 2) show that

government spending shocks have the largest – and opposite – effect on output and con-

sumption, and generally a small impact on investment and the other series (“small” relative

to the overall volatility of the series, as can be gauged from other impulse-responses in the

same column). While latent government spending shocks can to some extent compensate

for growth rate differentials and boost the in-sample fit of the DSGE model, they are less

helpful in adjusting long horizon out-of-sample forecasts as we will document subsequently.

The above results are based on thirty years of data (T = 120), starting in QII:1974

and ending in QI:2004. We use thirty years because this the amount of data used in the

estimation for the rolling sample forecasting exercise. The findings are qualitatively un-

changed when we use the entire sample, from QIII:1955 to QI:2004. Also, we obtain similar

results when we estimate the DSGE model without conditioning on the initial value of the

cointegration vector (Eq. 31).
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5.3 Relaxing the DSGE Model Restrictions

An important finding of Smets and Wouters (2003a, Table 2) is, that, at least for the

Euro area data, large-scale new-Keynesian DSGE models can fit better than VARs. Their

estimated DSGE model attains a higher marginal likelihood than VARs of lag order one to

three with training-sample priors, and a VAR (1 lag) with a Minnesota-type prior. Only

a VAR (3 lags) with Minnesota prior is able to outperform the DSGE model. The Smets

and Wouters (2003a) finding is qualitatively different from earlier results for small-scale

DSGE models, e.g., Schorfheide (2000), who finds that cash-in-advance models fitted to

output growth and inflation data are unable to dominate VARs with up to four lags and

training-sample priors.

The analysis in Smets and Wouters (2003a) has, however, some caveats as pointed out

by Sims (2003). First, in- and out-of-sample comparisons are based on linearly detrended

data instead of raw data. Second, the use of a training sample prior for some of the VAR

specifications but not for the DSGE model potentially generates a disadvantage for the VAR

if the training sample observations are qualitatively different from the observations in the

estimation sample. Third, the set of models considered is sparse, as it only contains the

DSGE model itself as well as VARs with fairly diffuse priors. In particular, the results seem

to be quite sensitive to the specification of the VAR prior.

These shortcomings are addressed in the subsequent analysis through the use of DSGE-

VECMs(λ) that are fitted to non-detrended data. Instead of simply considering extreme

values for λ, that is, λ = (k + n)/T , which is the smallest value of λ for which our prior

integrates to one, and λ = ∞, we consider a range of intermediate values that allow for var-

ious degrees of deviation from the DSGE model restrictions. While the DSGE-VECM(∞)

provides a better approximation of the state-space representation of the DSGE model than

the DSGE-VAR(∞), as documented in Section 3, we report in Table 4 log marginal likeli-

hoods for both the DSGE-VECM(λ) and the DSGE-VAR(λ) specifications. The latter has

the advantage that it relaxes some of the co-trending implications of the VECM that appear

to be counterfactual according to the direct estimation of the DSGE model. For both the

DSGE-VECM and the DSGE-VAR the number of lags is four.

We begin with a discussion of the DSGE-VECM results reported in columns 2 and

3 of Table 4. The second row of the Table contains the log marginal likelihood for the

directly estimated DSGE model (state space representation), which is very similar to the

value for the DSGE-VECM(∞) suggesting that the approximation error due to the lag
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truncation is indeed fairly small. As the weight on the DSGE model restrictions is reduced

and λ is lowered to 1, the log marginal likelihood of the DSGE-VECM increases. Hence,

taking a potential misspecification of the DSGE model restrictions into account improves

the fit of the model. The posterior of λ peaks at 1 and the marginal likelihood falls as the

hyperparameter is decreased to 0.33, which is the smallest value of λ that yields a proper

prior and a well-defined marginal likelihood, in our application. Table 4 shows that the

posterior distribution of λ has an inverse U-shape as one would expect if the DSGE model is

to some extent misspecified. Unlike the analysis in Smets and Wouters (2003a) on detrended

Euro-area data, our findings for non-detrended U.S. data are less favorable for the DSGE

model. The fit of the DSGE model is a lot worse than that of the DSGE-VECM(λ̂). The

differences in log marginal likelihoods are so large that the posterior odds of the DSGE

model are practically zero.

Table 4 also presents log marginal likelihoods for the DSGE-VAR(λ). As for the DSGE-

VECM, the posterior of λ has an inverse U-shape, but it peaks at λ = 0.75 instead of λ = 1.

The likelihood discrepancy between the state space representation of the DSGE model and

the VAR approximation is much larger than in the VECM case, which is qualitatively con-

sistent with the impulse response comparison in Figure 2. Since the VAR specification does

not impose the empirically inaccurate co-trending restrictions on consumption, investment,

output, and real wages the DSGE-VAR(λ̂) fits better than the DSGE-VECM(λ̂). Never-

theless, we proceed with the analysis of the DSGE-VECM(λ) specifications as they come

closer to nesting the DSGE model. While λ̂ provides an overall measure of the degree of

misspecification of the DSGE model we now explore the misspecification in more detail by

considering the forecasting performance and a comparison of impulse responses.

Table 4 is based on 30 years of data (T = 120), starting in QII:1974 and ending in

QI:2004. The results in Table 4 are remarkably robust: For each date of the rolling sample,

from QIV:1985 to QI:2000, the shape of the posterior of λ is qualitatively the same, with

the only difference that the peak of the posterior is λ = .75 for some dates and λ = 1

for others. We also varied the prior distribution for the structural parameters θ and did

not find a significant effect on the shape of pλ(Y ). In fact λ̂ and the associated posterior

densities appears to be much more robust than the odds ratio of the extremes that is DSGE-

VECM(∞) versus DSGE-VECM((n + k)/T ).

Finally, we discuss the posterior estimates of θ obtained from DSGE-VECM(λ̂) con-

tained in Tables 2 and 3. Roughly speaking, these estimates are obtained by projecting

the posterior estimates of Φ and Σu onto the restriction functions Φ∗(θ) and Σ∗u(θ) (for



31

details see Del Negro and Schorfheide, 2004). We find that the estimates obtained from

DSGE-VECM(λ̂) are broadly in line with those obtained from the DSGE model. Interest-

ingly, relaxing the cross-equation restrictions generally leads to a reduction in the estimated

degree of persistence of the exogenous processes, as well as a reduction in the degree of

stickiness of wages and prices.

5.4 Pseudo-Out-of-Sample Forecast Accuracy

We now discuss the pseudo-out-sample fit of the DSGE model (state-space representation)16

and compare it to that of the DSGE-VECM(λ̂) and a VECM with diffuse prior. Unlike in

the previous subsection, in which the diffuse prior was obtained by λ = 0.33 to guarantee

that the corresponding marginal likelihood is well-defined, we now report forecasts from the

DSGE-VECM(0). Since for λ = 0 the posterior mean of Φ is simply the OLS estimate of Φ

we also refer to the DSGE-VECM(0) as unrestricted VECM.

The out-of-sample forecasting accuracy is assessed based on a rolling sample starting in

QIV:1985 and ending in QI:2000, for a total of fifty-eight periods. At each date of the rolling

sample we use the previous 120 observations to re-estimate the models, and the following

twelve quarters to assess forecasting accuracy, which is measured by the root mean squared

error (RMSE) of the forecast. For the variables that enter the VECM in growth rates

(output, consumption, investment, real wage) and inflation we forecast cumulative changes.

For instance, the RMSE of inflation for twelve quarters ahead forecasts measures the error

in forecasting cumulative inflation over the next three years (in essence, average inflation),

as opposed to inflation exactly three years down the road. At each date, we also re-compute

the posterior mode λ̂ to construct forecasts from the DSGE-VECM(λ̂). As discussed above,

the value of λ̂ hovers between 0.75 and 1.00. When estimating the DSGE model we condition

on the very same information that is used to initialize the lags that appear in the VECM

specification. Table 5 documents for each series and for each forecast horizon the RMSE for

DGSE-VECM(λ) as well as the percentage improvement (in parenthesis) in RMSE relative

to both the DGSE model and the unrestricted VECM. The last three rows of the Table

report the corresponding figures for the multivariate statistic, a summary measure of joint

forecasting performance, which is computed as the converse of the log-determinant of the

variance-covariance matrix of forecast errors.
16While the forecasts from the state-space representation of the DSGE model and the DSGE-VECM(∞)

are very similar, we decided to report forecast errors for the former in Table 5.
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In the context of the AR(1) example in Section 3 we illustrated that when the mis-

specification of the DSGE model is small the most precise estimate of the autoregressive

coefficients is obtained by imposing the restrictions. On the other hand, if the misspecifica-

tion is very large, it is best to ignore the DSGE model restrictions. However, according to

Figure 1 there is an intermediate range for the misspecification values Φ̃ in which the λ = ∞
are approximately as precise, in a mean squared error sense, as the estimates obtained under

the diffuse prior. According to the multivariate forecast error statistic reported in Table 5

the improvement of the DSGE-VECM(λ̂) over the DSGE model and the unrestricted VECM

are 13.8% and 15.0%, respectively. Hence, the the one-step-ahead forecasting performance

for λ = 0 and λ = ∞ is approximately the same, which is consistent with the view that

the misspecification of the DSGE model is modest and that it provides a good albeit not

perfect approximation of reality. Relaxing, yet not ignoring the restrictions leads to an

improvement in fit and forecasting performance.

In general, for one-step ahead forecasts DGSE-VECM(λ̂) appears to be more accurate

than both the DSGE model and the VECM. Two exceptions are the real wage and the

inflation forecasts, which hardly improve as the DSGE model restrictions are relaxed. While

the DSGE model outperforms the unrestricted VECM in terms of interest rate forecasts,

the VECM delivers more precise consumption and investment forecasts.17

According to the multivariate statistic the forecast accuracy improvements obtained by

optimally relaxing the DSGE model restrictions are largest for medium-run (4 to 8 quarters)

forecasts, and then tend to decline in the longer-run. For many of the individual series,

such as output, consumption, investment, and hours, the improvements are substantial and

increase steadily with the forecast horizons. An exception is again the real wage series. For

forecasts beyond one quarter ahead, DGSE-VECM(λ̂) actually does worse than the DSGE

model, and the discrepancy rises with the forecast horizon. In terms of medium and long-run

forecasts the unrestricted VECM generally outperforms the DSGE model, which is another

piece of evidence that the balanced-growth path restrictions embodied in the DSGE model

are to some extent counterfactual.18

17Separately, we have also plotted the percentage increase in forecasting accuracy of DGSE-VECM(λ)

relative to the unrestricted VECM, as measured by the RMSE. Consistently with the results in the previous

section we find that for most series and forecasting horizons the increase in forecasting accuracy as a function

of λ displays an inverse U-shape, first increasing a then declining as λ goes from zero to infinity.
18We reach by and large the same conclusions for the DSGE-VAR specification (results are available upon

request). Consistently with the results in Table 4 the VECM specification does somewhat worse than the

VAR specification in terms of RMSEs for most of the variables with the exception of consumption. For

series like investment the reduction in long run forecast accuracy is quite large.
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5.5 Comparing the Propagation of Shocks

We conclude the empirical analysis with an assessment of the DSGE model misspecification

based on impulse response functions. A reliable benchmark model is needed in order to

evaluate DSGE models based on impulse response functions. If the DSGE model were to fit

better than the benchmark model, nothing could be learned about the DSGE model from a

comparison of impulse response functions. The findings in Smets and Wouters (2003a) and

the empirical results reported in the preceding subsections indicate that a VAR or a VECM

specification estimated under a diffuse prior distribution is not always a useful benchmark.

We found that the DSGE-VECM(λ̂) clearly dominates the DSGE-VECM(0) and DSGE-

VECM((n + k)/T ). The spirit of our impulse response function based evaluation is to relax

the DSGE model restriction by reducing λ until the fit cannot be improved further. Thus,

we are creating a benchmark that is favorable toward the DSGE model, in that we are

trying to keep the deviation from the DSGE model restrictions as small as possible. In our

application this is achieved by setting λ = λ̂ = 1.

Figure 5 shows the mean impulse-responses for DGSE-VECM(λ̂) (dash-and-dotted

lines), the ninety percent bands (dotted lines), and the mean impulse-responses for the

DGSE model. The impulse-responses for the DGSE model are computed using the same

draws of DSGE model parameters θ that generate the DGSE-VECM(λ̂) impulse-responses.

One important feature of the procedure developed in this paper is that it delivers identified

DSGE-VECM impulse responses even when λ is less than infinity. Figure 5 shows that for

λ = 1 the identification procedure is fairly successful also for relatively large systems with

as many as seven shocks. By successful we mean that the impulse-responses to all seven

shocks are economically interpretable, in that they agree with the DSGE model by and large

in terms of the direction of the response.

We find that several of DGSE-VECM(λ̂)’s impulse-responses are not only qualitatively

but also quantitatively in agreement with the DSGE model’s. This is the case for the

responses to capital adjustment shocks (µ), and mark-up shocks (λf ). Other impulse re-

sponses exhibit discrepancies. The impulse-response to a technology growth shock (Tech) is

more pronounced in the medium run for output, consumption, investment and hours under

DGSE-VECM(λ̂) than under the DSGE model. Also, the response of inflation is more per-

sistent. The effects of the preference shock (ϕ) on output, consumption, and hours are more

persistent according to the VECM specification, which indicates a lack of internal prop-

agation of labor supply shifts. The intertemporal preference shock (b) has a much larger

effect on the nominal interest rate in the VECM than it has in the DSGE model. Since b
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and R are related through the consumption Euler equation, the discrepancy suggests po-

tential misspecification of the consumption-based pricing kernel. According to the DSGE

model, output and hours increase immediately in response to a government spending shock

and quickly decay monotonically. The VECM specification, on the other hand, predicts

delayed, hump-shaped responses of both output and hours that are long-lasting. Moreover,

the VECM implies that the government shock is accompanied by a fall in nominal interest

rates whereas the DSGE model generates a small rise in R. While both DSGE model and

VECM agree on the response of inflation and interest rates to a monetary policy shock, the

VECM generates much stronger real effects.

6 Conclusions

Smets and Wouters (2003a) showed that large-scale New-Keynesian models with real and

nominal rigidities can fit as well as VARs estimated under diffuse priors, and possibly better.

This result implies that these models are becoming a tool usable for quantitative analysis

by policy making institutions. Their finding suggests that it is now worthwhile to care-

fully document the out-of-sample performance of the DSGE model. In addition, it implies

that more elaborate tools for model evaluation are necessary. It is not guaranteed that

vector autoregressions estimated with simple least squares techniques, or from a Bayesian

perspective, estimated under a very diffuse prior, provide a reliable benchmark. This paper

has addressed both issues. We conducted a pseudo-out-of-sample forecasting experiment.

Moreover, using techniques developed in Del Negro and Schorfheide (2004) we constructed

a reliable benchmark by systematically relaxing the restrictions that the DSGE model poses

on a vector autoregressive to optimize its fit measured by the marginal likelihood function.

According to our empirical results, one of the biggest impediments to fitting a large vector

of macroeconomic variables are the counterfactual co-trending implications of the DSGE

model.

Thus, much work lies ahead both in terms of modeling and econometrics. We need

to build models that can be successfully taken to non-detrended data – models that fulfill

Kydland and Prescott (1982)’s original promise of integrating growth and business cycle

theory, so they can at the same time match both growth and business cycle features of the

data. On the econometrics side we need to develop approaches that use the DSGE model

restrictions, but down-weight those frequencies where the DSGE model’s implications are

more at odds with the data, and emphasize those where the DSGE model may be most useful.



35

Progress in either direction may further enhance the use of DSGE models in quantitative

policy analysis – the ultimate goal of our research agenda.
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Table 1: Alternative DSGE Model Specifications: Log Marginal Likelihoods

Log-Marginal

Likelihood
( Difference

wrt Baseline
) Post. Odds

wrt Baseline

(S0) Baseline -530.48 ( 0 ) 1

(S1) Dynamic Indexation (ιp = ιw = 1) -561.97 (-31.49) 10−12 %

(S2) Flexible-price Output Target in Eq. (21) -532.56 ( -2.08) 12.49 %

(S3) F sets steady-state profits = 0 -559.35 (-28.87) 10−11 %

Notes: Baseline specification is: static price and wage indexation, output target is trend of
output along stochastic growth path, fixed costs F = 0. Posterior odds are computed as the
exponential of the log-differences in marginal likelihood between two model specifications,
and are expressed in percent. See Section 4 for a description of the data. Results are based
on the sample period QII:1974 - QI:2004.
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Table 2: DSGE Model’s Parameter Estimates (Part I)

Prior DSGE Post. DSGE-VECM(λ̂) Post.

Distr. Mean Stdd Mean Interval Mean Interval

α B 0.250 0.100 0.172 0.149 0.195 0.153 0.125 0.181

ζp B 0.750 0.100 0.848 0.814 0.883 0.667 0.512 0.834

s′ N 4.000 1.500 5.827 3.238 8.115 4.204 3.999 4.405

h B 0.800 0.100 0.793 0.725 0.857 0.691 0.585 0.791

a′ ′ G 0.200 0.075 0.167 0.067 0.273 0.243 0.126 0.356

νl G 2.000 0.750 2.204 1.050 3.271 2.285 2.056 2.518

ζw B 0.750 0.100 0.936 0.913 0.959 0.812 0.720 0.905

r∗ G 0.500 0.100 0.389 0.270 0.501 0.496 0.350 0.646

ψ1 G 1.700 0.100 1.799 1.640 1.944 1.768 1.609 1.993

ψ2 G 0.125 0.100 0.065 0.040 0.090 0.035 0.000 0.074

ρr B 0.800 0.100 0.815 0.775 0.855 0.799 0.748 0.850

π∗ N 0.650 0.200 1.026 0.807 1.264 0.553 0.296 0.843

γ G 0.500 0.250 0.185 0.085 0.276 0.466 0.237 0.699

g∗ B 0.150 0.050 0.224 0.199 0.253 0.157 0.095 0.217

Notes: See Section 2 for a definition of the DSGE model’s parameters, and Section 4 for
a description of the data. B is Beta-distribution, G is Gamma-distribution, N is Normal-
distribution. Results are based on the sample period QII:1974 - QI:2004.
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Table 3: DSGE Model’s Parameter Estimates (Part II)

Prior DSGE Post. DSGE-VECM(λ̂) Post.

Distr. Mean Stdd Mean Interval Mean Interval

ρz B 0.200 0.050 0.218 0.146 0.294 0.210 0.134 0.283

ρφ B 0.800 0.050 0.705 0.625 0.791 0.856 0.766 0.951

ρλf
B 0.800 0.050 0.518 0.449 0.589 0.690 0.471 0.895

ρµ B 0.800 0.050 0.884 0.834 0.937 0.706 0.608 0.797

ρb B 0.800 0.050 0.811 0.743 0.876 0.762 0.696 0.841

ρg B 0.800 0.050 0.951 0.928 0.975 0.900 0.846 0.955

σz IG 0.400 2.000 0.702 0.625 0.779 0.475 0.405 0.544

σφ IG 1.000 2.000 3.450 1.990 4.886 1.121 0.867 1.369

σλf
IG 1.000 2.000 0.192 0.168 0.217 0.191 0.163 0.219

σµ IG 1.000 2.000 0.918 0.742 1.077 0.725 0.597 0.844

σb IG 0.200 2.000 0.538 0.439 0.630 0.302 0.231 0.370

σg IG 0.300 2.000 0.406 0.360 0.454 0.284 0.241 0.328

σr IG 0.200 2.000 0.271 0.242 0.300 0.169 0.143 0.197

Notes: See Section 2 for a definition of the DSGE model’s parameters, and Section 4 for
a description of the data. B is Beta-distribution, IG is Inverse-Gamma-distribution. The
Inverse Gamma priors are of the form p(σ|ν, s) ∝ σ−ν−1e−νs2/2σ2

. We report s in the
Mean-column and ν in the Stdd-column of the table. Results are based on the sample
period QII:1974 - QI:2004.
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Table 4: Relaxing DSGE Model Restrictions: Log Marginal Likelihoods

Weight on DSGE DSGE-VECM DSGE-VAR

Restrictions

λ
Log-Marginal

Likelihood
( Difference

wrt DSGE-VECM(λ̂)
) Log-Marginal

Likelihood
( Difference

wrt DSGE-VAR(λ̂)
)

DSGE -530.48 ( -87.10 ) -530.48 ( -101.70 )

∞ -529.00 ( -85.62 ) -501.56 ( -72.78 )

5 -488.65 ( -45.27 ) -481.04 ( -52.26 )

2 -461.13 ( -17.75 ) -451.23 ( -22.45 )

1.5 -454.14 ( -10.76 ) -444.20 ( -15.42 )

1.25 -450.50 ( -7.12 ) -437.62 ( -8.84 )

1 -443.38 ( 0 ) -434.89 ( -6.11 )

0.75 -443.45 ( -0.07 ) -428.78 ( 0 )

0.5 -456.41 ( -13.03 ) -436.07 ( -7.29 )

0.33 -506.41 ( -63.03 ) -473.32 ( -44.54 )

Notes: Column 1 shows the weight of the DSGE model prior λ. Columns 2 and 4 show
the logarithm of the marginal likelihood for DSGE-VAR(λ) and DSGE-VECM(λ), respec-
tively. Columns 3 and 5 show in parenthesis the difference between the logarithms of the
marginal likelihood of DSGE-VAR(λ) and DSGE-VAR(λ̂), and of DSGE-VECM(λ) and
DSGE-VECM(λ̂), respectively, where λ̂ is the value of λ that maximizes the marginal like-
lihood. See Section 4 for a description of the data. Results are based on the sample period
QII:1974 - QI:2004.
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Table 5: Pseudo-Out-of-Sample Root Mean Squared Errors

Variable Model Forecast Horizon

1 2 4 6 8 12

Output DSGE-VECM(λ̂) 0.577 0.909 1.753 2.505 3.141 3.888

DSGE (19.6) (36.0) (51.5) (58.8) (63.1) (69.5)

VECM (21.3) (24.4) (25.0) (21.5) (17.0) (12.7)

Consumption DSGE-VECM(λ̂) 0.498 0.767 1.375 1.959 2.450 3.226

DSGE (22.9) (33.9) (42.1) (46.1) (49.4) (54.7)

VECM (5.5) (9.3) (18.2) (19.9) (21.4) (19.2)

Investment DSGE-VECM(λ̂) 3.160 4.955 9.205 13.112 16.520 20.250

DSGE (29.3) (41.0) (53.1) (59.7) (63.7) (69.9)

VECM (13.2) (12.3) (9.5) (4.5) (-2.1) (-11.8)

Hours DSGE-VECM(λ̂) 0.005 0.009 0.019 0.029 0.038 0.050

DSGE (16.3) (29.9) (43.7) (48.5) (50.2) (52.5)

VECM (19.5) (21.1) (16.4) (13.6) (9.4) (-0.2)

Real Wages DSGE-VECM(λ̂) 0.611 1.022 1.875 2.563 3.162 4.256

DSGE (1.9) (-0.3) (-3.9) (-8.0) (-12.0) (-13.2)

VECM (7.5) (6.4) (2.5) (1.5) (3.6) (8.8)

Inflation DSGE-VECM(λ̂) 0.233 0.450 0.833 1.305 1.803 2.820

DSGE (2.4) (8.6) (15.5) (14.1) (14.0) (14.5)

VECM (5.2) (5.6) (9.0) (13.4) (15.3) (16.5)

Fed Funds Rate DSGE-VECM(λ̂) 0.465 0.780 1.288 1.712 2.180 2.596

DSGE (13.1) (22.4) (27.4) (26.5) (21.2) (19.4)

VECM (28.3) (28.8) (29.2) (31.4) (30.1) (29.1)

Multivariate DSGE-VECM(λ̂) 1.368 0.939 0.523 0.281 0.117 -0.101

Statistic DSGE (13.8) (18.2) (21.7) (20.7) (17.8) (5.0)

VECM (15.0) (16.3) (16.0) (19.7) (20.4) (26.5)

Notes: Results are based on the rolling sample QIV:1985 - QI:2000. At each date of the
rolling sample we use the previous 120 observations to estimate the model, and the following
twelve quarters to assess forecasting accuracy. For each date we also compute λ̂, the value
of λ that maximizes the marginal likelihood. For each variable, the table shows the root
mean squared error (RMSE) of the forecast from DSGE-VECM(λ̂), and in parenthesis
the improvement in forecast accuracy relative to the DSGE model and the unrestricted
VECM, as measured by the percentage reduction (increase, if negative) in RMSE. The
multivariate statistic is computed as the converse of the log-determinant of the variance-
covariance matrix of forecast errors. The forecast horizon is measured in quarters. See
Section 4 for a description of the data.
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Figure 1: Estimation Risk: AR(1) Example

Notes: Figure depicts asymptotic risks as a function of local misspecification: solid is λ = λ̂,
dashed is λ = ∞, and dotted is λ = T−1.
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Figure 2: How Well Do DSGE-VAR/VECM Approximate the DSGE Model?

Identified Impulse Responses
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Notes: The solid, dash-and-dotted, and dotted lines represent the impulse responses from one to sixteen quarters

ahead of the DSGE model, DSGE-VAR(∞), and DSGE-VECM(∞), respectively, with respect to the following

shocks: Tech (technology), ϕt (preferences of leisure), µt (shocks to the capital accumulation equation), bt (overall

preference shifter), gt (government spending), and λf,t (price markup shocks), and Money (monetary policy). All

impulse responses are computed setting the vector of DSGE model parameters θ at the posterior mean values

reported in column 5 of Tables 2 and 3. These impulse responses for DSGE-VAR(∞) and DSGE-VECM(∞) are

obtained using the identification procedure described in the section 3.5. All impulse responses are in percent. The

impulse responses to output, consumption, investment, and the real wage are cumulative. Results are based on

the sample period QII:1974 - QI:2004. See Section 4 for a description of the data.
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Figure 3: In-Sample Fit of the DSGE Model
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Notes: The figure plots the actual data (dark line), as well as the one-period-ahead forecasts obtained from the

Kalman filter (gray line), computed using the vector θ of DGSE model parameters that maximizes the posterior.

Results are based on the sample period QII:1974 - QI:2004. See Section 4 for a description of the data.
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Figure 4: Exogenous Processes
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Notes: The figure plots the Kalman-smoothed time series for the processes zt (technology), ϕt (preferences of

leisure), µt (shocks to the capital accumulation equation), bt (overall preference shifter), gt (government spending),

and λf,t (price markup shocks), computed using the vector θ of DGSE model parameters that maximizes the

posterior. Results are based on the sample period QII:1974 - QI:2004. See Section 4 for a description of the data.
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Figure 5: Impulse-Responses: DSGE-VECM(λ̂) versus the DSGE model

0

1

2
Y

T
e

ch

0

1

2
C

−5

0

5
I

−1

0

1
H

0

0.5

1
W

−0.2

0

0.2
Inflation

−1

0

1
R

−2

−1

0

φ

−2

−1

0

−5

0

5

−2

−1

0

−1

0

1

−0.5

0

0.5

−1

0

1

−1

0

1

µ

−1

0

1

−10

0

10

−1

0

1

−1

0

1

−0.2

0

0.2

−1

0

1

−1

0

1

b

−1

0

1

−5

0

5

−1

0

1

−0.5

0

0.5

−0.5

0

0.5

−1

0

1

−0.5

0

0.5

g

−1

0

1

−5

0

5

−0.5

0

0.5

−0.5

0

0.5

−0.1

0

0.1

−0.5

0

0.5

−1

0

1

λ f

−1

0

1

−5

0

5

−1

0

1

−1

0

1

−0.5

0

0.5

−0.5

0

0.5

 0  4  8 12 16
−1

0

1

M
o

n
e

y

 0  4  8 12 16
−1

0

1

 0  4  8 12 16
−5

0

5

 0  4  8 12 16
−1

0

1

 0  4  8 12 16
−0.5

0

0.5

 0  4  8 12 16
−0.2

0

0.2

 0  4  8 12 16
−1

0

1

Notes: The black lines represent the mean impulse-responses (dash-and-dotted lines) of DSGE-VECM(λ = 1) and

the associated 90% bands (dotted lines). The gray lines represent the mean impulse-responses (solid lines) of the

DSGE model and the associated 90% bands (dotted lines). The impulse-responses are computed with respect to the

following shocks: Tech (technology), ϕt (preferences of leisure), µt (shocks to the capital accumulation equation),

bt (overall preference shifter), gt (government spending), and λf,t (price markup shocks), and Money (monetary

policy). All impulse responses are in percent. The impulse responses to output, consumption, investment, and

the real wage are cumulative. Results are based on the sample period QII:1974 - QI:2004. See Section 4 for a

description of the data.




